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Abstract

Varying-coefficient linear models arise from multivariate nonparametric
regression, nonlinear time series modelling and forecasting, functional data
analysis, longitudinal data analysis, and others. It has been a common
practice to assume that the vary-coefficients are functions of a given variable
which is often called an index. A frequently asked question is which variable
should be used as the index. In this paper, we explore the class of the
varying-coefficient linear models in which the index is unknown and is
estimated as a linear combination of regression and/or other variables. This
will enlarge the modelling capacity substantially. We search for the index such
that the derived varying-coefficient model provides the best approximation to
the underlying unknown multi-dimensional regression function in the least
square sense. The search is implemented through the newly proposed hybrid
backfitting algorithm. The core of the algorithm is the alternative iteration
between estimating the index through a one-step scheme and estimating
coefficient functions through a one-dimensional local linear smoothing. The
generalised cross-validation method for choosing bandwidth is efficiently
incorporated into the algorithm. The locally significant variables are selected
in terms of the combined use of t-statistic and Akaike information criterion. We
further extend the algorithm for the models with two indices. Simulation shows
that the proposed methodology has appreciable flexibility to model complex
multivariate nonlinear structure and is practically feasible with average
modern computers. The methods are further illustrated through the Canadian
mink-muskrat data in 1925-1994 and the pound/dollar exchange rates in
1974-1983.

Keywords: Akaike information criterion; backfitting algorithm; generalised
cross-validation; local linear regression; local significant variable selection;
one-step estimation; smoothing index; varying-coefficient linear models.
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1 Introduction

During the recent years, with increasing computing power it has become commonplace to access

and to attempt to analyze data of unprecedented size and complexity. With these changes has

come an increasing demand for the development of computationally intensive methodologies which

are designed to identify complicated data structures at not too excessive computing cost. Data-

analytic techniques developed from statistical prospective views have been proved powerful for

exploiting hidden structures in high-dimensional data. Witness of this includes, among others,

additive modeling (Breiman and Friedman, 1985; Hastie and Tibshirani, 1990), low-dimensional

interaction modeling (Friedman, 1991; Gu and Wahba, 1993; Stone et al., 1996), multiple-index

models (Friedman and Stuetzle, 1991; H�ardle and Stoker, 1989; Li, 1991), partially linear models

(Wahba, 1984; Green and Silverman, 1994), varying-coeÆcient linear models (Cleveland et al., 1992;

Hastie and Tibshirani, 1993), and their hybrids (Carroll et al., 1997; Fan H�ardle and Mammen,

1998). Those models are designed to attenuate the so-called `curse of dimensionality' problem by

exploring low-dimensional structures, although di�erent models explore di�erent aspects of high-

dimensional data and incorporate di�erent prior knowledge. The aim of the exercises is to reduce

possible modeling bias and to let data select a model which describes themselves well. Depending

on each particular data set, some methods perform better and are more appropriate to use than

others, but none of them is uniformly superior. They together provide useful statistical toolkits

for exploring hidden structures in high-dimensional data. For general knowledge of nonparametric

and semi-parametric modeling techniques, we refer to the books by Hastie and Tibshirani (1990),

Wahba (1990), Green and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996) and

Simono� (1996).

Suppose we are interested in estimating multivariate regression function G(x) � E(Y jX = x),

where Y is a random variable and X is a d � 1 random vector. In this paper, we propose to

approximate the regression function G(x) by a varying-coeÆcient model

g(x) =
dX

j=0

gj(�
T
x)xj ; (1.1)

where � 2 <d is an unknown direction, x = (x1; : : : ; xd)
T , x0 = 1, and coeÆcients g0(�); : : : ; gd(�)

are unknown functions. We choose the direction � and coeÆcient functions fgj(�)g such that

EfG(X) � g(X)g2 obtains its minimum. The appeal of this model is that once � is known, we

can directly estimate gj(�)
0s by the standard one-dimensional kernel regression localized around

�T
x. Furthermore, the coeÆcient functions fgj(�)g can be easily displayed graphically, which may

be particularly helpful to visualize how the surface g(�) changes. The model (1.1) appears linear

in each coordinates of x when the index �T
x is �xed. It may include additional quadratic and

cross-product terms of x0js (or more generally any given functions of x0js) as `new' components of

x. Hence it is in fact considerably 
exible to cater to complex multivariate nonlinear structure.

We develop an eÆcient back-�tting algorithm to estimate g(�). The virtue of the algorithm
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is the alternative iteration between estimating � through a one-step estimation scheme (Bickel,

1975) and estimating functions fgj(�)g through a one-dimensional local linear smoothing. Since

we apply smoothing on a scalar �T
X only, the method su�ers little from the so-called `curse of

dimensionality' which is the innate diÆculty associated with multivariate nonparametric �ttings.

The generalized cross-validation method (GCV) for bandwidth selection is incorporated into the

algorithm in an eÆcient manner. To avoid over-�tting, we delete local insigni�cant variables in

terms of the combined use of t-statistic and Akaike information criterion (AIC). This is particularly

important when we include, for example, quadratic functions of x0js as new components in the

model, which could lead to overparametrization. The proposed method has been further extended

to estimate varying-coeÆcient models with two indices (one of them is known).

The form of the model (1.1) is not new. It was proposed in Ichimura (1993). Recently, Xia

and Li (1999a) extended the idea and the results of H�ardle, Hall and Ichimura (1993) from the

single-index model to the adaptive varying-coeÆcient model (1.1). Their basic idea is to estimate

the coeÆcient functions with a given bandwidth and a direction �, and then choose the bandwidth

and the direction by the cross-validation. Based on the assumption that the bandwidth is of the

order O(n�1=5) and the direction � is within an Op(n
�1=2) consistent neighborhood of the true

value, they obtained some interesting theoretical results. However, the approach su�ers from the

heavy computational expenses. This somehow explains why most previous work focused on the

case when the direction � is given and is parallel to one of coordinates. See x2 for an overview.

The new approach in this paper di�ers from those in the literature in three key aspects: (a) only

one-dimensional smoother is used in estimation, (b) the index coeÆcient � is estimated by data

and (c) within a local region around �T
x, we select signi�cant variables x0js to avoid over�tting.

Aspect (b) is di�erent from H�ardle, Hall and Ichimura (1993) and Xia and Li (1999a) since we

estimate the coeÆcient functions and the direction simultaneously; no cross-validation is needed.

This idea is similar in spirit to that of Caroll et al. (1997) who showed that a semiparametric

eÆcient estimator of the direction � can be obtained via this approach. Further we provide a

theorem (i.e. Theorem 1(ii) in x3 below) on the model identi�cation problem of the form (1.1),

which has not been addressed before.

The application of varying-coeÆcient models is diverse; ranging over generalized linear models,

nonlinear time series, functional data analysis, longitudinal data analysis, and other interdisci-

plinary areas. While these problems are inner related, they are not often referred to each other. In

x2, we will give an overview on the current state-of-art of the varying-coeÆcient models in practice.

The rest of the paper is organized as follows. x3 deals with the adaptive varying-coeÆcient

model (1.1). The extension to the adaptive varying-coeÆcient models to the case with two indices

is outlined in x4. The numerical results of three simulated examples are reported in x5.1, which

demonstrate that the proposed methodology is capable to capture complex nonlinear structure with

moderate sample sizes, and further the required computation typically takes less than a minute on

a Pentium II 350MHz PC. The methodology is further illustrated in x5.2 through Canadian mink-
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muskrat data in 1925-1944 and the pound/dollar exchange rates in 1974-1983. All the technical

proofs are relegated in the Appendix.

2 Overview of varying-coeÆcient models

Varying coeÆcient models have been successfully applied to multi-dimensional nonparametric re-

gression, generalized linear models, nonlinear time series models, longitudinal and functional data

analysis, interest rate modeling in �nance, international con
ict study in political sciences and

others. The basic idea is to approximate a unknown multi-dimensional regression function by a

(conditionally) linear model with the coeÆcients being functions of a covariate called index. Most

of the work to date assumes that the index is given. The adaptive varying-coeÆcient models allow

data to choose the index automatically. This section presents an overview on the recent development

of the varying-coeÆcient models.

2.1 Varying coeÆcient models

The varying-coeÆcient models were introduced by Cleveland, Grosse and Shyu (1992) in the ex-

tension of local regression techniques from one-dimensional to multi-dimensional setting. Suppose

that we are given a random sample f(Ui; Xi; Yi); 1 � i � ng, where Yi is the response variable

and (Ui; Xi) are covariates. The local polynomial regression essentially �ts the conditional linear

model

Yi =
dX

j=0

gj(Ui)Xij + "i; (2.1)

where Xij is the j-th component of Xi, Xi0 � 1, and "i has conditional mean zero and conditional

variance �2(Ui), given Ui and Xi. The coeÆcient functions fgj(�)g are assumed to be smooth.

An extension of the local regression technique was given by Hastie and Tibshirani (1993) via

introducing kernel weights. Let K(�) be a kernel function on < and h = hn be a bandwidth. Set

Kh(�) = h�1K(�=h). For a given u0 and x close to u0, it follows a Taylor expansion that

gj(x) � gj(u0) + g0j(u0)(x� u0) � bj + cj(x� u0): (2.2)

Here, the only local linear approximation is used for the sake of simplicity. It can be easily gen-

eralized to the local polynomial regression (Fan and Gijbels, 1996). Thus, for those observations

where U 0
is are around u0, the data follow an approximation linear model:

Yi �
dX

j=0

fbj + cj(Ui � u0)gXij + "i:

The local parameters can be estimated via a weighted local regression, namely

bgj(u0) = bbj ; j = 0; : : : ; d; (2.3)

3



where fbbj ; bcjg is the least-squares solution which minimizes

nX
i=1

h
Yi �

dX
j=0

fbj + cj(Ui � u0)gXij

i
2

Kh(Ui � u0): (2.4)

The conditional bias and variance of the estimators were derived in Caroll, Ruppert and Welsh

(1998) and Fan and Zhang (2000a). As expected, the bias depends only on local approximation

error and is of order O(h2n), and the variance is of order O(1=(nh)) and depends only on the e�ective

number of local data points, the local (conditional) variance and local correlation matrix of the

covariates X. The asymptotic normality of the estimators and data-driven bandwidth selection

procedure were presented in Zhang and Lee (1999, 2000). Furthermore, the distribution of the

maximum discrepancy between the estimated coeÆcients and true coeÆcients was discussed by

Xia and Li (1999b) and Fan and Zhang (2000b). The con�dence bands and hypothesis testing

problems were also discussed therein.

