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Abstract

This paper introduces a nonparametric Granger-causality test for covariance
stationary linear processes under, possibly, the presence of long-range
dependence. We show that the test is consistent and has power against
contiguous alternatives converging to the parametric rate T ™. Since the test is
based on estimates of the parameters of the representation of a VAR model
as a, possibly, two-sided infinite distributed lag model, we first show that a
modification of Hannan's (1963, 1967) estimator is root-T consistent and
asymptotically normal for the coefficients of such a representation. When the
data is long-range dependent this method of estimation becomes more
attractive than Least Squares, since the latter can be neither root-T consistent
nor asymptotically normal as is the case with short-range dependent data.
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1.- INTRODUCTION

Since Granger (1969), when analyzing relationships between economic variables,
the concept of causality has been a basic subject routinely invoked in the econo-
metric/economic literature. Typically, tests for causality are commonly performed
in the context of unrestricted vector autoregressive (VAR (P)) models with P a fi-
nite known positive number. See among others, Granger (1969) or Geweke (1982)
when the data is short-range dependent, or for variables showing stochastic-trend
behaviour, see Sims et al. (1990) or Toda and Phillips (1993). Some extensions are
in Hosoya (1991) who analyses causality for stationary short-range dependent pro-
cesses which do not necessarily have a VAR representation or Liitkepohl and Poskitt
(1996), and references therein, who allow for an infinite order VAR model. However,
the above models do not cover the so-called long-range dependent processes which
have attracted immense attention in recent years in the econometric literature. The
object of this paper is thus to introduce and analyze a causality test which allows
for long-range dependence. In addition, the test does not rely on any specific finite
parameterization of the model and covers processes which do not possess a finite order
vector autoregressive moving average (VARM A) representation such as Bloomfield’s
(1973) exponential model.

To fix ideas, let a bivariate observable covariance stationary vector w; = (yi, a:t)/

satisfy
A(L)wt:ZAjwt,jzgt, t:1,2...,7v7
7=0

where g; is a bivariate martingale difference sequence and Ay is the identity matrix.
The interest is in testing the null hypothesis Hy: y; # x;, that is y; does not cause
T, against the alternative hypothesis Hy : y, = x4, that is y; causes z;.

The main attributes of the test, described below, are; 1) it is nonparametric, that

is, we do not impose any specific parametric model for the data, 2) it is consistent, 3)



it has power against 7~ '/2 contiguous alternatives, and 4) its limit distribution can
be obtained, say, from the distribution of the supremum of the standard Brownian
motion. Thus, the paper extends previous work in two main directions. First, we allow
for a general covariance stationary linear process and second, since it is nonparametric,
we avoid the danger of possible misspecification.

Now we briefly discuss the main ideas of the test. Following Sims (1972) or Hosoya
(1977), a test for Hy is equivalent to testing whether the coeflicients ¢ (j) are simul-

taneously equal to zero for all j < 0 in

Yt = Z ¢ (J) Te—j + ue, (1.1)
j=—o00
where, by construction, F [u;|zs, —0c0 < s < oo] = 0, and z; and u; are, possibly,

long-range dependent processes. Alternatively, the null hypothesis Hy is equivalent

to
‘Z ¢(j—1)cos(mjA) =0 VYre[0,1],
S* (1) = Re (/OM (Z c(j—1)e”fﬂ“> d)\> =0 Vpelo1],

where Re (a) denotes the real part of a complex number a. Therefore the hypothesis

testing can be described as
Ho:S"(p) =0 Vpe|0,1] against Hy : S* (1) #0in A C [0, 1] (1.2)

where A has Lebesgue measure greater than zero.
Given estimates of ¢ (j), say ¢(j), and using Riemann’s discrete approximation of

integrals by sums, S* () can be estimated by

[M 1] 0
Sr (1) = Re % 3 ( N G- ) (1.3)

=0



where A\, = p/M,p=1,.... M, and M = M (T) is a number which increases slowly
with T, that is M1+ MT~! — 0. The test can thus be based on whether or not
St (p) is significantly different than zero for all p € [0,1] by the implementation of a
functional of Sy (1), say a Kolmogorov-Smirnov test.

The remainder of the paper is organized as follows. In the next section, we describe
and motivate the estimation technique of the coefficients ¢ (j), whose statistical prop-
erties are given in Section 4. Section 3 describes the statistical framework. Also,
since our statistics and proofs are based on the spectral density matrix estimator of
wy and the cross-spectrum between x; and uy, we give some useful statistical proper-
ties of them. In Section 5, we study the properties of (1.3) and we provide the test
for Granger-causality and its implementation. In Section 6, we discuss the choice of
M and how the results of Sections 4 and 5 are extended to general p-dimensional
data. Finally, Section 7 gives a summary of the paper. The proofs of the results are
confined to Mathematical Appendix A which apply some technical Lemmas given in

Mathematical Appendix B.

2.- ESTIMATION PROCEDURE AND ITS MOTIVATION

In this section we describe the estimation technique of the coefficients ¢ (j) in
(1.1) and discuss why it is more desirable than Least Squares (LSFE) estimates in
the presence of long-range dependence. To accomplish this, we adopt the frequency
domain approach whose merits have been proven to be numerous and applied in
several contexts. For example, it was used when testing for causality in the pioneer
work by Granger (1969), or in Geweke (1986) to analyze the neutrality of money.
Recently, Hosoya (1995) has shown the usefulness of spectral analysis in contrast to
time domain methods when analyzing the causality among economic variables, see
also Geweke (1982). Another example is in the efficient estimation of the parameters

in a regression model, see the cornerstone work by Hannan (1963), and extended to
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more general models useful in econometrics by Hannan and Terrell (1973) and recently
by Robinson (1991) who also allowed for data dependent smoothing in the spectral
estimation. One rationale of the approach lies in that only minimal conditions of
the process are needed, like stationarity, and no explicit assumptions on its dynamic
specification are thus required.

In the frequency domain, the lag structure given in (1.1) is described by the fre-

[o0)
j=—o0

Fourier coefficient of C'(A) = f,.} (A) [,z (A), that is,

quency response function C'(A\) = > c(j) e so c(j) is interpreted as the jth

c(j) = (2m) " /0 e (A) €92\, (2.1)

where fy, (M) and fi, (A) are the indicated elements of the spectral density matrix,
fuww (A), of wy defined from the relationship

B ((wi — Bw) (w1 — Bwy)') = / Juow (N e NN j=0,£1,£2,...

Due to this interpretation, Hannan (1963,1967), see also Brillinger (1981), proposed
to estimate ¢ (j) by the sample (discrete) analogue of (2.1),

1 2M—-1
) =55 Y G, (2.2)
p=0

where ép = ﬁ;{pﬁ/m,p, and ﬁ/m’p and ﬁ;m’p are estimates of fy,, and fg4, respectively,
where for a generic function g (A), g, denotes g (\,).

