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Abstract

Focusing on homogeneous beliefs, we can distinguish two commonly shared ideas
that, i) the competition between informed traders destroys their trading profits, ii)
trading with a noisy signal brings about a loss in the expected profits. So far, it has
been proved in the latter framework, that when N strategic and perfectly informed
traders compete in the financial market, i) the informativeness of prices increases
with the degree of competition and, ii) the aggregate and individual profits go to 0
when N is large. In this paper, we propose a general study where N strategic
informaed agents have heterogeneous beliefs, i.e. are endowed with noisy
information and compete à la Nash. We prove the existence and uniqueness of a
linear equilibrium generalizing Kyle (1985) results to the case of N informed traders
when the insiders have heterogeneous beliefs. In this general framework, we derive
the following striking results: for certain regions of noise and numbers of competitors
in excess of four, i) each individual expected profit is greater than the one obtained in
the perfectly informed (and homogeneous beliefs) case; ii) the aggregate profit has a
finite (strictly) positive limit when N is large. iii) Even when an infinite number of
insiders compete in the market, the price is no longer efficient and does not fully
reveal the final liquidation value of the risky asset. iv) In the particular case where
each informed agent is endowed with a signal the precision of which is the same, a)
we show that there exists an optimal level of noise for which each individual
expected profit is maximized; b) we show that there exists an optimal size of the
market for which the aggregate expectged profit is maximized; c) the liquidity is an
increasing function of the number of informed traders but has a finite limit for large N;
d) the informativeness of prices is a decreasing function of the number of informed
traders.
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1 Introduction

How much information is reected into prices? How do prices reect and aggregate information?

In the case of competitive traders, Grossman (1976) shows that the equilibrium price aggregates

the dispersed private information. If there is no noise in the market - or more generally no

sources of uncertainties - prices fully reveal the private information dispersed among the traders

(Grossman and Stiglitz (1980)). Those results are mitigated when considering the case of strate-

gic traders who are aware of their impact into prices. In the case of a monopolistic perfectly

informed risk neutral trader, Kyle (1985) shows that the price is not fully eÆcient and only

half of the insider's private information is revealed at the equilibrium. The monopoly keeps his

informational advantage by optimally camouaging his information in the noise. Those results

are di�erent when there are many strategic traders who compete in the market. The competi-

tion diminishes the insiders informational advantage. Kyle (1984) and Admati and Peiderer

(1988a) put forward that the informativeness of prices is an increasing function of the degree

of competition between the traders. Indeed, prices are all the more informative than the com-

petition between the traders is �erce. In particular, when a large number of strategic perfectly

informed traders compete in the market the price is strongly eÆcient. In the same line but in a

dynamic setting Holden and Subrahmanyam (1992-1995) shows that the speed of revelation of

information increases with the number of competitors.

Another strand of the literature investigates the e�ects of noise onto prices. There are

di�erent sources of noise. The noise can stem from the presence of noise traders (Kyle (1985))

or other sources of uncertainties like endowment shocks when the agents are risk averse (Biais,

Martimort and Rochet (1997)) or a random supply, Grossman and Stiglitz (1980). When the

distribution of the risky asset is bimodal or has a three points support, Biais and Germain (1997)

and Germain (1998) show that perfectly informed traders would be better o� adding noise ex{

ante into prices if they can commit to do so . This is no longer the case when the distribution

is normal and the pricing rule is linear like it is in the Kyle (1985) framework. Indeed, in

the standard Kyle (1985) model we know that, the more precise is the available information

the better is the informed monopoly (see section 2 for more details). In other words, it is not

optimal ex{ante to add noise into prices.

The �rst conclusion we can draw from those �nancial studies is that:

� On the one hand, the noise diminishes the informativeness of prices,

� and, on the other hand, the competition increases the informativeness of prices.

Could it be that any trade-o� arise? Is the competition e�ect suÆciently strong that, whatever

the level of noise in the market the competitors always bear the cost of noise? If so, for which

level of noise in the market is it true? When the distribution of the risky asset is bimodal

Germain (1998) shows how N strategic indirect sellers of information can commit to add the
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optimal ex{ante level of noise in the market. 1 Are there optimal regions of noise in a more

general framework also? To address those issues in the present paper, we propose the general

study where N strategic informed agents who have heterogeneous beliefs i.e. are endowed

with noisy information ~Si = ~v+ ~"i i = 1; :::; N and compete �a la Nash.2 In the same vein, Foster

and Viswanathan (1996) and Back (1995) have studied the impact of correlations on imperfect

competition while focusing on heterogeneous beliefs. The main diÆculty arising in this type of

models is that agents have to \forecast the forecasts of others".

More precisely, there are two commonly shared ideas that i) the competition between informed

traders destroys their expected trading pro�ts ii) trading with a noisy signal brings about a loss

in the expected pro�ts.

So far, it is just proved that when N strategic traders have homogeneous beliefs3 and compete

in the �nancial market i) the informativeness of prices increases with the degree of competition

and ii) the aggregate and individual pro�ts go to 0 when N is large (See Admati and Peiderer

(1988a)). And as a matter of fact the same authors rightly notice, that \it is straightforward to

show that with risk neutral traders, the total pro�ts of the informed traders, n�(n) are decreasing

in n. This is analogous to the result that industry pro�ts are decreasing in the number of �rms

in a Cournot oligopoly".

We stress in this paper that, in the heterogeneous beliefs framework, strategic competition should

be rather parameterized by an N-dimensional vector composed by the precision of each insider's

signal. In e�ect, the classical Cournot result holds only for certain structure of information (in

particular in the homogeneous beliefs setting). In the heterogeneous beliefs framework, we show

that the competition can be mitigated by the presence of noise. 4

Moreover we emphasize on the fact that two levels of heterogeneity have to be distinguished in

our general �nancial study. Heterogeneous beliefs can stem in this set-up:

� either from di�erent signals but the same distribution that is identically distributed,5

� or from di�erent probability distributions.

We will proceed in this paper as follows: �rst we develop the theory in the latter generic case

and particularize the results to the former case and referred to as the symmetric case.

More precisely, we derive the following striking results: for certain regions of noise and a number

of competitors N � 4,

1The commitment is made credible through contracts for the sale of information.
2In the standard literature, the previous questions are often solved within the homogeneous beliefs paradigm.

This is for instance the case of Admati and Peiderer (1988a-b), Foster and Viswanathan (1994) and Holden and

Subrahmanyam (1992).
3The simplest and widespread example corresponds to the case where traders are perfectly informed.
4In a di�erent set-up and a dynamic model Foster and Viswanathan (1996) show that the competition may

depend on the correlation between the traders' signals. However the crucial assumption in their framework is

that the signals aggregate to a suÆcient statistic of the �nal liquidation v :
1

N

NX
i=1

siÆ = v.

5This corresponds to what has mainly been studied.
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� i) each individual expected pro�t is greater than the one obtained in the perfectly informed

case;

� ii) the aggregate pro�t has a �nite (strictly) positive limit when N is large.

� iii) Even when an in�nite number of insiders compete in the market the price is no longer

eÆcient and does not fully reveal the �nal value of liquidation of the risky asset.

� iv) In the particular case where each heterogeneous informed agent is endowed with a signal

the precision of which is the same for each agent we show that there exists an optimal

level of noise for which each individual pro�t is maximized.

� For each given level of precision of the signals, there exists an optimal size of the market

for which the aggregate expected pro�t is maximized.

� vi) The liquidity is not always an increasing function of the number of informed traders

and may have a �nite limit for large N.

� vii) The informativeness of prices is not always increasing with the number of informed

traders.

Furthermore, we address another issue. In the framework of the linear equilibria modeling

with normality and when the traders have heterogeneous beliefs two related issues remain un-

solved. i) Do we still have the uniqueness of a particular linear equilibrium (linear in prices as

well as in quantities)? ii) Can we extend this framework to the case where the informed traders

are not necessarily endowed with the same signal?