Complementary to the local regression technique is the smoothing splines method. Hastie and

Tibshirani (1993) proposed a smoothing spline estimator derived via minimizing

nX
i=1

n
Yi �

dX
j=0

gj(Ui)Xij

o
2

+
dX

j=0

�jkg
00

j k
2

2
; (2.5)

where f�jg are positive regularization parameters. As an initial attempt, one usually chooses

�j = � for all j. Note that the local regression solves many (usually in the order of 100) weighted

regression problems (2.4), while the smoothing spline method solves one large parametric problem

(number of parameters is in the order of nd).

The local regression estimator (2.3) assumes implicitly that the coeÆcient functions fgj(�)g

admit a similar degree of smoothness so that they can be equally well approximated in a local

neighborhood (see (2.2)). When the functions fgj(�)g have di�erent degrees of smoothness, it is

shown in Fan and Zhang (2000a) that the local regression estimator (2.3) is suboptimal under their

asymptotic formulation. The intuition is clear: a smooth component asks for a large bandwidth

to reduce the variance, while a rough component requires a small bandwidth to reduce the bias.

This problem cannot be overcome by, for example, simply using a large bandwidth to estimating

a smooth component only; see Fan and Zhang (2000a). While the asymptotic properties for the

smoothing spline estimator (2.3) are not easy to derive, we expect that smoothing splines would

su�er from the same problem even when f�jg are appropriately speci�ed. However the drawback

can be removed by using a two-step procedure proposed in Fan and Zhang (2000a). The basic idea

is to get an initial estimator for fbgj(�)g using a small bandwidth h0. The bandwidth h0 is so small
that the biases in estimation of fbgj(�)g are negligible. Then, compute the partial residuals

bYi;j = Yi �
X
k 6=j

bgk(Ui)Xik

and apply the local linear regression technique to the pseudo univariate varying-coeÆcient model

bYi;j = gj(Ui)Xij + "i
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using bandwidth hj to estimate gj(�). The advantage of this is two folds: the bandwidth hj can

now be selected purposely for estimating gj(�) only and univariate bandwidth selection techniques

can be applied.

When the model (2.1) is misspeci�ed, the above local �tting techniques intend to �nd the best

linear function at each given U = u0 to approximate the regression function E(Y jU = u; X).

Similarly, the smoothing spline (2.5) �nds the best varying-coeÆcient function to approximate the

regression surface E(Y jU; X).

In nonparametric modeling, we are constantly challenged by the question whether a simpler

parametric model �ts the data adequately or not. For example, we may ask if the coeÆcients in

the model (2.1) are all constant. This amounts to testing the parametric hypothesis

H0 : gj(�) = �j ; j = 0; : : : ; d;

against nonparametric alternative (2.1). We can also ask whether the covariates X1 and X2 are

signi�cant. This is equivalent to testing

H0 : g1(�) = 0 and g2(�) = 0:

In this case, both null and alternative hypotheses are nonparametric. While these questions arise

frequently in practice, they are poorly understood. The conventional approach uses the discrepancy

measures such as the distances between estimated functions under null and alternative hypotheses.

See, for example, Bickel and Rosenblatt (1973), H�ardle and Mammen (1993) and Hart (1997). Fan,

Zhang and Zhang (1999) argued that these methods were not as fundamental as the likelihood

ratio based statistics. Generalized likelihood ratio tests are proposed there for various nonpara-

metric testing problems and the Wilks phenomenon and optimality properties are unveiled. The

basic idea of the generalized likelihood ratio tests is to �nd good estimators under the null and full

models and then substitute them into the likelihood function to obtain a likelihood ratio statistic.

A fundamental property of the derived test is that the asymptotic null distribution is independent

of nuisance functions and is �2-distributed. This allows us to use either the asymptotic null dis-

tribution or bootstrap methods to determine the p-values of the tests. See also Cai, Fan and Li

(2000) for bootstrap estimation of null distributions and empirical power calculations.

2.2 Generalized varying-coeÆcient models

Varying coeÆcient models can be readily extended to the context of the generalized linear models.

This allows us to model a transform of the regression function by a varying-coeÆcient model

`fE(Y jU;X)g =
dX

j=0

gj(U)Xj

with a given link function `(�), where X0 = 1. The unknown coeÆcient functions can be estimated

by the local maximum likelihood approach. Namely, the local sum of squares in (2.4) is replaced
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by the local likelihood or the local quasi-likelihood (Cai, Fan and Li, 2000). This approach can be

viewed as a speci�c case of the local estimation equation method of Carroll, Ruppert and Welsh

(1998). The spline method can also be applied in this context (Hastie and Tibshirani, 1993).

Carroll, Ruppert and Welsh (1998) derived the asymptotic expressions for conditional mean and

variance for the local equation estimators. The results can be extended to the generalized varying-

coeÆcient models with some additional work. Cai, Fan and Li (2000) established the asymptotic

normality of the local maximum likelihood estimator. They also proposed a fast implementation

algorithm based on a one-step local maximum likelihood estimator. The basic idea is to compute

genuine local MLEs at a few well-separate grid points and then to use them as initial values for the

local MLEs at their nearest grid points via one-step Newton-Raphson iteration. The estimates at all

grid points are obtained by repeating the above exercise in which a newly de�ned estimate is treated

as an initial estimate at its next grid point. Cai, Fan and Li (2000) showed that this estimator

shares the same asymptotic behavior as the genuine local likelihood estimator. Kauermann and

Tutz (1999) proposed a graphical technique to diagnose the discrepancy between a parametric

model and a varying-coeÆcient model. Cai (1999) used a two-step procedure to deal with the

situation where the coeÆcient functions fgj(�)g admit di�erent degrees of smoothness. The testing

procedure and estimation method in Cai, Fan and Li (2000) have been successfully applied by

Cederman and Penubarti (1999) to the study of international relation con
ict in political sciences.

2.3 Nonlinear time series

Varying-coeÆcient models have been elegantly applied to modeling and forecasting time series data

(Nicholls and Quinn, 1982; Chen and Tsay, 1993). They are natural extensions of the thresholded

autoregression models of Tong (1990). Let fXtg be a time series. The varying-coeÆcient model is

of form

Xt = g0(Xt�p) +
dX

j=1

gj(Xt�p)Xt�j + "t (2.6)

for some given lags d and p. The geometric ergodicity of this model was studied by Chen and Tsay

(1993), who also proposed a nearest neighborhood type of estimator. The local linear regression

estimation (2.4) applies readily to this autoregressive setting. The asymptotic normality of such

an estimator has been established in Cai, Fan and Yao (1998). They also proposed a generalized

pseudo-likelihood test for testing linear autoregressive models or thresholded models against model

(2.6). The procedure is basically the same as the generalized likelihood ratio statistic for the

independent data, but now adapts to the time series setting. A bootstrap method is used to

estimate the asymptotic null distribution. The testing procedure and estimation method have been

successfully applied by Hong and Lee (1999) to the inference and forecast of exchange rates and by

Cai and Tiwari (1999) to an environmental study.
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2.4 Analysis of longitudinal and functional data

In many applications, observations for di�erent individuals are collected over a period of time. The

number of observations for di�erent individuals may be di�erent and so is the time when the data

are recorded. This type of data is termed as longitudinal data. Often, interest lies in studying the

association between the covariates and the response variable. To this end, a linear model is often

employed:

Yi(tij) = �0 +Xi(tij)
T� + "i(tij); (2.7)

where (Xi(tij); Yi(tij)) is the observed datum for the ith individual at time tij and "i(tij) is the

stochastic noise. The key di�erence from cross-sectional data is that the error process f"i(tij)g

within subject i is correlated. See, for example, Diggle, Liang and Zeger (1994) and Hand and

Crowder (1996).

Despite of its success in many applications, the model (2.7) does not allow the association

to vary over time, even though the covariates and the response variable change over time and

environment. To account for this, Zeger and Diggle (1994) andMoyeed and Diggle (1994) proposed a

semiparametric model which allows the intercept �0 to vary over time, but not the other coeÆcients.

To facilitate the genuine variation of the association over time, Brunback and Rice (1998) and

Hoover et al. (1998) proposed to use the varying-coeÆcient model

Yi(tij) = �0(tij) +Xi(tij)
T�(tij) + "i(tij); (2.8)

where the coeÆcient functions are assumed to be smooth functions of time. This is a speci�c

case of the functional linear model discussed in Ramsay and Silverman (1997) in the context of

functional data analysis. When there is no covariate, the model (2.8) was studied by Hart and

Wehrly (1986, 1993) for repeated measurements and by Rice and Silverman (1991) for functional

data. There the mean regression was estimated by the kernel and smoothing spline methods. A

`deleting one-subject each time' cross-validation was proposed in Rice and Silverman (1991) for

choosing smoothing parameters.

