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BOMBS, BRAINS, AND SCIENCE: THE ROLE OF HUMAN AND PHYSICAL
CAPITAL FOR THE CREATION OF SCIENTIFIC KNOWLEDGE

Fabian Waldinger*

Abstract—I examine the role of human and physical capital for the creation
of scientific knowledge. I address the endogeneity of human and physical
capital with two exogenous shocks: the dismissal of scientists in Nazi Ger-
many and World War II bombings. A 10% shock to human capital reduced
output by 0.2 SD in the short run, and the reduction persisted in the long
run. A 10% shock to physical capital reduced output by 0.05 SD in the short
run, and the reduction did not persist. The dismissal of star scientists caused
much larger reductions in output because they are key for attracting other
successful scientists.

I. Introduction

WHICH inputs create successful research universities?
Anecdotal observation suggests that human and physi-

cal capital are important inputs in the production of scientific
knowledge (Machlup, 1962). Understanding the causal effect
of these inputs and their relative role for the creation of
scientific output is important for policymakers, university
administrators, and researchers alike, especially in times of
substantial changes in government funding for the higher
education sector.

Despite the significance of these issues, we know lit-
tle about the effects of different inputs in the production
of scientific knowledge. As highlighted by a large litera-
ture in industrial economics about firms, the estimation of
production functions is difficult because managers adjust
inputs after unobservable productivity shocks (e.g., Acker-
berg et al., 2007). Estimating knowledge production func-
tions is similarly challenging. Star scientists select into
more productive departments and increase these depart-
ments’ productivity. Similarly, high-quality labs are often
built in more productive departments and further enhance
productivity. Because star scientists often attract funding
for labs, complementarities between human and physical
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capital complicate the estimation of knowledge production
functions.

To overcome these challenges, I use two extensive, but
temporary, shocks that affected German and Austrian sci-
ence departments. First, I use the dismissal of mostly Jewish
scientists in Nazi Germany between 1933 and 1940 as a large
shock to human capital. Second, I use the destruction of sci-
ence facilities during the Allied bombing campaign of World
War II (WWII) as a large shock to physical capital. The
two shocks create ample variation across departments. Some
departments lost more than 60% of their faculty, while others
did not lose anyone. Similarly, some departments were com-
pletely destroyed by Allied bombings, while others remained
fully intact. The department-level variation allows me to iso-
late the effects of the human and physical capital shocks from
other shocks that may have affected German and Austrian
science departments during and after the war.

To investigate the long- and short-run effects of the two
shocks, I construct a data set of all scientists in German and
Austrian physics, chemistry, and mathematics departments
at seven points in time between 1926 and 1980. The micro-
data contain more than 10,000 scientist-year observations
with detailed publication records for each scientist. These
data allow me to construct output measures for all science
departments between 1926 and 1980. I add information on
the two shocks from detailed historical records of dismissals
in Nazi Germany and from archival material on bombing
destruction during WWII.

Results show that both human and physical capital shocks
had a negative effect on scientific output in the short run.
A 10% shock to human capital lowered department out-
put by 0.2 standard deviations. A 10% shock to physical
capital lowered output by 0.05 standard deviations. The
short-run results offer insights into the underlying impor-
tance of human and physical capital for the creation of
scientific knowledge because departments took time to hire
new scientists and reconstruct buildings in the immediate
aftermath of the shocks.

I also investigate the long-run persistence of the two
shocks. The human capital shock persisted in the long run
and continued to have a negative impact on scientific out-
put until 1980, almost fifty years after the dismissals. The
physical capital shock, however, did not persist. Scientific
output of departments that were bombed during WWII
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recovered by 1961. By 1970, bombed departments even had
slightly higher output than other departments, suggesting
that bombed departments benefited from upgrading during
postwar reconstruction.

My empirical strategy relies on department-level varia-
tion in the two shocks. Thus, I can control for other changes
that affected German and Austrian science departments in a
similar way by including year fixed effects or even subject-
times-year fixed effects. My results are robust when I control
for a variety of changes stemming from the war and from
postwar events at regional, city, and university levels. In
particular, the results are robust to controlling for postwar
occupation zones, for the creation of federal states after
WWII, for city-level bombing destruction, for changes in
the fraction of Jews, for investment in armament-related
industries, for distance to the iron curtain after the division
of Germany, for changes in university age, for competition
from newly founded universities, for mean reversion, and
for other university-wide changes after 1945. The results are
also robust to excluding East German or Austrian universities
from the sample, using Swiss universities as an alternative
control group, measuring the two shocks in alternative ways,
and addressing measurement error of bombing destruction.

Recent work has highlighted the importance of star sci-
entists for the creation of scientific knowledge (Azoulay,
Zivin, & Wang, 2010; Moser, Voena, & Waldinger, 2014).
Many of the dismissed scholars were among the leaders of
their profession; my data include eleven dismissed Nobel
laureates such as physicists Albert Einstein and Max Born
and chemists Fritz Haber and Otto Meyerhof. I can there-
fore investigate how losing high-quality scientists affected
department output. The loss of a scientist in the top 5th per-
centile, for example, reduced output by between 0.7 and 1.6
standard deviations, compared to the 0.2 standard deviation
reduction in output associated with the loss of any scientist.
These results indicate that star scientists are indeed the main
drivers of knowledge production.

I then evaluate potential mechanisms that could explain
the persistence of the human capital shock. A reduction in
department size after the dismissals explains only some of
the decline in output. I show that a key mechanism for the
persistence of the human capital shock was a permanent fall
in the quality of hires, in particular, after losing high-quality
scientists.

Recent work on the short-run effects of the dismissal of
scientists in Nazi Germany has documented that the quality
of Ph.D. students declined in affected departments, while the
productivity of established scientists was unaffected by the
dismissal of their colleagues (Waldinger, 2010, 2012).1 This
earlier research indicates that the productivity of individual
faculty peers was not affected by the dismissal of high-
quality colleagues, but the results in this paper show that
total department quality declined in the short run because

1 Similarly, Borjas and Doran (2012) document that the migration of
highly qualified Soviet mathematicians to the United States did not lead
to a productivity increase of incumbent U.S. mathematicians but rather to
a decrease in publication output.

departments lost some of their best researchers and that this
decline persisted in the long run because departments could
not hire adequate replacements. These new results show that
despite the absence of localized productivity spillovers, the
loss of human capital can have persistent and large negative
effects on output because departments do not manage to hire
appropriate replacements for lost professors, especially star
scientists.

To my knowledge, no previous research has examined the
roles that human capital and physical capital play in the
creation of scientific knowledge. My research uses exoge-
nous variation to compare and contrast the influence of both.
Existing empirical evidence has shown that scientific out-
put of university departments is correlated with department
size and research expenditure (Johnes, Taylor, & Francis,
1993). At the country level, patenting is significantly related
to R&D manpower and spending (Furman, Porter, & Stern,
2002).2 In a recent paper, Agrawal, McHale, and Oettl (2014)
show that the hiring of a star scientist leads current evolu-
tionary biology departments to increase output through the
subsequent hiring of other good scientists but not through
positive spillovers on existing members of the department.
While Agrawal et al. (2014) cannot rely on exogenous vari-
ation for the hiring of star scientists, their results suggest
that my findings for the human capital shock may also apply
more broadly and beyond the historical context.