As a matter of fact, Kyle (1984) and Admati and Peiderer (1988b) have studied the case where

N informed traders endowed with the same signal S compete in the market and have shown

the existence of a linear equilibrium. Foster and Viswanathan (1996) and Vives (1995) have

shown also the existence of a linear equilibrium when traders have heterogeneous beliefs. In

this respect, our results are the following. We �rst show the existence and the uniqueness of

a linear equilibrium. This generalizes the result derived by Kyle (1985) in the case of a single

perfectly informed monopoly to the case where N strategic informed traders are endowed with

di�erent signals. This relies to the best of our knowledge on new proofs since so far what has

been exhibited is the existence and not the uniqueness of the particular linear equilibrium. In

e�ect, while in Kyle (1985) and Holden and Subrahmanyam (1992), each informed trader knows

at the equilibrium the quantity submitted by each other one, in our framework there is still a

persisting uncertainty due to the noisy signals and therefore the informed noisy trades.6

The paper is organized as follows. We �rst lay out in section 2 the general set up and the

considered model generalizing Kyle (1985). We show in section 3 the existence and uniqueness

of a linear equilibrium and characterize the equilibrium as well as the expected pro�ts performed

6This uncertainty is reinforced in the general case where insiders signals are distributed according to non

identical probability distributions.
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by each informed agent in the heterogeneous beliefs context. In section 4, we provide the general

study of the equilibrium properties and delineate the regions for which each informed traders

is better o� with respect to the perfectly informed case. We discuss in section 5 the particular

situation in which each informed heterogeneous agent is endowed with a signal of which precision

is the same and show the existence of an optimal level of noise for each given number of insiders

as well the optimal size of the market for each given level of precision. We then focus on the

individual reaction, the liquidity, individual and aggregate pro�ts and informativeness properties

at equilibrium. Finally section 6 states some concluding remarks.
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2 The setup

We consider a �nancial market with a risky asset normally distributed ev ; N (0; �2v). We denote

the �nal liquidation value v. There are three types of agents:

1. N risk neutral informed traders who observe in advance a signal eSi = ev+ e"i, where e"i is a
random disturbance term (the noise) and we will assume that:

e"i ; N (0; �2i );

fev; e"1; : : : ; e"Ng are mutually independent.

2. Liquidity traders who submit market orders eu; N (0; �2u) and such that fev; e"1; : : : ; e"N ; eug
are mutually independent.

3. Risk neutral market makers, who observe the aggregate volume ew and set rationally the

price in a Bayesian way.

A strategy for the informed agent i = 1; : : : ; N is a Lebesgue measurable function: Xi : IR �!
IR, determining his market order as a function of the observed signal Si. For given strategies

(X1; : : : ;XN ), let exi = Xi( eSi). These strategies determine the aggregate order ow ew =
NX
i=1

exi+
eu.
Market makers observe the realization of the order ow, but not any of its components, and

engage in a competitive auction. The outcome of this competition is described by a Lebesgue

measurable function: P : IR �! IR.

Given (P;X1; : : : ;XN ), we denote ep = P ( ew) and let e�i = (ev � ep) exi the resulting trading pro�t

of each insider i = 1; : : : ; N .

The equilibrium conditions are that the competition in which market makers are involved drives

their expected pro�ts to zero conditional on the aggregate submitted volume and that the

informed traders choose their trading strategies so as to maximize their expected pro�ts.

De�nition 2.1 : (P;X1; : : : ;XN ) 2 LN+1
2 is an equilibrium if:7

E [ev � ep= ew] = 0; (2.1)

and for all Xi 2 L2, given the (rational) beliefs of the market makers, and the corresponding

price function (P (:)), each informed chooses Xi to maximize his expected pro�ts:

exi 2 Argmax
x2IR

E

240@ev � P (x+
X
j 6=i

exj + eu)
1Ax=Si

35 � (2.2)

7
L2 corresponds to the set of square integrable Lebesgue measurable functions.
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De�nition 2.2 : (P;X1; : : : ;XN ) 2 LN+1
2 is a linear equilibrium if in addition there exists a

scalar � 2 IR+: ep = E [ev= ew] = �e!� (2.3)

We derive the unique perfect Bayesian linear equilibrium of this game.
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3 Equilibrium Existence and Uniqueness

We �rst start by stating the result in the monopoly case which is distinguished from the oligopoly

case (N � 2). We characterize the linear equilibrium in the case of a monopolistic imperfectly

informed trader who observes a signal eS = ev + e". This signal corresponds to the previous

oligopoly description but here N=1.

Proposition 3.1 : In the monopoly case (N = 1), there exists a unique linear equilibrium

de�ned by ex = ��(�) eS and ep = ��(�)e!, where �2 = V ar(e"), such that:

��(�) =
�u

�v

1p
1 + �

;

1

��(�)
= 2

�u

�v

p
1 + � ;

� =
�2

�2v
�

(3.1)

Proof : See appendix A:1.

Figure 1 represents the individual monopolistic reaction as a function of the noise and where the

normalization is taken with respect to the perfectly informed case. We observe that the more

accurate the information is and the more reactive is the monopoly.

10 20 30 40
Level of noise

0.2

0.4

0.6

0.8

1

Individual Reaction N=1

Figure 1: Individual Reaction (N=1).

Figure 2 represents the liquidity in the monopolistic case as a function of the noise and where

the normalization is taken with respect to the perfectly informed case. We observe that the

more accurate the information is and the less liquid the market is.
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Figure 2: Liquidity (N=1).

Proposition 3.2 : In the monopoly case (N = 1), the expected pro�t ��(�) is at equilibrium

given by:

��(�) =
1

2
�u�v

1p
1 + �

;

� =
�2

�2v
�

(3.2)

Proof : See appendix A:1.

10 20 30 40
Level of noise

0.2

0.4
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0.8

1

Expected Profit N=1

Figure 3: Expected Pro�t (N=1).

Figure 3 represents the expected pro�t achieved by the monopoly as a function of the noise

and where the normalization is taken with respect to the perfectly informed case. We observe

that the expected pro�t is a decreasing function of the noise and at the limit is equal to zero.

This illustrates that in this linear setting a monopoly is always worse-o� collecting a noisier

information. As a consequence, it is never optimal ex-ante to add noise to his own information.

We now turn to the oligopoly results.
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Proposition 3.3 : There exists a unique linear equilibrium de�ned by i = 1; : : : ; N; exi =

��i (�)
eSi and ep = ��(�)e! and where (��1 ; : : : ; �

�
N ; �

�) (�) is given by:

��i (�) =
�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

1

1 + 2�i
; i = 1; : : : ; N;

1

��(�)
=

�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

241 + NX
j=1

1

1 + 2�j

35 ; with �j =
�2j

�2v
; j = 1 : : : ; N �

(3.3)

Proof : See appendix A:2.

To the best of our knowledge, this result generalizes all the existing ones in the literature. More

precisely, Kyle (1984), Admati and Peiderer (1988b) show the existence of a linear equilibrium

while assuming that, i) the pricing rule is linear, ii) each informed agent conjectures that each

other informed trader's strategy is linear in his signal (and consequently that at equilibrium

informed traders strategies are linear). This does not prove in any case, i) the uniqueness of the

linear equilibrium 8, ii) that the class of possible linear equilibria corresponds to linear reaction

of each informed agent in their signal.

In light of this, proposition 3:3 states that, the class of linear equilibria is indeed reduced to a

singleton and that the reaction of each informed agent is, at the equilibrium, linear.

In the next proposition we determine the expected pro�ts of the traders at the individual and

aggregated level.

Proposition 3.4 :

� The expected pro�t ��i (�) for the agent i is, at equilibrium, given by:

��i (�) =

�v�u
1 + �i

(1 + 2�i)
28<:

NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

8<:1 +
NX
j=1

1

1 + 2�j

9=;
; i = 1; : : : ; N;

with �i =
�2i
�2v
�

(3.4)

For � = 0, we obtain the benchmark:

��i (0; N) =
�v�u

(N + 1)
p
N
� (3.5)

8We emphasize here that linear equilibrium refers to the linearity in price according to de�nition 2:2 and not

to linearity in informed traders strategies.
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� The expected aggregate pro�t ��(�) is, at equilibrium, given by:

��(�) =
NX
i=1

��i (�) =

�v�u

8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

1 +
NX
j=1

1

1 + 2�j

;

with �j =
�2j

�2v
; j = 1; : : : ; N �

(3.6)

For � = 0, we have ��(0; N) =
�v�u

p
N

N + 1
.

Proof : See appendix A:2.
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4 Equilibrium Properties

Proposition 4.1 : At equilibrium, the individual reaction ��i (�) of the agent i is decreasing

with each other competitor's available information; that is to say, increasing with �j ; j 6= i, and

increasing with its own information precision, that is to say, decreasing with �i.

This proposition shows that the informed traders react all the more to their private information

than the other traders' information is noisy. Indeed, since the total amount of noise in the

market increases the traders can camouage more their information.

Proof : See appendix B:1.

