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Abstract

We frequently observe that one of the aims of time series analysts is to
predict future values of the data. For weakly dependent data, when the model
is known up to a finite set of parameters, its statistical properties are well
documented and exhaustively examined. However, if the model was
misspecified, the predictors would no longer be correct. Motivated by this
observation and due to the interest in obtaining adequate and reliable
predictors, Bhansali (1974) examined the properties of a nonparametric
predictor based on the canonical factorization of the spectral density function
given in Whittle (1963) and known as FLES.

However, the above work does not cover the so-called strongly dependent
data. Due to the interest in this type of process, one of our objectives in this
paper is to examine the properties of the FLES for these processes. In
addition, we illustrate how the FLES can be adapted to recover the signal of a
strongly dependent process, showing its consistency. The proposed method
is semiparametric, in the sense that, in contrast to other methods, we do not
need to assume any particular model for the noise except that it is weakly
dependent.
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1. INTRODUCTION

In empirical studies we often observe that one of the aims to model time series data
is for prediction purposes. In the context of linear models, the Wiener-Kolmogorov
theory, see for instance Hannan (1970, Ch.3), has been described as a great achieve-
ment in that direction. For weakly (linear) dependent data, the statistical properties
of predicted future values are very well documented. Existing procedures lie in two
main categories, namely the parametric and nonparametric approach. In the former,
the parameters of the model are estimated, via either time or frequency domain meth-
ods, and plugged into the Wiener-Kolmogorov formula. However, since always there
is some degree of uncertainty about the correct specification of the model, Bhansali
(1974,1977) described a nonparametric predictor, based on a factorization of a ”win-
dowed” estimate of the spectral density function, which computes the constants which
enter in the Wiener-Kolmogorov formula. The algorithm, denoted FLES (factorized
logarithm of the estimated spectrum), guarantees the predictor always to be consis-
tent with no need for the practitioner to decide any specific model for the data.

On the other hand, it has been observed that in many areas, such as hydrology or
economics, the data may exhibit strong dependence, characterized by having a non-
summable autocovariance function. Statistical properties of predictors in parametric
models exhibiting strong dependence has not been studied as deeply as with weakly
dependent data, although some research has been done in that direction. Among
them, we can mention Peiris and Perera (1988), Beran (1994), Crato and Ray (1996).
Some empirical examples of prediction with strongly dependent data can be found
in Porter-Hudak (1990) and Ray (1993). The former showed the superiority of pre-
dictors based on a parametric fractional autoregressive integrated moving average
(FARIMA (p,/2,q)) model for USA data of monetary aggregates compared to pre-
dictors based on more standard autoregressive integrated moving average (ARIM A)
models.

Because, as was mentioned above, there is always a degree of uncertainty about



the correct specification of the data, the first objective of this paper is to study and
examine the properties of the predictor based on the F'LES algorithm of a covariance
stationary linear, possibly, strongly dependent process.

The second objective of the paper is to illustrate how the FILES algorithm can be
adapted for the purpose of signal recovering of a covariance stationary linear process
which exhibits strong dependence. More specifically, assuming that the process can
be decomposed in such a way that the noise is weakly dependent and the signal
strongly dependent, we describe how we can extract the signal without assuming any
parametric model of the noise. The latter is of interest since one characteristic of

many time series, say ¥, is that they can be represented as

Yy =Dt + 2

where p; is the trend, which corresponds to the long run movements, and z; the
irregular (noise) component, which can be regarded as short-term movements. In
addition, as many time series are observed quarterly or monthly, it is expected that
y; will have an additional component, say, s; which represents the seasonal movements
of the series, so that

Y¢ = Pt + St + 2.

One important issue is the extraction of p; and/or s, see for instance Cleveland and
Tiao (1976).

The organization of the paper is as follows. In the next section, we present the
FLES algorithm and its estimator. In Section 3, we delimit our framework and
examine the properties of the estimators given in Section 2. Section 4 describes how
the FLES algorithm can be adapted to extract the signal of a strongly dependent
process, showing its statistical properties. Section 5 generalizes the results to cover
series with strongly dependent components at other frequencies different than zero,
which may be the situation with cyclical/seasonal data. In Section 6, we provide the
proofs of our results which apply some technical lemmas given in Section 7. Finally,

in the last section, we present conclusions and possible extensions.



2. THE FLES ALGORITHM AND ITS ESTIMATOR

Let {z:} be a covariance stationary linear process which is observed at times ¢t =
1,...,n, having mean that is zero and with absolute continuous spectral distribution,

so that its spectral density function, denoted f, (A), is defined as

de

v. () Y E(wox;) = [ fo (N cos(GA)dA, j=0,1,2, ...

We will assume that the process x; admits the following representations

Ty = ijEt_j, Zb? <o00,bp=1 (1)
=0 =0

and
o

Zajxt_j = &¢, Qp = 1, (2)
j=0
2

£

where ¢; is a martingale difference sequence with mean zero and variance o2, and
a; and b; are constants. Following (1) or (2), the spectral density function can be

written as

0.2

fo ) = 2 AW = =B

" 2r
where A(\) = Y72 a;e™7* is the spectral transfer function of the coefficients a;.
Likewise, B () is the transfer function of the coefficients b;. All throughout the basic

assumption of f, (A\) is that
fe (A) ~CX % as A — 0+ (3)

where C' € (0,00), a € [0,1) and ” ~ ” means that the ratio of the left- and right-
hand sides tends to one and is differentiable in any open set outside the origin. When
a = 0, we say that the data is weakly dependent, whereas for « € (0, 1), we say that
the data exhibits the property of strong dependence.

Examples of processes with a = 0 are the familiar autoregressive moving aver-
age (ARMA (p,q)) and Bloomfield’s (1973) Exponential processes, whereas exam-
ples with a € (0,1), we can mention the FARIMA (p,«/2,q) and the Bloomfield’s



fractional integrated exponential model, see Granger and Joyeux (1980) and Hosking
(1981) and Robinson (1994) respectively. Thus, our framework simultaneously allows
for both weakly and strongly dependent processes. The latter two models have a

spectral density function defined as

2
O¢

" 2r

fe (V) [1—e?™

, —m <A<,

where @ (-) and O () are the AR and M A polynomials, respectively, having no zeroes

in or on the unit circle, and

fo(N) = }1 _ei)\}faexp [ZﬁkCOS{(k— 1) )\}] , —mT <A<, (4)

respectively.

An earlier example of a process exhibiting the property of strong dependence is
the fractional Gaussian noise model introduced by Mandelbrot and Van Ness (1968),
whose spectral density function, obtained by Sinai (1976), is

—2—«

40°T
_M , —m <A<,

. 9 . A
o) = Gita cos (ra2)sin® (4/2) 3 '; v 2

j=—00

where 02 = Var (z;) and T'(+) is the gamma function. A common feature of all the
above models is that their spectral density functions satisfy (3).

Given observations {z,,_;,j = 1,2,...} on the infinite past of the series z;, let the
linear predictor of z,.4 (h =0,1,...) be denoted by Z,,, and the mean-square pre-

diction error by o%_,. Then

00 h 00
Tp = — E ayTp_y and Tpt+h = — E Ay Tpth—u — E Ay+hTp—u (5)
with
h
2 _ 2 2
Opt1 = O¢ E :bu (6)
u=0

We notice that as h — oo the mean-square prediction error approaches the variance

of z;. So, as h — oo, knowledge of the past does not help to predict future values.



It is clear that if the coefficients a; were known, the prediction problem would be
solved. Similarly, if f, (A\) was known, these coefficients a; could be obtained by using
the canonical factorization of the spectral density function, see Whittle (1963, p.26) or
Brillinger’s (1981) Theorem 3.8.4 or Hannan’s (1970, p.147) Theorem 6. Specifically,
we have that

1 o

4 = o WA()\) e\, (7)
o2 = 2me”, (8)
where
A(N) = exp {— f: cue_“‘)‘} (9)
and -
Cu = % /0 “log (£ () cos (uA) d. (10)

The coefficients b; can likewise be obtained from B (A) = A~ ().
In practice f, () is unknown, so to compute (10) and therefore equations (7) — (9),
f= (A) needs to be estimated. To that end, introduce the periodogram of z;

n
E .',Ute_Zt/\
t=1

I, \) = (2mn)"

We estimate f, (A) by

~ o T
fm(A)_2m+1

N A L (A + ) (11)

where \; = (27j) /n, j =0,1,...,n — 1, m = m(n) a number which increases slowly
with n, > ;= Z;ﬁ;fm, and @ is a semiparametric estimator of «, for instance that
obtained in Robinson (1995), that is

1 & 1«
Q =arg min (log {E Z )\?‘I]} —o— Zlog )\j> ; (12)
j=1

ac(—1,1) =1
where I] =71 ()\])
In the estimator (11) I, (A) is damped around zero frequency prior to the usual

periodogram averaging (which is of the sort stressed by Brillinger, 1981), whereas fm

5



will typically exhibit a pole at zero frequency. We can regard the estimator in (11)
as a prewhitened estimator in the frequency domain, in contrast to that in the time
domain suggested in Press and Tukey (1956) when f is believed to have sharp peaks,
as is our case. Moreover, see Lemma 1 in Section 7, the estimator (11) possesses
better bias properties compared to the usual average periodogram estimate.