My findings also relate to several papers investigating
the persistence of large economic shocks. Physical capi-
tal shocks, such as those from extensive bombings, usu-
ally dissipate relatively quickly (Davis & Weinstein, 2002;
Brackman, Garretsen, & Schramm, 2004; Miguel & Roland,
2011). Most human capital shocks, however, seem to persist
in the long run. The extinction of the Jewish population in
the Soviet Union by the German Army during WWII still
affects city growth, per capita income, wages, and politi-
cal outcomes today (Acemoglu, Hassan, & Robinson, 2011)
and reduces entrepreneurship and support for markets and
democracy (Grosfeld, Rodnyansky, & Zhuravskaya, 2013).
In Germany, the decline of the Jewish population during the
Nazi era had persistent negative effects on education levels
(Akbulut-Yuksel & Yuksel, 2015). In this paper I analyze the
persistence of human and physical capital shocks within the
same framework for the first time. My results corroborate
the findings of earlier papers that have separately analyzed
human and physical capital shocks.

This paper also improves our understanding of Ger-
many’s decline as a scientific superpower after WWII. At
the beginning of the 20th century, German scientists were

2 A number of papers investigate other drivers of university output. Uni-
versity governance significantly affects how changes in funding affect
research performance (Aghion et al., 2010). An increase of university fund-
ing increases the number of published papers but not their quality (Payne
& Siow, 2003; Whalley & Hicks, 2014). At the level of individual scien-
tists, National Institutes of Health funding has only a limited impact on the
research of marginal grant recipients (Jacob & Lefgren, 2011). However,
Howard Hughes Medical Institute grants, which tolerate early failure and
reward long-run success, increase the probability of publishing high-impact
papers (Azoulay, Graff Zivin, & Manso, 2011).
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at the pinnacle of their professions. The leading German
universities, especially Göttingen and Berlin, attracted large
numbers of foreign scholars. In the 1920s, Göttingen offered
permanent and visiting positions that attracted some of the
world’s most prominent physicists, including Arthur Comp-
ton (Nobel Prize, 1927) and Robert Oppenheimer from the
United States, Leo Szilard and Eugene Wigner (Nobel Prize,
1961) from Hungary, Enrico Fermi (Nobel Prize, 1938) from
Italy, and many Germans such as Werner Heisenberg (Nobel
Prize, 1932), Max Born (Nobel Prize, 1954), and James
Frank (Nobel Prize, 1925) (Dardo, 2004, 171). Many of
these illustrious scientists were later dismissed by the Nazi
regime. After WWII, the importance of German science
plummeted, and the United States rose to become the world’s
scientific leader. This development is reflected in data on
Nobel Prizes as shown in figure A1 in the online appendix.
Germany’s decline may have been caused by a number of
factors. The dismissal of some of the most prominent sci-
entists and bombing destruction during WWII are obvious
factors that I consider in this paper.

My estimates indicate that the dismissals of scientists
reduced output in affected German and Austrian science
departments between 1933 and 1980 by 9,576 top journal
publications, a reduction of about 33.5%. Output as mea-
sured by citation-weighted publications declined by 191,920
(34.6%) citations as a result of the dismissals. In the same
time period, dismissed scientists produced 1,181 top jour-
nal publications receiving 32,369 citations. These results
indicate that German science lost much more than the pub-
lications of the dismissed scientists because the reduction
in output in departments with dismissals persisted at least
until 1980. WWII bombings of German and Austrian sci-
ence departments reduced output of affected departments
between 1944 and 1980 by 1,028 top journal publications, a
fall of about 5.7%; citation-weighted publications declined
by 22,194 (6.4%).3 These calculations suggest that the dis-
missal of scientists in Nazi Germany contributed about nine
times more to the decline of German science than physical
destruction during WWII.4

II. Human and Physical Capital Shocks

Scientific knowledge is produced by human and physical
capital (Machlup, 1962). University governance determines
how these inputs are combined in knowledge production.
Recent research has shown that more autonomous universi-
ties and those operating in a more competitive environment
are better at converting funding increases into research
output (Aghion et al., 2010).

3 The time periods for these calculations differ for dismissals and bomb-
ings because dismissals started in 1933 and bombings intensified in
1943.

4 For subject-level results and details on these calculations, see appendix
section 8.3.

Estimating knowledge production functions is challenging
because managers adjust inputs after unobservable produc-
tivity shocks (Ackerberg et al., 2007) and because star
scientists select, and are selected, to work in more produc-
tive universities. Establishing causality is therefore difficult
in this context. Even without these endogeneity concerns, it
is challenging to directly estimate the production function of
universities because it is difficult to measure physical capital
of science departments over reasonably long time periods.
To overcome these challenges, I analyze the importance of
human and physical capital by investigating the effect of
large and exogenous shocks to the human and physical cap-
ital of German and Austrian science departments. I estimate
how these shocks affected department output in the short and
long run as follows:

Outputdt = β1 +
t∑

t �=1931

β2tHCShock(1933-40)d × Yeart

+
t∑

t �=1940

β3tPCShock(1942-45)d × Yeart

+ β4DepartmentFEd + β5YearFEt

+ β6Xdt + εdt . (1)

Outputdt is a measure of department d’s research output in
year t, measured by publications or citation-weighted pub-
lications. HCShock(1933-40)d measures the shock caused
by the dismissal of scientists by the Nazi government
between 1933 and 1940. PCShock(1942-45) measures the
shock caused by Allied bombings between 1942 and 1945.
I describe both shocks in more detail below. The interac-
tions of the shocks with year dummies (one for each of the
seven years between 1926 and 1980 for which I observe
department output; one of those seven interactions will be
excluded as the omitted category) allow me to investigate
the short- and long-run effects of the two shocks.5 The short-
run results offer insights into the underlying importance of
human and physical capital for the creation of scientific
knowledge because departments needed time to hire new
scientists and reconstruct buildings in the immediate after-
math of the shocks. The long-run persistence of the two
shocks indicates how quickly departments recovered from
sharp losses to human and physical capital.

The estimating equation also includes 105 department
fixed effects. They control for factors that did not change
over time and affected scientific output, such as persistent
quality differences across departments. Year fixed effects

5 One may be concerned that bombings also affected human capital if sci-
entists were killed during the bombing campaign. I find no evidence that
the number of scientists who disappear from the sample between 1940 and
1950 (for nonretirement reasons) is correlated with bombing destruction.
In a regression of the number of scientists who disappear between 1940 and
1950 on bombing destruction, the coefficient on department-level destruc-
tion interacted with the 1950 dummy is –0.006 with a p-value of 0.43. This
evidence is consistent with historical accounts that document relatively low
casualty rates of the Allied bombing campaign.
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control for factors that had the same effect on output in all
German and Austrian science departments in a given year,
such as the general disruption of scientific activity during
WWII. The short- and long-run effects of the human and
physical capital shocks are identified from department-level
variation of the two shocks.

A. Human Capital Shock: Dismissal of Scientists
in Nazi Germany

The dismissal of Jewish and “politically unreliable” sci-
entists by the Nazi government was a large shock to the
human capital of German and Austrian science departments.
On April 7, 1933, just over two months after the National
Socialist party seized power, the new government passed the
Law for the Restoration of the Professional Civil Service.
Jewish and “politically unreliable” persons were dismissed
from civil service positions all over Germany.

Anybody with at least one Jewish grandparent was consid-
ered Jewish and summarily dismissed. Scientists of Jewish
origin who had been civil servants since 1914, or had
fought in WWI, or had lost a close family member during
the war, were exempted initially. In 1935 the Reich Citi-
zenship Law (Reichsbürgergesetz) revoked the exemptions,
and remaining scientists of Jewish origin were ultimately
dismissed. The 1933 law also served to dismiss civil ser-
vants with opposing political views, such as members of the
Communist party. The law was immediately implemented
and resulted in a wave of dismissals and early retirements
from German universities. After the annexation of Aus-
tria on March 12, 1938, the law was extended to Austrian
universities.