Proposition 4.2 : For i = 1; : : : ; N; we de�ne:

b(��i) = 1�
X
j 6=i

3 + 2�j

(1 + 2�j)
2
;

c(��i) = 2 +
X
j 6=i

2�j � 1

(1 + 2�j)
2
;

(4.1)

then:

� if b(��i) � 0, the liquidity ��
�1

(�) (or ��
�1

(�)) is, at equilibrium, an increasing function

of �i =
�2i
�2v

for any �xed ��i,

� if b(��i) � 0 and c(��i) � 0, the liquidity ��
�1

(�) (or ��
�1

(�)) is, at equilibrium, a

decreasing function of �i =
�2i
�2v

for any �xed ��i,

� if b(��i) � 0 and c(��i) � 0, then:

* for �i � �
c(��i)

2b(��i)
, the liquidity ��

�1

(�) (or ��
�1

(�)) is, at equilibrium, an increasing

function of �i =
�2i
�2v

for any �xed ��i,

* for �i � �
c(��i)

2b(��i)
, the liquidity ��

�1

(�) (or ��
�1

(�)) is, at equilibrium, a decreasing

function of �i =
�2i
�2v

for any �xed ��i,

Remark 4.1 : All the previous cases are possible.

Proof : See appendix B:2.

Proposition 4.3 :
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� For i = 1; : : : ; N; the individual pro�t ��i (�) is, at equilibrium, an increasing function of

��i the (N � 1) vectorial noise corresponding to each other informed competitor's noise

and a decreasing function of one's own noise �i.

� * If b(��i) � 0, the aggregate pro�t ��(�) is, at equilibrium, a decreasing function of

the noise �i =
�2i
�2v

for i = 1; : : : ; N and any �xed ��i.

* If b(��i) � 0 and c(��i) � 0, the aggregate pro�t ��(�) is, at equilibrium, an increas-

ing function of the noise �i =
�2i
�2v

for i = 1; : : : ; N and any �xed ��i.

* If b(��i) � 0 and c(��i) � 0 then:

- For �i � � c(��i)

2b(��i)
, the aggregate pro�t ��(�) is, at equilibrium, a decreasing

function of the noise �i =
�2i
�2v

for i = 1; : : : ; N and any �xed ��i.

- For �i � � c(��i)

2b(��i)
, the aggregate pro�t ��(�) is, at equilibrium, an increasing

function of the noise �i =
�2i
�2v

for i = 1; : : : ; N and any �xed ��i.

Remark 4.2 : As already pointed out, each case can be envisioned.

Proof : See appendix B:3.

Remark 4.3 : Proposition 4:3 exactly illustrates the trade-o� competition versus \noise" be-

havior.

The interpretations9 of propositions 4:2 � 4:3 are as follows. First as in Kyle (1985), we still

have that the depth (��1) and the aggregate expected pro�t are inversely related. Second, in

our framework, the liquidity in the market and the aggregate expected pro�t are not monotonic

functions of the set of information in the market. In particular,

� if there is a suÆcient amount of noise in the market b(��i) � 0, then the more precise is the

collected information by an insider the bigger is the depth and the smaller is the aggregate

expected pro�t. In other words, both price pressure and aggregate expected pro�t increase

with the precision of the information collected by one trader all things being equal.

� if the amount of noise in the market is small enough (but not too small)- b(��i) � 0 and

c(��i) � 0 - as long as the collected information is relevant - (�i � � c(��i)

2b(��i)
) - the price

pressure and the aggregate expected pro�t increase with the precision of the information

collected by one trader all things being equal. If not - �i � �
c(��i)

2b(��i)
- the price pressure

and the aggregate expected pro�t decrease with the precision of the information collected

by one trader all things being equal.
9It should be mentioned that the aggregate pro�t is proportional to � by a factor �2u. Therefore the properties

for the aggregate pro�ts can be deduced from those of the liquidity.
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� For small levels of noise - b(��i) � 0 and c(��i) � 0 - the price pressure and the aggregate

expected pro�t decrease with the precision of the information collected by one trader all

things being equal.

To summarize the previous e�ects, a little amount of noise in the market does not allow for price

manipulation. Indeed, in the latter case, the cost of noise supersedes the price manipulation

since the market are in some sense still nearly eÆcient (take the polar case where a large number

of nearly perfectly informed traders compete with a single less informed trader). On the contrary

a larger amount of noise in the market enables price manipulation. This e�ect is bigger than

the cost of noise. Finally, for intermediate amount of noise in the market, we observe di�erent

regions for which one e�ect dominates the other one.

Proposition 4.4 : Let N informed agents endowed with signals eSi = ev + e"i with

fe"1; : : : ; e"N ; ev; eug mutually independent and where eu corresponds to the noise trading, ev the

liquidation value of the risky asset and exi = ��i (�)
eSi the orders submitted by each competing

informed traders at equilibrium, then if we de�ne �N as:

�N =
n
� = (�1; : : : ; �N )

0 2 IRN
+

o
;

8� 2 �N ; 8i = 1; : : : ; N;

��i (�1; : : : ; �N ) � ��i (0; : : : ; 0) = ��i (0; N);

9iÆ 2 f1; : : : ; Ng = ��iÆ(�1; : : : ; �N ) > ��iÆ(0; : : : ; 0)�

(4.2)

We have:

� for N � 4 �N is non-empty. In other words, noise is ex{ante optimal.

� For N � 3, �N is empty.

Proof : See appendix B:4:

The interpretation of the proposition is the following. The presence of noise mitigates the

competition.
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5 Symmetric Case

We focus in this section on the symmetric heterogeneous beliefs case that is when all informed

agents are endowed with signals of same precision, i.e., �i = � for i = 1; : : : ; N .

We still maintain the mutual independence of fe"1; : : : ; e"N ; ev; eug. Then we can state as corollaries

of the previous propositions 3:3 � 4:3 that:

Proposition 5.1 : There exists a unique perfect Bayesian linear equilibrium de�ned as in

proposition 3:3. In this particular case (��1 ; : : : ; �
�
N ; �

�) (�;N) is characterized by:

��i (�;N) = ��(�;N) =
�u

�v

1

p
N

s
1 +

�2

�2v

; i = 1; : : : ; N;

1

��(�;N)
=

�u

�v

N + 1 + 2
�2

�2v
p
N

s
1 +

�2

�2v

�

(5.1)

The individual pro�t ��i (�;N), for i = 1; : : : ; N is, at equilibrium, given by:

��i (�;N) = �v�u

s
1 +

�2

�2v
p
N

 
N + 1 +

2�2

�2v

! ; (5.2)

and the aggregate pro�t ��(�;N) is, at equilibrium, given by:

��(�;N) = �v�u

p
N

s
1 +

�2

�2v

N + 1 +
2�2

�2v

� (5.3)

Proof : the results correspond to the applications of the previous propositions to the symmetric

case.

Figure 4 represents, in the symmetric case, the reaction of each informed agent ��i (�;N) as a

function of the number of insiders and the level of noise, which is measured by
�2

�2v
.10 We can

see that:

� for each given level of noise, the individual reaction function is as usual decreasing with

the number of insiders,

10In the whole paper and in order to draw the graphs, we have set as a normalization �v = �u = 1.
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Figure 4: Individual Reaction.

� for each given number of insiders, the individual reaction function is decreasing with the

level of noise.
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Figure 5: Aggregate Reaction.

Figure 5 represents, in the symmetric case, a kind of aggregate reaction N��(�;N) as a function

of the number of insiders and the level of noise. We can notice that:

� for each given level of noise, the aggregate reaction is increasing with the number of

insiders,

� for each given number of informed traders, the aggregate reaction is decreasing with the

level of noise.
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Figure 6: Liquidity N < 4.

Figures 6 and 7 represent, in the symmetric case, the liquidity
1

��
(�;N) as a function of both

the number of insiders and the level of noise:

� First, for a �xed positive level of noise � > 0, the liquidity is �rst decreasing with the

number of insiders to reach a minimum at the value N = 1 + 2
�2

�2v

11 along the given

hyperplan and then increasing with the number of insiders. This seriously di�ers from the

case of perfect information � = 0 where the liquidity is always increasing with the number

of informed traders.

� Second, for a small number of insiders (N � 3), we observe as usual, that the liquidity is

an increasing function of the level of noise for a �xed number of informed traders.

� Third, for a larger number of informed traders (N � 4), and any given number of insiders,

the liquidity is �rst decreasing with the level of noise to reach a minimum at the value

� = ��(N) =

s
N � 3

2
�v along the given hyperplan and then increasing with the level of

noise. In this case, we observe a \basin".

Figures 8 and 9 represent, in the symmetric case, the individual pro�t achieved by each informed

agent as a function of both the level of noise and the number of insiders. For any �xed level of

noise, the individual pro�t is always decreasing with the number of insiders.