Let \; = (7j) /M, j = 0,41,...,&M, where M = [n/4m] and [z] indicates the
integer part of z. Abbreviating ¢ (Xg) by ¢, for a generic function ¢ (A), (7) — (10)

are then estimated by

. 1 - 5

o= 57 (log fM) cos (U)\g) , u=0,1,..., M —1, (13)
=1

R M—1 N -

A; = expl — Euemj} =A, j=01,..M—1, (14)

u=0
1 Mo

au == W Z Ajem/\j, u = 1, cery M — 1, (15)
j=—M+1

52 — omd, (16)

where d denotes the conjugate of the complex number d. Thus, (5) is estimated by

M-1 h M—h—1

. o~ . o o~

T, =— UyTp—y and T, ., = — E Ty — E Ay hTpy for h >1 (17)
u=1 u=1 u=1

where {z,,_;,7 = 1,2, ..., M — 1} is a new independent replicate of observations, with
the same statistical properties as x;, not used in the estimation of the spectral density
£ ().

We conclude this section mentioning that since we only have a finite record of
Xy, Ej, a, and 3? do not actually estimate the true function/parameters A Xj ,
a, and o? respectively, but rather their finite function/parameter versions A, Xj ,
aun and o2, . The latter can be obtained by replacing in (14) and (16) ¢, by cyun,
u=0,1,...., M —1, and Ej by A, (Xj) in (15). ¢y, is obtained from (13) by replacing
log (']/C;yg) by log (fsz.). Following Bhansali (1974), we refer to the above method of
prediction, c.f. (17), as the FLES predictor of the data.



3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

Before we establish the asymptotic properties of our estimators given in (13) —(16),

and thus the predicted future value of z; in (17), we introduce the following conditions:

Cl fi(AN) =X%:(N),0< X< 7, where 0 < a < 1 and g, (\) is a positive,
symmetric around zero and twice continuously differentiable function.

C.2
v=) by, Y Ui<oo, by=1,
j=0 j=0

where E (5 |Fi_1) = 0, E(2|F_y) = o, E(|z—:t|€|]-"t_1) — p, < oo, for
¢ = 3 and 4, where F; the oc—algebra of events generated by ¢, s < ¢, and
cum (€4, €4y, Etg, €1, ) = ka0t if t1 = to = t3 = t4 and zero otherwise. In addition,

x} is uniformly integrable.

C.3 B(A) is twice continuously differentiable in any open set outside the origin, and
satisfies

% BN =0(A"B()]) asA—0+.
C.4 Asn — oo, m*/n® +n?*/m? — 0.

Some comments about Conditions C.1 — C'.4 are in place. Conditions C.1 and
C.3 are common when analyzing processes which may exhibit strong dependence, see
Robinson (1995), Hidalgo (2000a) or Hidalgo and Yajima (1999), so their comments
apply here. A sufficient condition for the last part of C.2 is sup, E |z,|*"" < oo for
some 7 > 0. This last part of C.2 is needed in the proof of Theorems 3 and 4,
and in particular to justify that, for example, E (Y,,) — E(Y) if Y, LY and Y,
is uniformly integrable, see Serfling (1980, p. 14). Also, it should be noted that the
condition F (g;|F;_1) = 0 is equivalent to the assertion that the best linear predictor
is the best predictor, in the least squares sense. This is a natural condition since the

final purpose of estimation is often linear prediction, as is our case. Finally, Condition

7



C.4 gives upper and lower bounds on the rate of increase to infinity of the smoothing

parameter m.

Theorem 1 Define Ej:@—cjvn and @ as in (12). Assuming C.1-C.4, for any finite

collection j; < jo< ... < jg

nl/? (Zjl,...,qu) 4N (0,2,)

where §2, is a diagonal matriz whose j — th element is (1+ (1 + k) 6;,), where ,= 1

if i = 0 and = 0 otherwise.

Theorem 1 indicates that the results obtained in Bhansali (1974) for weakly depen-
dent data, that is o = 0, hold the same for strongly dependent data. Thus, Theorem
1 generalizes Bhansali’s results to any covariance stationary linear process.

Moreover the results of Theorem 1 have some implications regarding the estimation
of the parameters of the Bloomfield exponential model (4). Suppose first that o = 0.
Then

fz (A) =exp [Zﬂjcos{(j—l))\}] , —m<A<m,

so that it is easy to show that ¢;, —¢; = O(M~') and thus that 3; are n'/*
consistently estimated by ¢; given in (13) choosing m = 4M = n'/2, which can be
used as a first step in a Whittle-type estimate of 3;, 7 = 1,...,p, which involves
a nonlinear minimization algorithm, say via Newton-Raphson. See also Taniguchi
(1987) for an alternative estimator of (3;.

Now suppose that « can be different than zero. In this case we can still obtain
simple preliminary estimators of a and 3; to be employed in a Whittle-type estimator
as we now illustrate. First the semiparametric estimator of o given in (12) is m!/%-
consistent, see Robinson (1995), which by C.4 it implies that it is n”*'/*-consistent

for some 7 > 0. On the other hand, if

£ () = ‘1_61A‘_aexp [Zﬁjcos{(j—l))\}] , =T <A<



following the arguments of (11), it is obvious that

; 1 Z}l_ei()\jJr)\)}aIx()\_i_)\j)?
i

fw()\):2m—|—1

is a consistent estimator of exp [ b1 Bjeos{(j—1) )\}} . So, if we identify 3, as the

1/2

¢; in (9), and replace ']/C;yg by foein (13), G, is a n'/?-consistent estimator of 3,. Thus

(@, ¢;) becomes a simple computationally preliminary estimator of (a, ﬁj).
From Theorem 1 and a simple application of delta methods, we obtain

Corollary 1 Let of,= 2me®. Assuming C.1-C.4,
n'/? (Ef—ain) 4N (O,Uﬁ (2 + @)) :

Theorem 2 Define Ej:;lj—Aj,n. Assuming C.1-C.4, for any finite collection j;, ..., j ,,
n1/2M71/2 (Ejl ’ "'aqu) i) N¢ (Oa “QA)

where N° (0, §2,) means a complex normal random variable where the j — th element

of 24 is 271 (5‘j_£|+2_1¢j¢é — iqﬁ‘j_g‘—l—%(quﬁg) AgA; is the €5 — th element of 24

with

6= (1—cos (jn)) /jm ifj > 0 and 1 ifj = 0, and K =limp o0 S27 " g0 (f_ll log (1+2) dv).

Theorem 3 Define Zj:b\j—ajyn. Assuming C.1-C.4, for any finite collection j;, ..., j ;,

nl/? (Zjl,...,@q) 4 N(0,2,)

where the £j — th element of 2, is 27 Zgino(j’e) Qj—p Q.

Once we have obtained the asymptotic properties of the estimators of a;, j =
1,....,M —1, we are in the position to study the asymptotic properties of the predictor
of the data.

Theorem 4 Assuming C.1-C.4,

(a) AE (3*—%,)° = o2

£

(b) AE (§;+h—§n+h)2 = o}, forh=1,..,Vuwith V> 1

where AE denotes the expectation of the limit distribution.

9



Theorem 4 illustrates that once again the results obtained by Bhansali (1974) for

weakly dependent data extrapolate to data which may exhibit strong dependence.
4. SIGNAL EXTRACTION
4.1. Statement of the problem and parametric estimation of the signal

The problem that we are interested in is as follows. Suppose that a covariance

stationary linear process y; can be decomposed as
Yy =1x+ 2z, t=0,+1,£2,.. (18)
where the signal x; satisfies that
(1— L)z = (19)

with a € (0,1) and the noise z; follows the model

[o.°]

z = Zaetj72‘a‘<oo aj =1, (20)

7=0
where €7 and ¢ are white noise mutually independent processes. So, the spectral

density function of y, is
fy V) = Fe (N + f2 (V) (21)

where f,, (A) denotes the spectral density function of a generic covariance stationary
linear process w;. As an example, suppose that (20) follows an ARM A (p, q) process.

Then
1
27

i | T 2
’ + oz

fy ()‘) =

where ® (L) and © (L) are the AR and M A polynomials, respectively, with no com-
mon roots and having no zeroes in or on the unit circle.
The purpose of this section is, given the observed data y;, t = 1,..,n, to estimate

the signal z;. It is known that if all the past and future values of y; were observed,

10



then the Kolmogorov-Wiener formula would provide the best linear predictor (BLP)
of z; given y,, s = 0,+1,£2, ..., defined by

Tiloo = Z ¢jytfj

j=—00

2
where ¢, minimizes £ (wt — Z;’;_oo @/ijt_j) and equals to the jth Fourier coefficient
of f, 1 (A) fa (A), that is

e RO

However, in empirical studies, because not all values of y; are observed, some trun-

cation will be needed to implement x.,. We shall denote the estimate of z, by

[y

tf
a;\t\oo =F [xt ‘y17 sy yn] = wjyt*j (22)

j=t—m

where @Abj is some estimate of ¢,.