Overall, more than 1,000 academics were dismissed from
German universities. This included 15.0% of physicists,
14.1% of chemists, and 18.7% of mathematicians (table 1).
Most dismissals occurred in 1933, immediately after the law
had been passed.6

Many dismissed scientists were outstanding members of
their profession. They published more top journal papers and
received more citations than average scientists. While 15.0%
of physicists were dismissed, they published 23.8% of top
journal papers before 1933, and received 64% of the cita-
tions to papers published before 1933. In chemistry, 14.1%
were dismissed but wrote 22.0% of top journal articles and
received 23.4% of citations. In mathematics, 18.7% were dis-
missed but wrote 31.0% of top journal papers and received
61.3% of citations (table 1).

Most of the dismissed scientists emigrated, and the major-
ity of them obtained positions in foreign universities. The
main emigration destinations were the United States, the
United Kingdom, Turkey, the British Mandate of Pales-
tine (later Israel), and Switzerland. In the United States, the

6 I cannot identify whether researchers were dismissed because of their
Jewish origin or their political orientation. Historical studies have shown
that about 87% of dismissals in chemistry (Deichmann, 2001) and 79% of
dismissals in mathematics (Siegmund-Schultze, 1998) affected scientists of
Jewish origin.
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arrival of émigrés from Nazi Germany led to large increases
in the number of patents granted to U.S. chemists (Moser
et al., 2014).

The dismissals affected departments to a varying degree,
even within universities. Some departments lost more than
60% of their faculty, while others did not lose anyone
(table 2).

There may be a concern that the number of dismissals
was correlated with other factors that may have had a direct
effect on scientific output in affected departments. Prior work
has shown that the dismissal of scientists was uncorrelated
with many potential confounders (Waldinger, 2012). In par-
ticular, the dismissals were uncorrelated with the number of
ardent Nazis in a department, because anybody with a Jew-
ish grandparent was dismissed independently of scientific
merits.7 Furthermore, the dismissals did not differentially
alter promotion prospects in affected departments, presum-
ably because academic labor markets operate at the national
or international level. The dismissals were also uncorre-
lated with the probability that nondismissed scientists retired
or left for foreign universities or for industry jobs. The
dismissals were also uncorrelated with changes to fund-
ing as measured by individual research grants from the
Notgemeinschaft der Deutschen Wissenschaft.

B. Physical Capital Shock: Allied Bombings during WWII

Allied bombings during WWII were a large shock to phys-
ical capital. At the beginning of the war in 1939, the United
Kingdom’s Royal Air Force (RAF) concentrated bombings
on military targets such as the German fleet. After the Ger-
man invasion of the Low Countries and the bombing of
Rotterdam by the Luftwaffe in May 1940, the RAF started
bombing other targets, such as oil reservoirs, railway lines
in the Ruhr area, aircraft factories, aerodromes, U-boat ship-
yards, and ports. To avoid the German antiaircraft defense,
the majority of raids were flown under the cover of darkness,
which made targeting extremely difficult.

At the end of 1940, the RAF flew the first area attacks on
German cities to “affect the morale of the German people”
(Webster & Frankland, 1961, p. 156) and to “concentrate the
maximum amount of damage in the centre of town” (Peirse,
1940). In 1941 the RAF increased the number of small-scale
area attacks on German cities. Most of these attacks, how-
ever, did not cause large destruction. Only about 20% of
bombers managed to navigate within five miles of their des-
tination, and even fewer managed to hit the target. As a result,
the smallest potential targets were entire towns (Frankland,
2005; Webster & Frankland, 1961). Even these were often

7 As outlined above, the majority of dismissals affected scientists of Jewish
origin. The remaining dismissals occurred for political reasons. While clear
rules guided many political dismissals (such as a rule that all members of the
Communist Party were to be dismissed), departments may have found ways
to affect a small number of political dismissals. These additional political
dismissals mostly occurred in later years. Results are robust to measuring
the dismissal shock with 1933 and 1934 dismissals only.

missed. A bombing raid of Karlsruhe and Stuttgart on Octo-
ber 1, 1941, for example, hit not only the two target cities but
also 25 other cities, some of them several hundred kilometers
away (Webster & Frankland, 1961).

The appointment of Sir Arthur Harris as head of Bomber
Command on February 23, 1942, and the area bombing
directive issued during the preceding week caused an inten-
sification of the bombing campaign. On May 30, 1942, the
RAF flew the first 1,000-bomber attack against Cologne, a
city that had been bombed with, at most, forty planes in
each of the 107 preceding attacks. The raid damaged about
a third of Cologne’s surface area (Hohn, 1991; Webster &
Frankland, 1961). To maximize destruction of inner cities,
the RAF used incendiary bombs that started fires in bombed
cities. The introduction of heavy bombers (in particular, the
Lancaster bomber that was gradually introduced after March
1942), the use of radar and radar-like devices (introduced
in March 1942), and the deployment of Pathfinder target-
marking planes (first used in January 1943) increased the
precision and efficiency of bombings.

In January 1943, the U.S. Army Air Force (USAAF)
entered the bombing campaign against Germany. While the
British continued to fly nighttime raids and, in particular,
area attacks against inner cities, the USAAF largely attacked
during the day and bombed strategically important targets
such as the German aircraft and ball-bearing industries.

The bombing of targets in Germany intensified in 1944
with the introduction of the “double-blow” tactic, in which
two or later three attacks were conducted over short time
periods to increase the efficacy of incendiary bombs. The
increased air supremacy of the Allied forces further facili-
tated the bombings. Toward the end of the war, the bombard-
ments were extended to smaller cities that had been spared
in previous attacks.

Overall, about 1.35 million tons of bombs were dropped
over German territory. Data on monthly bomb loads show
an almost continuous increase between 1940 and 1945, with
particularly large increases in the last years of the war
(figure A2).

Allied bombings completely destroyed about 18.5% of
homes in what later became the Federal Republic of Ger-
many (Hohn, 1991). Because area bombings targeted the
inner cities of all larger cities, destruction in larger cities
was usually higher.

Universities were never listed as targets in any of the
Allied bombing directives or similar documents. Nonethe-
less, many university facilities were destroyed because of
targeting problems that persisted until the end of the war.
Because of these problems, bombs fell relatively randomly
within cities, and there was large variation in destruction
across different university departments (table 2). Targeting
buildings of particular departments would have been impos-
sible. Because many bombing raids involved the use of
incendiary bombs, fires in affected buildings destroyed most
of the scientific equipment and important manuscripts that
had not been relocated to safer locations. At the University
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of Cologne, for example, the bombing raids of the chemi-
cal institute destroyed scientific materials such as chemicals,
glass storage bottles, and other valuable equipment with a
total value of about 50,000 RM (about $300,000 in today’s
U.S. dollars). At the Institute of Applied Physics, bombings
destroyed X-ray valve tubes, capacitors, electrical instru-
ments, and other apparatuses with a total value of about
127,000 RM (about $813,000 in today’s U.S. dollars) (table
A1). At the time, Cologne had small science departments
that were not particularly productive. In larger departments,
the loss of valuable scientific material was probably much
larger. The fires also destroyed many of the valuable private
libraries that professors had assembled during their careers.

Most science departments were hit in 1944 or 1945 when
Allied bombings intensified. Data I obtained from univer-
sity archives indicate the exact dates for the first and last
bombing raids that destroyed university buildings at some
universities. According to these data, the first raid occurred
in June 1941 and destroyed buildings at the Technical Uni-
versity of Aachen. Bombing raids that hit other universities
continued and intensified until the end of WWII.

After the end of the war on May 8, 1945, reconstruc-
tion of university buildings was hampered by a lack of funds
and skilled craftsmen, insufficient construction supplies, and
the overall devastation of many German cities. Most uni-
versities enlisted students to clear away rubble and help
with reconstruction. The universities of Bonn, Karlsruhe, and
Hannover, for example, required up to 1,000 reconstruction
service hours from its students until 1949 (van Rey, 1995;
Hoepke, 2007; Wolters, 1950). In June 1951, James M. Read,
the chief of the education and cultural relations division
of the High Commission for Occupied Germany, reported
that there remained a “need for new buildings and libraries
and classrooms and scientific apparatus, many of which,
destroyed by the war, are still not replaced” (Read, 1951). By
the end of the 1950s, most universities had completed recon-
struction, but some continued reconstruction until the 1960s
(Hoepke, 2007; Technische Universität Dresden 1996).