11Of course, this implicitly assumes that we are extending the variables N to the real axis. For sake of clarity,

we will not discuss here in further details the fact that in practice N 2 IN the set of positive integers. Indeed one

has rather to take the integer part and to discuss whether it is greater than one. See however proposition 5:3 for

the exact statements.

17



Liquidity

10

20

30

40

Large Number of Insiders
0

10

20

30

Level of Noise

3

4

5

10

20

30r of Insiders

Figure 7: Liquidity N � 4.
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Figure 8: Individual Pro�t N < 4.
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� For a small number of informed agents (N � 3), the individual pro�t is always decreasing

with the level of noise for any �xed number of insiders.

� For a large number of informed traders (N � 4), and any given number N of insiders,

the individual pro�t is �rst increasing with the noise to reach a maximum at the value

� = ��(N) =

s
N � 3

2
�v and then decreasing with the level of noise.
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Figure 9: Individual Pro�t N � 4.

This illustrates the idea that noise has basically two e�ects, one costly which is due to the fact

that, in some sense and for a part of his trade, the insider is behaving as a noise trader; and the

other bene�cial since it tends to weaken the competition. In other words, for a large number of

insiders the bene�cial e�ect of noise supersedes the costly one.
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Figure 10: Normalized Individual Pro�t N < 4.
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Figures 10 and 11 represent, in the symmetric case, the normalized individual pro�t achieved

by each informed agent as a function of both the level of noise and the number of insiders. We

have chosen the normalization with respect to the pro�t ��i (0; N) performed in case of perfect

information � = 0. In other words, we have reported the ratio
��i (�;N)

��i (0; N)
as a function of the

number of insiders and the level of noise. Again, two cases have to be envisioned.

� First, for a small number of insiders (N � 3), this ratio is decreasing with the level of

noise and increasing with the number of informed traders. However for a small number of

insiders, this ratio is always smaller than one.

� Second, for a larger number of informed traders (N � 4), there exist for each given

number of insiders, levels of noise for which this ratio is bigger than one. Moreover,

it is increasing with the number of informed traders, for a �xed level of noise. For a

given number of insiders, the ratio is �rst increasing to reach a maximum at the value

� = ��(N) =

s
N � 3

2
�v in the given hyperplan (N) and then decreasing with the level

of noise.
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Figure 11: Normalized Individual Pro�t N � 4.

Figures 12 and 13 represent the normalized aggregate pro�t as a function of the level of noise

and the number of insiders. The normalization is performed with respect to the pro�t achieved

by the monopoly in Kyle (1985) setup (��(0; 1) =
1

2
�u�v).

� For any �xed positive level of noise � > 0, the aggregate pro�t is �rst increasing with the
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Figure 12: Normalized Aggregate Pro�t N < 4.

number of insiders to reach a maximum in the given hyperplan at the value N = 1+2
�2

�2v

12.

Again, this result has to be compared with the perfect information case where the aggregate

pro�t is always decreasing with the number of insiders.

� For a small and �xed number of informed traders (N � 3), the aggregate pro�t is always

decreasing with the level of noise.

� For a larger and given number of informed traders (N � 4), the aggregate pro�t is �rst

increasing with the level of noise to reach a maximum at the value � = ��(N) =

s
N � 3

2
�v

and then decreasing with the level of noise. Again, this has to be related to the two e�ects

(bene�cial and costly ones) of the noise.
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Figure 13: Normalized Aggregate Pro�t N � 4.

12The same remarks as for the liquidity apply, namely, the fact that 1 + 2
�
2

�
2
v

is not necessarily an integer. See

however proposition 5:3 for the exact statements.
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Proposition 5.2 : For all N � 4, and for all � 2
 
0;
�v
p
N + 1

p
N � 3

2

!
, we have:

8i = 1; : : : ; N; ��i (�;N) > ��i (0; N)� (5.4)

In other words, noise is preferable. And furthermore we have an equivalence result:

��i (�;N) > ��i (0; N)() � 2
 
0;
�v
p
N + 1

p
N � 3

2

!
�

Proof : See appendix C:1.

Proposition 5:2 delineates the set of possible noise that are preferable for each informed traders.

Proposition 5.3 : If we de�ne N�(�) as:

N�(�) = 1 + 2
�2

�2v
; if 1 + 2

�2

�2v
2 IN;

N�(�) = argmax
N2( eN1(�); eN2(�))

��(N;�); if 1 + 2
�2

�2v
=2 IN;

and eN1(�) = int

 
1 + 2

�2

�2v

!
;

eN2(�) = eN1(�) + 1;

(5.5)

then the aggregate pro�t ��(N;�) is at equilibrium maximized for the value N = N�(�).

Proof : For each given level of noise �, the aggregate pro�t ��(�;N) is maximized for the

value eN (�) = 1 + 2
�2

�2v
. Therefore if taking into account the possible outcome for eN(�) as an

integer or not, the result is obtained.

Proposition 5:3 exactly states that for a given level of available precision �, there exists an

optimal size of the market N�(�), for which the aggregate pro�t is maximized.

Proposition 5.4 : For each level of precision and number of informed traders (�;N), the

informativeness of prices I(�;N) is given at equilibrium by:

I(�;N) = fV ar (ev=ep)g�1 = fV ar (ev= ew)g�1 = 1

�2v

N + 1 + 2
�2

�2v

1 + 2
�2

�2v

; (5.6)

Proof : See appendix C:2.
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Figure 14: Informativeness N < 4.

Figures 14 and 15 represent the informativeness of prices as a function of both the level of noise

and the number of insiders.

� For any given number of insiders, it is always decreasing with the level of noise.

� For any �xed level of noise, the informativeness is always increasing with the number of

informed agents.
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Figure 15: Informativeness N � 4.

Proposition 5.5 : There exists an optimal level of noise, for N � 4:

��(N) = �v

s
N � 3

2
; (5.7)

which maximizes each individual pro�t in the symmetric case.
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Proof : See appendix C:3.
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Figure 16: Optimal Level of Noise.

In �gure 16, we have plotted the optimal level of noise
��

2

(N)

�2v
as a function of the number of

informed agents. It is an aÆne function of the number of insiders. Therefore, when N is large,

the optimal noise is also large.

Proposition 5.6 : For the optimal level of noise ��(N) = �v

s
N � 3

2
, the individual and

aggregate reaction, liquidity, individual pro�t and aggregate pro�t are, at equilibrium, given by:

��i (N) =
�u

�v

p
2p

N
p
N � 1

;

N��i (N) =
�u

�v

s
2N

N � 1
;

1

��(N)
=

�u

�v
2
p
2

r
1� 1

N
;

��i (N) =
�v�u

2
p
2

1p
N
p
N � 1

;

��(N) =
�v�u

2
p
2

1r
1� 1

N

�

(5.8)

Proof : The proofs are just a question of replacement in each of the previous expression and

therefore are omitted here.
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These results have to be compared with the symmetric and perfectly informed case where:

��i (0; N) =
�u

�v

1p
N
;

N��i (0; N) =
�u

�v

p
N;

1

��(0; N)
=

�u

�v

N + 1p
N

;

��i (0; N) =
�v�up

N (N + 1)
;

��(0; N) = �v�u

p
N

N + 1
�
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Figure 17: Individual Reaction: Optimal Symmetric Noise versus Perfect Information N � 4.

Figure 17 represents the individual reactions ��i (N) (thick line) and ��i (0; N) (dash line) re-

spectively for the optimal level of noise ��(N) and for the perfect information � = 0 cases as

functions of the number of informed agents. Both reactions are strictly decreasing functions

of the number of insiders and converging towards 0 when the number of informed traders is

large enough. However the ratio of the two (see �gure 18) tends also to 0 when the number of

insiders is large enough. This means that the reaction of the insiders in case of optimal noise is

\in�nitely smaller" than the one observed in the perfect information case when the number of

insiders is large.
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Figure 18: Ratio Individual Reaction: Optimal Symmetric Noise versus Perfect Information

N � 4.

Figure 19 represents the aggregate reactions N��i (N) (thick line) and N��i (0; N) (dash line)

respectively for the optimal level of noise ��(N) and for the perfect information � = 0 cases

as functions of the number of informed agents. In the former case (optimal symmetric noise)

the aggregate reaction is a strictly decreasing function of the number of insiders and converging

towards a �nite positive limit
�u

�v

p
2 when the number of informed traders is large enough. In

the latter case (perfect information) the aggregate reaction is a strictly increasing function of

the number of insiders and converging towards in�nity with the number of informed.
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Figure 19: Aggregate Reaction: Optimal Symmetric Noise versus Perfect Information N � 4.
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Figure 20: Liquidity Optimal Symmetric Noise N � 4.