When a full parameterization of the process generating z; is known, for example z;
follows an ARM A (p, q), where © (L) = O (L;?) and ® (L) = ® (L; ), then f, (\) =
fy, (\;7), for all X € (0,7, where 7 = (a,02%,0%,9). If the parameters 7 were
known, the signal extraction problem would be solved by plugging those values of 7

into the right side of (22) to obtain

t—1

oo (1) = D 05 (7). (23)

j=t—n
However, in practice 7 is unknown, and thus to implement (23), 7 is replaced by, for
example, the Whittle estimate 7 which, under suitable conditions, is known to be n'/2-
consistent and asymptotically normal, see Fox and Taqqu (1986), Dahlhaus (1989),
Giraitis and Surgailis (1990) or Hosoya (1997). Given 7, 2. is then estimated by
plugging 7 into the right side of (23), obtaining

t—1

Tyjos (T) = Z V; (T) ye—j-

j=t—m

11



The parametric approach suffers from two possible drawbacks. First, its imple-

mentation can be difficult since to obtain the °

‘reduced” form parameters of f, (\;7)
can be quite complex, even in simpler situations than those considered here. The
second, and possibly more important, drawback is that the procedure described is
very sensitive to a correct specification of the spectral density function of y;, that is
fy (A). In particular, on a correct specification of the order of the polynomials ® (L)
and © (L) if indeed the noise z; followed an ARM A process. For instance, z, might
follow a Bloomfield’s exponential model instead of an ARM A one. If that was the
case it would lead to inconsistent estimates of f, (A) and so, the estimates of z,
Zv\ﬂoo, would be inadequate and “inconsistent”.

Looking at equations (18), (19) and (20), we can regard our setup as semipara-
metric, in that only the term which we are interested in is parameterized. That is,
we have a parametric model for the underlying structure of the signal z;, while we
have left the model for the noise z; unspecified. So, in the terminology employed
in semiparametric statistics, we can consider the parameters (022,19’)/ as nuisance
parameters. Thus, the question of interest is whether we can ”estimate” the para-
metric part of the model, that is, to extract the signal z;, in the presence of those

nuisance parameters represented by the noise process z;. This is answered in the next

subsection.
4.2. Semiparametric estimation of the signal z;

Our main concern lies in the estimation of 7, that is Ty . Assuming that y,

follows (18), (19) and (20),

1 7r 22 1 — A -« 3 295 ™ N
@b].:_/ (op ' 7ae ezjde:U_E/ gfl ()\)ez]/\d)\’
2 |y L= [T 4 (21 2 O o )

where g (A) = 0% + (27) [1 — “ f. (\) times (27)™" can be regarded as the spectral

/2

density function of (1 — L)*“ 1. Assuming that y; is a covariance stationary linear

process which admits a representation as an infinite autoregressive model as in (2),

12



(1 — L)*?y, = w, will have also such a representation, say
Zﬂjwt—j =¢g; Bo=1
=0

Following the results of Section 3, g (Xp) can be estimated by

-2

i(h) =7

N
1+ Z /Bjeiﬂp
j=1

where Egm ﬁj, j=1,..., N, are obtained by means of the FFLES algorithm described
in (13) — (16) with f; (\) being replaced by g (). So 1; can be estimated by
2 M-1

~ 0-51 o o~ ZN
b= G (W) e (24)
E

with g (A) an estimate of g (A) and thus x is estimated by

min(t—1,N—1)

Thloo = Z %Abjyt—j- (25)

jmmax(t—n,1-N)

Thus, the problem to obtain Zy in (25) is reduced to obtaining estimates of o2
and . Given our model (19), f, (A) = (0% /27) |1 — €| which together with (18)
and (20), implies that f, (A\) ~ CA™* as A — 0+, c.f. (3). To observe the latter claim,

assume that z; follows an ARM A process for expositional simplicity. From (21), we

have that
2
1 2 x| 2 @(GZA)
fy(N) = or | e l—e } + O D (N
ol

AN+ 0(1)  as A — 0+
2

Y

because |© (e™) /® (™) ‘2 is continuous for all A € [0, 7], and

—Q

}1 _ei/\

=27%(sin|A/2)) C~ AT (1+C1AY) asA— 0+,
where (' is a finite positive constant. Thus, we conclude that
o2,
fy (A) ~ 2—5)\_0‘ as A — 0+, (26)
T

13



so that a can be estimated as in Section 2, i.e. employing Robinson’s (1995) estimator
given in (12), and o2, /27 by m~' 37", )\a

Let us introduce the following condition,
C5 N1+ N3*tom=2  0and NM~! < 1.

Observe that from C.4, we can choose N to be equal to M in C.5. However, we
leave C.5 in its present form to give somehow more generality to the result in Theorem

5 below.
Theorem 5 Assuming C.1-C.5, as n — oo, /f[n,s”oo—x[ms”oo LA 0, where 6 €(0,1).

Theorem 5 indicates that the simply implemented signal extraction algorithm is
consistent. However, and more importantly, in the process of performing the signal
extraction of x;, there has been no need to specify any particular structure for the
noise z;. Thus, we have avoided the problem that a bad specification for the noise
may induce on the extraction of the signal. We can therefore consider the approach as
semiparametric, where z;, following the semiparametric terminology, is the nuisance

”parameter” or function.
5. EXTENSION TO SEASONAL/CYCLICAL DATA

This section generalizes the results obtained in Sections 3 and 4 to data exhibiting
cyclical behaviour. This is motivated by the often periodic behaviour exhibited in
many time series and which is manifested by a sharp peak on the spectral density
function estimate. A model capable to generate strong cyclical /periodic dependence
is

(1 —2(cosA’) L+ LQ)dO Ty = &y, (27)
introduced by Andel (1986) and Gray et al. (1989), where &; follows an ARM A (p, q)
process and do = a/2 if \* # 0,7 or a/4 if \° = 0,7. Gray et al. (1989) coined
(27) the GARM A process and is characterized by having a spectral density function

14



defined as

2

02

i i —2d
fx(A):% 1—2(COS)\0)6)‘+62)‘} 0

C] (e“; (9)

——= — A< 28
P (e, 0) TeAST (28)

where @ (-) and O (-) are the AR and M A polynomials, respectively, having no ze-
roes in or on the unit circle. Similarly, we can generalize (27) allowing &; to follow
a Bloomfield exponential instead of an ARM A process, having a spectral density

function given by

P
fo(A) =[1=2(cos\?) e? + ei”‘_QdO exp [Zﬂkcos{(k - 1) )\}] , —m <A<
k=1

(29)
Models (28) and (29) can be extended to allow for more than one spectral singu-
larity, e.g.
o (1 A ix a2 | [©(e7:0) :
and
h ' : P
fa(N) = (H |1 —2(cosN) e™ + em}—z J‘) exp [Zﬁkcos{(k -1) )\}] , —m < A<m,
j=1 k=1

respectively, which may be reasonable for seasonal data (e.g. for monthly data take
h=Tand M = (j —1)7/6, j = 1,...,7). Observe that, for example, for monthly
data we have permitted the degree of strong dependence, that is d;, to differ across
the seasonal frequencies. This generalizes the model study by Carlin and Dempster
(1989) or Porter-Hudak (1990), who assumed that d; = d for all j = 2,...,6 and

d; =d/2 for j = 1,7, since for the latter in the time domain (30) becomes
O (L,0) (1 - L) 2z =6 (L,0)

where u; is a white noise process.
We now describe the FFLES algorithm of Section 2. To that end, and for the sake
of presentation, take the number of possible spectral singularities to be one, say at

A%, Our basic assumption on f, (A) given in (3) becomes
fo D) ~C X=X as A — \° (31)
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where C € (0,00) and « € [0,1). We now estimate f, (A) by

~ =X

fr (V) = 2m+1 Z}A A= XTI A+ N (32)

where « is estimated as in Arteche and Robinson (2000), that is

Q =arg min (log{% Z })\j_)\o‘a]m()\j)}_% Z log‘)\j_)\oo.

Oze(—l,l) j:—m,7é0 j:_mﬁéo
(33)

Given (32) and (33), the FLES algorithm to predict future values of z; is exactly

the same as that in Section 2. That is,

M—-1
G = —Z(logfmg)cos(u)\g) w=01,...M-1,
R M-1 B _
A; = exp{—ZEueiW}zAj, j=01,.,M-1,
a ! Z A; 1.,M—1 (34)
Ay = —— =1,..,M—-1,

2 6 u

j=—M+1

52 = 2me™,

where .]/[;,g =1, (A¢) given in (32). Then, (5) is estimated by

M1 M—h—1
A~k A~ ~x -~ ~
z, = E GyTpy and Tp_, = E ATy — g Gyt hTyy for h > 1
u=1 u=1 u=1

where {z,,_;,7 = 1,2, ..., M — 1} is a new independent replicate of observations, with

the same statistical properties as x;, not used in the estimation of the spectral density

fe (N).