III. Panel Data Set of Science Departments

A. Scientists in German and Austrian Universities,
1926–1980

To evaluate the effect of the two shocks, I construct a
new panel data set of physicists, chemists, and mathemati-
cians at German and Austrian universities. I obtain these data
from Kürschners Deutscher Gelehrtenkalender, a register of
all German university professors, that has been published
since the 1920s in five- to ten-year intervals. For this paper,
I use data from volumes published in 1926, 1931, 1940/41,
1950, 1961, 1970, and 1980 to construct complete faculty
rosters for science departments at these seven points in time
spanning 54 years.

I extract all scientists who were chaired professors, extra-
ordinary professors, or Privatdozenten (the first position in
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the German university system with the right to give lec-
tures) from each volume.8 I include scientists from all 35
German or Austrian universities that existed in 1926 and
remained on German (both FRG and GDR) or Austrian
territory after 1945 (see table 2 for a listing of the uni-
versities in my sample).9 For each university I obtain data
on physics, chemistry, and mathematics departments—105
science departments overall.10 The online data appendix
provides additional details and references. The microdata
include 5,716 scientists (2,456 chemists, 2,000 physicists,
and 1,260 mathematicians) with 10,387 person-year obser-
vations (4,605 in chemistry, 3,594 in physics, and 2,188 in
mathematics). The number of scientists in German and Aus-
trian universities increased massively after 1926, with the
exception of 1941 (and 1950 in chemistry), the first time
periods after the dismissals (figure A3).

B. Output of German and Austrian Science Departments

To measure department output, I first obtain publications
and citation-weighted publications for each scientist from the
ISI Web of Science. The publication and citation data include
both historical and current top journals for German and
Austrian scientists. Top journals from the historical period
include all science journals that were published in Germany
and are covered by the Web of Science.11 Furthermore, I
consider the most important international journals that were
outlets for German scientists in the historical period, includ-
ing general science journals (e.g., Nature and Science) and
international field journals (e.g., Acta Mathematica). Cur-
rent top journals include those that are in lead positions of
contemporary rankings. Table A2 includes the full list of top
journals, and appendix 8.4 provides additional information
on data construction and sources.

I first download all articles published between 1920 and
1985 in any top journal as defined above.12 I then calculate
the number of top journal publications and citation-weighted
publications for each scientist and year. The Web of Science
data include only the last name and the initials of the first
names for each author. Most German scientists have distinct
last names that are also different from most foreign names. In
the rare cases that a last name–first initial combination does

8 Privatdozenten are comparable to junior faculty at U.S. universities.
Extraordinary professors are comparable to associate professors, and
chaired professors are comparable to full professors.

9 The sample excludes three universities (the University and Technical
University of Breslau, now Wroclaw, and the University of Königsberg,
now Kaliningrad) that were based in eastern territories that Germany lost
after WWII. The Gelehrtenkalender did not list these universities after 1945.

10 Scientists in universities located in the GDR were not listed in the
Gelehrtenkalender in 1980.

11 Historical journals with coverage in the Web of Science were the top
journals at their time because Thomson Scientific digitized only the most
cited journals for the period 1900 to 1944.

12 A few top journals, such as Physical Review Letters, were founded after
1920. For these, I download all articles published after the various journals’
inception. Because all regressions include year fixed effects, the changing
pool of journals does not affect the results.

not uniquely identify a scientist in my data, I split (citation-
weighted) publications according to the number of scientists
with the same last name and first initial combination. Table
A3 shows the most cited scientists in my data. Most of them
are very well known in the scientific community, indicat-
ing that the output measures carry meaningful information.
Interestingly, Johann von Neumann, who later emigrated to
the United States, is the most-cited mathematician.

To measure department output for each of the seven points
in time, I add individual output measures within departments.
Individual output is measured using a five-year window
around the relevant year. Albert Einstein’s individual output
measure for 1926, for example, is the sum of his publica-
tions between 1923 and 1927.13 I then add up the individual
output measures within departments. Say a department had
three scientists with individual output equal to 1, 2, and 3;
total department output would be 1+2+3 = 6. The Web of
Science data also include information on the number of times
each article was subsequently cited in any journal covered by
the Web of Science. This allows me to construct an analogous
output measure based on citation-weighted publications.14

Publication and citation patterns are different across the
three subjects. To ensure comparability across subjects, I
normalize total department output to have zero mean and
unit variance in each subject. This also allows for easy
interpretation of the estimated regression coefficients.

C. Data on Dismissals

I obtain data on dismissed scientists from a number of
sources. The main source is the List of Displaced Ger-
man Scholars, compiled by a relief organization, Emergency
Alliance of German Scholars Abroad, which was founded by
some dismissed scientists to support other dismissed scholars
seeking positions in foreign universities (Notgemeinschaft
Deutscher Wissenschaftler im Ausland, 1936). The list con-
tained about 1,650 names. I extract all dismissed physicists,
chemists, and mathematicians from the list.

As this list was published before 1938, it did not
include dismissals from Austrian universities. I consult the
Biographisches Handbuch der deutschsprachigen Emigra-
tion nach 1933: Vol. 2: The Arts, Sciences, and Literature
(1983) to obtain dismissals from Austria. This source also
contains a few additional dismissals from German universi-
ties, because some dismissed scientists passed away before
the List of Displaced German Scholars was compiled, for
example. Together, the two sources cover about 90% of all
dismissals. I augment this information with data on a few

13 Publications are measured using an asymmetric window around the
relevant year of the Gelehrtenkalender; output for 1926 is measured with
publications between 1923 and 1927. The asymmetry accounts for the delay
in the publication of the Gelehrtenkalender because questionnaires for a
certain volume had to be sent out and returned before publication. Using a
symmetric window does not affect the results.

14 The citation-weighted productivity measure is constructed as above by
adding all citations to publications published in a five-year window around
the relevant year. Citations are measured in all papers published until today.
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additional dismissals from three secondary sources compiled
by historians who have studied the dismissal of scientists in
Nazi Germany.15

D. Data on Bombings of Science Departments

To measure department-level bombing destruction, I con-
struct a new data set from university archives. After bombing
raids, university institutes often provided detailed destruc-
tion reports to obtain funds and materials for reconstruction.
I use these reports and other sources to construct a measure
of destruction at the department level.

I obtained this information by asking university archivists
for information on WWII destruction of buildings used by
physicists, chemists, and mathematicians. In cases where
university archivists could not provide adequate information,
a research assistant or I personally consulted the relevant
archive to obtain a measure of bombing destruction.

After each bombing raid, most universities estimated the
degree of damage inflicted by bombs on each building.
Damage was usually measured in percentages (e.g., 50%
destroyed). Some universities provided accurate descriptions
or even maps of bombing destruction (see figure A4 for a
map provided by the Technical University of Berlin). Other
departments did not report destruction in percentages but
instead wrote verbal descriptions of bomb damage. I convert
the verbal information into percentages using a fixed rule
outlined in appendix section 8.4. If a department occupied
various buildings, I average the percentage of destruction
across all buildings used by the department.16

While the destruction measure captures the destruction of
buildings, it also serves as a proxy for the destruction of sci-
entific equipment and materials. As described for the case of
Cologne, the bombing raids often destroyed scientific equip-
ment and other physical inputs. Unfortunately, detailed data
on the destruction of scientific equipment are not available
for most universities.