Figures 20 and 21 represent the liquidity respectively for the optimal level of noise � = ��(N)

and the perfect information � = 0 cases as functions of the number of insiders. In both cases,

the liquidity functions are increasing with the number of insiders. However, while in the perfect

information case the liquidity tends to in�nity with the number of informed agents, in the

optimal noise case, it tends to a �nite limit ��11 =
�u

�v
2
p
2 when the number of insiders is large.
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Figure 21: Liquidity Perfect Information N � 4.

Figure 22 represents the individual pro�ts ��i (N) (thick line) and ��i (0; N) (dash line) respec-

tively for the optimal level of noise ��(N) and for the perfect information � = 0 cases as functions

of the number of informed agents. Both individual pro�ts are strictly decreasing functions of

the number of insiders and converging towards 0 when the number of informed traders is large

enough. However the ratio of the two (see �gure 23) tends also to in�nity when the number of

insiders is large enough. This means that the individual pro�t achieved by each insider in case
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Figure 22: Individual Pro�t: Optimal Symmetric Noise versus Perfect Information N � 4.

of optimal noise is \in�nitely greater" than that observed in the perfect information case when

the number of insiders is large.
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Figure 23: Ratio Individual Pro�t: Optimal Symmetric Noise versus Perfect InformationN � 4.

Figure 24 represents the aggregate pro�ts ��(N) (thick line) and ��(0; N) (dash line) respectively

for the optimal level of noise ��(N) and for the perfect information � = 0 cases as functions

of the number of informed agents. Both aggregate pro�ts are strictly decreasing functions of

the number of insiders. But while the aggregate pro�t in the optimal noise case ��(N) has a

�nite strictly positive limit
�u�v

2
p
2
, the aggregate pro�t converges towards 0 in case of perfect

information when the number of informed traders is large enough.
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Figure 24: Aggregate Pro�t: Optimal Symmetric Noise versus Perfect Information N � 4.

Proposition 5.7 : When N is large, for the optimal level of noise ��(N) and at equilibrium,

we have the following equivalents:

��i (N) �
N!+1

�u

�v

p
2

N
;

N��i (N) �
N!+1

�u

�v

p
2;

1

��(N)
�

N!+1

�u

�v
2
p
2;

��i (N) �
N!+1

�v�u

2
p
2N

;

��(N) �
N!+1

�v�u

2
p
2
�

(5.9)

Proof : The proofs are straightforward and omitted here.

Proposition 5.8 : The informativeness of prices I�(N) is given for the optimal level of noise

��(N) and at equilibrium by:

I�(N) = V ar (ev=w)�1 = 1

�2v

2(N � 1)

N � 2
; (5.10)

and when N is large, I�(N) is equivalent to:

I�(N) = V ar (ev=w)�1 �
N!+1

2

�2v
� (5.11)

Proof : The result is obtained simply as a corollary of proposition 5:4 and where � = ��(N) =

�v

s
N � 3

2
.
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Figure 25: Informativeness Optimal Symmetric Noise.

Figures 25 and 26 represent the informativeness of prices respectively for the optimal level of

noise � = ��(N) and for the perfect information � = 0 cases as functions of the number of

insiders. While in the former case the informativeness of prices is decreasing with the number of

insiders and has a �nite positive limit
2

�2v
, in the latter case it is increasing and tends to in�nity

with the number of insiders.

20 40 60 80 100
Number of Insiders

20

40

60

80

100

Informativeness Perfect Information

Figure 26: Informativeness Perfect Information.

Proposition 5.9 : At the equilibrium (in the symmetric case) and for the optimal level of noise

��(N), the aggregate pro�ts for each player are:

� ��informed traders(N) = ��(N) =
�v�u

2
p
2

1r
1� 1

N

;

� ��noise traders(N) = ���(N) = ��v�u

2
p
2

1r
1� 1

N

;

� ��market makers = 0�

(5.12)
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Therefore when N is large the noise traders make on average the following loss: ��v�u

2
p
2
.

Proof : Since this is a zero-sum game and since the market makers perform a zero pro�t, the

result is straightforward.
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6 Concluding Remarks

The main messages of this paper are threefold.

� The general study of N informed traders endowed with noisy signals and competing �a la Nash

in a market was still an issue that we have solved. We have shown the existence and uniqueness

of a linear equilibrium.

� We have exhibited and delineated regions for which each informed traders is better o� with

respect to the perfectly informed case. The aggregate pro�t has a �nite (strictly) positive limit

when N is large. Therefore, even when an in�nite number of insiders compete in the market the

price is no longer eÆcient.

� In the particular situation in which each informed agent is endowed with a signal of which

precision is the same, we have shown the existence of an optimal level of noise maximizing

each individual pro�t. In the latter case, the liquidity is an increasing function of the number of

informed traders but has a �nite limit for large N and the informativeness of prices is a decreasing

function of the number of informed traders. We also stress that for each given level of precision

there exists an optimal size N�(�) of the market that maximizes the aggregate expected pro�t.

33



34



References

Admati, A. and P. Peiderer (1987), \A Viable Allocation of Information", Journal of Eco-

nomic Theory, 43, 76-115.

Admati, A. and P. Peiderer (1988a), \Selling and Trading on Information in Financial

Markets", American Economic Review, 78, 1165-1183.

Admati, A. and P. Peiderer (1988b), \A Theory of Intraday Patterns: Volume and Price

Variability", The Review of Financial Studies, 1, 3-40.

Back, K. (1995), \Imperfect Competition Among Informed Traders", Forthcoming Journal of

Finance.

Biais, B. and L. Germain (1997), \Incentive Compatible Contracts for the Sale of Informa-

tion", mimeo London Business School.

Biais, B., D. Martimort and J. C. Rochet (1997), \Competing Mechanisms in a Common

Value Environment", mimeo Universit�e de Toulouse.

Dridi, R. and L. Germain (1999a), \Bullish Bearish Strategies of Trading: a Nonlinear

Equilibrium", mimeo London Business School, London School of Economics.

Fishman, M. and K. Hagerty (1995), \The Incentives to Sell Financial Market Informa-

tion", Journal of Financial Intermediation, 4, 95-115.

Foster, F. D. and S. Viswanathan (1994), \Strategic Trading with Asymmetrically In-

formed Traders and Long-lived Information", Journal of Financial and Quantitative Anal-

ysis, 29, 499-518.

Foster, F. D. and S. Viswanathan (1996), \Strategic Trading When Agents Forecast the

Forecasts of Others", Journal of Finance, 51, 1437-78.

Germain, L. (1998), \Strategic Noise in Competitive Markets for the Sale of Information",

mimeo London Business School.

Grossman, S. J. (1976), \On the EÆciency of Competitive Stock Markets Where Traders

Have Diverse Information", Journal of Finance, 31, 573-585.

Grossman, S. J. and J. E. Stiglitz (1980), \On the Impossibility of Informationally EÆ-

cient Markets", American Economic Review, 70, 393-408.

Holden, C. W. and A. Subrahmanyam (1992), \Long-Lived Private Information and Im-

perfect Competition", The Journal of Finance, 47, 247-270.

Holden, C. W. and A. Subrahmanyam (1994), \Risk Aversion, Imperfect Competition

and Long-lived Information", Economics Letters, 44, 181-190.

35



Kyle, A. (1984), \Market Structure, Information, Futures Markets and Price Formation in

International Agricultural Trade ", Advanced Reading in Price Formation, Market Struc-

ture, and Price Instability ed. Story, Schmitz and Sarris (Westview Press, Boulder and

London), 45-64.

Kyle, A. (1985), \Continuous Auctions and Insider Trading", Econometrica, 53, 1315-1335.

Rochet, J-C. and J-L. Villa (1994), \Insider Trading without Normality", Review of Eco-

nomic Studies, 61,131-152.

Simonov, A. (1999), \Competition in Information Markets", Mimeo INSEAD.

Vives, X. (1995), \The Speed of Information Revelation in a Financial Market Mechanism",

Journal of Economic Theory, 67, 178-204.