Let us introduce the following conditions:

C1 f, (A ‘)\ AO‘_agz A), 0 <A <7, where 0 < a <1 and g, (\) is a positive,

symmetric around zero and twice continuously differentiable function.
C.3> B (1) is twice continuously differentiable in any open set outside A\ and satisfies

% IBO)| =0 (\A— A |B()\)|) as A — AL

16



Theorem 6 Define Ejzﬁj—cjyn and & as in (83). Assuming C.1°,C.2, C.3" and C.4,

Jor any finite collection j;< j,< ... <j,,
- =\ d
n1/2 (le ’ "'7qu) - N (07 ‘Qc)
where (2. is a diagonal matriz whose j — th element is (1+ (1 + k) 6, ).

Proof. The proof of this result or any other in this section follows proceeding as

with the proofs of those results in Sections 3 and 4 and so, they are omitted. 0
Theorem 7 Assuming C.1°,C.2, C.3" and C.4,

(a) AE (Z'=3,)° = o?

£

b) AE (%), —Tnan SR forh=1,....Vwith V> 1.
n+h h+1

We now turn our attention to the signal extraction problem. Suppose that a covari-
ance stationary linear process 1, which is observed at times ¢t = 1, ..., n, is decomposed
as

Yt :ZL't+Zt, t:0,:l:1,:i:2, (35)

where x; and z; denote the signal and noise respectively. Assume that x; and z
satisfy
g(L,a) = ¢f (36)

denoting g (L,a) = (1 —2(cosA°) L + LQ)OI/2 with o € (0,1) where

o O
2 = Zafef_j, Z |aZ] < o0, af =1, (37)
§=0 J=0

respectively, where £f and ¢} are white noise mutually independent processes. So,
the spectral density function of y; is f, (A\) = fo (A) + f» (A). As an example, suppose
that (37) follows an ARM A (p, q) process, then

1 o
fy(A\) = 7 02 |1 =2 (cos X%) e + | + o2

17



The objective is, given the observed data y;, t = 1,..,n, to estimate the signal ;.

In this case, 9, is defined as

2 e
u=% [ st

T o o

where g (A) = (27) [1 — 2 (cos A%) e + 62”\}& Ty (N).
Using the convention that y; = 0 for ¢ < 0 or ¢ > n, the results of Section 3 and 4

suggest to estimate x4 by

min(t—1,N—1)

Bgo = Y. Ul (38)

j=max(t—n,1—N)

where
9 M-1

~ Oa [~ i
Ui=gir 2 5 (%) e

p=—M

Assuming that y; is a covariance stationary linear process which admits a represen-
tation as an infinite autoregressive model as in (2), w; = (1 —2 (cos A°) L + LQ)a/ 2y
will have also such a representation, say Z;io Bwi—j = ¢g; and By = 1.

Following the results of Section 3, g (Xp) can be estimated by

where 8@, Bj, j =1,..., N, are estimated using the FFLES algorithm described in
(13) — (16) where f, ()) is replaced by g ()). Thus, the problem to obtain Zy. in
(38) is reduced to obtaining estimates of o2 and a.

Indeed, given our model (36), f, () = (0% /27) |1 — 2 (cos A°) e + €**| ™ which
together with (35) and (37), implies that f, (A\) ~ C'|[A — X°| “ as A — A, by similar
algebra to that in Section 4.2. Thus, we conclude that

2
Oce 0]~ 0

fy(A)N% A=\ as A — A0, (39)

so « can be estimated proceeding as in Section 4.2 but employing Arteche and Robin-

son’s (2000) estimator given in (33) and o2, /27 by (2m) " DA, )\?‘I (A% + ).
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Theorem 8 Assuming C.1°, C.2, C.3°, C.4 and C.5, as n — 00, Tnsjjcc —T[ns]joc ER

0, where 6 €(0,1).
We finish this section with two remarks.

Remark 1 Ifz; = pi+s; where p, and s, follow the models (19) and (36) respectively,
then

fo () = 0—% ‘1 — MM 4+ 0—3 ‘1 -2 (Cos)\o) ei’\+e"2’\‘7a2
* C2r 2 ’

If this were the case oy and o can still be estimated by (12) and (33) respectively. The
reason is because the estimators only involve frequencies in a shrinking neighbourhood

of 0 and \° respectively, and ‘/\0‘ > 6 for some 6 > 0.

Remark 2 The results/algorithm discussed in this section assume that, say A0, s
known. However, with real data that knowledge can be no so obvious, as when in-
vestigating the length of a cycle in macroeconomic time series. In this case, we
can appeal to results in Yajima (1996) or Hidalgo (2000b). In particular, Hidalgo
(20000) provides a semiparametric estimator of \° which is n®TV/?—consistent for
some 6 € (0,1/2) and asymptotically normal. Moreover, Hidalgo (2000b) shows that
the properties of the semiparametric estimator of aq and/or ay are the same as when

A\ is known.
6. PROOFS

Proof of Theorem 1 By Wold device, it suffices to show that for finite constants
(10]'7

1/22% — i) —>N(0 Z (1+( 1+/<;4)6)g0§>. (40)

Jj=p

Using the definitions of ¢;,, and ¢;, a typical component on the left of (40) is

M-1

. 1 = > ~ ~

@ = cin) = 77 2 (log fue = log o) c0s (Ac) + G — i), (41)
=1
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where, for j =0,1,.... M — 1, ¢, = M ™! ZM ! (log };4) cos (]Xg) with

fap = Agme (2m + 1)_1 Zp 9 (Aprame)-
First by Lemma 1 and C.4 the second term on the right of (41) is o (n~!/2). Next,

~ - ~ 2
since sup, a? <> a?, SUPg=1,. .M ) (fm,é - fm,é) /fz,é

i )(.ﬁcé - ﬁe) / f 2 < Qi ‘ (ﬁ;e - fwe) /fui 2 +2§: ‘ (fxe - ﬁ;e) /fo 2
=1 =1 =1

where fi, = A\y% (2m + 1) > p Mramels (Aprome). Because C.4 and Lemmas 2 and

is bounded by

3 respectively imply that the right side of the last displayed inequality is o, (1), by
Taylor expansion of log (z) the first term on the right of (41) is

/=1 f N4 f Y,
| M=l Foim fos _ M-1 f“_f“ _
Y ' A A ) (1+0,(1)),
M= ( fu >COS (%) + 2M ; ( fat ) s (%) 1+ )()42)

where the o, (1) is uniformly in £. The second term of (42) is O, (m™') by Lemma 2,
whereas the third and fourth terms of (42) are O, (m~"/?M~' +m~") by Lemma 3

and ‘Ze 1gzef11 log (14 %) dv
conclude that the first term on the right of (41), i.e. ¢; — ¢;,, is

< oo after straightforward calculations. Thus, we

M-1

i Z <fx éf éfx€> cos (ng) + 0, (m*1/2]\471 + mfl) ,

(=1

whose first term 1is

M M—1 (fm 4fz7éf“> o (ng) N L Jg (fm efzyéfm/) (fac efxvgfzé> cos (]'Xe) )

- (43)

The first absolute moment of the second term of (43) is bounded by
fac L fac L

M-

1 _
Z f , =0 <M2m1/2> =0 (n 1/2)
é x,

by Lemma 2 and the proof of Lemma 1.

fm L ﬁt,é
fm,é
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Thus, except negligible ending effects, by definition of ']/C\m’g, ']/C;’g and f;, and C4

n”QWﬂ(GOQ—ﬁA&)
/2] £ £ )

where h;,, (s) = g;}gw (As) cos (ng) if(20—1)m<s<(20+1)mandl=1,..,.M—

n'/? (@' - Cj,n) =

)mmw»+%(w, (44)

1. That is, hj,, (s) is a step function in [0, 7]. Now, by Lemmas 3.1 and 3.2 of Giraitis
et al. (2000), which are a simple extension of the proof of (4.8) in Robinson (1995),
after observing that |h;, (s)| is a bounded function,

[Snz:/j] (JICZ 83 - (2@;; ()\S)) hjn (s) = Op (nl/3 log?/? n) (45)

where I, (As) denotes the periodogram of the innovations ; in (1). So, the right side

of (44) is

2 2/ (on

and we conclude that the left side of (40) is

. 12 3 o T “
0 SR S (LTSI D SN RRRHNY

2
g
s=1 €

2
Og

But by an extension of Robinson’s (1995) Theorem 2, see Giraitis et al. (2000), the
right side converges in distribution to N (0, V') where V' is, by the definition of h;,, (s),

s=1,..,[n/2],

q M-1 q
.2 o~ ~
E 90j190j29c,j1,j2 = JL%M ; 2 E P P, €COS (31)\4) cos (—92)\4)
=1 J1,732=p

J1.J2=p

q
= 2 Z 90]'1903'2/ cos (mj1A) cos (—mjaA) dX + k4605

1
J1,J2=p 0
q
= D @I (1485 + kb)),
J=p
by elementary algebra and g;}gw (As) =1 =500 0 by C.1 and (20 —1)m < s <

(2¢ 4 1) m, for the second equality that cos (z) cos (w) is a differentiable function, see
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Brillinger (1981, p.15) and that M~' 322" " cos (])\g) — fol cos (mju) du = 0 except
for j = 0 in which case is 1, whereas for the third equality we have used that the

integral is 1 if j; = jo, = 0, 271 if j; = j3 # 0 and 0 otherwise. O
Proof of Corollary 1 By Delta methods and Theorem 1

nl/? (3? — agn) — nl/? (o — cop) (2m) €™ 40, (1) .