The coeÆcients in the model (2.8) can be estimated by the kernel and smoothing spline methods

(Brumback and Rice, 1998; Hoover et al., 1998). The basic idea is the same as those outlined in x2.1.

Brumback and Rice (1998) pointed out that intensive computation is required for using smoothing

splines because one has to invert blindly a matrix of the order of the total number of data points

(i.e. sum of the number of repeated measurements for each individual). Fan and Zhang (2000)

proposed a two-step method to overcome this drawback. The basic idea is related to the two-step

method outlined in x2.1, but now adapts to longitudinal data setting. For each distinct data time

point tj, collect the subjects having observations at time tj (or more generally around tj) and �t the

linear model (2.7) for those data points. This gives us the initial estimated coeÆcients at time tj. In

the second step, instead of smoothing on the partial residuals, the initial estimated coeÆcients are

smoothed directly. They reported that this method was more eÆcient (in terms of computation)

7



than smoothing splines and more 
exible and eÆcient than the conventional kernel method. The

asymptotic bias and variance of kernel method was studied by Hoover et al. (1998). Furthermore,

Wu, Chiang and Hoover (1998) proposed approaches for constructing con�dence regions based on

the kernel method.

3 Adaptive varying-coeÆcient linear models

3.1 Approximation and identi�ability

Since G(x) = E(Y jX = x) is a conditional expectation, it holds that

EfY � g(X)g2 = EfY �G(X)g2 +EfG(X)� g(X)g2

for any g(�) with �nite second moment. Therefore, the search for the LS approximation g(�) of

G(�), as de�ned in (1.1), is equivalent to the search for such a g(�) that EfY � g(X)g2 obtains

its minimum. Theorem 1(i) below indicates that there always exists such a g(�) under some mild

conditions. Obviously, if G(x) is in the form of the RHS of (1.1), g(x) � G(x). The second part of

the theorem points out that the coeÆcient vector � is unique up to a constant unless g(�) is in a class

of special quadratic functions (see (3.2) below). In fact, the model (1.1) is an over-parametrized

form in the sense that one of fgj(�)g can be represented in terms of the others. Theorem 1(ii)

con�rms that once the direction � is speci�ed, the function g(�) has a representation with at most

d (instead of d+ 1) gj(�)-functions. Furthermore, those gj(�)-functions are identi�able.

Theorem 1. (i) Assume that the distribution function of (X; Y ) is continuous, and EfY 2 +

jjXjj2g <1. Then, there exists a g(�) de�ned by (1.1) for which

EfY � g(X)g2 = inf
�

inf
f0; :::; fd

E

8<
:Y �

dX
j=0

fj(�
T
X)Xj

9=
;
2

; (3.1)

where the �rst in�nitum is taken over all unit vectors in <d, and the second over all measurable

functions f0(�); : : : ; fd(�).

(ii) For any given twice di�erentiable g(�) of the form (1.1), if we choose jj�jj = 1, and the �rst

non-zero component of � positive, such a � is unique unless g(�) is of the form that

g(x) = �T
x�T

x+ 
Tx+ c; (3.2)

where �; 
 2 <d, c 2 < are constants, and � and � are not parallel with each other. Furthermore,

once � = (�1; : : : ; �d)
T is given and �d 6= 0, we may let gd(�) � 0. Consequently, all the other

gj(�)
0s are uniquely determined.

Remark 1. If the conditional expectation G(x) = E(Y jX = x) cannot be expressed in the form

of the RHS of (1.1), there may exist more than one g(x)0s, being of the form of (1.1), for which

(3.1) holds. For example, let Y = X2

1
+ X2

2
, where both X1 and X2 are independent random

8



variables uniformly distributed on [0; 1]. Then G(x1; x2) = x2
1
+ x2

2
, which is not of the form of

varying-coeÆcient linear model (1.1). However, (3.1) holds for both g(x1; x2) = 1:25x2
1
, and 1.25x2

2
.

Without loss of the generality, we always assume from now on that in the model (1.1), jj�jj = 1

and the �rst non-zero component of � is positive. To avoid the complication caused by the lack of

uniqueness of the index direction �, we always assume that G(�) admits a unique LS approximation

of g(�) which cannot be expressed in the form of (3.2).

3.2 Estimation

Suppose that f(Xt; Yt); 1 � t � ng are observations from a strictly stationary process, and (Xt; Yt)

has the same marginal distribution as (X; Y ). Of interest is to estimate the surface g(�) de�ned by

(1.1) and (3.1). It is clear from (3.1) that we need to search for the minimizers of ffj(�)g for any

given direction � and then �nd the direction at which the mean squared error (MSE) is minimized.

A genuine search is almost always intractable in practice. We adapt a back-�tting algorithm which

has been demonstrated to be eÆcient for solving such a computationally intensive optimization

problem.

We assume that �d 6= 0. It follows from Theorem 1(ii) that we only search for an approximation

in the form

g(x) =
d�1X
j=0

gj(�
T
x)xj ; (3.3)

since the term gd(�
T
x)xd can be expressed as a linear combination of terms in (3.3). Our task can

be formally split into two parts | estimation of functions gj(�)
0s with � given and estimation of

the index coeÆcient � with given functions fgj(�)g. We also discuss how to choose the smoothing

parameter h, and how to apply backward deletion to choose locally signi�cant variables. The

algorithm for practical implementation will be summarized at the end of this section.

3.2.1 Local linear estimators for gj(�)
0
s with given �

For given � with �d 6= 0, we need to estimate

g(X) = arg min
f2F(�)

E
h
fY � f(X)g2

����T
X

i
; (3.4)

where

F(�) =

8<
:f(x) =

d�1X
j=0

fj(�
T
x)xj

������ f0(�); : : : ; fd�1(�) measurable; and Eff(X)g2 <1

9=
; : (3.5)

The least-squares property in (3.4) suggests the estimators bgj(z) = bbj, j = 0; : : : ; d� 1, where�bb0; : : : ; bbd�1
�
is the minimizer of the sum of weighted squares

nX
t=1

8<
:Yt �

d�1X
j=0

bjXtj

9=
;
2

Kh(�
T
X� z)w(�T

Xt);

9



where w(�) is a bounded weight function with a bounded support, which is introduced to control the

boundary e�ect. Since �T
X is observable when � is given, the estimation of gj(�)

0s by minimizing

the above sum of squares can be viewed as an extension of standard kernel regression estimation.

In fact, by imposing a speci�ed structure on the form of g(�), we are able to transfer the estimation

of a multivariate function into the estimation of several univariate functions. Therefore, only one-

dimensional kernel smoothing is involved.

The above estimation procedure is based on the local constant approximation: gj(y) � gj(z)

for y in a neighborhood of z. It has been pointed out that the local constant regression has several

drawbacks comparing with local linear regression (Fan and Gijbels, 1996). Therefore we consider

the local linear estimators for functions g0(�); : : : ; gd�1(�). This leads to minimizing the sum

nX
t=1

2
4Yt �

d�1X
j=0

n
bj + cj (�

T
Xt � z)

o
Xtj

3
5
2

Kh(�
T
Xt � z)w(�T

Xt) (3.6)

with respect to fbjg and fcjg. De�ne the estimators bgj(z) = bbj and b_gj(z) = bcj for j = 0; : : : ; d� 1

and set

b� � �bb0; : : : ; bbd�1; bc0; : : : ; bcd�1
�T

:

It follows from the least squares theory that

b� = �(z)X T (z)W(z)Y; and �(z) = fX
T (z)W(z)X (z)g�1 ; (3.7)

where Y = (Y1; : : : ; Yn)
T , W(z) is an n � n diagonal matrix with Kh(�

T
Xi � z)w(�T

Xi) as its

i-th diagonal element, X (z) is an n � 2d matrix with (UT
i ; (�

T
Xi � z)UT

i ) as its i-th row, and

Ut = (1; Xt1; : : : ; Xt;d�1)
T .

3.2.2 Search for �-direction with gj(�)
0
s �xed

The minimization property in (3.1) suggests that we should search for � for which the function

R(�) =
1

n

nX
t=1

8<
:Yt �

d�1X
j=0

gj(�
T
Xt)Xtj

9=
;
2

w(�T
Xt) (3.8)

obtains its minimum. In fact, we will use the estimators of fgj(�)g which cannot be estimated with

reasonable accuracy at the tails. Obviously, a genuine exhaustive search will be a forbidden task

even for moderate d. A simple way out is to employ one-step estimation scheme (see, for example,

Bickel, 1975). The proposed method is in the spirit of one-step Newton-Raphson estimation. We

anticipate that the derived estimator performs well if the initial value is reasonably good (see Fan

and Chen, 1997). We outline the procedure below.

Suppose that b� is the minimizer of (3.8). Then _R
�b�� = 0, where _R(�) denotes the derivative

of R(�). For any �(0) close to b�, we have the approximation
0 = _R(b�) � _R

�
�(0)

�
+ �R

�
�(0)

� �b� � �(0)
�
;
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where �R(�) is the Hessian matrix of R(�). The above observation leads us to de�ne the one-step

iterative estimate for � as

�(1) = �(0) �
n
�R
�
�(0)

�o
�1

_R
�
�(0)

�
; (3.9)

where �(0) is the initial value. We re-scale �(1) such that it has unit norm whose �rst non-vanishing

element is positive. We need to evaluate all the �rst two partial derivatives of R(�). It is easy to

see from (3.8) that

_R(�) = �
2

n

nX
t=1

8<
:Yt �

d�1X
j=0

gj(�
T
Xt)Xtj

9=
;
8<
:

d�1X
j=0

_gj(�
T
Xt)Xtj

9=
;Xtw(�

T
Xt);

�R(�) =
2

n

nX
t=1

8<
:
d�1X
j=0

_gj(�
T
Xt)Xtj

9=
;
2

XtX
T
t w(�

T
Xt)

�
2

n

nX
t=1

8<
:Yt �

d�1X
j=0

gj(�
T
Xt)Xtj

9=
;
8<
:

d�1X
j=0

�gj(�
T
Xt)Xtj

9=
;XtX

T
t w(�

T
Xt): (3.10)

Note that in the above derivation, we assume that the derivative of the weight function w(�) is 0

for the sake of simplicity. In practice, we usually let w(�) be an indicator function. Further, � in

w(�TXt) is �xed at the value of its previous iteration.