36



Appendices

A.1. Proof of propositions 3:1� 3:2

The agent maximizes his conditional expected pro�t:

max
x2IR

E fx [ev � � (x+ eu)] =Sg �
Since eu?? eS, we have:

() max
x2IR

E fx [ev � �x] =Sg ;

() max
x2IR

x

�
S

1 + �
� �x

�
�

The necessary and suÆcient �rst order conditions give:

ex =
1

2�

1

1 + �
S = �S�

Thus, the informed agent's best response is linear in his signal. Given that, at equilibrium,ep = E [ev=w], we have thanks to the aforementioned linearity in the trading strategy ex and the

normality assumption that ep = �w is ful�lled and:

� =
Cov (ev; ew)
V ar ( ew) =

Cov
�ev; � eS + eu�

V ar
�
� eS + eu� =

��2v
�2 (�2v + �2") + �2u

;

1

�
= � (1 + �) +

�2u
�2v

1

�
�

We thus have:

� 1

�
= � (1 + �) +

�2u
�2v

1

�
;

� 1

�
= 2� (1 + �) �

We easily deduce that:

� ��(�) =
�u

�v

1p
1 + �

;

� 1

��
(�) = 2

�u

�v

p
1 + � �

This ends the proof of proposition 3:1. The expected pro�t ��(�) is given by:

��(�) = E
n
��(�) eS [ev � ��(�) ew]o ;

��(�) = ��(�)�2v � ��
2

(�)��(�)
�
�2v + �2"

�
;

��(�) = �u�v
1p
1 + �

� 1

2 (1 + �)
(1 + �)

1p
1 + �

�u�v;

��(�) =
1

2
�u�v

1p
1 + �

�
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This ends the proof of proposition 3:2

A.2. Proof of propositions 3:3� 3:4

Agent i maximizes his conditional expected pro�t (N � 2):

max
x2IR

E

8<:x
24ev � �

0@x+X
j 6=i

exj + eu
1A35 =Si

9=; ; i = 1; : : : ; N;

since eu?? eSi, we have:
() max

x2IR
E

8<:x
24ev � �

0@x+X
j 6=i

exj
1A35 =Si

9=; ; i = 1; : : : ; N;

max
x2IR

x

8<: 1

1 + �i
Si � �

24x+X
j 6=i

E (exj=Si)
35
9=; ; i = 1; : : : ; N;

max
x2IR

1

1 + �i
Six� �x2 � �x

X
j 6=i

E (exj=Si) ; i = 1; : : : ; N �

The necessary and suÆcient �rst order conditions are:

1

1 + �i
Si � 2�exi � �

X
j 6=i

E (exj=Si) = 0; i = 1; : : : ; N;

() exi = 1

2�

1

1 + �i
Si �

1

2

X
j 6=i

E (exj=Si) = 0; i = 1; : : : ; N;
(6.1)

Let fx�i ; i = 1; : : : ; Ng be a particular solution to (6:1). Then if we de�ne:

eyi = exi � x�i ; i = 1; : : : ; N;

fexi; i = 1; : : : ; Ng is solution to (6:1) if and only if feyi; i = 1; : : : ; Ng is solution to (6:2):

eyi = �1

2

X
j 6=i

E (eyj=Si) ; i = 1; : : : ; N � (6.2)

Remark 6.1 : We will in fact show that there exists a particular linear solution x�i = �iSi; i =

1; : : : ; N .

Remark 6.2 : We will show that the set of solution (6:2) is reduced to the singleton 0 2 IRN ,

that is, feyi; i = 1; : : : ; Ng is solution to (6:2) if and only if eyi a:s:= 0; i = 1; : : : ; N .

(6:2) =)

8>>><>>>:
eyi + 1

2

X
j 6=i

eyj = e�i;
with e�i ? �(Si)() E (e�i=Si) = 0�
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We introduce:

� =

2666666666666666664

1
1

2

1

2
: : :

1

2
: : :

1

2
1

2
1

1

2
: : :

1

2
: : :

1

2
1

2

1

2
1 : : :

1

2
: : :

1

2
...

...
...

. . .
...

...
...

1

2

1

2

1

2
: : : 1 : : :

1

2
...

...
...

...
...

. . .
...

1

2

1

2

1

2
: : :

1

2
: : : 1

3777777777777777775

;

the N �N matrix. It is easy to show that � is not singular and that:

��1 =
2

N + 1

266666666664

N �1 �1 : : : �1 : : : �1
�1 N �1 : : : �1 : : : �1
�1 �1 N : : : �1 : : : �1
...

...
...

. . .
...

...
...

�1 �1 �1 : : : N : : : �1
...

...
...

...
...

. . .
...

�1 �1 �1 : : : �1 : : : N

377777777775
�

We denote ey = (ey1; : : : ; eyN )0 and e� = (e�1; : : : ; e�N )0. (6:2)=) �ey = e�, that is ey = ��1e�.
Therefore, for i = 1; : : : ; N , we have:

eyi = 2

N + 1

8<:N e�i �X
j 6=i

e�j
9=; �

If we plug the latter relation into (6:2), we obtain ey is solution to (6:2) if and only if there exist

fe�i; i = 1; : : : ; Ng such that e�i ? �(Si) and:

(1) eyi = 2

N + 1

8<:N e�i �X
j 6=i

e�j
9=; ; i = 1; : : : ; N;

(2)
2

N + 1

8<:N e�i �X
j 6=i

e�j
9=; = �1

2

X
j 6=i

E

8<: 2

N + 1

24N e�j �X
k 6=j

e�k
35 =Si

9=; ;

() (1) and N e�i �X
j 6=i

e�j = �1

2
E

8<:NX
j 6=i

e�j �X
j 6=i

X
k 6=j

e�k= Si
9=; ;

() (1) and N e�i �X
j 6=i

e�j = �1

2
E

8<:NX
j 6=i

e�j � (N � 1)e�i � (N � 2)
X
k 6=i

e�k= Si
9=; ;

indeed
X
j 6=i

X
k 6=j

e�k =X
j 6=i

"
NX
k=1

e�k � e�j
#
= (N�1)

NX
k=1

e�k�X
j 6=i

e�j = (N�1)e�i+(N�1)X
k 6=i

e�k�X
j 6=i

e�j =
(N � 1)e�i + (N � 2)

X
k 6=i

e�k (N � 2). Thus ey is solution to (6:2) if and only if there exist
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fe�i; i = 1; : : : ; Ng such that e�i ? �(Si) and:

eyi = 2

N + 1

8<:N e�i �X
j 6=i

e�j
9=; ; i = 1; : : : ; N;

N e�i �X
j 6=i

e�j = �E

24X
j 6=i

e�j=Si
35 ;

since E [e�i=Si] = 0. We have N � 2:

N e�i =X
j 6=i

e�j �E

24X
j 6=i

e�j=Si
35 ; i = 1; : : : ; N �

From the latter equation, we deduce that E (e�i) = 0; i = 1; : : : ; N since E (e�i) =
1

N
E fez �E [ez=Si]g = 0 where ez =X

j 6=i

e�j .
V ar (e�i) =

1

N2
V ar fez �E [ez=Si]g = 1

N2 E [V ar (ez=Si)] ;
� 1

N2
V ar (ez) = 1

N2
V ar

0@X
j 6=i

e�j
1A � 1

N2

24X
j 6=i

q
V ar (e�j)

352 ;

Indeed V ar

0@X
j 6=i

e�j
1A =

X
j 6=i

V ar (e�j) + 2
X

j; k 6= i

k < j

Cov (e�j ; e�k) �
X
j 6=i

�q
V ar (e�j)�2 +

+2
X

j; k 6= i

k < j

q
V ar (e�j)qV ar (e�k) =

24X
j 6=i

q
V ar (e�j)

352 �

=) 8i = 1; : : : ; N; V ar (e�i) � �N � 1

N

�2
max

j=1;:::;N
fV ar (e�j)g ;

=) max
i=1;:::;N

V ar (e�i) � �N � 1

N

�2
max

j=1;:::;N
fV ar (e�j)g ;

=)
"
1�

�
1� 1

N

�2#
max

i=1;:::;N
V ar (e�i) � 0;

=) max
i=1;:::;N

V ar (e�i) = 0�

Thus we have for i = 1; : : : ; N :

E (e�i) = 0;

V ar (e�i) = 0;

9>=>; =) e�i a:s:= 0�
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Therefore the only solution to (6:2) is ey = 0 2 IRN .