The motivation of the estimator in (2.2), coined by Sims (1974) as HI (Hannan’s
inefficient) estimator, is threefold. First is the ability to estimate the coefficients
c(j) irrespective of the number of lags specified in (1.1), which will be relevant when
analyzing the properties of Sy (1) defined in (1.3). Second, since there is no gain by
exploiting the information on the covariance structure of the errors u;, as Sims (1974)

showed, the HI estimator becomes as efficient as the Generalized Least Squares (G LS)



estimator. This motivates the LSE of ¢ (j) given in Robinson (1979), although under
stronger assumptions than those we want to impose in this paper.

Finally, the third motivation, which makes the estimate in (2.2) more appealing
when the data is long-range dependent is as follows. Assume, for expositional sim-
plicity, that model (1.1) is

q

Y = ZC(‘])Q%,J“I‘U,M t:17"'7T7 (23>

j=—r

where both ¢ and r are finite and known a priory. When the data is short-range
dependent, it is known that, under suitable conditions, the LSFE is root-T consistent
and asymptotically normal. However, under long-range dependence, as Robinson
(1994) observed, when the joint long-range dependence in the regressor x; and error
uy 1s sufficiently strong, that is the product of the spectral density functions of z; and
uy 1s not integrable, the LSE is no longer root-T consistent and more importantly, it
loses the central limit theorem property.

Motivated by this observation, Robinson and Hidalgo (1997) showed that a class
of frequency-domain weighted LSFE, including GLS (with parametric error spectral
density function) as a special case, is root-T" consistent, asymptotically normal and
Gauss-Markov efficient in model (2.3). More generally, their results are also valid when
c(7) is known up to a set of parameters 6, that is ¢ (j) = ¢ (j; 0) for all j, in (1.1). The
intuition why the estimator in Robinson and Hidalgo (1997) is root-1T" consistent and
asymptotically normal is because the weighted function possesses a zero sufficiently
strong to compensate for the singularity of the spectral density function induced by
the joint long-range dependence of z; and u;. So, since f,,' (A\) possesses a zero at

1
Tx,p

A = 0, see C8 below, we can expect that becomes (asymptotically) a weighted
function satisfying the conditions of Robinson and Hidalgo (1997). In fact, it is shown
in Theorem 1 below that the modification of the HI estimator given in (4.1) achieves

root-T" consistency and asymptotic normality, so that the HI estimator is indeed a



desirable estimator.

It is worth mentioning that Hidalgo and Robinson (1999) have recently provided
asymptotic justification of Hannan’s (1963) G LS estimate when the spectral density
fuu (A) is unknown and both z; and u; are, possibly, long-range dependent. However,
the last approach in the general framework of model (1.1) seems difficult to implement
in empirical studies and based on the previous comments, it is expected that there
is no gain in efficiency. It should be noted that when the singularities of f, (A)
and f, (A) do not coincide, applying Robinson and Hidalgo’s (1997) results, under

suitable conditions, the LSFE will be root-T" consistent and asymptotically normal.

3.- STATISTICAL FRAMEWORK AND ASYMPTOTIC PROPERTIES
OF THE SPECTRAL DENSITY MATRIX ESTIMATOR

As the estimator in (2.2) and the test for Hy (and their proofs) employ the estimate
of the spectral density f,, (A) and the cross-spectra f,, (A) and f,, (A), it seems
appropriate to examine the properties of the spectral density matrix estimate of a,
for example, v—dimensional covariance stationary linear process z;. Let f (\) be the

spectral density matrix of z; defined from the relation

Y()=E((z1 — Ez) (21 — Ez)') = /7r SN e X, j=0,4£1,4£2,.... (3.1)

Let 2z, denote the gth element of z;, the autocovariance (spectrum) function of
Ztg DY Vg9 (7) (fgg (A)) and the cross-covariance (cross-spectrum) of z, and zy by
1on ) U O))

We wish to estimate f (A) on the basis of T observations Zp = {z,t =1,...,T}.
Writing

1 T T !
I(A\)=— (Z ztem> (Z ztem> ,
2l t—1 t—1



we estimate f by

7 2m+1 Z OYEDIE (3.2)

where m = [I'/4M] with M as defined in Section 1 and \; = (275) /T, j =
0,%1,..., +[I'/2].

To examine the properties of ]?()\), let us introduce

Condition C1 For g = 1,...,v, there exist C; € (0,00), d, € [0,1/2) and « € (0, 2],
such that
fog (A) = Cg)‘img (14+0(A%)) as A — 0+

and fy, (A) > 0 for all A € [0, 7].



Condition C2 For g = 1,...,v, f,,()\) is twice continuously differentiable in any
open set outside the origin, and
‘ X

Let us define the coherence between 2y, and 2y, as Rgp (A) = fon (A) / ( glg/2 (N ,1,/12 ()\))

Condition C3 For g < h = 2,...,v, | Ry, (N)] is twice continuously differentiable in

any open set outside the origin and for some 3 € (1, 2],
|Rgn (A) — Rgn (0)] = O (A7) as A — 0+

Condition C4 {z;} is a covariance stationary linear process defined as

) )
2
= E ngtfjv E HC]H < 00,
=0 =0

where ( is the identity matrix, (; are (v x v) matrices and || D|| stands for the

norm of the matrix D.

Condition C5 {z;} is a stochastic process with finite fourth moments, where E (=; | F; 1) =
0, B (é?té?; ’ftfl) =F (é?té?;) == a.s., B (5tj15tj25tj3 ’ftfl) = /1“3,j1,j2,j3 such that
‘/L&jhj?’jg‘ < oo for all jy, 72, j3 where F; is the o-algebra of events generated

by 5,5 < t, and the joint fourth cumulant of e, j; = 1,...,v andi =1,...,4

satisfies

_ Kj1,d2,d3,94 b1 =19 =13 =14,
cum (5t1j1 ) Etages Etagss €t4j4) - i
0, otherwise,

with & = max;,—1 _vi=1,...4 Ky j.jaga] < 0.

Condition C6 [(0/0X\)n(N)| = O (|n(N)] /A) as A — 0+, where
)= Ge
=0
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which is twice continuously differentiable in any open set outside the origin, and
fg;gl/Q (M) n,(N), g =1,...,v, is a non-zero finite vector where 7, (A) denotes the
gth row of n ().

Condition C7 M?/T +1/M — 0.