But from Theorem 1 with j = 0, n'/* (& — con) LN (0,2 + £4), whereas
(27T) efon — (27'(') %0 gCo.n—C0 — O-QeCOm—Co

£

by (8). So, to complete the proof, it suffices to show that e®»~% — 1. But by C.1

1 M 1
Com —Co = M;loggg—/o log g (mu) du
1 M " 1
+M ;log)\g—/o log (mu) du — 0.

by Brillinger (1980, p.15) and an obvious extension of Robinson’s (1995) Lemma 2

respectively. O

Proof of Theorem 2 By Wold device, it suffices to examine the behaviour of
p —~
23 g, ( A; - Aj,n) :
Jj=q

for any set of finite constants ;. Let c?] = log (ﬁj) and c@n = log (Z]n) where
gj,n = €xp {_ 21];[:711 Eu,ne_mj\j }

We begin examining

R M-1 M1 -
dj —dj, =— Z (Cu — Cum) €™M — Z (Cum — Cum) €7, (46)
u=1 u=1
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where d;,, = Ziw:f cuvne_iuxf. By Taylor expansion of log (};e / fw,e) the second term
on the right of (46) is

M-1

Z 1 Z (fzéfzéfmé> 4 (fméfzéfmé> (1+0(1)) cos (UX@) efiuj\j

=1

_ uzzl ]\142 (fzz — fzé) cos (qu) Wy 4 (;{3)

(=1
. 1 fm L fm L — iuxefj iUXEJrj 1 = lOg M
— 2M€ ( ™ ) UZ:; (e +e )+O e =0 M2

where for the first equality we have used Lemma 1 and in the second equality the
proofs of Lemmas 1 and 4. So, by C.4 we conclude that it is o (m=/2).
Next, the first term on the right of (46). From the definition of ¢, — ¢,,, in (41)

and its properties in (42), this term is

M-1 M-1 M-1 B
— Z < Z (fw éfmlfx €> cos (qu) Z (fw éfm éfﬂ> cos (uX€)> e A

=1 =1
+op, (M ( _1/2)
M—-1 (/2]
e Zpehun
M-1 M—1

—~(@—-a Z Zgwe(/ log (1+21—)€) dv) e X 4o, (m~/?),
— -1

by C.4 and Lemma 3, where p, = (27)0.2I.(\¢) — 1 and h,, (¢) was defined in
Theorem 1. Thus,

N " M-1 [n/2]
(B ) = ST S a0 )
u=1

M 1
( mAQj’") mY? (@ —a) 40, (1).

since limus oo Sopy . Gt ( Jog (1+ %) dv) K. But because m = [n/ (4M)], the
first term on the right of (47) is

[n/2] M-1 [n/2]

1/2 h {) e~ WA2im —
peM u,n \t) € Py (n
21/2 /2 1/2 Z ¢ u§:1 () 21/2 /2 1/2 Z Yo, M( )
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where ¥y y7(n) (j) = M—1/2 ZMﬁl Bom (£) e~ 2m . Thus, ml/2 ] 0 Pi (d- J]n) is

u=1
[n/2] P
Ry 2 2 i U Z% B, +6;) mY2 (G — @) + 0, (1)
(48)
Proceeding as in the proof of Theorem 1, the first term on the right of (48) converges

in distribution to a complex normal random variable with variance
/2]

V_T}Lnolo Z gohsop /2 ZWM (J1 WM(n) (J2)-

J1,J2=4q
But, by definition of h,,, (£), the right side of the above equation is

M-1M-1M-1

lim Z PinPi M2 Z Z Z {COS (ulAé) COS( UQ)\é) _Zul)‘n'““Q)‘n}

J1,J2=4q =1 ui=1ugs=1
p
= 27 Z 1P (6j1*j2 + 271¢j1¢j2 - Z¢j17j2) ) (49)
J1,J2=¢

by Lemma 4. Next, by Robinson (1995) the second term on the right of

(48) 4 N (0 41K )ZJ ,©50;
asymptotically independent since by Robinson (1995)

2
), whereas the first and second terms of (48) are

n/2] [n/2] m

1/2 Zpé m'* (@ - a) = 1/2 prml/z ZWW +op(1),

where v, = log £ +m ! > pe1 log p. But because by Brillinger’s (1981) Theorem 5.2.4.
Cov (I.(\g,), I.(\,)) = O (n1), it implies that the expectation of the first term on
the right is 0 (1). So, from the behaviour of (48) and the second term on the right of
(46),

WZ%( din) 5 N (0,V),

where V' = 2]1 Jo=q (70]190322 ' (6j1*j2 + 2_1¢j1¢j2 - Z¢j1—j2> +47K? §=q SOj(bj

But Aj — A, = (exp (dj — djyn) — 1) A, and |A;, — A;| — 0 from the proof of

2

Lemma 7 which by a simple application of delta methods it implies that

1/2290] (A Ajn) = N (0 Z ©; a4, 3290J2> ’

J1,92=¢
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and the proof is completed. O

Proof of Theorem 3 Write a,, = (2M )71 Z;\i_ M4l gjyne“’j\h The proof is com-

pleted if

I/QZ% Ay — Gy —>N<O Z 901;190@29&@1@2) (50)

V1,V2=p
1/2 ~
n'/ E Py (Avn = Ayp) = 0.
v=p

We begin with (a). From the definition of @, —a,,, and Taylor expansion of A\j —;lvjyn,
a typical element on the left of (50) is

12 M nl/2

M
n T 7 A w T = Pla
2M Z (d] . dj,n) A )\] + m Z ’d] — djm ‘Anyj (1 + Op (1)) . (51)
j=—M+1 J=—M+1

First, we show that the second term of (51) is o, (1). From (47) and trivial inequalities

2
9 [n/2]

< G /2 1/2 Zpéwékln) +}¢ ml/Q(a_a‘ +Op 1)

| b 2

= G| 2 b )] + 00 (1),

where henceforth G is a generic finite positive constant. The contribution from the
second term on the right of the last displayed equality into the second term of (51)
is O, (m~'n'/?) = 0, (1) by C.4. Finally, the contribution from the first term on
the right of the last displayed equality into the second term of (51) is also o, (1) by
Theorem A in Serfling (1980, p.14) since by Theorem 2 and the continuous mapping
theorem it converges to a x? and by C.2 2} is uniformly integrable. So, from the

definition of d d]n, (51) is

n1/2 M M-1 N N ey _ 5 77,1/2
oM Z (Cu — Cum) € ™M | Ay ™™ + O, (7)

j=—M+1 \ u=1
nl2 M <M_1< Ml(fz—fz> (N ) '~>~
_ Z Z _Z z =2 ] cos U)\g) e A An,gem + 0, (1)
2M j=—M+1 \u=1 M =1 f:c,
/2 M1 . }v M—1 N
_ e < z,0 x€> ZCOS (u)\g) <2M Z Anjel(v u) ) + op (1)
— f £ u=1 J=—M+1
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pl/2 M1 M-1 -
__n Z (f:céfxéfx€> ZCOS (U)\g) <2M Z A ez(” u) > +0p(1)7 (52)

u=1 j=—M+1

where for the first equality we have employed Taylor expansion and that by Hidalgo

j?m,g — j?mg)‘ = 0, (1) and for the last

Z?i—M—H (gny - Aj) il
O (log M) proceeding as with the proof of Lemma 7 and by Lemmas 2 and 3.
So,

and Yajima’s (1999) Proposition 3 sup, |f.
equality that A1 S M1 ’cos (qu)‘ =0 (1),

q 4 -
nl/Z Z o, (av _ av,n) = nl/Q Z Py (aql, - av,n) + Z va
v=p v=p o

where 1, = o, (1) and

M-

J? - 7. , M—1 1 M ~
~  ~ . zl — Juw N Li(v—u)A;
Ay — Ayp = E_ ( ) E 3 COS (U)\g) (—2M E Aje ) (53)

= j=—M+1
M- f 7 M-1 B M
_ _M ( wef : a;e) Zcos (UM) (2M Z A; RICE u)&) +n*1/2hv,
x, u=1 j=—M+1

proceeding as in the proofs of Theorems 1 and 2 where h, = 0, (1). Now use these

two Theorems to conclude that

1/2290 — Qyn —>N(O,V)
where, denoting (2M) Zj.\ifMH Ajei(”*“)j\f =a’_,,
| M1/ M-1 N 2
v 3 (e S e () )
—1 \ov—p  u=
M-1 M-1
= Z 9%190112 hm M Z Zcos (ul)\g) |y COS (u2)\4) Uy -

v1,V2=p uy,u=1 ¢=1

A typical component of the last displayed equation is

M—-1 M-
MH E E Uy oy Qg —i (cos ((u1 + uy) )\4) + cos ((u1 — uy) )\g))
o—=1 (=1
1 M— 1 M-1
_ : - o * *
- Jb}liil)o 2 § v1—U vz u M avlful avgfug
u=1 u1=1,7ug
u1tuo=odd
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using (65) in Lemma 4 for the second term on the right of the last equation. But

using a, = O (u~17?) and that since A ()\) has an integrable derivative by Brillinger