We now show the existence of a linear equilibrium fx�i ; i = 1; : : : ; Ng which is, in addi-

tion, linear in the information. Hence and from the previous property, it corresponds to

the unique linear equilibrium. We thus look for a particular solution to (6:2) of the form:

fx�i = ��i Si; i = 1; : : : ; Ng. We introduce the following quantities:

ai =
1

1 + �i
< 1; i = 1; : : : ; N;

bi =
1

2�
ai�

Thanks to the normality assumption and the mutual independence of fev; e"1; : : : ; e"Ng, we have
E
� eSj=Si� = aiSi for j 6= i. Using (6:1), we have:

�iSi = biSi �
1

2

X
j 6=i

E
h
�j eSj=Sii ; i = 1; : : : ; N;

�iSi = biSi �
1

2

X
j 6=i

ai�j eSj; i = 1; : : : ; N;

or equivalently:

�i = bi �
ai

2

X
j 6=i

�j ; i = 1; : : : ; N;

�i

�
1� ai

2

�
= bi �

ai

2

NX
j=1

�j ; i = 1; : : : ; N;

�i

�
2� ai

2ai

�
=

1

2�
� 1

2

NX
j=1

�j ; i = 1; : : : ; N;

�i

�
1

2
+ �i

�
=

1

2�
� 1

2

NX
j=1

�j ; i = 1; : : : ; N;

()

�i =
a

1 + 2�i
;

1

�
= a

241 + NX
j=1

1

1 + 2�j

35 ; (6.3)

with a independent of i. We also know that, at equilibrium, ep = E (ev=w). In this particular

equilibrium, we have ew =
NX
i=1

�i eSi+ eu. Thanks to the mutual independence of fev; e"1; : : : ; e"N ; eug
and normality of each components, we deduce that ep = �w holds and that therefore we do
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obtain a linear equilibrium with:

� =
Cov (ev; ew)
V ar ( ew) =

Cov

0@ev; NX
j=1

�j eSj + eu
1A

V ar

0@ NX
j=1

�j eSj + eu
1A ;

� =

NX
j=1

�j�
2
v

V ar

0@ NX
j=1

�jev + NX
j=1

�j e"j + eu
1A =

NX
j=1

�j�
2
v0@ NX

j=1

�j

1A2

�2v +
NX
j=1

�2j �
2
j + �2u

;

1

�
=

NX
j=1

�j +

NX
j=1

�2j �j

NX
j=1

�j

+
�2u
�2v

1
NX
j=1

�j

�

1

�
= a

NX
j=1

1

1 + 2�j
+ a

NX
j=1

�j
1

(1 + 2�j)
2

NX
j=1

1

1 + 2�j

+
�2u
�2v

1

a
NX
j=1

1

1 + 2�j

� (6.4)

Using (6:3) and (6:4), we obtain:

a

8>>>>><>>>>>:
1�

NX
j=1

�j

(1 + 2�j)
2

NX
j=1

1

1 + 2�j

9>>>>>=>>>>>;
=

�2u
�2v

1

a
NX
j=1

1

1 + 2�j

;

a2

8<:
NX
j=1

1

1 + 2�j
�

NX
j=1

�j

(1 + 2�j)
2

9=; =
�2u
�2v

;

a2
NX
j=1

1 + �j

(1 + 2�j)
2
=

�2u
�2v

;
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a =
�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

;

��i (�) =
�u

�v

1

1 + 2�i

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

;

1

��(�)
=

�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

241 + NX
j=1

1

1 + 2�j

35 �

This ends the proof of proposition 3:3.

� ��i (�) = ��i

0@1� ��
NX
j=1

��j

1A�2v � ����
2

i �2i = �2v

24��i
0@1� ��

NX
j=1

��j

1A� ����
2

i �i

35 ;
� ��i (�) =

a

1 + 2�i
; a =

�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

;

� ��(�) =
1

a

1

1 +
NX
j=1

1

1 + 2�j

; ��(�)��i (�) =
1

1 + 2�i

1

1 +
NX
j=1

1

1 + 2�j

;

�
NX
j=1

����i (�) = 1� 1

1 +
NX
j=1

1

1 + 2�j

;

=) ��i (�) = �2v

8>>>>><>>>>>:
a

1 + 2�i

1

1 +
NX
j=1

1

1 + 2�j

� a

(1 + 2�i)
2

�i

1 +
NX
j=1

1

1 + 2�j

9>>>>>=>>>>>;
;

��i (�) =
�2va

(1 + 2�i)

241 + NX
j=1

1

1 + 2�j

35
�
1� �i

1 + 2�i

�
=

�2va

(1 + 2�i)

241 + NX
j=1

1

1 + 2�j

35
1 + �i

1 + 2�i
;

��i (�) =
�v�u241 + NX

j=1

1

1 + 2�j

358<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

1 + �i

[1 + 2�i]
2
�
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The aggregate pro�t is straightforwardly deduced. This ends the proof of proposition 3:4.

B.1. Proof of proposition 4:1

@��i
@�j

(�) =
1

2

�u

�v

3 + 2�j8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i) (1 + 2�j)
3

> 0; for j 6= i�

@��i
@�i

(�) = �1

2

�u

�v

4 (1 + 2�i)
X
j 6=i

1 + �j

(1 + 2�j)
2
+ 1

8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
3

< 0�

Indeed:

@��i
@�i

(�) =
1

2

�u

�v

3 + 2�i8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
4

� �u

�v

28<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

(1 + 2�i)
2

;

@��i
@�i

)(�) =
1

2

�u

�v

3 + 2�i � 4 (1 + 2�i)
2

NX
j=1

1 + �j

(1 + 2�j)
28<:

NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
4

= �1

2

�u

�v

4 (1 + 2�i)
2

NX
j=1

1 + �j

(1 + 2�j)
2
+ 1 + 2�i

8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
4

;

@��i
@�i

)(�) = �1

2

�u

�v

4 (1 + 2�i)
X
j 6=i

1 + �j

(1 + 2�j)
2
+ 1

8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
3

�

This ends the proof of proposition 4:1.

B.2. Proof of proposition 4:2

@��
�1

@�i
(�) =

�u

�v

8>>>>>>><>>>>>>>:
1

2

(3 + 2�i)

241 + NX
j=1

1

1 + 2�j

35
8<:

NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
3

� 28<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
1

2

(1 + 2�i)
2

9>>>>>>>=>>>>>>>;
;
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@��
�1

@�i
(�) =

1

2

�u

�v

8<:(3 + 2�i)

241 + NX
j=1

1

1 + 2�j

35� 4 (1 + 2�i)
NX
j=1

1 + �j

(1 + 2�j)
2

9=;8<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
3

;

@��
�1

@�i
(�) =

1

2

�u

�v

18<:
NX
j=1

1 + �j

(1 + 2�j)
2

9=;
3

2

(1 + 2�i)
3

hi(�);

with : hi(�) = 3 + 2�i +
3 + 2�i

1 + 2�i
+ (3 + 2�i)

X
j 6=i

1

1 + 2�j
� 4

1 + �i

1 + 2�i
� 4 (1 + 2�i)

X
j 6=i

1 + �j

(1 + 2�j)
2
;

hi(�) = 2 + 2�i + (3 + 2�i)
X
j 6=i

1

1 + 2�j
� 4 (1 + 2�i)

X
j 6=i

1 + �j

(1 + 2�j)
2
;

hi(�) = �i

0@2 + 2
X
j 6=i

1

1 + 2�j
� 8

X
j 6=i

1 + �j

(1 + 2�j)
2

1A+ 2 + 3
X
j 6=i

1

1 + 2�j
� 4

X
j 6=i

1 + �j

(1 + 2�j)
2
;

hi(�) = 2�i

241�X
j 6=i

3 + 2�j

(1 + 2�j)
2

35+ 2 +
X
j 6=i

2�j � 1

(1 + 2�j)
2
;

We de�ne b(��i) = 1 �
X
j 6=i

3 + 2�j

(1 + 2�j)
2
, c(��i) = 2 +

X
j 6=i

2�j � 1

(1 + 2�j)
2
. It is worth noticing that

c(��i) > b(��i), indeed c(��i)� b(��i) = 1+
X
j 6=i

2

1 + 2�j
. This ends the proof of proposition 4:2.