To analyze the importance of measurement error, I also
construct a measure of destruction from bombing campaigns
at the university level. I collect data for this alternative
measure from information on university websites and a
number of additional sources (see online appendix 8.4 for
details).

E. Data on Control Variables

I also collect data on control variables from a number of
different sources. The control variables include university
age, foundation years of new universities, the share of firms
in armament-related industries in 1933, the fraction of Jews
at the city level in 1933, and distance to the iron curtain.

15 Dismissed chemists come from Deichmann (2001), physicists from
Beyerchen (1977), and mathematicians from Siegmund-Schultze (1998).

16 I use university-level destruction data for the University of Darmstadt
because I could not obtain information regarding damage at the department
level.

Further information and sources for these variables can be
found in appendix 9.4.

The final data set contains panel data for German and
Austrian science departments covering seven points in time
(1926, 1931, 1940, 1950, 1961, 1970, and 1980). The data
include different measures of department output, information
on dismissal and bombing shocks, and time-varying control
variables.

IV. The Effect of Human and Physical Capital Shocks
on Department Output

A. Main Results

I estimate equation (1) to analyze how the human and
physical capital shocks affected output in the short run
(before departments fully adjusted to the shocks) and in the
long run. The first specifications focus on the human capital
shock that happened between 1933 and 1940. Between 1931,
the omitted interaction in equation (1), and 1940, output in
departments with one more dismissal fell by .17 standard
deviations compared to departments without dismissals (see
table 3, column 1). This short-run effect persisted in the
long run. Coefficients on the interactions with subsequent
years are significantly negative until 1980. Controlling for
subject times year fixed effects, to allow for differential out-
put trends in the three subjects, does not affect the results
(column 2). Further controlling for occupation zone (U.S.
zone, U.K. zone, French zone, Soviet zone) times post-1945
dummies has a negligible effect on estimated coefficients but
lowers standard errors (column 3). Estimates imply that the
dismissal of one scientist lowered department output, even in
the long run, by between 0.17 and 0.28 standard deviations
(column 3).

The next specifications focus on the bombing shock that
was concentrated between 1942 and 1945. Between 1940
(the omitted interaction) and 1950, output in departments
with 10% bombing destruction declined by .05 standard
deviations, compared to departments without destruction.
The effect is significant at the 5% level only if I control for
subject times year fixed effects and occupation zone times
post-1945 dummies (see table 3, columns 4–6). This short-
run effect did not persist. As early as 1961, departments
that had been bombed during WWII performed similarly to
departments without bombings. By 1970, departments that
had been bombed even performed slightly better than other
departments. While the 1970 results are only significant at
the 10% level in two of the three specifications, they suggest
that upgrading during reconstruction may have had a small
positive effect on output in the medium run.

When I jointly estimate effects of the bombing and dis-
missal shocks, the results are very similar (table 3, columns
7–9). In the next specification, I investigate whether the
bombing results are caused by the destruction of department
buildings or by more general destruction at the city-level. In a
regression that adds interactions of city level destruction with
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Table 3.—Persistence of Dismissal and Bombing Shocks: Publications

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi- Publi-

Dependent Variable: cations cations cations cations cations cations cations cations cations cations

Number of Dismissals × 1926 0.023 0.017 0.017 0.024 0.018 0.018 0.018
(0.025) (0.025) (0.025) (0.025) (0.026) (0.026) (0.026)

Number of Dismissals × 1940 −0.173∗∗∗ −0.173∗∗∗ −0.173∗∗∗ −0.172∗∗∗ −0.171∗∗∗ −0.171∗∗∗ −0.170∗∗∗
(0.037) (0.039) (0.039) (0.039) (0.041) (0.041) (0.042)

Number of Dismissals × 1950 −0.210∗ −0.222∗ −0.219∗∗ −0.210 −0.221∗ −0.218∗∗ −0.219∗∗
(0.121) (0.125) (0.099) (0.124) (0.128) (0.102) (0.102)

Number of Dismissals × 1961 −0.245∗∗ −0.257∗∗ −0.254∗∗∗ −0.244∗∗ −0.255∗∗ −0.253∗∗∗ −0.253∗∗∗
(0.102) (0.105) (0.080) (0.105) (0.107) (0.083) (0.084)

Number of Dismissals × 1970 −0.291∗∗∗ −0.286∗∗ −0.283∗∗∗ −0.290∗∗ −0.283∗∗ −0.281∗∗∗ −0.282∗∗∗
(0.104) (0.108) (0.084) (0.108) (0.111) (0.087) (0.088)

Number of Dismissals × 1980 −0.202∗∗ −0.202∗∗ −0.207∗∗∗ −0.199∗∗ −0.198∗∗ −0.202∗∗∗ −0.212∗∗∗
(0.077) (0.079) (0.071) (0.077) (0.078) (0.070) (0.077)

% Destruction × 1926 −0.004 −0.005∗ −0.005∗ −0.004∗ −0.004∗∗ −0.004∗∗ −0.004∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

% Destruction × 1931 −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.007∗∗∗
(0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002)

% Destruction × 1950 −0.002 −0.003∗ −0.005∗∗ −0.003 −0.003∗ −0.005∗∗ −0.004∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

% Destruction × 1961 0.000 −0.001 −0.003 0.000 −0.001 −0.003 −0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

% Destruction × 1970 0.003∗ 0.004∗ 0.002 0.003 0.004∗ 0.002 0.005∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

% Destruction × 1980 0.001 0.001 −0.000 0.001 0.001 −0.000 0.003
(0.003) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004)

Department FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes
Subject × Year FE Yes Yes Yes Yes Yes Yes Yes
Occupation Zones × Post1945 Yes Yes Yes Yes
% City Destruction × Year FE Yes
Observations 714 714 714 714 714 714 714 714 714 714
R2 0.590 0.650 0.678 0.513 0.576 0.603 0.603 0.664 0.689 0.693

Significant at ***1%, **5%, *10%. All standard errors clustered at university level.
The dependent variable Publications is the sum of publications published by all scientists in department d in a five-year window around year t. The variable is normalized to have 0 mean and a standard deviation of 1

within subjects. Number of Dismissals × 1926 is equal to the number of dismissals between 1933 and 1940 interacted with an indicator for 1926. Interactions with other years are defined accordingly. The excluded
interaction is the number of dismissals with an indicator for 1931; the last observation before the dismissals. % Destruction × 1926 is equal to percentage destruction caused by Allied bombings between 1940 and 1945
interacted with an indicator for 1926. Interactions with other years are defined accordingly. The excluded interaction is % destruction with an indicator for 1940, the last observation before the bombings. Department
FE is a full set of 105 department fixed effects. Year FE is a set of year dummies. Subject × Year FE is the interaction of subject indicators (for physics, chemistry, and mathematics) with year dummies. Occupation
Zones × Post1945 is the interaction of occupation zone indicators with a post-1945 dummy. Percentage City Destruction × Year FE is the interaction of city-level destruction with the full set of year fixed effects.

year dummies as additional controls, the 1950 coefficient
on department-level destruction does not change substan-
tially (table 3, column 10). These results indicate that the
effect of physical capital destruction on department output
is primarily driven by the destruction of department facilities
instead of more general destruction at the city level.

To investigate the relative magnitude of the two shocks,
I plot the effect of 10% shocks to human and physical
capital of a hypothetical science department.17 In the short
run, before departments could rehire faculty and reconstruct
facilities, a 10% shock to human capital caused a four times
stronger reduction in output than a 10% shock to physical
capital (figure 1).18 While the human capital shock persisted

17 Average department size in 1931 was 10.15. A 10% shock to human
capital therefore corresponds to losing 1.015 scientists. To plot figure 1, I
multiply by 1.015 the dismissal coefficients and standard errors reported in
column 10 of table 3. As departmental destruction is measured in percent-
ages, I multiply by 10 the bombing coefficients and standard errors reported
in column 10 of table 3.