(1981, p.15) a}_, = ay» + O (M), we conclude that
q
Z Py Poy Z Gy —uloy—u = Z Py Pun$2a0109
'Ul ,UV2=p V1,V2=p

which completes the proof of part (a). Now part (b) follows by identical arguments
to those in (52) and Lemma 1. O

Proof of Theorem 4 (a) From the definition of z}, and z,,, their difference is

M-1 M-1

5t_zauxn u+z au aun xn u+z aun_ xnu (54)

u=M

The second moment of the second term of (54) is

o2 Z az +2 Z Oy Ay V3 (U1 — up) = O (M™Y.

u=M M=u1<us

because a, = O(u"1"%2) and 7;(u) ~ Cu=** |C] < co by C.1 and C.2. Next, we
examine the third term of (54). Denoting the first term on the right of (53) n'/2g,,
the third term of (54) is

M—1 M—1
Z qufn—u + Z (au - au,n - qu) %/n—u-
u=1 u=1
But sup,, 5/ |G — @un — qu| < GZM ! |Gy, — aun — qu = Oy (Mm~1) since [a, — Aun — Qu| =

O, (m™'), so that the second term of the last displayed expression is O, (M?*m™!) =
0, (1) by C.4. On the other hand, the second moment of first term is

M-—1 M—-1
n! (0% S E020.) 42 Y E(1quduy) s (w1 — U2)> =o (M),
u=1

1=u1<ug
after elementary algebra by the Cauchy-Schwarz inequality, Theorem 3 and Serfling
(1980, p.14) by the uniform integrability of n'/2q,. Finally, the second moment of
the fourth term of (54) is O (M* *log M) by similar arguments since by Lemma 7
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(@un — ay) = O (M tlog M). From here, the conclusion is immediate since o < 1

and E (¢2) = o2.

(b) By definition

xn—i—h_zb i€t+h— ]+ Z

u=h+1

<Z by — e> Tt4h—us

where b;, j = 0,1, ..., satisfies (Z;io bij) (Z;io aij) = 1. Thus,
Tuth = Tren = Zbgw S

h h
Lpth — T [(Z beC,— e) - (deau—e>] 5t+h,—u
u=h+1 £=0 =0
Z (Z bea,— e) LTith—u-

u=M+1 \ (=
Now, by similar arguments to those used for the last two terms of (54), the last two

terms on the right of the last equation are o, (1). So

Zb Errn—j +0p (1) .

anrh

From here the conclusion follows by C.2

Proof of Theorem 5 From the definition of ;bj in (24), it follows that

A2 N— |J|

p'H]‘ Wlth ﬂO =1.

spo
~2 —2 2

Since by Corollary 1, Robinson (1995) and Slutzky Theorem & %62 — - 202

O, (m=*/%), it suffices to show that
min(t—1,N—1) N—|j] o)
j Z Vy—j = 0p (1)

Z Z Epﬁpﬂj\ Yt—j
Jj=—00

j=max(t—n,1—N) p=0

The left side of the last displayed equation is

min(t—1,N—1) N-—|j|

Z Z (BPBPHJ'I B En,pﬂn,pﬂjl

j=max(t—n,1—N) p=

) Yt—j
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min(t—1,N-1) N—|j|

) > BBy — Vi | Yo (56)

j=max(t—n,1—N) p=0
S WD SRR D DR A (57)
j<max(t—n,1—N)  j>min(t—1,N—1)
where Bn,p is defined as Bp but with g (A\) replaced by g (A). The second moment of
the second term of (57) is

[o.°] o

05 Z @b? +2 Z Vi Yp—; = O (N"*+ N =0(1)

j=min(t—1,N—1) min(t—1,N—1)=j<k
by C.5, because v,_; = O (Jk — j|*7'), ¥; = O (j717*/?), N — oo and t = [nd] for
any arbitrary 6 € (0,1). The second moment of the first term of (57) follows similarly.
Next, since 1; = 77 8,0, it implies that ¢; = ZN il 3 ﬁnpﬁnpﬂﬂ (U

Z (ﬁn,pﬁn,pﬂjl B ﬁpﬁpﬂj\) - Z /Bp/gp+|j| =0 (Nfl log N)
p=0 p=N—|j|+1

by Lemma 7 once we identify a,, and a, as En,p and (3, respectively and since
B, = o(p~') as can easily be seen from the definition of g (A). So, proceeding as

above, the second moment of (56) is

min(t—1,N—1) min(t—1,N—1)
05 Z ¢? +2 Z ¢ V- = O (N*QN1+C¥ log M) =o0(1)
j=max(t—n,1—N) max(t—n,1—N)=j<k

because 7, = O (j*'), 0 < a < 1 and C'5.
Finally (55). Define Bp as Bp but with a replaced by «, that is in the formulae
(13) — (15) we employ

g =

DEYE DYy SOVEPY

2m—|—1£

instead of g (\). Since by Robinson (1995) @ — a = O, (m*/2), then

min(t—1,N—1) N-—|j|

Z Z (ﬁ Bo+iit — B ﬂpﬂy\) Yt—j

j=max(t—n,1—N)

N L min(t—1,N—1)
< Z BoBp+ij — B ﬂp+lj|’ Z yi—il = Op (Nm_l/Q) =op (1)
p=0 j=max(t—n,1—N)
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by C.5. So, to complete the proof we need to show that

min(t—1,N—1) N—|j|

Z Z (BPBP-Hﬂ - Bn,pgn,pﬂj\) Yoj = 0p(1). (58)

j=max(t—n,1—N) p=0

But in Theorem 3, denoting B; = Z;io ﬁqeiqxﬂ‘7 we have shown, c.f. (53), that

| Ml B—7 M—1 1 M -

Y2 P £ — 9L Y i(p—u)\; —1/2
— By = —— — E cos u)\) — E B,e!®P=wXi | 4 p=1/2p
o =P =71 g ( i >u1 ( ¢ (QM e ) P

where g, = (2m 4 1) Do Ao+ Ag|" g (A + Ag). Denoting B, the first term on
the right of the last displayed equation, the left side of (58) is, except negligible

cross-terms,

min(t—1,N—1) min(t—1,N—1)
> GjnYi—j + > hjye—j, (59)
j=max(t—n,1—N) j=max(t—n,1—N)

where h; and qu involve the contribution of N — |j| terms of the type n='h,hy, and
3,8, respectively, with £ — k = j, so that Egvbjn = O (N?n™2) since by Theorem 3
E ‘BP}Q = O (n!). Now, the first absolute moment of the first term on the right of
(59) is

min(t—1,N—1) min(t—1,N—1)

. . 1/2
S Bl <Y (B8 (B

j=max(t—n,1—N) j=max(t—n,1—N)

= O(N*n")=0(1),

by C.5 and the Cauchy-Schwarz inequality since E (yt{j) < G. Next, by the Cauchy-

Schwarz inequality the contribution of the second term of (59) is bounded by

min(t—1,N—1) 1/2 min(t—1,N—1) 1/2
_2 —
>, >, v =0 (W)
j=max(t—n,1—N) j=max(t—n,1—N)

because h; = O, (n"1/?). So, by C.4, C.5 and Markov’s inequality (59) is o, (1),
which completes the proof. U
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7. TECHNICAL LEMMAS

Lemma 1 Assuming C.1, Cyn—cun= O (M*).

Proof. Since from the definition of ﬁ,g and Taylor expansion of log (2),

M /7 M /7 2
Cun—Cun = % Z (M) cos (qu)—i-% Z (M) cos (qu) (1+0(1)),
=1 z,t =1 Tt

the proof is completed if we show that f,- ; (f“ - fzyg) = O (M~?) uniformly in /.
But,
Iot

fx_t} (ﬁ,é - fm,é) = m Z (92 (Nj+2me) — Gz (Aome))

-1 .
gz,é 27Tj 62
J

= gm}%(gw(kzme))#@m—il)zj:(%) (I+0(1)),

where £ = £(j) € (0,1) and because aa—;gm (Aome + Aj) = ;-;gml (14 0(1)) for all j by
C.1. The proof now follows since (2m + 1) > (%)2 < 1. O

Lemma 2 Assuming C.1-C.4, for alll =1,2, ...