B.3. Proof of proposition 4:3

@ ln��i
@�j

(�) =
@

@�j

(
�1

2
ln

"
NX
k=1

1 + �k

(1 + 2�k)
2

#
� ln

"
1 +

NX
k=1

1

1 + 2�k

#)
;

=
1

2

3 + 2�j
NX
k=1

1 + �k

(1 + 2�k)
2
(1 + 2�j)

3

+
2"

1 +
NX
k=1

1

1 + 2�k

#
(1 + 2�j)

2

> 0;

=) ��i (�) is increasing in ��i�
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�@ ln�
�
i

@�i
(�) =

1

2

3 + 2�i

(1 + 2�i)
3

NX
k=1

1 + �k

(1 + 2�k)
2

+
2

(1 + 2�i)
2

"
1 +

NX
k=1

1

1 + 2�k

# +
1

1 + �i
� 4

1 + 2�i
;

=
1

2

3 + 2�i

(1 + 2�i)
3

NX
k=1

1 + �k

(1 + 2�k)
2

+
2

(1 + 2�i)
2

"
1 +

NX
k=1

1

1 + 2�k

# � 3 + 2�i

(1 + 2�i) (1 + �i)
;

=
1

2 (1 + 2�i)
3

"
NX
k=1

1 + �k

(1 + 2�k)
2

# "
1 +

NX
k=1

1

1 + 2�k

#
(1 + �i)

hi(�);

where:

hi(�) = (3 + 2�i) (1 + �i)

"
1 +

NX
k=1

1

1 + 2�k

#
+ 4 (1 + 2�i)

"
NX
k=1

1 + �k

(1 + 2�k)
2

#
(1 + �i)

�2 (3 + 2�i) (1 + 2�i)
2

NX
k=1

1 + �k

(1 + 2�k)
2

"
1 +

NX
k=1

1

1 + 2�k

#
;

= (3 + 2�i) (1 + �i) +
(3 + 2�i) (1 + �i)

1 + 2�i
+ (3 + 2�i) (1 + �i)

X
k 6=i

1

1 + 2�k
+ 4

(1 + �i)
2

1 + 2�i

+4 (1 + 2�i) (1 + �i)
X
k 6=i

1 + �k

(1 + 2�k)
2
� 2 (3 + 2�i) (1 + �i)� 2 (3 + 2�i) (1 + 2�i)

2
X
k 6=i

1 + �k

(1 + 2�k)
2

�2 (3 + 2�i) (1 + �i)

1 + 2�i
� 2 (3 + 2�i) (1 + �i)

X
k 6=i

1

1 + 2�k
� 2 (3 + 2�i) (1 + 2�i)

X
k 6=i

1 + �k

(1 + 2�k)
2

�2 (3 + 2�i) (1 + 2�i)
2
X
k 6=i

1 + �k

(1 + 2�k)
2

X
k 6=i

1

1 + 2�k
;

= �2 (1 + �i)
2 � (3 + 2�i) (1 + �i)

X
k 6=i

1

1 + 2�k
� 8 (1 + 2�i) (1 + �i)

2
X
k 6=i

1 + �k

(1 + 2�k)
2

�2 (3 + 2�i) (1 + 2�i)
2
X
k 6=i

1 + �k

(1 + 2�k)
2

X
k 6=i

1

1 + 2�k
�

hi(�) < 0 =) ��i (�) is decreasing in �i =
�2i
�2v

.

�@ ln�
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24 NX
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2
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359=; ;

= �1

2
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3

NX
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(1 + 2�j)
2

+
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(1 + 2�i)
2

241 + NX
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1
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=

� (3 + 2�i)

241 + NX
j=1

1

1 + 2�j

35+ 4 (1 + 2�i)
NX
j=1

1 + �j

(1 + 2�j)
2

2 (1 + 2�i)
3

24 NX
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(1 + 2�j)
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35241 + NX
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1
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=
hi(�)

2 (1 + 2�i)
3

24 NX
j=1
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(1 + 2�j)
2

35241 + NX
j=1

1
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where:

hi(�) = � (3 + 2�i)�
3 + 2�i

1 + 2�i
� (3 + 2�i)

X
j 6=i

1

1 + 2�j
+ 4

1 + �i
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X
j 6=i
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X
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2
;

= �2�i

0@1 +X
j 6=i
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1 + 2�j
� 4

X
j 6=i
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(1 + 2�j)
2

1A� 2� 3
X
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+ 4

X
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;

= �2�i

0@1�X
j 6=i

3 + 2�j

(1 + 2�j)
2

1A�
0@2 +X

j 6=i

2�j � 1

(1 + 2�j)
2

1A ;

= � [2�ib(��i) + c(��i)] �

This ends the proof of proposition 4:3.

B.4. Proof of proposition 4:4

In order to show the result of the non-emptiness of �N for N � 4, we just need to focus

on the symmetric case where �1 = : : : = �N = � and this is the purpose of proposition 5:2. We

now show that �N is empty for N � 3.

Proof for N=2

�i(�) = �u�v

1 + �i

(1 + 2�i)28<:
2X

j=1

1 + �j

(1 + 2�j)2

9=;
1

2
(
1 +

2X
i=1

1

1 + 2�i

) �

We denote xi =
1 + �i

(1 + 2�i)2
; i = 1; 2. For �i 6= 0; xi < 1 since xi =

1

1 + 2�i
� �i

(1 + 2�i)2
.
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yi =
1

1 + 2�i
=

p
1 + 8xi � 1

2
indeed:

xi =
1

2
yi +

1

2
y2i =)

y2i + yi � 2xi = 0;

yi =

p
1 + 8xi � 1

2
> 0�

Therefore we have i = 1; 2:

�i(�) = �v�u
2xi0@ 2X

j=1

xj

1A
1

2

0@ 2X
j=1

q
1 + 8xj

1A
;

�i(0) =
�v�u

3
p
2
�

We already know that, for �1 = �2 6= 0, �1(�) and �2(�) are strictly smaller than �i(0) =
�v�u

3
p
2

and equal if and only if �1 = �2 = 0. We thus focus on cases where �1 6= �2 () x1 6= x2.

Suppose now (without any loss of generality) that x1 > x2 and that �i(�) �
�v�u

3
p
2
; i = 1; 2.

=) xi �
1

6
p
2

0@ 2X
j=1

xj

1A
1

2

0@ 2X
j=1

q
1 + 8xj

1A ; i = 1; 2;

since x1 > x2:

=) x2 �
1

3

p
x2
p
1 + 8x2;

=) p
x2 �

1

3

p
1 + 8x2;

=) x2 �
1

9
(1 + 8x2) ;

=) x2 � 1;

which is ruled out. This implies that �2 is empty.

Proof for N=3

�i(�) = �u�v
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(1 + 2�i)28<:
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j=1

1 + �j

(1 + 2�j)2

9=;
1
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We again denote xi =
1 + �i

(1 + 2�i)2
; i = 1; 2; 3. For �i 6= 0; xi < 1, yi =

1

1 + 2�i
=

p
1 + 8xi � 1

2
.
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Therefore we have i = 1; 2; 3:

�i(�) = �v�u
2xi0@ 3X

j=1

xj

1A
1

2

0@ 3X
j=1

q
1 + 8xj � 1

1A
;

�i(0) =
�v�u

4
p
3
�

We already know that, for �1 = �2 = �3 6= 0, �1(�), �2(�) and �3(�) are strictly smaller than

�i(0) =
�v�u

4
p
3

and equal if and only if �1 = �2 = �3 = 0. We thus focus on cases where

9 (i; j) 2 f1; 2; 3g2 such that �j 6= �i () xj 6= xi. Without any loss of generality (since it

corresponds to the generic case), we will suppose (up to a reordering) that:

a) either x1 > x2 � x3,

b) or x1 � x2 > x3.

Now assume that �i(�) �
�v�u

4
p
3
; i = 1; 2; 3.

a) x1 > x2 � x3:

=) x3 �
1

8
p
3

0@ 3X
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xj

1A
1

2

0@ 3X
j=1

q
1 + 8xj � 1

1A ;

=) x3 �
1

8

p
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�
3
p
1 + 8x3 � 1

�
;

=) 8
p
x3 � 3

p
1 + 8x3 � 1�

Let f be:

f(x) = 8
p
x� 3

p
1 + 8x+ 1;

0 � x;

f 0(x) =
4(1 � x)

p
x
p
1 + 8x

hp
1 + 8x+ 3

p
x
i �

f is increasing on [0; 1], decreasing on [1;+1[ and f(1) = 0. Therefore 8x � 0; f(x) � 0 and

f(x) = 0 =) x = 1.

8
p
x3 � 3

p
1 + 8x3 � 1 =) x3 = 1;

which is ruled out.

b) x1 � x2 > x3: the same proof is available.

This implies that �3 is empty.

C.1. Proof of proposition 5:2
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N � 4; ��i (�) > ��i (0);
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; where � =
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p
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This ends the proof of proposition 5:2 and by the way of proposition 4:4.

C.2. Proof of proposition 5:4
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1CA is normal. Moreover we have:
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� V ar ( ew) = V ar
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This ends the proof of proposition 5:4.

C.3. Proof of proposition 5:5

��i (�) = �v�u

p
1 + �p

N (N + 1 + 2�)
; where � =
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�2v
;

@ ln��i
@�

(�) =
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�
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ln (1 + �)� ln (N + 1 + 2�)
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=
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2 (1 + �)
� 2
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N � 3� 2�
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Therefore ��i (�) is maximized for � =
N � 3

2
and this ends the proof of proposition 5:5.
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