18 The p-value of a test of the null hypothesis: (1.015 × coefficient #
dismissed × 1950) = (10 × coefficient % destruction × 1950) has a p-value
of 0.097 for 1950. For all later years, the effect of a 10% shock to human
capital is significantly larger than a 10% shock to physical capital ( p-values
between 0.001 and 0.012).

for almost fifty years until 1980, the physical capital shock
dissipated quickly and even had a small positive effect in
1970. The figure also indicates that the human capital results
are not driven by pretrends. The physical capital results,
however, may be slightly underestimated because output in
bombed departments increased during the pre-period rela-
tive to other departments. The 1931 interaction with WWII
destruction is negative and significant, suggesting that out-
put in departments that would be bombed during WWII
rose relatively faster between 1931 and 1940 (the omitted
interaction). I show below that including additional con-
trols reduces the magnitude and significance of the pre-war
bombing coefficients while leaving the postwar coefficients
unchanged.

For the results reported above, I measure output as the sum
of publications in top journals (normalized to have a mean
of 0 and a standard deviation of 1). As an alternative output
measure, I use citation-weighted publications (again normal-
ized to have a mean of 0 and a standard deviation of 1). They
quantify the quality of each published paper using valuations
of the entire scientific community. The alternative measure
yields similar results (table 4 and figure 2). The dismissal of
one scientist reduced output, even in the long run, by between
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Figure 1.—Persistence of 10% Shocks: Publications

The figure plots scaled regression coefficients and 95% confidence intervals obtained from the estimation of equation (1) as reported in column 10 of table 3. Point estimates and confidence intervals are scaled to
reflect at a 10% shock to both human and physical capital.

0.16 and 0.22 standard deviations (column 10). Bombings
had a small negative, but insignificant, effect in 1950. By
1970, bombed departments even performed slightly better
(significant at the 10% level).19

B. Robustness of Main Results

Department fixed effects control for time-invariant factors
that affect output at the department level. Year fixed effects
control for yearly shocks that have the same effect on all
science departments. Subject-times-year fixed effects control
for yearly shocks that have the same effect on all physics,
chemistry, or mathematics departments. For the main results,
I also control for occupation zone times a post-1945 dummy
and city-level destruction interacted with year fixed effects.

In the following, I show that results are robust to the
inclusion of additional control variables, adjusting output
for changes in a department’s age structure, the use of dif-
ferent samples, and the use of alternative measures of the
two shocks. I also address measurement error of bombing
destruction with an instrumental variables strategy and con-
trol for university-wide changes after 1945 and mean rever-
sion. Furthermore, I investigate complementarities between
human and physical capital.

Additional controls and changes in departments’ age struc-
ture. First, I show that results are not driven by differential
postwar policies regarding universities. After WWII, federal
states (Länder) received sole responsibility for universities
in West Germany. Controlling for federal state indicators
interacted with a post-1945 dummy leaves results almost
unchanged (tables 5 and A4, column 1).20

19 The tests of the null hypotheses (1.015 × coefficient # dismissed × year
dummy) = (10 × coefficient % destruction × year dummy) have p-values
between 0.000 and 0.011.

20 As university funding in the GDR was centralized at the federal level,
I include a joint indicator for all East German universities, including the
Technical University of Berlin, which was located in West Berlin. As the
federal states of Hamburg and Schleswig-Holstein had only one university

Results are also not driven by differential trends of
universities with different founding years. Controlling for
university age and its square does not affect results (tables 5
and A4, column 2).

I also show that results are not driven by increased compe-
tition from newly founded universities. During the postwar
period, in particular during the 1960s and 1970s, a number
of new universities were founded in Germany and Austria.
Including a time-varying control variable that measures the
number of departments within 50 kilometers of each sci-
ence department does not affect results (tables 5 and A4,
column 3).

Furthermore, results are not driven by increased arma-
ments spending by the Nazi government that may have
benefited certain universities. Armament spending could
be correlated with the two shocks if departments bene-
fited from industry spillovers or if the Allied bombing
campaign targeted cities with a concentration of armaments-
related industry. Including controls for the share of firms
in three armaments-related industries interacted with year
dummies leaves results almost unchanged (tables 5 and A4,
column 4).21

Results are also stable if I control for the fraction of Jews
at the city level. The loss of the Jewish population may have
had long-lasting effects (Acemoglu et al., 2011; Grosfeld
et al., 2013; Akbulut-Yuksel & Yuksel, 2015) that could have
been correlated with the dismissal of scientists. Adding a
variable that controls for the fraction of Jews at the city level
(in the pre-Nazi period) interacted with a post-1945 dummy
does not affect results; if anything, the dismissal coefficients
become slightly more negative (tables 5 and A4, column 5).

each, I include a joint indicator for these universities with the adjacent
state of Niedersachsen. I also include a joint indicator for the five Austrian
universities.

21 The three armaments-related industries are iron and steel production,
mechanical engineering and vehicle construction, and chemicals. The shares
of firms in these industries are measured in 1933 (1930 for Austria).
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Figure 2.—Persistence of 10% Shocks: Citation-Weighted Publications

The figure plots scaled regression coefficients and 95% confidence intervals obtained from the estimation of equation (1) as reported in column 10 of table 4. Point estimates and confidence intervals are scaled to
reflect a 10% shock to both human and physical capital.

Table 5.—Robustness Checks: Publications Adding Controls

(1) (2) (3) (4) (5) (6) (7)
Publi- Publi- Publi- Publi- Publi- Publi- Age-adjusted

Dependent Variable: cations cations cations cations cations cations Publications
Full Full Full Full Full Full Full

Sample: Sample Sample Sample Sample Sample Sample Sample

# of Dismissals × 1926 0.018 0.020 0.020 0.026 0.026 0.026 0.086∗∗
(0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.036)

# of Dismissals × 1940 −0.170∗∗∗ −0.173∗∗∗ −0.173∗∗∗ −0.165∗∗∗ −0.175∗∗∗ −0.175∗∗∗ −0.160∗∗∗
(0.042) (0.042) (0.042) (0.037) (0.038) (0.038) (0.053)

# of Dismissals × 1950 −0.236∗∗ −0.244∗∗ −0.252∗∗ −0.236∗∗ −0.248∗∗ −0.246∗∗ −0.178
(0.102) (0.103) (0.108) (0.102) (0.103) (0.099) (0.122)

# of Dismissals × 1961 −0.271∗∗∗ −0.282∗∗∗ −0.289∗∗∗ −0.276∗∗∗ −0.288∗∗∗ −0.286∗∗∗ −0.233∗∗
(0.078) (0.077) (0.081) (0.075) (0.075) (0.071) (0.090)

# of Dismissals × 1970 −0.300∗∗∗ −0.314∗∗∗ −0.322∗∗∗ −0.314∗∗∗ −0.326∗∗∗ −0.323∗∗∗ −0.285∗∗∗
(0.079) (0.078) (0.079) (0.074) (0.073) (0.069) (0.074)

# of Dismissals × 1980 −0.234∗∗∗ −0.251∗∗∗ −0.261∗∗∗ −0.259∗∗∗ −0.272∗∗∗ −0.272∗∗∗ −0.287∗∗∗
(0.067) (0.065) (0.066) (0.063) (0.062) (0.061) (0.087)

% Destruction × 1926 −0.004∗ −0.004∗ −0.004∗ −0.003 −0.002 −0.002 −0.004
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

% Destruction × 1931 −0.007∗∗∗ −0.007∗∗∗ −0.007∗∗∗ −0.005∗∗ −0.005∗ −0.005∗ −0.006∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

% Destruction × 1950 −0.006∗∗∗ −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗ −0.005∗∗ −0.005∗∗ −0.005
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