Prior to stating some results on the spectral matrix estimator, ]?()\), some discus-
sion about our conditions is in order. Conditions C1-C3 deal with the behaviour of
f (A). For frequencies A — 0+, they are the same used elsewhere by, say, Robinson
(19954, b) and thus, his comments apply here, while for frequencies A in any open set
outside the origin, they are standard. Conditions C4 and Cb are restrictive in the
linearity they impose, but not otherwise. Although Condition C5 can be weakened to
cover more general processes for the innovation £, as in Hosoya and Taniguchi (1982),
we keep it in its present form to avoid extra notational complications of the rather
lengthy proofs of some of the results.

Examples of processes satisfying C1-Ch are as follows. Let &, be a v—dimensional
unobservable covariance stationary linear process which possesses a continuous and

bounded away from zero spectral density matrix and consider the filter

ct = ZG(J) §eje (3.3)

Let Gy (A) denote the gth row of the matrix G (A) = > 7% G (j) e** such that
Gy (A) A% tends to a non-zero finite vector as A — 04, for g = 1,...,v. For instance,
let £, be a stationary invertible vector autoregressive moving average (VARM A) pro-
cess with 4id innovations and let each 24, be formed by separate fractional integration

of the corresponding &, element, so that
. iy a1 ix) v
G(A)zdmg((l—e) ,...,(1—6) )
Then C1-C5 hold. In the particular case of z; being scalar, its spectral density function

9



1S
2

e <€i)\>
D (ei)

2
e
27

) , —mT<A<m, (3.4)

where 0 < d < 1/2, and where © (A) and ® (\) are the M A and AR polynomials
respectively, having no zeroes in or on the unit circle. (3.4) is the familiar frac-
tional autoregressive moving average (ARFIMA) model, see for instance Granger
and Joyeux (1980) or Hosking (1981). Another model which exhibits long-range de-
pendence is the fractional Gaussian noise (fgn) process introduced by Mandelbrot
and Van Ness (1968), whose spectral density function, see Sinai (1976), is

_ 402T (2d) o

(27_[_)3+2d

) cos (md) sin® (\/2) Z ‘j + % (3.5)

=0

where 02 = E (2, — E (zt))2 < o0 and I' (+) denotes the gamma function. From (3.4)
and (3.5), we observe that the ARFIMA and fgn models do not represent the same
process, although their spectral density functions behave as KA 24 as A — 0+, for a
generic finite positive constant K. For a review of these models, see Beran’s (1994)
monograph.

Condition C6, when A — 0+, was assumed elsewhere in Robinson (1995b), so his
comments apply here also, while for frequencies A in any open set outside the origin,
the condition is standard in spectral density matrix estimation. The second part of
the assumption is not strong, see for instance the comments made after (3.3), once A%
is identified as fgfql/ 2 up to constants. Finally, Condition C7 gives the upper bound
on the rate of M to infinity. In particular, M cannot increase faster than 7%/?¢ for

any 0 < 6 < 1/2.
Let f;h (A) denote the (g, h) th element of ]?()\) in (3.2).

Proposition 1 Assuming C1-C7, for g,h =1, ..., v,

L <¢gh,p> =0 <%2(T)

mwo if 1<p<M,

10



with the convention that O (a) = o(a) =0 if a = 0 and where

m

N * N 1 _
Ponp = Jonw = fonp and Jon (A) = o +1 jz fon (X5 +A) .

—m

Proof. The proof is a straightforward application of Proposition 1 of Hidalgo and
Yajima (1998) when p satisfies 1 < p < [M6], where [a] denotes the integer part of
a, which applies Theorem 2 of Robinson (1995a), and by Proposition 1(¢) of Hidalgo
and Robinson (1999) when [Mé] <p < M for 6 > 0. O

Proposition 2 Assuming C1-C7, for a,b,g,h =1,...,v,
- 1/2 1/2
MT ‘COU <¢gh,p7 ¢ab,p>‘ =0 (fglg/fnfhf/z,pf;éi)fbb/,p) ‘
Proposition 3 Assuming C1-C7, for g,h=1,...,v,

~1/2 —1/2
fggJ{ fhh,p ¢gh,p

— 0, (a2 1)

p=1,...P

4.- THE ASYMPTOTIC DISTRIBUTION OF THE HI ESTIMATOR

When analyzing the HI estimator in (2.2), and similar to the technical problems
encountered in many other non/semi-parametric estimators, since fm (0) tries to es-
timate fz, (0) which may be infinity, the HI estimator is quite difficult to analyze
as it stands. One way to proceed is by trimming the term corresponding to p = 0
from (2.2). However, as it will become clear when examining (A.7) in Mathematical
Appendix A, the trimming introduces a bias problem that otherwise would not exist
if the frequency Ag = 0 was included. Thus, we modify (2.2) to

2M—11

o1 e
p=1

IM—11 i IM—1 i o
where szl a,e?*r means szl ap,e*r 4 a;. Intuitively, we have replaced the

estimator of Cy by that of C}, that is ﬁ;llﬁml

11



The asymptotic properties of the estimator given in (2.2) were first established by
Hannan (1967) for a finite, possibly of unknown order, distributed lag model and
Brillinger (1981) for the infinite distributed lag model, when both fy, (A) and fu, (A)
are bounded and bounded away from zero. Thus, the aim of this section, due to the
possible adverse properties of the LSFE, is to show that the estimator defined in (4.1)
is root-T" consistent and asymptotic normal under the presence of, possibly, long-
range dependence. Finally, it is worth noting that due to the cyclical behaviour of
¢(7), that is, €(j) = ¢(j + 2M), ¢ (4), |7| = M + 1, ..., cannot be estimated, although
their contribution is negligible since 3 ;- |e(j)| = O (M 217/2) = o (T1/%) by C9

and C10 respectively given below.
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Assume the following:

Condition C8 {w;} = {y:, 7} and {u;} are covariance stationary linear processes

defined as

o0 o0 o0 o0
2 u wl2
wy = E Qe j, E [®;]]° < oo and uy = E Dleu gy E ‘(I)j‘ < 00,
Jj=0 Jj=0 Jj=0 Jj=0

where £, and ¢, satisfy C5, f,, (A) and fy, (A) satisfy C1-C3 and f,, () and
| furs (A)]| are bounded away from zero. Also, @ (A) = Y77 ®;¢* and @ () =
> oo PYe? satisty C6 and {x;} and {u;} are mutually independent.

Condition C9 ¢ (|j|) = O (]j]’3+7/2) for some 0 < 7 < 1.

Condition C10 M?>T—'+ M™*I — 0 with 7 as in CO.

Condition C8 deals with the requirement of some smoothness of fi,,, (A) and fi (A).
The requirement of independence between x; and u;, as in Robinson and Hidalgo
(1997), is necessary for the proof of asymptotic normality. We believe that it might
be possible to relax it to some extent, but that will enormously complicate the already
technical proof given in Robinson and Hidalgo (1997). This certainly remains an open
question. Condition C9 implies that the first derivative of C () is Liptchitz continu-
ous with Liptchitz parameter in the interval (0,1 — 7/2). Condition C10 strengthens
the admissible values of M in C7. Specifically, the rate of increase of M to infinity

cannot be slower than T%t1/*=7) for arbitrarily small § > 0.