In practical implementation, the matrix �R(�) could be singular or nearly so. A common tech-

nique to deal with this problem is the ridge regression (Seift and Gasser, 1996). For this purpose,

we propose using the estimator (3.9) with �R replaced by �Rr, which is de�ned by the RHS of (3.10)

with XtX
T
t replaced by XtX

T
t + qn Id for some positive ridge parameter qn.

Now we brie
y mention two alternative methods to estimating �, although we don't expect that

they are as eÆcient as the above method. The �rst one is based on random search method, which is

more direct and tractable when d is small. The basic idea is to keep drawing � randomly from the d-

dimensional unit sphere by the Monte Carol or quasi-Monte Carol methods (Fang and Wang, 1995)

and then computing R(�). Stop the algorithm if the minimum fails to decrease signi�cantly in every

100 new draws (say). The second approach is to adapt the average derivative method of Neway and

Stoker (1993) and Samarov (1993). Under the model (1.1), the direction � is parallel to the expected

di�erence between gradient vector of the regression surface and (g1(�
T
x); : : : ; gd�1(�

T
x); 0)T and

hence can be estimated by the average derivative method via iteration.

3.2.3 Bandwidth selection

We apply the generalized cross-validation (GCV) method, proposed by Wahba (1977) and Craven

and Wahba(1979), to choose bandwidth h in estimation of fgj(�)g. The criterion can be described

as follows. For given �, let bYt =Pd�1
j=0 bgj(�T

Xt)Xtj . It is easy to see that all those predicted values

are in fact the linear combinations of Y = (Y1; : : : ; Yn)
T with coeÆcients depending on fXtg only.

Namely, we can write

(bY1; : : : ; bYn)T = H(h)Y;

11



where H(h) is the n� n hat matrix, independent of Y. The GCV method selects h minimizing

GCV(h) �
1

nf1� n�1tr(H(h))g2

nX
t=1

fYt � bYtg2w(�T
Xt); (3.11)

which in fact is an estimate of the weighted mean integrated square errors. Under some regularity

conditions, it holds that

GCV(h) = a0 + a1h
4 +

a2

nh
+ op(h

4 + n�1h�1):

Thus, up to the �rst order asymptotics, the optimal bandwidth is hopt = (a2=(4na1))
1=5. The

coeÆcients of a0 and a1 and a2 will be estimated from fGCV(hk)g via least squares regression.

This bandwidth selection rule will be applied outside the loops between � and gj(�)
0s. See x2.2.5.

This simple rule is inspired by the empirical bias method of Ruppert (1997).

To calculate trfH(h)g, we note that for 1 � i � n,

bYi = 1

n

nX
t=1

YtKh(�
T
Xt � �T

Xi)w(�
T
Xt)(U

T
t ; 0

T )�(�T
Xi)

0
@ Ut

Ut
�
T
(Xt�Xi)

h

1
A ;

where 0 denotes the d � 1 vector with all components 0, and �(�) is de�ned as in (3.7). The

coeÆcient in front of Yi on the RHS of the above expression is


i �
1

n
Kh(0)w(�

T
Xi)(U

T
i ; 0

T )�(�T
Xi)

0
@ Ui

0

1
A :

Now, we have that trfH(h)g =
Pn

i=1 
i.

3.2.4 Choosing locally signi�cant variables

As we discussed before, the model (3.3) can be over-parametrized. Thus, it is necessary to select

signi�cant variables for each given z after the initial �tting. In our implementation, we use a back-

ward stepwise deletion technique which relies on a modi�ed AIC and t-statistics. More precisely, we

delete the least signi�cant variable in a given model according to its t-value, which in the meanwhile

yields a new and reduced model. We select the best model according to the AIC. We opt for this

rule because of its computational eÆciency and simplicity.

We start with the full model

g(x) =
d�1X
j=0

gj(�
T
x)xj : (3.12)

For �xed �T
X = z, (3.12) could be viewed as a (local) linear regression model. The least squares

estimator b� � b�(z) given in (3.7) entails

RSSd(z) =
nX
t=1

2
4Yt �

d�1X
j=0

fbgj(z) + b_gj(z)(�T
Xt � z)gXtj

3
5
2

Kh(�
T
Xt � z)w(�T

Xt): (3.13)
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The `degree of freedom' of RSSd(z) is m(d; z) = nz�p(d; z) where nz = trfW(z)g may be regarded

as the number of observations used in the local estimation and p(d; z) = trf�(z)X T (z)W2(z)X (z)g

as the number of local parameters. Now we de�ne the AIC for this model as follows

AICd(z) = logfRSSd(z)=m(d; z)g + 2 p(d; z)=nz :

To delete the least signi�cant variable among x0; x1; : : : ; xd�1, we search for xk such that both

gk(z) and _gk(z) are close to 0. The t-statistics for those two variables in the (local) linear regression

are

tk(z) =
bgk(z)p

ck(z)RSS(z)=m(d; z)
and td+k =

b_gk(z)p
cd+k(z)RSS(z)=m(d; z)

respectively, where ck(z) is the (k + 1; k + 1)-th element of matrix �(z)X T (z)W2(z)X (z)�(z).

Discarding a common factor, we de�ne

T 2

k (z) = fbgk(z)g2=ck(z) + fb_gk(z)g2=cd+k(z):
Let j be the minimizer of T 2

k (z) over 0 � k < d, we delete xj from the full model (3.12). This

leads to a model with (d � 1) `linear terms'. Repeating the above process, we may de�ne AICl(z)

for all 1 � l � d. The selected model should have k � 1 `linear terms' x0js such that AICk =

min1�l�dAICl(z).

3.3 Implementation

Now we outline the algorithm as follows.

Step 1: Standardize the data set fXtg such that it has sample mean 0 and the sample

variance and covariance matrix Id. Specify an initial value of �, say, the coeÆcient

of the (global) linear �tting.

Step 2: For each prescribed bandwidth value hk, k = 1; : : : ; q, repeat (a) and (b)

below until two successive values of R(�) de�ned in (3.8) di�er insigni�cantly.

(a) For a given direction �, we estimate the functions gj(�)
0s by (2.8).

(b) For given gj(�)
0s, we search direction � using the algorithms described in x2.2.2.

Step 3: For k = 1; : : : ; q, calculate GCV(hk) with � equal its estimated value, where

GCV(�) is de�ned as in x2.2.3. Let ba1 and ba2 be the minimizer ofPq
k=1fGCV(hk)�

a0 � a1h
4

k � a2=(nhk)g
2: De�ne the bandwidth bh = (ba2=(4n ba1))1=5, if ba1 and ba2

are positive; bh = argminhkGCV (hk), otherwise.

Step 4: For h = bh selected in Step 3, repeat (a) and (b) in Step 2 until two successive

values of R(�) di�er insigni�cantly.

Step 5: For � = b� selected from Step 4, we regard (3.6) with each �xed z as a least

squares problem for a linear regression model, and apply the stepwise deletion

method described in x2.2.4 to select signi�cant variables X 0
tjs at a �xed point z.

13



Some additional remarks are now in order.

Remark 2. (i) The standardization in Step 1 also ensures that the sample mean of f�T
Xtg is 0

and the sample variance is 1 for any unit vector �. This e�ectively re-write the model (3.3) as

dX
j=0

gj
�
�T b��1=2(x� b�)� xj ;

where b� and b� are the sample mean and sample variance, respectively. In the numerical examples

in x5, we report b��1=2b�=jjb��1=2 b�jj as the estimated value of � de�ned in (3.3).

(ii) We may choose the weight function w(z) = I(jzj � 2 + Æ) for some small Æ � 0. We

estimate the functions gj(�)
0s in Step 3 on 101 regular grids in the interval [�1:5; 1:5] �rst, and

then estimate the values of the functions elsewhere by linear interpolation. This will signi�cantly

reduce the computational time, especially when the sample size n is large. Finally (in Step 4), we

estimate gj(�)
0s on the interval [�2; 2].

(iii) We use the Epanechnikov kernel in our calculation. To estimate the bandwidth bh, we let
q = 15 and hk = 0:2� 1:2k�1 in Step 3. In the case that at least one of ba1 and ba2 are non-positive,
we let bh equal to the minimizer of GCV(h) over hk for k = 1; : : : ; q. Note that the data have been

standardized in Step 1. The selected values of bandwidth practically covers the range of 0.2 to 2.57

times of the standard deviation of the data. (If we use Gaussian kernel, we may select the range of

the bandwidth between 0.1 and 1.5 times of the standard deviation.)

(iv) Note that all the estimators for gj(�)
0s are �xed in the search for � in Step 2(b). To further

stabilize the search, we smooth the estimates of gj(�)
0s using a simple moving-average technique:

replace an estimate on a grid point by a weighted average on its 5 nearest neighbors with weights

f1=2; 1=6; 1=6; 1=12; 1=12g. The edge points should be adjusted accordingly.