% Destruction × 1961 −0.004∗∗ −0.003∗ −0.003∗ −0.003 −0.003 −0.003 −0.004
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

% Destruction × 1970 0.003 0.003 0.003 0.004 0.004 0.003 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

% Destruction × 1980 0.001 0.002 0.002 0.001 0.001 0.001 −0.000
(0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.004)

Standard controls Yes Yes Yes Yes Yes Yes Yes
Länder Dummies × P45 Yes Yes Yes Yes Yes Yes Yes
Quadratic in Uni. Age Yes Yes Yes Yes Yes Yes
# of Deps. within 50 km Yes Yes Yes Yes Yes
Industries (1933) × Year Yes Yes Yes Yes
Fract. Jews (1933) × P33 Yes Yes Yes
Dist. to Iron Curtain × P45 Yes Yes
Observations 714 714 714 714 714 714 714
R2 0.703 0.706 0.707 0.716 0.717 0.718 0.603

Significant at ***1%, **5%, *10%. (SE clustered at university level.)
The dependent variable Publications is the sum of publications published by all scientists in department d in a five-year window around year t. The variable is normalized to have 0 mean and a standard deviation

of 1 within subjects. # of Dismissals × 1926 is equal to the number of dismissals between 1933 and 1940 interacted with an indicator for 1926. Interactions with other years are defined accordingly. The excluded
interaction is the number of dismissals with 1931, the last observation before the dismissals. % Destruction × 1926 is equal to percentage destruction caused by Allied bombings between 1940 and 1945 interacted with
an indicator that is equal to 1 for observations from 1926. Interactions with other years are defined accordingly. The excluded interaction is % destruction with 1940, the last observation before the bombings. Standard
Controls are all controls as reported in column 10 of table 3. Länder Dummies × P45 is a set of dummy variables for each postwar German federal state (Land) interacted with a post-1945 dummy. Quadratic in Uni.
Age is equal to the age of the university in each year and its square. # of Deps. within 50 km measures the number of departments in the same subject within 50 kilometers of each department in each year. Industries
(1933) × Year is the fraction of firms in a city belonging to each of three armament-related universities in 1933 (1930 for Austria) interacted with a full set of year fixed effects. Fract. Jews (1933) × P33 is the fraction
of Jews in each city in 1933 interacted with a post 1933 dummy. Dist. to Iron Curtain × P45 is the distance to the iron curtain from each city interacted with a post-1945 dummy.
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Figure 3.—Persistence of 10% Shocks: Publications with All Controls

The figure plots scaled regression coefficients and 95% confidence intervals obtained from the estimation of equation (1) as reported in column 6 of table 5. Point estimates and confidence intervals are scaled to
reflect a 10% shock to both human and physical capital.

Finally, I show that results are not driven by negative
effects from the division of Germany. Universities that were
closer to the iron curtain may have suffered after 1945
because these locations experienced a decline in population
growth after the division of Germany (Redding & Sturm,
2008). Including an interaction of the distance to the iron cur-
tain with a post-1945 dummy does not affect results (tables
5 and A4, column 6).

Figure 3 shows the effect of 10% shocks, including all con-
trols. While the figure looks similar to the one that includes
only a limited set of controls (figure 1), the coefficients on
the human capital shock are slightly more negative than the
baseline results. This suggests that results are not driven by
other factors that may have affected scientific output. Fur-
thermore, the addition of controls reduces the magnitude and
significance of pretrends for the bombing shock while not
affecting the 1950 coefficient (figure A5 reports equivalent
results for citation-weighted publications).

In additional specifications, I show that changes in the age
structure of departments with dismissals do not drive results.
Prior research has shown that scientists’ output declines with
age (Levin & Stephan, 1991). If changes in the age structure
of departments were caused by the dismissals, one would
not want to control for these changes to avoid “bad con-
trol” problems. Nevertheless, I use an alternative dependent
variable to investigate whether the results are affected by
changes in the age structure of departments. I first regress
individual output on a full set of age dummies (in five-year
bins). I then sum the residuals from this regression within
departments to construct department output that I normal-
ize to have a mean of 0 and a standard deviation of 1. This
alternative dependent variable yields similar results (tables 5
and A4, column 7).

Different samples. The following results show that
results are robust to using different samples. Dropping
Austrian universities, for example, does not affect results
(tables 6 and A5, column 1). The main sample includes

universities from both West (FRG) and East Germany
(GDR), where reconstruction and rehiring was presumably
quite different. Dropping East German universities from the
sample only slightly reduces the absolute magnitude of the
coefficients, suggesting that results are not driven by a dif-
ferential development in the GDR (tables 6 and A5, column
2). These results also demonstrate that the development of
the University of Berlin that was located in the Soviet sector
does not drive results.22 In specifications not reported in the
paper, I also show that results are robust to dropping both
Austria and the GDR.

In an additional test, I use Swiss universities as an alter-
native control group. Because many Jewish scientists were
outstanding members of their profession, they concentrated
in better departments. German and Austrian departments
without dismissals may therefore not be an appropriate
control group for the development of high-quality depart-
ments. To investigate this concern, I use four German-
speaking Swiss universities as an alternative control group.23

Some of the Swiss universities are among the top univer-
sities in the German-speaking world. I estimate results in
a sample that includes only those German and Austrian
departments with dismissals, and the Swiss departments as
controls. Results are highly significant with point estimates
that are larger in absolute magnitude (tables 6 and A5,
column 3).

Alternative shock measures. The following specifica-
tions demonstrate that results are not sensitive to using
alternative measures of the two shocks. In the specifica-
tions reported above, I measure the human capital shock
with the number of dismissals in each department. As an
alternative measure of the human capital shock, I use per-
centage dismissals in each department. Results with this

22 The University of Berlin reopened in January 1946. In 1948, the Free
University of Berlin was founded in the U.S. sector.

23 Swiss universities are not in the main sample because they hired a small
number of dismissed scientists.
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Table 6.—Further Robustness Checks: Publications Different Samples, Different Shock Measures,

Controlling for University × Post1945 and Mean Reversion

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Publi- Publi- Publi- Publi- Publi- Publi- Publi-

Dependent Variable: cations cations cations cations cations cations cations
Publi- Publi- Publi- Full Full Full Full Full Full Full

Sample: cations cations cations Sample Sample Sample Sample Sample Sample Sample
Dropping Dropping Swiss Unis. % Only 33–34 Same Effect Science Instrument UniFE* Control for
Austria East Germany as Control Dismissals Dismissals on Output Dest. w/ Uni. Dest. Post45 M. Reversion

Dismissals × 1926 0.024 0.027 0.030 −0.022 0.048 0.150 0.028 0.030 0.026 0.004
(0.029) (0.043) (0.032) (0.064) (0.041) (0.167) (0.026) (0.028) (0.027) (0.021)

Dismissals × 1940 −0.138∗∗∗ −0.116∗∗∗ −0.161∗∗∗ −0.229∗ −0.153∗∗∗ −1.000∗∗∗ −0.175∗∗∗ −0.182∗∗∗ −0.163∗∗∗ −0.129∗∗∗
(0.041) (0.033) (0.029) (0.135) (0.040) (0.241) (0.036) (0.037) (0.039) (0.027)

Dismissals × 1950 −0.221∗∗∗ −0.080 −0.249∗∗∗ −0.260 −0.209∗ −1.403∗∗ −0.242∗∗ −0.228∗∗ −0.148∗ −0.152∗
(0.079) (0.047) (0.080) (0.172) (0.114) (0.607) (0.098) (0.096) (0.080) (0.081)

Dismissals × 1961 −0.259∗∗∗ −0.151∗∗∗ −0.293∗∗∗ −0.292 −0.275∗∗∗ −1.630∗∗∗ −0.283∗∗∗ −0.268∗∗∗ −0.187∗∗∗ −0.143∗∗∗
(0.051) (0.048) (0.049) (0.174) (0.081) (0.512) (0.069) (0.066) (0.066) (0.044)