Theorem 1 Assuming C8-C10, for any finite collection ji, ..., Jy,
. . . . . d
(Z> T1/2 (C (]1) —C (]1) y e € (]q) - C (]q))/ — N (07 Q= {erje}r,ézl,..,q) where

%= (20" [ £ fun (U
which corresponds to the asymplotic covariance between ¢ (j,) and ¢ (j,).

13



2
. A consistent estimator of Q;,;,, r,f=1,..,q,

~

(i) Let fuup = fyyp — f:;ml,p

18

fy:c,p

1 2M -1/
O, — E 17 W(gr—de)Ap
QJTJE - 2M fmm,pfuuype :
p=1

Theorem 1 indicates that the results, obtained by Hannan (1967) and Brillinger
(1981) for short-range dependent data, hold the same under long-range dependence.
It is important to observe the following; because fuy (A) ~ KA 2% and fu, (A) ~
KX 2™ as A — 0+ by C8, where 0 < dy,dy, < 1/2, the asymptotic covariance
structure of ¢(j), when taken as a process indexed by j, behaves as that of a long-
range dependent process with d = d,, —d,. In particular, when f,, (A\) = K fu, (A) for
all A € (—m, 7], ¢(j) is, asymptotically, an #id (0, K~ ') Gaussian process. Generally,
¢ () has a spectral density (27T)71 Tom (A) fuu (N).

5- A NONPARAMETRIC CAUSALITY TEST

If in (2.3)  was a known finite constant, a Wald test for Hy could easily be imple-
mented from the results of Theorem 1. However, when there is no known parameter-
ization of the model, e.g. of ¢(j) in (1.1), in terms of a finite set of parameters, 0,
the results given in Theorem 1 cannot be implemented in a straightforward manner.
In this framework, one way of testing for Granger causality might be by fitting an
AR (P) model to w; where P increases slowly with 7" as in Liitkepohl and Poskitt
(1996). However, their results depend heavily on the assumption that the data is
short-range dependent. Specifically, their Assumptions 1 and 2, and that the sample
covariance of the data converges to the population one at the rate 7-'/2 are not nec-
essarily the case under long-range dependence. Moreover, the asymptotic distribution
of the sample covariance may not be a normal random variable, see Taqqu (1975) or

Hannan (1976). Thus, we adopt the approach given in (1.3). Given the estimates of

14



c(j) in (4.1), consider

[Mp] 0
St (1) -7 Z ( dYoel- 1)eiﬂp> : (5.1)

—M+1
St (p) forms the basis for the hypothesis testing in (1.2) as follows. In Corollary

1 below, we show that under Hy, T/2Sp (11) e Ly (), a Gaussian process with

covarilance structure

K( _i mmin(py,449) 1 \
s fo) = A Joz (A) fuu (A) dA, (5.2)

where 7“2 denotes weakly convergence in D |0, 1] equipped with the Skorohod
metric.

Since the function K (g, ) is nondecreasing and nonnegative, B (1) admits the
representation B (K (u, ) in distribution, where B (u) is the standard Brownian
motion in [0,1]. This representation, Corollary 1 below and the continuous mapping
theorem yield

s V287 ()| = o 1B ()] = K" (1,1) sw (B n law.

Let us introduce

Condition C8’ (8 is satisfied and in addition ]a:t]4 and ]ut]4 are uniformly inte-

grable.

Observe that a sufficient condition for the second part of C'8 is that F ]a:t]4+5 +

FE ]ut]4+5 < o0 for some 6 > 0.

Corollary 1 Assuming C8’, C9 and C10, under Hy,

weakly
P

TSy () B(p),

in D [0, 1] with the Skorohod metric and covariance structure K (piq, pts) given in (5.2).

15



Let K (i, 1) be the consistent estimate of K (u, p1),

M,
1[#]

Then, Corollary 1 and the comments made above are useful for testing Hy. For ex-
ample, the Kolmogorov-Smirnov test based on T/2S; () would reject the null if

sup {[?71/2 (1,1) ‘Tl/QST (u)‘ , €0, 1]} exceeds an appropriate critical value ob-
tained from the boundary crossing probabilities of a Brownian motion, which are

readily available on the unit interval. More generally, see Koul and Stute (1999), as
-1 wea.
R s (Rom) ' 0) =5 5

~ -1 ~
where (K (u,u)) (1) = inf {u €10,1], K (1, p) > t}, the limiting distribution of

any continuous functional of K172 (1,1)TV28; <([A( (1, u))l (t)> can be obtained
from the distribution of the corresponding functional of B (1) on [0, 1].

As in other problems involving testing, one key area of interest is to know the
properties of the tests under contiguous or Pitman alternatives. To this end, let us

mtroduce

H, Z ¢(j — 1) cos (wjA) = T~ V2h (7)),

]7700
where h (¥) is a continuous function in [0, 7] such that 0 < |h (9)] in a set A C [0, 7]

with positive Lebesgue measure.

Corollary 2 Assuming C8’, C9 and C10, under H,,
n

TV285 (1) 2B B (1) + / h(7A) dA. (5.3)

0

Corollary 2 thus indicates that the test has power against contiguous alternatives
that converge to the null at the rate 7' 1/2. It therefore has no zero asymptotic relative

efficiency compared to rival parametric tests based on a correct parameterization of
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(1.1). From Corollary 2, we can easily show that the test is consistent. For that

purpose, consider
0

H : .Z ¢(j — 1) cos (7jA) = h(wA).

From Corollary 1 we can then immediately prove that under Hy

H ~
TV257 (1) — TW/ h(wA) dX "“ZEY B (),

0

and thus the consistency of the test.

To finish this section, it is worth noting that as the Kolmogorov-Smirnov test has
somewhat poor finite sample properties, we may alternatively attempt to bootstrap
the statistic TY/2S (i), in a similar way to Hidalgo and Kreiss (1999), using a com-
bination of the Wild and Moving Block Boostraps. Specifically, let £ = ¢(T') be a
number such that ¢! +¢7"! — 0. Consider L = T — £ 4 1 groups, such that the
gth group is formed from the observations (Y., %) ,, (Werq 1, Terq-1) - Then the
bootstrap analogue of TV2Sy (1) is

L 1 [Mp] 0 -
St () =L7"*> Re i >, ( Y, @G- -2~ 1))6%’) U
g=1 p=1 \j=—M+1
where 9, are iid (0,1) random variables and ¢, (j — 1) is identical to (4.1) but using

only the observations from the ¢gth group.