(v) In the application of the one-step iterative algorithm to search for �, we estimate the

derivatives of gj(�)
0s based on their adjusted estimates on the grid points, smoothed by a moving-

average described in (iv) above. For example, we de�ne

b_gj(z) = fbgj(z1)� bgj(z2)g =(z1 � z2); j = 0; : : : ; d; (3.14)

and

b�gj(z) = fbgj(z1)� 2bgj(z2) + bgj(z3)g =(z1 � z2)
2; j = 0; : : : ; d; (3.15)

where z1 > z2 > z3 are three nearest neighbors of z among the 101 regular grid points (see (ii)

above), and bgj(zk) denote the adjusted estimate at zk. We recommend to iterate equation (3.9)

a few times (instead of just once) to speed up the convergence, because a reasonably good initial

value is required to ensure the good performance of the iterative estimator (see Fan and Chen,

1997).
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4 Varying-coeÆcient linear models with two indices

A natural extension of the method discussed in the previous section is to use varying-coeÆcient

functions with more than one indices. In this section, we consider the models with two indices but

one of them is known. We assume knowing one index in order to keep computation practically

feasible.

To simplify the notation, let Y and V be two random variables, and X be a d � 1 random

vector. We use V to denote the known index, which could be a (known) linear combination of X.

The goal is to approximate the conditional expectation G(x; v) = E(Y jX = x; V = v), in the mean

square sense (see (3.1)), by a function of the form

g(x; v) =
d�1X
j=0

gj(�
T
x; v)xj ; (4.1)

where � = (�1; : : : ; �d)
T is a d� 1 unknown unit vector. Similar to Theorem 1(ii), it can be proved

that under some mild conditions on g(x; v), the expression on the RHS of (4.1) is unique if the �rst

non-zero �k is positive and �d 6= 0. Let f(Xt; Vt; Yt); 1 � t � ng be observations from a strictly

stationary process, and (Xt; Vt; Yt) has the same distribution as (X; V; Y ).

The estimation for g(x; v) can be carried out in the similar manner as in one index case (see

x3.3). We outline the algorithm below brie
y.

Step 1: Standardize the data set fXtg such that it has sample mean 0 and the sample

variance and covariance matrix Id. Standardize the data fVtg such that Vt has

sample mean 0 and sample variance 1. Specify an initial value of �.

Step 2: For each prescribed bandwidth value hk, k = 1; : : : ; q, repeat (a) and (b)

below until two successive values of R(�) de�ned in (4.2) di�er by insigni�cantly.

(a) For a given direction �, we estimate the functions gj(�; �)
0s in terms of local

linear regression.

(b) For given gj(�; �)
0s, we search direction � using a one-step iteration algorithms.

Step 3: For k = 1; : : : ; q, calculate GCV(hk) with � equal its estimated value, where

GCV(�) is as de�ned in x3.2.3. Let ba1 and ba2 be the minimizer ofPq
k=1fGCV(hk)�

a0 � a1h
4

k � a2=(nh
2

k)g
2: De�ne the optimal bandwidth bh � (ba2=(2n ba1))1=6.

Step 4: For h = bh selected in Step 3, repeat (a) and (b) in Step 2 until two successive

values of R(�) di�er by a small amount.

Step 5: For � = b� selected from Step 4, select local signi�cant variables for each

given point (z; v).

Remark 3. (i) In Step 2(a) above, The local linear regression estimation leads to the problem of

minimizing the weighted sum of squares

nX
t=1

2
4Yt �

d�1X
j=0

faj + bj(�
T
Xt � z) + cj(Vt � v)gXtj

3
5
2

Kh(�
T
Xt � z; Vt � v)w(�T

Xt; Vt);
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where Kh(z; v) = h�2K(z=h; v=h), K(�; �) is a kernel function on <
2, and w(�; �) is a bounded

weight function with a bounded support in <2. We use a common bandwidth h for the simplicity

of implementation. The derived estimators are bgj(z; v) = baj, b_gj(z; v) = bbj and b_gj;v(z; v) = bcj for
j = 0; : : : ; d� 1, where _gj(z; v) = @gj(z; v)=@z and _gj;v(z; v) = @gj(z; v)=@v.

(ii) In Step 2(b), we search for � which minimizes the function

R(�) =
1

n

nX
t=1

8<
:Yt �

d�1X
j=0

gj(�
T
Xt; Vt)Xtj

9=
;
2

w(�T
Xt; Vt): (4.2)

A one-step iterative algorithm may be constructed for the purpose in the similar manner as in the

case with one index only; see x3.2.2 above. The required estimates for the second derivatives of

gj(z; v) may be obtained via a partially local quadratic regression.

(iii) In Step 3, the estimated g(x; v) is linear in the variable fYtg (for a given �). Thus, the

generalized cross-validation method outlined in x3.2.3 continues to apply.

(iv) Further, locally around the given indices �T
x and v, model (4.1) is approximately a linear

model. Thus, the local variable selection technique outlined in x3.2.4 is still applicable in Step 5

above.

5 Numerical properties

We always use the Epanechnikov kernel and its productive form for the bivariate kernel, in our

calculation. We always use the one-step iterative algorithm described in x3.2.2 to estimate the

index �. In fact, we iterate ridge version of equation (3.9) two to four times to speed up the

convergence. We stop the search in Step 2 when either the two successive values of R(�) di�er

less than 0.001, or the number of replications of (a) and (b) in Step 2 exceeds 30. We set initially

the ridge parameter qn = 0:001n�1=2 and keep doubling its value until the �Rr(�) is no longer

ill-conditioned with respect to the precision of computers.

5.1 Simulation

We demonstrate the �nite sample performance of the varying-coeÆcient model with one index

through Examples 1 and 2, and with two indices in Example 3. Examples 1 and 3 are nonlinear

regression models with independent observations while Example 2 is a nonlinear time series model.

We use absolute inner product j�T b�j to measure the goodness of the estimated direction b�.
Their inner product represents the cosine of the angles between the two directions. For both

Examples 1 and 2 below, we evaluate the performance of the estimator in terms of the mean

absolute deviation error

EMAD =
1

101 d

d�1X
j=0

101X
k=1

jbgj(zk)� gj(zk)j; (5.1)
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where zk; k = 1; : : : ; 101 are the regular grid points on [-2, 2] after the standardization. For example

3, EMAD is calculated on the observed values instead of regular grid points as in the above expression.
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Figure 1: Simulation results for Example 1. (a) The boxplots of the mean absolute deviation error

EMAD. The two panels on the left are based on the estimated �, and the two panels on the right

are based on the true �. (b) The boxplots of the absolute inner product j�T b�j. (c) The boxplots
of selected bandwidths. (d) The plots of the relative frequencies of deletion of locally insigni�cant

terms at z against z: thin solid line | for the intercept; dotted line | for Xt1, thick solid line |

for Xt2, and dashed line | for Xt3.

Example 1. Let us consider the regression model

Yt = 3 expf�Z2

t g+ 0:8ZtXt1 + 1:5 sin(�Zt)Xt3 + "t; (5.2)

with Zt =
1

3
(Xt1 + 2Xt2 + 2Xt4);

where Xt � (Xt1; : : : ;Xt4)
T , for t � 1, are independent random vector uniformly distributed on

[�1; 1]4, and f"tg is a sequence of independent standard normal random variables. It is easy to see

that the regression function in the above model is in the form of (3.3) with d = 4, � = 1

3
(1; 2; 0; 2)T ,

and the coeÆcient functions

g0(z) = 3e�z
2

; g1(z) = 0:8z; g2(z) � 0; and g3(z) = 1:5 sin(�z):

We now apply the algorithm described in x3.2.5 to estimate parameters in this model. We conduct

two simulations with sample size 200 and 400 respectively, each with 200 replications. The CPU

time for each replication with sample size 400 is under 70 seconds in average in a Sun Ultra-1
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143MHz Workstation, and is about 18 seconds in a Pentium II 350MHz PC (Linux). The results

are summarized in Fig. 1. Fig. 1(a) displays the boxplots of the mean absolute deviation errors.

We also plot the mean absolute deviation errors obtained using the true direction �. The de�ciency

due to unknown � decreases when the sample size increases. Fig. 1(b) shows that the estimator

b� derived from the one-step iterative algorithm is close to the true � with high frequencies in the

simulation replications. The average iteration time in search for � is 14.43 for n = 400 and 18.25 for

n = 200. Most outliers in Fig. 1(a) and Fig. 1(b) correspond to the cases where the search for � did

not converge within 30 iterations, which is the upper limit set in the simulation. Fig. 1(c) indicates

that the proposed bandwidth selector described in x2.2.3 seems quite stable. We also applied the

method in x2.2.4 to choose the local signi�cant variables at the 31 regular grid points in the range

from -1.5 to 1.5 times of the standard deviations of �T
X. The relative frequencies of deletion are

depicted in Fig. 1(d). There is overwhelming evidence to include the `intercept' g0(z) = 3e�z
2

in

the model for all the values of z. In contrast, we tend to delete most often the term Xt2 which has

`coeÆcient' g2(z) � 0. There is strong evidence to keep the term Xt3 in the model. Note that the

term Xt2 is less signi�cant, the magnitude of its `coeÆcient' g1(z) = 0:8z being smaller than those

of both g0(z) and g3(z).

Fig. 2 presents a typical example of the estimated coeÆcient functions. The curves are plotted

on the range from -1.5 to 1.5 times of the standard deviation of �T
X. The typical example

was selected in such a way that the corresponding EMAD is equal to its median among the 200

replicated simulations with the sample size n = 400. For this example, the selected bandwidth is

0.597, �T b� = 0:946. For the sake of comparison, we also plot the estimated functions obtained

using the true index �. The de�ciency due to unknown � is almost negligible once b� is reasonably

accurate. Note that the biases of estimators for the coeÆcient functions g0(�); g1(�) and g2(�) (but

not necessarily for g(�)) are large near to boundaries. We believe that this is due to the collinearity

of variables X1; � � � ;X4 and small e�ective local sample size near the tails. The coeÆcient functions

are not so easily identi�ed locally in those areas. However, there is no evidence that this problem

will distort the estimation for the target function g(x).