~ - 2
E (fzjél (fm,é_fz,é)) - 0 (m—1/2) .
Proof. By definition of fz,j and fzyj, the left side of the last displayed equality is
-2 10 ) 2
(2m+1)~ - m (2m +1 » Nisom jemt) 1) .
( Zg j+2 é) ( Zg J+2 ¥4 (fm( ]+2m€)
But, the first factor by C.1 is bounded and bounded away from zero whereas the
second factor is O (m 1) by routine extension of Robinson (1995) since g (Aji2me) 18

a differentiable function by C'.1. O

Lemma 3 Assuming C.1-C.4,

};—,; (?x,f_fvx,é) = %gz,e (/11 log (1 —|—%) dv) (60)

+0, (m’l log® (Aome) +m’1/2M’1€’1) .
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Proof. By definition of ]7174, ']/C;’g and f, , and elementary algebra, the left side of (60)

1S
7' <A2me>{(A;ni°z‘“) D) G 3 e Ovzn) (Moaty—1) (61)

2m + 1 Z )‘2m€+] J+2m€) {()‘277(162 - 1) ()\g:n_éi)] - 1) }} :

where g, (Aome) = (2m+1)7 Zj 9z (Njrame). By C.1 the first factor in (61) is

bounded uniformly in /. Next

1 I (Njiome)
A\ m = T @ m =1
2m +1 Z 2m€+] ]+2 é) (2m + 1 Zg A €+]) (fx ( ]+2m€) )

1
+m ZJ: Gz (Aome+j) (62)

= oy +0 (M_z) + O, (m_l/z) ,

by Lemma 2 and Markov’s inequality since by C.1 g, (\) is twice continuously differ-
entiable, » . j = 0 and Robinson (1995).

So, the first term inside the curly brackets of (61) is O, ( ~1log? )\ng) since by
Robinson (1995) (@ — a) = O, (m'/?) ’)\mu] 1’ < |a — af [log Aomes |, for j =
0,+1,..., and (62). So, we are left to examine the contribution from the second term

inside the curly brackets of (61), which by a Taylor expansion is

Oé — Oé _
@n+1) Z Aol (Njizme) (10g (Azmers) — 10g (Aome)) + Op (m ™ 10g” Aome)

N 1 ' _ N 1.
= @ gy D log (1 * 2%) 0, (" log? Ny +m M)
J

1 1
= 3 (@ —a) gm// log (1 + €) dv+ O, ( “og® Ao + m_l/zM_lﬁ_l) ,

proceeding as with (62) and using that log (1 + 5/ (2mf)) = O (¢71) and g, (Aamesj) —
gz (Name) = O (M 1), for the first equality and for the second one that by Brillinger
(1981, p.15)




M M
(z:l cos (U1 Xp) 6—%%) (ugz::l cos (—U,@Xp) e“‘QXJ?) (63)

=271 (65,427 ), 05, 10;,_;,) +O (MT).

Proof. Because cosxz cosy = (cos(x — y) + cos(z + y)) /2, the left side of (63) is

;| MM N M N ~
17 Z Z e 1A itz i Z (cos ((u1 + us) )\p) + cos ((u1 — Ug) )\p)) . (64)
ur1=1uo=1 p=1

But, since Xp = (mp) /M, the only terms in (64) different than zero are when u; = us,
or uj; +uy = 20 + 1 for some integer £. When u; = uy (64) is
M
1 o 1 { 1
_ WA —jo — 6 _71_ o — 1 O _
using standard Euler-MacLaurin approximation of sums by integrals. Next, using

formulae in Brillinger (1981, p.13) for uy +uy =261 + 1 or uy —ug = 205 + 1

i (cos ((u1 + usg) Xp) + cos ((u1 — Uy) Xp))

sin (MXUIJFUQ + %Xuﬁw) sin (qul,u,z + %Xul,w)
= + =
2sin (%)\u1+uZ) 2sin (%)\ul_ug)
since sin ((20 + 1) 7+ A) = —sin (). So, for u; +ug =201 + 1 or uyg — ug = 205 + 1
(64) is

~1+ =-2 (65)

M

1 - =
_W Z efzul)\jl 61UQ)\j2 ) (66)

w1, u2=1;u; Fus=o0dd

Consider the situation that M is odd. In this case (66) is

[M/2] [M/2] [M/2) [M/2]
L Z Z 20+, i26N, _ Z Z —i201, i(202+1) X,
él 0 €2 1 él 1 €2
o w2 N (g
_ (efujl _i_ei,\jz)) o Z o200, Z (262X,
l1=1 lo=1
L (1= cos (1)) s (1 — cos (xj2)) (140 (=
= — — COS |TT —_— — COS \T b .
211 ) 9nds I M
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Next, when M is even (66) is

M-1

1 x5 1
_W Z 671u1)\j161u2/\j2 +0 (M)

u1,us=1;u; tus=o0dd

_ %31 (1 - cos (mjy)) %]2 (1 cos (js)) (1 +0 (%))

proceeding as when M is odd. From here the conclusion of the lemma is obvious. [

Lemma 5 Denoting by Z (-) the indicator function,

D e =0 (NG M T (a > 0)+M T (a=0)). (67)
s=M

Proof. From the definition of ¢, in (10) and C.1, ¢; = ¢g1 + ¢52 where

™ 1 m
Cs1 = _E/ (log A\) cos (s\) dX and c¢gp = —/ log (g (X)) cos (sA) dA.
0 T Jo

™

Since g (\) is twice continuously differentiable function by C.1 ¢, = O (s73),

whereas by integration by parts cs is

— % Sin (s\) log AT + — / sl 22 o (572)

s s Jo A 2s

since [;° A~ "sin (M) dA = /2 and as s — oo by Courant and John (1974, sect. 8.4.c)

/ sm(s)\)d)\_/ Sm()\)d)\' < Ks L.
o A o A

Thus, the left side of (67) is bounded in absolute value by

[e.9] o [e.°]
E Cse—ls)gmj — E 6526—2.9)\2,,.”]' + E Csle_ZSAij

s=M s=M s=M
0,0)
-1 @ —1_—isAom;
= O(M )+§§ s em e,
s=M

whose second term on the right by Abel summation by parts is

(o) S o
a Z (s7' = (s+ 1)_1) Z e "omi| < Gag,; Z 572,
s=M =M s=M
From here the conclusion of the lemma is obvious. O
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Lemma 6 LetB; (tM\)=nMA— [rMM\ —1/2 the first Bernstein polynomial. Then

(a) /0 cos (mu) =1 . (Mzm)de = O (M) (68)

T

(b) /0 log (z) sin (zmu) By (Mzr) dv = O (M *log M + g, (u) —g, (v)), (69)

where u < M, g; (u)= — (47) w3, v L (4M*7? ug)fl and
g2 (u)= (log (m) / (272)) u (= 1)1 3% v~ Lsin (2M7T2’U) (4M27202—u2)71

Proof. We begin with (a). By a change of variables, the left side of (68) is

1 [Mrm Cos(ﬁ)—l 1ML e Cos(t—y)—l
— _— t)Ydt = — — M7 - t)dt
e Y] A s UL
1 (= cos (%) —1
+—/M cos (1) B, () dt
T Jo t

where A = (0,7M2) U (U, (¢ — 5, + 5)). Since |By (t)| < 1/2, the first term
on the right of (70) is bounded in absolute value by

G;M;/;i tldt = GZ(log(é—i——)—log(é—W)):O(M_QlogM),

by Taylor expansion of log () where G is a generic finite constant. By Taylor ex-
pansion of cos (z) the second term on the right of (70) is bounded in absolute value
by

G—2/0 tdt =0 (M™*).

On the other hand, since lim, Y ¢ w —mB1 (t) uniformly in 0 < ¢ < 1, see
Courant and John (1974, p.635), the third term on the right of (70) is

—cos (M) -
772 E x /0 wim)) ————— " sin (27ot) dt
= E / ~1( 2sin (27vt) — sin | 27wt + ) _ sin | 2wot — tu dt
27r2 v J (0, M) M M

+0 ( “log M) (71)
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using that cos (a)sin (b)) = 271 (sin (a + b) + sin (b — a)) as we now show. First we

examine that

oo 1 tu
%/m % sin (2mvt) dt = O (M™?) .

By integration by parts the left side of the last displayed equation is

=1 108 (t—“) W17

l1—-c
M
- E D n cos (2mut) 0

2 sm(M)_l—cos( )
+227rv2/ cos (2mut) ( n 2 dt.

The first term by Taylor expansion of 1 — cos(z) is bounded in absolute value by

GM~? since 0 < u < M, whereas by Taylor expansion of sin(z) and 1 — cos (2)

around z = 0 the second term is bounded in absolute value by

G [T u\2 L
v=1
Next, in the set U}, (¢ — 75, ¢ + 75 ). Denoting

1—
L(M) and hy (t) = cos (2mvt)

hy (t) = .

we need to show that

™

fee) 1 M o+
2
-> oz 2 (W) he ()]
v=1 =1
oo M I+ U o tu tu
1 2 - §in (—) 1 — cos (—) 1
omut) | M M) M dt — i
+;2m)2;/€ ] Cos(7rv)< ; ” 0] i

T M2

The second term is easily shown to be O (M 1), whereas since h (6 + 4 [2) = hy (£ — #)

the first term is

S 5) - (- ) - ) 00

by Taylor expansion of h; (z) around z = £ — 7.
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So, we need to examine the first term on the right of (71). Since [;* ¢ !sin () dt =

277 implies that

) / 1~V sin (£) dt — / L sin (£) dt — / 1V sin (£) dt
2 2 2

w2 Mv w2 My+um 72 Mvy—um

_ / L sin (¢) dt + / Vsin (t) dt — 2 / Lsin (¢) dt,
2

w2 Mvy—um 2m2 Mu+um 2m2 Mv

the first term on the right of (71) is bounded by
=1
G ; " (

because | [t sin (t)dt| < Ga™!, see Courant and John (1974), and 0 < u < M.