6.- IMPLEMENTATION OF THE TEST AND ITS EXTENSION TO
MULTIVARIATE DATA

In empirical studies to implement the test and estimate the parameters ¢ (j), we
face the problem of how to choose M or m (recall that M = [T'/4m]). Based on the
approach adopted to estimate the parameters ¢ (j), the choice of M can be regarded

as that of the number of leads/lags in the model
M=[T/4m]

Y = Yoo el m i, t=1,.T. (6.1)

j=—M=—[T/4m)]

17



One standard criterion for choosing M, and thus m, in (6.1) is the minimization of

the Akaike’s (1974) AIC criterion
log 63y + 2M/T (6.2)

where, using Kolmogorov’s formula,

2M —
52, — exp ( > Lo ey )) ,

that is, the estimator of the one-step-prediction error based on the residuals

M=[T/4m o~
Yo — 23—7[ / %T/4m] ¢ (J) zej-

The motivation of the AIC' criterion is twofold. First, it gives an approximately

1

unbiased measure for the prediction error and secondly, it provides an asymptotic
unbiased ”estimate” of the Kullback-Leibler information (using its Whittle’s approx-

imation),
¥

<logg () + %) dA,

where f and g are the true and candidate spectral density functions for a given data

L(f,g9) = 2T log (27) —I—%/

-7

set.
An alternative criterion to the AIC given in (6.2), which can be used, is based on

the choice of m = [T'/4 M| which minimizes the Cross-Validation criterion

(T/2m]

o Laam (A5)
Q- log i1 ;) (M) + i) L 6.3
Z{ o ) f;z,(j)w} o

where ]ua m (A¢) 1s the periodogram of the residuals in (6.1) and f e () (A\;) = fy’gy(j) (Aj)—
€ ()

:Z?c,( 7 (A;) is the one-leave-out estimate of the spectral density function of

uy given in part (ii) of Theorem 1: that is

S 1 = _ . 2
l=—m (40

18



The motivation of the above criteria Q,, in (6.3) is that as shown by, for example,
Hurvich and Beltrao (1990), the expected value of KL ( fuu,fuu), where ﬁm is a
nonparametric estimate of f,,, is asymptotically equivalent to the Cross-Validation
criterion (apart from the constant 27 log (27)) for the estimate ﬁw Moreover, it is
worth mentioning that the two criteria (6.2) and (6.3) are asymptotically equivalent,
see for instance Stone (1977) or Kavalieris (1989).

Now, let us describe how the results of Sections 4 and 5 are extended to a p = py+ps
/

dimensional covariance stationary vector wy = (y;,#})". Assume that w; admits the

AR (00) representation
AL)wy =Y Ajwyj=gi, t =1,2.,T, (6.4)
=0

where £; is a p—dimensional martingale difference sequence and Ay is the identity
matrix. As was argued in Section 1, the null hypothesis, Hy, that y, # x4, is equivalent
to testing whether the p; X ps matrices ¢ (j) are zero for 7 < 0 in the infinite distributed
lag representation of (6.4)

o0

Yo = Z ¢ (J) Ty + w,

j=—o00
where, by construction, F [u; |z, —00 < s < 0] = 0.
In this case, the HI estimator of ¢ (j) is defined as

2M—11

~ 1 N o ii
c (j) = W Z fym,p :z::z:l,pe ]Apv
p=1

whereas the test for Hy is given by

1 [My] 0
_ T —ijAp
St (1) = Re MZUGC( Z c(j—1e™ )

p=1 j=—M+1

We then achieve the following results.
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Theorem 2 Assuming C9, C10 and an obvious extension of C8 to mullivariate data,
for any finite collection ji, ..., Jq,

(i) TV (vee (@) = e () o vee @00) — e G)) > N (0,9 = 1%}y ,)

where

Qg = (27T)1/7r (Fow (=2) @ fuu (X)) €6 7302g )\

—T
which corresponds to the asymptotic covariance matriz between vec (¢ (j,)) andvec (¢ (J)).
(1) Let ﬁm,p = ﬁ/y’p — ﬁ/m,pﬁ;{pﬁcy,p, A consistent estimator of Q;.5,, 7,0 =1,...,q,
18
2M 1/

Jrje = 2M Z ( xx,—p ® fuu )ei(jrijep\p'

Proof. The proof of this theorem or any other result in this section follows by routine

extension to those of Sections 4 and 5 and whose details can be seen in Hidalgo (1998).

Corollary 3 Assuming C9, C10 and an obvious extension of C8’ to multivariate
data, under Hy,
TY2Sp (1) Y e (E (u))

in DPY*P2 [0, 1| with the Skorohod metric, and where vec (B (u)) is a py X pa-Gaussian

process with covariance structure

1

7 min(gey, 1)
K (py, 1) = E/o (fow (=X) @ fuu (X)) dA.

From Corollary 3, the test for Hy can be implemented in a similar fashion to that
employed in Section 5. Finally, to examine the properties of the tests under contiguous

alternatives, introduce

H, Z ¢(j — 1) cos (wjA) = T '/2h (7)),
]7700
where h (1) is a continuous function in [0, 7] such that 0 < || (9)| in a set A C [0, 7]

with positive Lebesgue measure.
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Corollary 4 Assuming the same conditions of Corollary 3, under H,,
1/2 weakly ~ ’
TV Sr () = wvec| B(p)+ | h(mA)dX].
0
7.- CONCLUSIONS

In this paper we have first shown that the asymptotic properties of Hannan’s (1967)
HI estimator hold the same under long-range dependence, making the estimation
procedure a very desirable one in view of the possible adverse properties of the LSE,
as shown in Robinson (1994). Secondly, we have proposed a nonparametric Granger-
causality test when the data possibly exhibits long-range dependence. By means of
spectral analysis, we have shown the asymptotic properties of the test and examined
its implementation. More importantly, we have shown that the test has power against
contiguous alternatives converging to the null at the rate 72, That is, although
the test is nonparametric, it has an asymptotic relative efficiency greater than zero

when compared to parametric tests based on a correct specification of the model.
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MATHEMATICAL APPENDIX A

Henceforth, E and ). ;. denote S and E;nszrnﬂ respectively, and K denotes

]*fm

a finite positive constant.