Example 2. We now consider a time series model

Yt = �Yt�2 exp(�Y
2

t�2=2) +
1

1 + Y 2

t�2

cos(1:5Yt�2)Yt�1 + "t; (5.3)

where f"tg is a sequence of independent normal random variables with mean 0 and variance 0.25.

If we regard Xt � (Yt�1; Yt�2)
T as the regressor, (5.3) is of the form of model (3.3) with d = 2,

� = (0; 1), and

g0(z) = �z exp(�z2=2); g1(z) = cos(1:5z)=(1 + z2):

To illustrate the application of our algorithm to this model, we conduct two simulations with sample

size 200 and 400 respectively with 200 replications. For each replication, we predict the 50 post-

sample points and compare them with the true values. One realization with sample size 400 lasts

less than 15 seconds in average on a Sun Ultra-1 143MHz Workstation, and less than 4 seconds on
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Figure 2: Simulation results for Example 1 (n = 400). The plot of estimated coeÆcient functions

(thick line), true functions (thin line), and estimated functions with true index � (dotted line).

(a) g0(z) = 3e�z
2

; (b) g1(z) = 0:8z; (c) g2(z) = 0; (d) g3(z) = 1:5 sin(�z).

a Pentium II 350MHz PC. The results are summarized in Fig. 3. Fig. 3(a) displays the boxplots of

the mean absolute deviation errors. For sample size n = 400, the mediums of EMAD with estimated

and true � are about the same, although the distribution of EMAD with b� has a long tail on the

right. Fig. 3(b) shows that the estimator b� derived from the one-step iterative algorithm is close

to the true � with high frequencies in the simulation replications. The average iteration time in

search for � is 7.80 for n = 400 and 17.62 for n = 200. In fact, the search did not converge within

30 iterations for 21 out of 200 replications with n = 200, and for one out of 200 replications with

n = 400. Fig. 3(c) is the boxplot of the selected bandwidths.

We also compared prediction performance of various models in the simulation with the sample

size n = 400. For each of 200 realizations, we predict 50 post-sample points from four di�erent

models, namely the �tted varying-coeÆcient models with true and estimated �, a purely nonpara-

metric model based on local linear regression of Yt on (Yt�1; Yt�2) with the bandwidth selected by

the GCV-criterion, and a linear autoregressive model with the order (� 2) determined by AIC. In

our simulation, AIC always selected order 2 in the 200 replications. Fig. 3(d) presents the boxplots

of the average absolute predictive errors. The varying-coeÆcient models with true and estimated

� are the two best predictors since they specify the correct form of the true model (see Fig. 3(d)).

The median of the predictive errors from the nonparametric model based on local linear regression

is about the same as that from the varying-coeÆcient model. But the variance is much larger. The

linear autoregressive model performs poorly in this example since the data are generated from a
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very nonlinear model.

Fig.4 presents a typical example of the estimated coeÆcient functions with the sample size

n = 400. The curves are plotted on the range from -1.5 to 1.5 times of the standard deviation of

�T
X. For the case with n = 400, the selected bandwidth is 0.781, and �T b� = 0:999. (The median

of �T b� in the simulation of 200 replications with n = 400 is 0.999.)
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Figure 3: Simulation results for Example 2. The boxplots of (a) the mean absolute deviation error

EMAD (the two panels on the left are based on b�, and the two panels on the right are based on the

true �), (b) the absolute inner product j�T b�j, (c) the selected bandwidths, and (d) the average

absolute predictive errors of the varying-coeÆcient models with true � and b�, nonparametric model

based on local linear regression, and linear AR-model determined by AIC (from left to right).
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Figure 4: Simulation results for Example 2. The plot of estimated coeÆcient functions (thick line),

true functions (thin line). (a) g0(z) = �ze�z
2=2; (b) g1(z) = cos(1:5z)=(1 + z2). The sample size

n = 400.
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Example 3. We consider the regression model

Yt = 3 exp(�Z2

t +Xt1) + (Zt +X2

t1)Xt1 � log(Z2

t +X2

t1)Xt2 + 1:5 sin(�Zt +Xt1)Xt3 + "t;

with Zt =
1

2
(Xt1 +Xt2 +Xt3 +Xt4);

where fXt1; : : : ;Xt4g and f"tg are the same as in Example 1. Obviously, the regression function in

the above model is of the form (4.1) with d = 4, � = 1

2
(1; 1; 1; 1)T , Vt = Xt1 and the two-dimensional

coeÆcient functions

g0(z; v) = 3e�z
2
+v; g1(z; v) = z + v2; g2(z; v) = � log(z2 + v2); g3(z; v) = 1:5 sin(�z + v);

which are plotted in Fig. 5. Assuming the direction of Vt = Xt1 is given, we now apply the algorithm

described in x3.4 to estimate the coeÆcient functions. We conduct three simulations with sample

size 200, 400 and 600 respectively, each with 100 replications. The CUP time for each realization,

in a Sun Ultra-10 300MHz Workstation, is about 18 seconds for n = 200, 1 minute and 20 seconds

for n = 400 and 3 minutes and 10 seconds for n = 600. Fig. 6(a) shows that the mean absolute

deviation error decreases when n increases. For the sake of comparison, we also present the mean

absolute deviation error of the estimator based on true value of �. Fig. 6(b) displays the boxplots of

the absolute inner product j�T b�j, which indicates that the one-step iteration algorithm described

in x3.2 works reasonably well. The boxplots of bandwidths selected by the GCV-method stated in

x3.3 are depicted in Fig. 6(c).
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Figure 5: The coeÆcient functions of Example 3. (a) g0(z; v) = 3e�z
2
+v, (b) g1(z; v) = z + v2,

(c) g2(z; v) = �log(z2 + v2), and (d) g3(z; v) = 1:5 sin(�z + v).
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Figure 6: The simulation results for Example 3. The boxplots of (a) the mean absolute deviation

error EMAD, (b) the absolute inner product j�T b�j, and (c) the selected bandwidths. The three

panels on the left in (a) are based on the estimated �, and the three panels on the right are based

on the true �. The three panels on the left in (a) are based on the estimated �, and the three on

the right are based on the true �.

5.2 Real data examples

Example 4. The annual numbers of muskrats and mink caught over 82 trapping regions have been

recently extracted from the records compiled by the Hudson Bay Company on fur sales at auction

in 1925-1949. Fig. 7 indicates the 82 posts where furs were collected. Biological evidence suggests

that mink is a key predator on muskrat (Errington, 1961, 1963). Fig. 7(b) plots the time series

of the mink and the muskrat (on the natural logarithmic scale) from 8 posts selected randomly

among the 82 posts. Most series exhibit cycles with a period of around 10 years. There exists a

clear synchrony between the 
uctuations of the two species with a delay of about one or two years.

Since there is a general lack of data on both prey and predator from the same area and over the

same time period, this data set o�ers a unique opportunity for quantitative analysis aiming at a

deeper understanding of the interaction between prey (i.e. muskrat) and predator (i.e. mink). As

a starting point, we introduce an ecological model to describe the mink-muskrat interaction. Based

on the food chain interaction model of May (1981), Stenseth et al. (1997) proposed a deterministic
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(a) The 82 trapping posts for the mink and the muskrat in Canada
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(b) Mink-muskrat time series from 8 posts

Figure 7: (a) A map of 82 posts for the mink and the muskrat in Canada in 1925 { 1949. (b) The

time series plots of the mink and the muskrat data from 8 randomly selected posts. Solid lines |

mink; dashed lines | muskrats.

model to describe the predator-prey interaction, namely

8<
:

Xt+1 �Xt = a0(�t)� a1(�t)Xt � a2(�t)Yt;

Yt+1 � Yt = b0(�t)� b1(�t)Yt + b2(�t)Xt;
(5.4)

where Xt and Yt denote the population abundances, on a natural logarithmic scale, of muskrat

and mink respectively at time t, ai(�) and bi(�) are non-negative functions, and �t is an indicator

representing the regime e�ect at time t, which is determined by Xt and/or Yt. The term `regime

e�ect' collectively refers to the nonlinear e�ect due to, among others, the di�erent hunting/escaping

behavior or the di�erent reproduction rates of animals at di�erent stages of population 
uctuation

(Stenseth et al., 1999). Biologically speaking, a1(�t) and b1(�t) re
ect the within species regulation

whereas a2(�t) and b2(�t) re
ect the food chain interaction between the two species, and a0(�t) and

b0(�t) are the intrinsic rates of changes. A simple option which facilitates statistical data analysis

is to use a threshold variable to de�ne the regime e�ect which switches between two regimes. The

model implied, with added random noise, could have the form

8<
:

Xt+1 = (a10 + a11Xt + a12Yt)I(Xt � r1) + (a20 + a21Xt + a22Yt)I(Xt > r1) + "1;t+1;

Yt+1 = (b10 + b11Yt + b12Xt)I(Xt � r2) + (b20 + b21Yt + b22Xt)I(Xt > r2) + "2;t+1;
(5.5)

where we choose muskrat variable Xt as the threshold variable. It is easy to see from (5.4) that

both a12 and a22 should be non-positive, and both b12 and b22 should be non-negative. The model

(5.5) assumes the populations muskrat and mink are piecewise linear functions of their immediate

lagged values. Note that each time series has only 25 points, which imposes intrinsic diÆculties

for statistical data analysis even with simple nonlinear models such as (5.5). Yao et al. (1998)

conducted some statistical tests on the common structure for each pair among those 82 regions and
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further suggested a grouping with three clusters: the eastern area consisting of post 10, post 67

and the other six posts on its right in Fig. 7; the western area consisting of the 30 posts on the left

in Fig. 7 (i.e. post 17 and those on its left); and the central area consisting of the remaining 43

posts in the middle. Yao et al. (1998) �tted model (5.5) to each of pooled data sets and reported

some interesting and ecologically interpretable �ndings.
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Figure 8: Estimated coeÆcient functions for Canadian mink-muskrat data. (a), (c) & (d): thick

solid lines | gx(�); solid lines | gy(�); dashed lines | g0(�). (b), (d) & (f): thick solid lines |

fy(�); solid lines | fx(�); dashed lines | f0(�).