/ t1sin (t) dt‘ +
2

72 My—um

/200 ¢ 'sin (t) dt') =0 (M)

72 Mv

/ t1sin (t) dt‘ +
2

2 Mvy+ur

This completes the proof of part (a).
Next part (b). Proceeding as with part (a), after an obvious change of variables,

the left side of (69) is

Fle L @neon o

From the definition of B (t), the first term of (72) is bounded by

TM~2
GlogM/
0

Next the second term of (72). Writing B, (t) as was done in part (a), this term is

I = M [(tu) . t "
— i Zq; /7r sin (M) sin (27vt) log (M) dt +O0 (M *logM), (73)

since the difference between the integral in (7M 2 Mn) and (0, M7) /A is easily

t—§‘dt:O(M21ogM).

shown to be O (M ~2log M) proceeding similarly as in part (a). Moreover

! ivl e sin tu sin (27vt) lo ! dt
—_— —_— ﬂ' —_—
MZ" | M S\

oo " " M2z
% ;1)2 sin (%) cos (2mvt) log (M) )

1 TM~2 " " . tu
—|——/ cos (2mvt) e log [ — | — sin (57) di
M Jq M M M n

37

IN

=0 (M *log M)




up to its second term since |u] < M. So the last

M |log (t) —log (M)|dt = O (M 2log M) implies

by Taylor expansion of sin ( M)

displayed inequality and that |[;
that (73) is

2 E v_l/ sin (Mu) sin (27vt) log (M) dt + 0 (M *log M) .
n 0
v=1

But using the equality sin (a)sin (b) = 27! (cos (a — b) — cos (a + b)) and integra-

tion by parts the last expression is
1 w1 {sin (t (% + 27‘(‘1))) sin ( (27rv — M)) t
o Z v ( (u+ 2M7rv)  (2Mmv —u) log (M) .
Mr [ sin 7T 27‘(‘1))) sin (¢ ( (27rv — M)) L
ZWZU/ ( u—|—2M7r1J) T (2Mwu—u)t dt +0 (M log M)

() R 1 /°° 1 /°° sinz |
= — u) — —= v D E—— —_—— z
92 27'('2 — 2M7T/U + u oM r2v4um 2M7T/U — U IMm2v—ur z

1 — _; 1 1 "
—— — O (M “logM 74
— ! {2M7TU +u  2Mmv — u} * ( o8 ) (74)

= g1 (u) — g2 (u) + O (M~*log M)

M

using the change of variable (2mv — )t = z and (1% + 27v) t = z and that [[° 27" sin (z) dz =
7/2 in the first equality of (74), whereas for the second equality we have employed
that | [z 'sin (2) dz| = O (a™!) and then that

= 1
Z?Fl—Q =0 (M*Q)
‘=~ (2Mmv £u)
which concludes the proof of the Lemma. O

Lemma 7 a,,—a,= O (M~ 'log M).

Proof. a,, — a, is

1 = ;] Mol |
oap 2 (Ain—A)eEmagy D (Af - Ay e
j=—M+1 =M1
M-1
+ ( Z A UNomj _/ zu/\d)\> ’ (75)
j=—M+1
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where A7 = exp (— M cse_"SAz’mf). The third term of (75) is O (M) by Brillinger
(1981, p.15) since |A (A)| cos (uX) and |A (A)|sin (uA) have an integrable derivative.
Assume that o > 0, the proof for oo = 0 is identical. The second term of (75) is
M—1 '

which is bounded in absolute value by

G M—-1 00 G M-1
—18A2m -1 0o -1
&S S eemmarom S S g mi—opry
j=—M+1;j7#0 s=M j=—M+1;5#£0

since A (0) = 0, Lemma 5 implies that Y oo ), cse™**2mi = O (A5, ;M) and C.1 that
41 =0 (G/Mm)"?).
To complete the proof we need to examine the first term of (75) which by definition

of A, and A;f 18

| Ml M—1
oM (1 — exp {— Z (Comn — Cs) g isAom; }) A;eiuhmj. (76)

j=—M+1 s=1

Now, from the definition of ¢, and ¢,, we have that ) 7

M1/ B . )
Z (M Z 10g (fa.e) cos (SM) - ;/ log fz (A) cos (s)) d)\> e~ i8N

s—1 1<t<M 0

— %:1 (% Z log (gz,¢) cos (sxé) _ /01 (log g (AT)) cos (s)) dA) =ik
—a Z < Z log ()\e) coS (s)\é) _ /01 log (72) cos (sA) d)\> e_isf\](77)

1<0<M
by C.1. Since by C.1 g (A) is twice continuously differentiable the first term of (77) is

M—1 (Cspm— Cs) e~5N g

— Z log g (0) + cos (sm) log g (7)) e + 0 (M)

= M™! (D (—)\j) log g (0) +27* (D (X] +7r) +D (XJ - W)) 10%9(77)) +0 (M)

by Brillinger (1981, p.15) where D () = S-M 1 ¢} Because ’ZM*l e 18Azm;

s=1 € s=1 < )\_
and ‘A;‘

2myj

=0 (X?/Q), the contribution of the first term of (77) into (76) is bounded
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in absolute value by
M-1

/2
3 2N =00,
To complete the proof we need to examine the contribution in (76) due to the

second term on the right of (77). That term is

_ajil_:leisjg (% Z log (Xg) (COS (SX@) - 1) - /01 log (A7) (cos (sAm) — 1) dA)

o (% 1§Mbg (Xg) - /0 o (Ar) d>\> D (Xj) . (78)

The second term of (78) is O (j~'log M*/?) since ’D ( ) < )\ " and by Robinson’s
(1995) Lemma 2 M7, _,_,, log ()\g) - fo log (A7) d\ = O (M ~*log M). Next, the
first term of (78). Since the function (cos (u) — 1)log (u) has an integrable derivative,
by Brillinger (1981, p.15), the first term of (78) is

M-—1
108 (M) S o (sm) — 1) e (79)
2M —
M-—1
A
__Z/ Bl 7TM)\ cos (S)\TF) de fzs/\

M-1

+— Z 377/ By (mMX) sin (sAm) log (Am) dAe™ ik

Because (1 — cos (sm)) = 27 (s = odd), the first term of (79) is O (aj =) = O (5" log M*/?),
whereas by Lemma 6 part (a) the second term is O (M ~!). Finally by Lemma 6 part
(b) the third term of (79) is

M-1 M-1
T

< log M « e
Ms15(M_QlogM+(91(5)—92(5))€_m]) = O( 8 )‘FMW;S%(S)@ A

M
o M1 ~
i Z 5qs (8) e,

s=1

By Abel summation by parts the second term is bounded in absolute value by

% z_: lsg1(s) —(s+ 1) g1 (s+1)|=0 (% Z_: (sM*2 +M2)> -0 (ozjfl)

s=1
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as is easily shown from the definition of ¢; (s) in Lemma 6, whereas the third term is

o M/ o D172
T ; 3. T e B
i ; (25 —1) g2 (25 — 1)) e~ DN — u ; 2502 (25) €™M = 0 (aj ")

proceeding as we did for g1 (s) to each of the terms on the left, and where for notational
simplicity we have assumed that M is even.
So, we conclude that the contribution of the second term of (77) into (76) is bounded

in absolute value by

G M ~a/2
i Z ‘1 — exp (j_l log M*/? + M_llogM) ‘ )\j/
j=1
GM*/? log M /2 M) log M _ve/2 GlogM M ~a/2
< OMES LGS e s g
j=1 j=1+log M j=1+M/ log M
= O (M 'logM)
since |a] < 1 and |1 —exp (2)| < G |z| if z is bounded. O

8. CONCLUSIONS AND EXTENSIONS

In this paper we have extended the nonparametric prediction algorithm examined
by Bhansali (1974, 77) to any covariance stationary linear process which may exhibit
strong dependence. Since we do not impose any particular structure on the underline
process of the data, we are thus able to avoid the problem that the misspecification of
the model may induce to obtain adequate predictions. In addition, we have discussed
how the FFLES can be adapted to extract the signal from a covariance stationary
strong dependent process. One feature, in contrast to previous work on the topic, is
that we do not need to assume any particular model for the noise. So, we can coin
the approach as semiparametric.

An alternative method to predict x; or recover the signal is via the estimation of the
spectral density function by fitting an autoregressive AR (P) model where P increases
with the sample size, see Berk (1974) or An et al. (1982) among others. However,
as Bhansali (1978) showed for weakly dependent data, this method is asymptotically
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1]

2]

3]

equivalent to that described in Section 2, at least for prediction purposes. It thus
seems to be of interest to examine whether the results hold the same under strong

dependence.
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