Proof of Proposition 2

The Cov <¢gh’p, ¢ab’p) is

a r—u)+ J(r—s
(2m + 1)” 47272 ]Z;M; X {7ga (¢ = 8) 0 ( ) Vg (£ = 1) Vg ( )
Feum (21, Zen, Zsas Zan) } et 2mp (5= 1) A2mpr e (A.1)

We deal with the contribution of the first and third term in braces, the second being
similarly handled to the first. The contribution of the first term of (A.1) is by (3.1)

H(0,) H (X W (01 + Xopnpr ) dO
CrEsTETE) {/ DH (s = 00) foo (014 Nopr ) 0

X / H (=05) H (05 + Xj—i,) fro (02 — Aompsr) d82} , (A.2)

where H (w) = Zthl e ", We study the first factor inside the braces of (A.2), the sec-
ond being identical. Adding and subtracting f,, <X2mp+j> f:r H(61)H (Xk,j — 91> dé,,
that factor is

/7r H (81) H <kaj - 81) <fga <81 +X2mp+j> - fga <X2mp+j>> del
+foa (Aompss) /7r H (01) H (M—j — 01) dby,

whose first term is O (Aga,j (2mp + j)fl Tlog (2mp + k:)) by Theorem 2(c,d) of Robin-

son a), where i = om aa 9m, whereas the second term is
(1995 )a h Aga,j 919/2 <)‘ p+y> fl s <)\ P+J> h h d 0

if j # k or 20T fyq (Mompis) if § = k.
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Thus, as T" — oo, the modulus of (A.2) is bounded by

K 1 log?(2 k
D Al Log (2mp + k)
(2m+1) 2mp+7  2mp+k

7.k

K log (2mp + j)

o Y DAy
(2m+1)" = 2mp +j

1

+m Z ‘fga <X2mp+j>‘ ‘fhb <X2mp+j>‘ ) (A.3)

7

The first term of (A.3) is O ((mp)7210g2 (mp) Tp) where T, = fiﬁofglg/% blb/,;f;}/ziw
because, by C1-C3, Ay, ; and Ay, ; satisfy the conditions of Lemma 1 (see Appendix
B). Similarly, by Lemma 1, the second term of (A.3) is O (m %p~'log(mp) T,),
whereas the third term is

Tp ’Rga,p’ ’th,p’
2m + 1

(1+0(1)),

since XQmp = Ay and |foap| | fovp| = Yp | Rgap| | Risp| satisfies the conditions of Lemma

1. Thus, the first term of (A.1) is

Ty ’Rga,p’ ’th,p’ log (mp) 10g2 (mp)
om+1 Lo O mp (mp)? '

Next, proceeding as above, the second term of (A.1) is
1 2
0 <Tw> '
(mp)
Thus, we are left with the third term of (A.1). Writing 77 (A) = 1 (\) EY/2 and after

straightforward calculations, we deduce that it is bounded, in absolute value, by

K
T2 (2m + 1) 2

Se

Z /1_[3 /ﬁgsl <X2mp+j> 7’7@52 <_x2mp+j> /ﬁhs;g <_X2mp+k> /ﬁb54 <X2mp+k>
7,k

X H (Aomprs — A) H (A= 1= Dampys) H (1 — € = Domprn) H (Nompr + &) dAdpde|
(A4)
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where 7, (A) is the indicated element of 77 (X), the first sum is over s, = 1,...,v and
¢=1,...,4, and [[ = [-7, 7. By Cauchy-Schwarz inequality, a typical term in (A.4)
is bounded by KT2 (2m + 1)72 times

/.
I

The first integral in (A.5) is

2

dXdp (A.5)

> Tigss ompt5) Tasy (—Aompi5) H Nampis = A) H (X = 2= Damp15)
i

9 1/2

dpd€

> Tinss (“Aompr) Tosy Qampsr) H (18— & = Namprr) H Qompir + €)
k

/H2 (Z /ﬁgsl <X2mp+j1> /,f]/G/SQ <_X2mp+j1> H <X2mp+j1 - )‘> H <)‘ - X2mp+j1>

J1
XY Tger (“Nomptin) Tasy Mamprin) H (A= Namprsn) H (1= A+ X2mp+j2~)> dAdps.
J2

Because

/H H (X =i = Nopprs) H (1= A+ Dompryp) dpp = 27H (A1)

and
/H H Qomprs — A) H (A= Xomprs) dA = 200H (Nj_ ),

it follows, by C6, that

1/2
(A5) =0 <T2 D DgaiBagr K (N k) D AneyAun i K <Xjk>> = O (I"m7,)
gk gk
where K () is the Féjer kernel, because

(2m + 1)72 Z AgajDgar K (Xj*k> = (T/m) faapSfogp (1 +0(1)).

ak

So (A4) = O (Y,M/T), which concludes that |Cov (¢ ban,)| = O (T,M/T). O
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Proof of Proposition 3

Write Ogn,p, = gglf hhlf. By elementary inequalities and because sup, |a,| <
Eé ’af,v
P
SUP ‘69hp¢ghp‘ = Zégh? ‘E< ghp)‘ + SUP 69hp ‘¢ghp <¢gh,p>“
p=1,..., _ =l

Since supy |a| < (3, a%)l/Q, the second term on the right is O, ((PM)1/2 /T1/2) by

Proposition 2 whereas, by Proposition 1, the first term on the right is bounded by

MlogT <~ 1
K )
T ;p

But f1/2( A) 1/2( A) | Ry, (N)] satisfies the conditions of Lemma 1, so by straightfor-

ward arguments, we conclude the proof of the Proposition. 0]
Proof of Theorem 1

We establish only (i), omitting for the sake of brevity the much easier proof of (ii).
By Wold device, it suffices to show that for any finite ¢ > 0,
v Z U, (€)= e () = ( (2m)" Z Uy, / fom (A) fuw (M) € (91 =902 )2 g\ ‘h@)
01,42=1
where U, are constants such that Y7 | ¥2 = 1. To that end, introduce «, = fym,p —
Efym,p, A, = Efym,p, B, = ﬁm,p — Eﬁm,p and B, = Eﬁm,p. A typical element on the

left of the last displayed expression, say, ¢ (j) — ¢ (j) is

1 2M -1/
I (B, "oy — B, ?A,B,) €7 (A.6)
p=1
2M -1/
Z B, Ay — ¢ (4) (A7)
2M -1/

Z (B, 2008, = (B, + By) " op + A4) B, 282 ) . (A8)
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We show below that
1 2M-1

(A8) + (A7) +(48) = 537 3 FrtoFua€ + L (j) (A.9)

where L (j) = O, ((T]W)*l/2 log M + M~2¥7/2 1. 7322 1 T*IM) uniformly in j.
Thus, by C10,
1/2 - ~ T1/2 R A
Y23 W, (@ (5) — () Z - Z\IIGWP +o,(1).

—1
But, by similar arguments to those of Theorem 1 of Robinson and Hidalgo (1997),
the first term on the right of the last displayed equation converges in distribution to

( 27T Z qjh / f:z::c fuu ) (jel 7je2)>\d)‘ qjég) .
£1,69=1

So, to complete the proof we need to show our claim in (A.9).