Clearly, the model (5.5) simpli�es the nonlinear interaction into two states (for each of muskrat

or mink models) with a prescribed threshold variable Xt. Note that Xt � Xt�1 is the muskrat

population growth rate. It is biologically interesting to �nd out which would be an appropriate

`threshold' variable to de�ne the regime e�ect among Xt, Xt �Xt�1, Yt and Yt � Yt�1. With the

new technique proposed in this paper, we �t the pooled data for each of the three areas with the

24



model 8<
:

Xt+1 = f0(Zt) + f1(Zt)Yt�1 + f2(Zt)Yt + f3(Zt)Xt�1 + "1;t+1;

Yt+1 = g0(Zt) + g1(Zt)Yt�1 + g2(Zt)Yt + g3(Zt)Xt�1 + "2;t+1;
(5.6)

where Zt = �1Yt�1+ �2Yt+�3Xt�1 +�4Xt with � � (�1; �2; �3; �4)
T selected by data. Comparing

with (5.4) and (5.5), we include further lagged values Xt�1 and Yt�1 into the above model. We will

apply the local variable selection technique in x2.2.4 to detect any redundant variables at 31 regular

grid points over the range from -1.5 to 1.5 times of standard deviation of Zt. To eliminate the e�ect

of di�erent sampling weights in di�erent regions and for di�erent species, we �rst standardized the

mink series and muskrat series separately for each post. Since there are some missing values in

the data from post 15, we exclude it from our analysis. The sample size for eastern, central and

western areas are therefore 207, 989 and 667 respectively. We denote RMSE the ratio of the mean

squares errors from the �tted model over the sample variance of the variable to be �tted.

First, we use the second equation of (5.6) to model mink population dynamics in the central area.

The selected � is (0:424; 0:320; 0:432; 0:733)T , the selected bandwidth is 0.415, and RMSE = 0:449.

The local variable selection indicates that Xt�1 is the least signi�cant variable over all, for it is

signi�cant at only 7 out of 31 grid points; see x2.2.4. By leaving it out, we reduce to the model

Yt+1 = g0(Zt) + gy(Zt)Yt + gx(Zt)Xt + "2;t+1; (5.7)

where Zt = �1Yt + �2Xt + �3Yt�1. Our algorithm selected

Zt = (0:540Yt � 0:634Yt�1) + 0:553Xt; (5.8)

which suggests that the nonlinearity is dominated by the growth rate of mink and the population

of muskrat in the previous year. The estimated coeÆcient functions are plotted in Fig. 8(a). The

coeÆcient function gx(�) is positive, which re
ects the fact that a large muskrat population will

facilitate the growth of the mink population. The coeÆcient function gy(�) is also positive, which

indicates a natural reproduction process of mink population. Both gy(�) and gx(�) are approximately

increasing with respect to the sum of growth rate of mink and population of muskrat; see (5.8). But

the `intercept' g0(�) drops sharply after Zt reaches a threshold around 1. This might be related to

the fact that mink population could su�er from its over-sized growth rate due to the competition

for food and living environment among mink themselves. All the terms in the model (5.7) are

signi�cant in most places; the number of signi�cant grid points for `intercept', Yt and Xt are 21,

31 and 26 (out of 31 in total). The selected bandwidth is 0.597 and RMSE = 0:461.

Fitting the �rst equation of (5.6) to muskrat dynamics in the central area, we obtained b� =

(0:632; 0:308; 0:210; 0:680)T , bh = 0:346 and RMSE = 0:518. The overall least signi�cant variable is

Yt�1 which is only signi�cant in 9 out of 31 grid points. By leave it out, the model is reduced to

Xt+1 = f0(Zt) + fy(Zt)Yt + fx(Zt)Xt + "1;t+1; (5.9)

where Zt = �1Yt+�2Xt+�3Xt�1. The results from �tting are as follows: Zt = 0:542Yt+0:720Xt+

0:435Xt�1, bh = 0:498 and RMSE = 0:559. All the terms in the model (5.9) are signi�cant at least
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at 25 grid points (out of 31). The estimated coeÆcient functions are plotted in Fig. 8(b). The

coeÆcient function fy(�) is always negative, which re
ects the fact that mink is the key predator of

muskrat in this core of the boreal forest in Canada. The coeÆcient fx(�) is positive, as well-expected.

We repeated the above exercise for pooled data in the western area, and obtained similar results.

In fact, the model (5.7) appears appropriate for mink dynamics with Zt = 0:469Yt + 0:723Xt +

0:507Yt�1, RMSE = 0:446, bh = 0:415, and the estimated coeÆcient functions plotted in Fig. 8(c).

The model (5.9) appears appropriate for muskrat dynamics with Zt = 0:419Yt+0:708Xt+0:569Xt�1 ,

bh = 0:415, RMSE = 0:416, and the estimated coeÆcient functions plotted in Fig. 8(d).

Finally, we �t the data in the eastern area. The results are radically di�erent from those of the

central and the west stated above. To �t the mink dynamics with the second equation of (5.6),

we discovered that both Xt and Xt�1 are signi�cant only in small portions of the sample space.

After leaving out Xt�1, the �tting with the model (5.7) give Zt = 0:173Yt � 0:394Xt + 0:901Yt�1,

bh = 0:597 and RMSE = 0:681. The local variable selection indicates that out of 31 grid points,

the `intercept', Yt and Xt are signi�cant at 15, 31 and 4 points respectively. There is clear auto-

dependence in mink series fYtg while muskrat data fXtg carry little information about mink. The

estimated coeÆcients, depicted in Fig. 8(e), are consistent with the above observations. The �tting

of the muskrat dynamics shows again that there seems little interaction between mink and muskrat

in this area. For example, the term Yt in the model (5.9) is not signi�cant at all the 31 grid points

tested. The estimated coeÆcient function fy(�) is plotted as the thick curve in Fig. 8(f), which is

always close to 0. We �t the data with a further simpli�ed model

Xt+1 = f0(Zt) + fx(Zt)Xt + "1;t+1:

The results are as follows: Zt = 0:667Xt�0:745Xt�1, bh = 0:498 and RMSE = 0:584. The estimated

coeÆcient functions are superimposed on Fig. 8(f). Note the di�erent ranges of z-values are due

to di�erent Z 0
ts are used in the above model and the model (5.9).

In summary, we have facilitated the data analysis of the biological food chain interaction model

of Stenseth et al. (1997) by portraying the nonlinearity through varying-coeÆcient functions. The

selection of the index in our algorithm is equivalent in this context to the selection of the regime

e�ect indicator, which in itself is of biological interest. The numerical results indicate that there

is a strong evidence of predator-prey interaction between mink and muskrat in the central and

western areas. However, no evidence for such an interaction exists in the eastern area. In light of

what is known in the eastern area, this is not surprising. There is a larger array of prey-species for

the mink to feed on, making it less dependent on muskrat. It has been also observed that foxes

have a much more pronounced in
uence on the entire system of this area (Elton, 1942).

Example 5. This example concerns the daily closing bid prices of the pound sterling in terms of

US dollar from 2 January 1974 to 30 December 1983, which forms a time series of length 2510. The

previous analysis of this `particularly diÆcult' data set can be found in Gallant, Hsieh and Tauchen

(1991) and the references within. Let Xt be the exchange rate on the t-th day. We model the
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(a) Pound/Dollar exchange rates
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(c) Moving average trading rule
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Figure 9: (a) The plot of Pound/Dollar exchange rate return series fYtg. (b) The autoregressive

function of fYtg. (c) The plot of fUt = Yt=(
P

9

i=0 Yt�i=10)g. (d) The estimated coeÆcient functions

of model (5.10) with Zt = Ut�1 and m = 5. Thick solid lines { g0(�), thick dotted lines | g1(�),

thick dashed lines | g2(�), solid lines | g3(�), dotted lines | g4(�), dashed lines | g5(�).

return series fYt = 100 log(Xt=Xt�1)g plotted in Fig. 9(a) using the techniques developed in this

paper. It is well-known that the classical �nancial theory assumes that time series fYtg is typically

a martingale di�erence process and Yt is unpredictable. Fig. 9(b) shows that there exists almost

no signi�cant autocorrelation in the series fYtg.

First, we approximate the conditional expectation of Yt (given its past) by

g0(Zt) +
mX
i=1

gj(Zt)Yt�i; (5.10)

where Zt = �1Yt�1 + �2Yt�2 + �3Xt�1 + �4Ut�1, and Ut�1 = Xt�1

n
L�1

PL
j=1Xt�j

o�1
� 1. The

variable Ut�1 de�nes the moving average technical trading rule (MATR) in �nance, and Ut�1 + 1

is the ratio of exchange rate at the time t � 1 to the average rate over past period of length L.

The MATR signals 1 (the position to buy sterling) when Ut�1 > 0, and �1 (the position to sell

sterling) when Ut�1 < 0. For detailed discussion of the MATR, we refer to the papers by LeBaron

(1997, 1999) and Hong and Lee (1999). We use the �rst 2410 sample points for estimation and last

100 points for post-sample forecasting. We evaluate the post-sample forecast by the mean trading

return de�ned as

MTR =
1

100

100X
t=1

S2410+t�1Y2410+t;
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where St is the signal function taking values -1, 0 and 1. The mean trading return measures the

real pro�ts in a �nancial market, ignoring interest di�erentials and transaction costs (for the sake

of simplicity). It is more relevant than the conventional mean squared predictive errors or average

absolute predictive errors for evaluating forecasting for �nancial data; see Hong and Lee (1999).