We begin examining (A.8). This term is

2M—11 2M—11
Z B Oépﬂ ez])xp ‘I‘ _— Z B};?ﬂ;eij)\p
1 2M -1/
-1 N\ oo i
tour ((ﬁp +Bp)  (op + Ap) — Cp) B, e, (A.10)

p=1

where Cf = fr L fr  with fF = (2m+1)" Zj Joros (Ap —I—X-).
The first term of (A.10) is O, (M /T) by Cauchy-Schwarz and Markov inequalities

because by Proposition 2, fmlf yylf oy, and f;mlypﬂp are O, <M1/2T*1/2> with 2y, = 24

;m,pD = O(fu’l?ﬂ?yp) by
Proposition 1 and Lemma 1 respectively and |C,| < K by C9. By similar argu-

and 2y = Y, and 2y = 2y = x; there, (Bp — f;m’p> = 0(

ments and since ‘C’; < K by Lemma 2 (see Appendix B), the second term is also

O, (M/T). The third term of (A.10) is O, (T*3/2M2> uniformly in j, because by

standard linearization arguments and Propositions 1 to 3,

Cr| =0, (MT1?).

e
" f:c:c,pfyw,p -
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: OM-1 i OM-1 i
Thus, since ) ™ apetr = 3" g et + ay, we conclude that

p=1
M? M
(A.8) =0, <m + ?)

Next the bias term (A.7). Because Aoy = 27 and Z;fofl e = ZQM 4y

ple ’
2M M
N — L AT 1jAp
() = groo| Do e e
£

p=1 =M
1 2M -1 M 1 M
_ —ip | iy |t
- o (S5 et 3 .
p=1 \b=—M =M

1 - 00 1 2M—1 - 00 . . 1
17 {Bl A=) c(é)}+m (Bp A, =) c(h)e ﬁp) e 1O <M27/2>'

f=—00 p=1 f=—00
(A.ll)
Next
BITIAP = fmpfywp_l’ ( A fmp zjw,p>
M?log? T

by Proposition 1, standard linearization arguments and because |C (A)| < K by C9.
Thus, replacing »_,° ¢ () e " by its definition f,' fyap, (A.11) is

1 > 1
Y {f;‘m,} ol Z C(ﬁ)} t o7 (frod (A= fruq) = C fnd (Br = fans))
2M—1

+m Z <f:c:cpfy:cp fa:a:pfyCl?P) Wi (A12>

~ 1 Mlog?T
+m <f1313p< fymp) C*f;$1117< p_f;$,P>>€ZJ>\p+O< Og >

M2T/2 + T2
By Lemma 2 the third term of (A.12) is bounded, in absolute value, by

2M -1
K

1~ 1 1
WE;%O(W):O(W)
p:
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since ép =30 le(f)e | < K by C9. The fourth term of (A.12) is O (T logT')

by Proposition 1 and since by Lemma 2, ‘C’; < K, so is the second term of (A.12)

by the same argument.

The first term of (A.12) is

o0

1 -1 " ith 1 ity _ 2
el IS ARED SRICEE e SR CI e R ]

f=—00

o0

=—00

because ‘671‘0‘1 — 1‘ < KM tas A =a/M and >0 |lc(f)] < K by C9, so the
second term on the left of the last displayed expression is O (M ~?2), whereas the first
term is O (M%) by Lemma 2. Thus, we conclude that

1 logT’
(47120 ( ey + 7).

To finish the proof we need to examine (A.6). Replacing B, and A, B, L by

*
Tx,p

and Cy, respectively,

M1
1 1 ca N i M'?logT
(A.6) = 2M ; fap <ap - Cpﬂp) e + 0 <T1/2 T
12 4-1/2 1

after standard calculations, because by Proposition 2 fyyp" fazp o and [ 0, are

O, <M1/2T71/2>, by Proposition 1 B, — fr,, = O ( fs;:ksz:,p‘ Mlog(T)/ (Tp)), for exam-

ple, and by Cauchy inequality.
Next, since (fa;}’pf;m’p — 1) = O (p ') by Lemma 1, as f,, () satisfies the conditions

there,
| 2 R 1 M1 N
(AG) = W Z f;ml’p (Oép - Cpﬂp - fum,p) eljkp + m Z f;mlypfum,pew)\p
p=1 p=1
2M—1
1 -1 x i log M

+m Z fazp (CP—CP> P + Oy <T1/2]\41/2 (A-13)

p=1

by Proposition 2. The third term on the right of (A.13) is O, (MfHT/QT*l/Q) by
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To complete the proof, we are left with the first term on the right of (A.13). Because
by C8 E fupp =0

Cpﬂp - ﬁm,p = (J?yw,p - Cpﬁw,p - ﬁm,p) — b (J?yw,p - Cpﬁw,p - ﬁm,p) > (A-14>

whose first term on the right, by definition of fymp and ﬁm,p and (1.1), is

Z (chaﬁt /€ ZM?mPﬂ) (Z a:se”x?m“f)] (A.15)

(Z T ZtA?mpﬂ) (zT: ajseiSX?merj)
s=1
1 T T
ﬁ (; a:tgem> (; xsez‘s,\>

is the cross-periodogram of {z;} and {z;_,}, whose cross-spectrum is fy, (A) e

Thus, using (A.15) and by C9, the right side of (A.14) is

1
(2m 4+ 1) 27T

00 i, 1
_<Z e M) @2m+ 1) QWTZ

f=—00

Observe that

2

> Gt 5 (e = 1) (e (aopss) = Bl (aners)) )00 (4 717).
Because |1 — e~ ~1(j/m) and by routine extension of Proposition 2,
le 1 Z <%> (Low (Momprs) — Bluw (Aampss)) = Op (MMPT2f, 1)
j
then 1
(46) = — Z Fraplurp€ + 0 <M217/2 + Tij)?g A%?) '
This concludes the proof of part (i) and the theorem. O

Proof of Corollary 1

Because under Hy ¢ (j) = 0 for all j < 0, by Theorem 1 T2¢(5) = TY2L (j) + a;

where .
T1/2
E FA
CL j f:c:c pfu:c Pe P
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suppressing reference to 1" in a; or L (j). Thus, with the change of subindex —j by j,

S

-1 [M ]
. 1
TYV28: (1) = Re (ajor +TVPL(—j = 1)) = ) e

J

Il
o

p=1

= (a +TY2L(-1)) p+ Z (a_j1 +T2L(—j - 1)) %77“) (1+0(1))

since Re (Mfl Zg\g‘] eij’\P) — (Wj)fl sin (mjp) uniformly in g € [0, 1]. Now,

M—oco
— sin (mjp)
sup | 3 THL (= = 1) 0 = 0, (1)
n :

since by Theorem 1 TV/2L (—j — 1) = O, <M71/2 log M) and ijlljfl O (log M).
So the behaviour of (5.1) is governed by