Under this criterion, we need to predict the direction of market movement rather than its quantity.

For the MATR, the mean trading return is de�ned as

MTRMA =
1

100

100X
t=1

fI(U2410+t�1 > 0)� I(U2410+t�1 < 0)gY2410+t:

Let bYt be de�ned as the estimated function given in (5.10). The mean trading return for the

forecasting based on our varying-coeÆcient modeling is de�ned as

MTRVC =
1

100

100X
t=1

fI(bY2410+t > 0)� I(bY2410+t < 0)gY2410+t:

On the other hand, ideally we would buy at time t � 1 when Yt > 0 and sell when Yt < 0. The

mean trading return for this `ideal' strategy is

MTRideal =
1

100

100X
t=1

jY2410+tj;

which serves as a benchmark when assessing other forecasting procedures. For example, for this

particular data set, MTRMA=MTRideal = 12:58% if we let L = 10.

Now we are ready to proceed with calculation. First, we let m = 5 and L = 10 in (5.10), i.e.

we use one week data in the past as `regressors' in the model and de�ne the MATR by comparing

with the average rate in last two weeks. The selected � is (0:0068; 0:0077; 0:0198; 0:9998)T which

suggests that Ut plays an important role in the underlying nonlinear dynamics. The ratio of the

MSE of the �tted model to the sample variance of fYtg is 93.67%, which re
ects the presence of

high level `noise' in �nancial data. The selected bandwidth is 0.24. The ratio MTRVC=MTRideal =

5:53%. The predictability is much lower than that of the MATR. If we include rates in last two

weeks as regressors in the model (i.e. m = 10 in (5.10)), the ratio MTRVC=MTRideal increases

to 7.26% which is still distance away from MTRMA=MTRideal, while the ratio of the MSE of the

�tted model to the sample variance of fYtg 87.96%. The selected bandwidth is still 0.24, and

b� = (0:0020; 0:0052; 0:0129; 0:9999)T . Di�erent subsets of regressors should be used at di�erent

places in the state space, according to our local variable selection procedure in Section 2.2.4.

The above calculations (also others not reported here) seem to suggest that Ut could be a

dominated component in the selected index. This leads us to use the model (5.10) with prescribed

Zt = Ut�1, which is actually the approach adopted by Hong and Lee (1999). For m = 5, the �tting

to the data used in estimation became worse; the ratio of the MSE of the �tted model to the sample

variance of fYtg is 97.39%. But it provides a better post-sample forecasting; MTRVC=MTRideal

is 23.76%. The selected bandwidth is 0.24. The plots of estimated coeÆcient functions indicate
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a possible under-smoothing. By increasing the bandwidth to 0.40, MTRVC=MTRideal is 31.35%.

The estimated coeÆcient functions are plotted in Fig. 9(d). The rate of correct predictions for the

direction of market movement (i.e. sign of Yt) is 50% for the MATR, and 53% and 58% for the

varying-coeÆcient model with bandwidth 0.24 and 0.40 respectively.

A word of caution: We should not take for granted the above improvement in forecasting from

using Ut as the index. Hong and Lee (1999) conducted empirical studies with several �nancial data

sets with only partial success from using varying-coeÆcient modeling techniques (with Ut as the

prescribed index). In fact, for this particular data set, the model (5.10) with Zt = Ut and m = 10

gives a negative value of MTRVC. Note that the `super-dominating' position of Ut in the selected

smoothing variable b�T
Xt is partially due to the scaling di�erence between Ut and (Yt;Xt); see also

Fig. 9(a) and Fig. 9(c). In fact, if we standardize Ut, Yt and Xt separately beforehand, the resulted

b� is (0:59;�0:52; 0:07; 0:62)T when m = 5, which is dominated by Ut�1 and the contrast between

Yt�1 and Yt�2. (MTRVC=MTRideal = 1:42%. The ratio of MSE of the �tted model to the sample

variance of Yt is 96.90%.) By doing this, we e�ectively use a di�erent class of models to approximate

the unknown conditional expectation of Yt. Finally, we remark that a di�erent modeling approach

should be adopted if our primary target is to maximize the mean trading return, which is obviously

beyond the scope of this paper.

Appendix: Proof of Theorem 1

We use the same notation as in x2.

Proof of Theorem 1(i). It follows from the ordinary least-squares theory that the minimization

of

E
h
fY � f(X)g2

��� �T
X = z

i
;

over the class of functions f de�ned by (3.5) exists. Let f�
0
(z); : : : ; f�d�1(z) be the minimizer. Then

(f�
1
(z); : : : ; f�d (z))

T =
n
var

�
X

����T
X = z

�o�
cov

�
X; Y

����T
X = z

�
;

f�
0
(z) = E

�
Y
����T

X = z
�
�

dX
j=1

f�j (z)E
�
Xj

����T
X = z

�
:

In the above expression, A� denotes a generalized inverse matrix of A for which AA�A = A. It

follows immediately from the least-squares theory that

E

8<
: [Y � f�

0
(z)�

dX
j=1

f�j (z)Xj ]
2

�������
T
X = z

9=
; � var(Y j�T

X = z)

Consequently,

R(�) � E

8<
:Y � f�

0
(�T

X)�
dX

j=1

f�j (�
T
X)Xj

9=
;
2
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is bounded by E(Y 2), and continuous on the compact set f� 2 Rd
j jj�jj = 1g: Hence, there exists

� in the above set such that R(�) obtains its minimum at � = �. Therefore, g(�) ful�lled (3.1)

exists.

Theorem 1(ii) follows from the following two lemmas immediately.

Lemma A.1. Suppose that F (�) 6� 0 is a twice di�erentiable function de�ned on an open set in

Rd, and

F (x) = g0(�
T
x) +

dX
j=1

gj(�
T
x)xj (A.1)

= f0(�
T
x) +

dX
j=1

fj(�
T
x)xj ; (A.2)

where �;� are non-zero and non-parallel vectors in Rd. Then F (x) = c1�
T
x�T

x+
Tx+c0, where


 2 Rd, c0; c1 2 R are constants.

Proof. Without loss of the generality we assume � = (c; 0; : : : ; 0)T . Then, it follows from (A.1)

that @2F (x)=@x2j = 0 for j = 1; : : : ; d. Write �T
x = z. Then from (A.2), we have that

@2F (x)

@x2i
= �2i

�f0(z) + �2i

dX
j=1

�fj(z)xj + 2�i _fi(z) = 0:

For i with �i 6= 0, the above equation can be written as

�2i
�f0(z) + �2i

X
j 6=i

�fj(z)xj + �i �fi(z)fz �
X
j 6=i

�jxjg+ 2�i _fi(z) = 0:

This implies that

�fj(z) = �fi(z)
�j

�i
; 1 � j � d (A.3)

and

�i �f0(z) + z �fi(z) + 2 _fi(z) = 0: (A.4)

(A.3) implies that fj(z) = fi(z)�j�
�1

i + ajz + bj. Substituting this into (A.2), we have

F (x) = f0(�
T
x) + ��1i fi(�

T
x)�T

x+
X
j 6=i

(aj�
T
x+ bj)xj :

Therefore, we can choose fi(�) � 0 in (A.2) for all 1 < i � d for which �i 6= 0, while all other

fj(�)
0s (1 � j � d) are linear. Now, an application of the argument (A.4) to the newly formulated

function leads to f0(z) = a0z + b0. Thus,

F (x) = a0�
T
x+ b0 + (a1�

T
x+ b1)x1 +

X
1<j�d
�j=0

(aj�
T
x+ bj)xj :

Now, @2F (x)=@xi@xj = aj�i for any �i 6= 0, �j = 0 and j � 2, which should be 0 according to

(A.1) since � = (c; 0; : : : ; 0)T . Hence, all a0js (j � 2) in the above expression are zero. This implies

that

F (x) = a0�
T
x+ b0 + (ai�

T
x)x1 +

X
j

bjxj = b0 + (a0�
T + b

T )x+ ai�
T
x�T

x;
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where b denotes a vector with the j-th component bj for j = 1 and �j = 0, and 0 otherwise. The

proof is completed.

Lemma A.2. For any

F (x) � F (x1; : : : ; xd) = f0(�
T
x) +

dX
j=1

fj(�
T
x)xj 6� 0;

where � = (�1; : : : ; �d)
T
2 Rd and �d 6= 0, F (�) can be expressed as

F (x) = g0(�
T
x) +

d�1X
j=1

gj(�
T
x); (A.5)

where g0(�); : : : ; gd�1(�) are uniquely determined as follows:

g0(z) = F (0; : : : ; 0; z=�d); (A.6)

gj(z) = Fj � g0(z); j = 1; : : : ; d� 1; (A.7)

where Fj denotes the value of F at xj = 1, xd = (z � �j)=�d and xk = 0 for all the other k0s.

Proof. Note that xd = f�T
x�

Pd�1
j=1 �jxjg=�d. De�ne

g0(z) = f0(z) +
1

�d
fd(z)z and gj(z) = fj(z) �

�j

�d
for j = 1; : : : ; d� 1:

It is easy to see that (A.5) follows immediately. Let x1 = : : : = xd�1 = 0 and xd = z=�d in (A.5),

we obtain (A.6). Let xj = 1, xd = (z � �j)=�d and xk = 0 for all the other k0s, we obtain (A.7).

The proof is completed.
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