— sin ﬂju s sin Wju)
IM_I_ZG/*J 11— + a 1= .
1 j=k

)_l

Jj=

where k is a fixed but large constant. The proof is thus completed if

Gr(p) =a 1p+ Z a,j,lw converges to a Gaussian process indexed by p,
- Tj

(A.16)
B0~ 1 [ ) N < (A7)
for any arbitrary £ > 0 and k large enough, and
M1
o, Sn(mip) ﬂ:] 1) 55 small wniformly in M and s (A.18)
=k
We begin with assertion (A.18). For 0 < s < s9 < M,
> sin (mjp) ’ > erIr ’ 2 T3 | Q10 1y
jz;l R < JZ;I G| S e 2 JZ;I TG | (A.19)
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Let wy;_, denote the (j,£) th element of Q. Then,

89— 2 89—
i 10— j-1-v Q510511090 Gy 10— jo—1—v
E J. : J — E< J1 . .Jl . ]2. J2 >
jz;l (7 +v) jl;l Ji (G +v) g2 (2 + )
So—U 2 2
< 22: wy, + w\.jr.jz\ + W‘Jilfj.gfu\w\ﬁ*ﬁ#»v\ (1+0(1),
Pru 1 (1 + ) j2 (2 + v)

because (a_;). 4N (0,9) by Theorem 1, and by the uniform integrability of a* ;

j=1,....k
by C8, Ela_ja_j,a ja ;| converges to the corresponding expectation of the limit
distribution of {a_;}. The latter follows because if X, <, X and ]Xt]4 is uniformly
integrable then F ]Xt]4 — I ]X]4. Now choosing s; = 2¢ and sy = 27!, by Cauchy

inequality, the expectation of the left side of (A.19) is bounded by

2t | ottl_y 9 2 12
S i PR ST A
prll g1 (J1 + ) J2 (J2 + )
1/2 1/2
9t |9et1_, ol+1 _y
< kY ——| +x>| % W+ @l ) Wil
- el B 72 +v)? pucll Pl g1 (J1 + ) J2 (J2 + )

by triangle inequality. But w, ~ Kv~ "% where o = d, —d,, < 1 (recall the comments
after Theorem 1), so the right side of the last displayed inequality, after standard

calculations, is bounded by

1/2

9 94+1_ 9L 24+1_ 4 1
K - +K U71+a — < K <2f€/2 + 278(1704)) )
; le;e Jt (Jl + U)2 ; jlz; J1(h +v)
Let Tg = MaXp<u<i E?i;g a,j,lﬂnﬁw Then

E (TL?> <K (2713/2 4 24(1704)) :

and thus, with probability greater than 1— K (278/2 + 278(170‘)% T, < K (278/4 + 278(170‘)/2»
Now choose k = 2", so that (A.18) is, in absolute value, bounded by

?

[logs (M)]+1
Z T, <K <27n(17a)/2 + 2771/4) :
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and choosing n large enough, we conclude the proof of (A.18).
Assertion (A.16). From Theorem 1, the finite dimensional distributions of Gy (1)
converge to a normal random variable. To finish, we need to prove the tightness

condition which, by Billingsley’s (1968) Theorem 12.3, it suffices to check
E(Gy () = Gi (p+0))" < K Jol”. (A.20)

But that follows because for all j and u,v € [0, 7],

<sin (u) _ sin (j (u+ v))>2

i J
(Bl snGles et o) r),
J J
where £ € (0,1), which implies that

B <aj1 <Sin(2ﬁju) _ sin (2mj (p + v))>>4 ol

j j -

and thus (A.20). That concludes the proof of (A.16).
Finally (A.17) follows since by (A.16), with the convention that sin (ax) /2 = a for

z =0,

k—1

. . . . 1 TH
(e _ o sin (771 ) sin (7o pt) 1 L) £ () dA 4
@) = X wiw— o 7 g | e W L WA an
J1,72=0
1 7 min ey, 2) .
B (G ) Gulm) — 1= | W fwar D
—00 0

Proof of Corollary 2

First, the left side of (5.3) is

T1/2 [M p] 0 Ny
Re WZ( > <6<j—1>—c<j—1>>e%>

p=1 \j=—M+1

1 [Mp] 0
- 1/2 N T
—I—M pz: (T Z c(j—1)e™ )

=1 j=—M+1
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But, from Corollary 1, the first term converges weakly to B (p), whereas the second
term, under H,, is M ! Zg\ﬁ‘] h (M) 40 (1) by C9 and C10. From here the conclusion

of the Corollary is immediate. O
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MATHEMATICAL APPENDIX B

Let g (A) be a function which satisfies

Al-g(N\) =KX “(14+0O(\") as A — 04, where a < 2 and 7 € (0, 2].

A2. —g( ) is twice continuously differentiable in any open set outside the origin.

A3.- a/\J log( (AN))=0 ()fj> as A — 0+ for j =1, 2.

Lemma 1 Assuming A1-AS3,

2m1+ 1 XJ: (9 <Xj+2mp> -9 (Emp))‘ =0 (pflg (XQmp)) )

Proof. By A2, A3 and the mean value theorem

_ . Qi -
g <)‘j+2mp> =g <)\2mp> + <%> g/ <)‘£j+2mp> ,

where £ = £ (j) € (0,1), and by A1-A3

|~ o~ T 1+« m a
1 ) Qgane) =0 <<m> o))

So the left side of (B.1) is bounded by

Kg )\Qmp Z
2m+1 §j+2mp

O (p'g (Aemp))

sincep>1and K ! < ]mp/ (€5 + 2mp)| < K.

Lemma 2 Assuming C8 and C9,

47 ~ 1
f:c:cp y,p fa:a:pfymp MpCP+O <M27—/2> :

Proof. The left side of (B.2) is

1

_ 2m1+ 1 ; (C (M +3) = C ) vyt

1

_I_

3

2m +1 Z <C <)\p+xj> B C()‘P)> Jaw <)‘p ‘l’xj) <2m1—|— 1 me <)‘p+x

2m ‘I‘ 1 Z <C <)\p +XJ> - C ()‘P)> <fa?m1 ()‘p) f:c:c <)\p ‘I‘XJ) - 1) I/igl7

(B.1)



where v, = f.1(),) (2m + 1)71 > faa ()\p + XJ> But, by Taylor expansion and C8,

T

-1 Y _%Z Mi

whereas, by C9, C' ()\p + XJ> —C(Ap) is
17/2>>

(2@% ( Y te(tye 10 (‘?
(B.5)

J 17/2)) _ (2%)% <5p+0 (‘%

where ép =37 _fle(l)e . Thus, adding and subtracting C ()\p + XJ> —C (M)
into the first term on the right of (B.3) and using (B.4), (B.5) and E;n:,mj =0, the
right side of (B.3) is 47 (Mp) ™" C, + O (M~27/2), O
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