Dismissals × 1970 −0.298∗∗∗ −0.203∗∗∗ −0.324∗∗∗ −0.334∗ −0.314∗∗∗ −1.844∗∗∗ −0.322∗∗∗ −0.309∗∗∗ −0.225∗∗∗ −0.143∗∗∗
(0.050) (0.069) (0.047) (0.177) (0.081) (0.531) (0.066) (0.068) (0.071) (0.038)

Dismissals × 1980 −0.271∗∗∗ −0.184∗∗∗ −0.321∗∗∗ −0.207 −0.238∗∗∗ −1.554∗∗∗ −0.271∗∗∗ −0.256∗∗∗ −0.220∗∗∗ −0.104∗∗
(0.053) (0.065) (0.076) (0.145) (0.059) (0.495) (0.061) (0.065) (0.079) (0.049)

Destruction × 1926 −0.004 −0.003 −0.006∗∗ −0.003 −0.002 −0.452 −0.003 −0.007 −0.003 −0.003
(0.002) (0.004) (0.003) (0.003) (0.003) (0.450) (0.004) (0.006) (0.002) (0.002)

Destruction × 1931 −0.006∗∗∗ −0.005∗ −0.010∗∗∗ −0.005∗∗ −0.004 −0.880∗∗ −0.003 −0.005 −0.005∗∗ −0.005∗∗
(0.002) (0.003) (0.003) (0.002) (0.003) (0.413) (0.003) (0.006) (0.002) (0.002)

Destruction × 1950 −0.008∗∗ −0.007∗ −0.002 −0.007∗∗ −0.006∗∗ −1.000∗ −0.011∗∗ −0.019∗∗∗ −0.004 −0.006∗∗
(0.003) (0.004) (0.003) (0.003) (0.002) (0.541) (0.004) (0.007) (0.003) (0.002)

Destruction × 1961 −0.005∗∗∗ −0.002 −0.001 −0.005∗∗ −0.004∗ −0.572 −0.006∗ −0.015∗∗∗ −0.002 −0.003∗
(0.002) (0.003) (0.002) (0.002) (0.002) (0.504) (0.003) (0.005) (0.003) (0.002)

Destruction × 1970 0.001 0.004 0.005 0.002 0.002 0.668 0.004 −0.003 0.005 0.003
(0.002) (0.004) (0.003) (0.002) (0.002) (0.554) (0.004) (0.006) (0.003) (0.002)

Destruction × 1980 −0.003 0.001 0.001 −0.001 0.001 0.249 0.001 −0.025 0.002 0.001
(0.005) (0.005) (0.005) (0.004) (0.004) (0.813) (0.004) (0.018) (0.004) (0.004)

Extended Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
UniFE×Post45 Yes
Quality1926×Years Yes
Observations 609 588 486 714 714 714 714 714 714 714
R2 0.724 0.698 0.733 0.668 0.704 0.718 0.719 0.703 0.755 0.743

Significant at ***1%, **5%, *10%. (SE clustered at university level.)
The dependent variable Publications is the sum of publications published by all scientists in department d in a five-year window around year t. The variable is normalized to have 0 mean and a standard deviation of

1 within subjects. In columns 1–3 and 7–10 Dismissals is equal to the number of dismissals between 1933 and 1940. In column 4 Dismissals is equal to % dismissals between 1933 and 1940 (divided by 10 so that the
coefficient is equivalent to a 10% change in faculty size). In column 5 Dismissals is equal to the number of dismissals between 1933 and 1934. In column 6 Dismissals is equal to the predicted change in output between
1931 and 1940, calculated as the coefficient of losing one scientist (from column 6 in table 5) multiplied by the number of dismissed scientists in each department. In columns 1–5 and 8–10, Destruction is equal to %
destruction caused by Allied bombings between 1940 and 1945. In column 6 Destruction is equal to the predicted change in output between 1931 and 1940, calculated as the coefficient on percent destruction (from
column 6 in table 5) multiplied by percent destruction in each department. In column 7 Destruction is equal to average destruction in the three science departments in each university. In column 8 I instrument for
Destruction at the department level with percentage destruction at the university level. Extended Controls are all controls as reported in column 6 of table 5. In column 3 Extended controls do not include Armament
Industries (1933) × Year FE because of missing data for Swiss cities. UniFE × Post1945 is a full set of university fixed effects interacted with a post-1945 dummy. Quality1926 × Years is the interaction of department
quality in 1926, interacted with the number of years that have passed since 1926. As the regression in column 7 includes an estimated regressor, SEs are block-bootstrapped at the university level.

alternative measure are less significant, in particular for pub-
lications. The magnitude of the coefficient of a 10% decline
in department size, however, is very similar to the baseline
specification (tables 6 and A5, column 4). I also show that
results are robust to using early dismissals (between 1933
and 1934) to measure the human capital shock, because early
dismissals rarely occurred for political reasons (tables 6 and
A5, column 5).

In additional specifications, I show that the stronger per-
sistence of the human capital shock was not driven by
initially larger declines in output.24 For this test, I construct
alternative shock measures that capture the initial decline in
output. I measure the initial effect of the dismissal shock
as β̂2−1940 × # dismissedd , where β̂2−1940 is the estimated

24 In departments with dismissals, the average initial decline of publication
output in the first period after the shock was 0.49 standard deviations. In
departments with bombings, the average decline of publication output in
the first period after the shock was 0.28 standard deviations.

coefficient on the number of dismissals for the year 1940
and # dismissed is the number of dismissals in department d.
Similarly, I measure the initial effect of the bombing shock
as β̂3−1950 × % bombing destructiond . The two measures
capture the initial decline in output after the two shocks in
each department. To estimate the persistence of the initial
decline, I interact the two measures with year indicators
and estimate the equivalent of equation (1) using the new
shock measures.25 By construction, the estimated coeffi-
cients measure the effect of a decline in output by 1 standard
deviation (1 SD) in the first postshock period, which leads
to a coefficient of −1 in the first period after each shock.
The persistence of the shocks, however, was very different.
In departments where the initial 1 SD decline in output was
caused by dismissals, output remained significantly lower
until 1980. In departments where the initial 1 SD decline in

25 As the regression now includes regressors that include an estimated
component, I block bootstrap standard errors at the university level.
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output was caused by bombings, output recovered quickly
(tables 6 and A5, column 6).

The following specification explores whether a poten-
tial reallocation of buildings after the bombings affected
the impact of the physical capital shock. For the main
results, I measure bombing destruction at the department
level. This may underestimate the bombing effect if univer-
sities reallocated buildings across departments to mitigate
negative effects of bombing destruction. To investigate this
possibility, I use average destruction across all science
departments as an alternative measure for the physical cap-
ital shock. This measure yields a more negative coefficient
on the interaction of bombing destruction with the 1950
indicator. The destruction of an additional 10% of science
buildings lowered output by 0.11 instead of 0.05 stan-
dard deviations (table 6, column 7). In regressions that use
citation-weighted publications as the dependent variable, the
coefficient changes from −0.04 to −0.08 (table A5, col-
umn 7). These results suggest that universities could indeed
mitigate some of the bombing effects by reallocating build-
ings across departments.26 Using this alternative destruction
measure, I also find a slightly more persistent decline in
output after the bombings. The negative effect persisted
until 1961 for publications (table 6, column 7, significant
at the 10% level) but not for citation-weighted publications
(table A5, column 7). By 1970, bombed departments had
completely recovered independently of the destruction and
output measures. In fact, citation-weighted publications were
significantly higher in bombed departments in 1970. A sim-
ilar reallocation of resources after the human capital shock
was impossible because scientists usually specialize in a
single field.

Measurement error in bombing destruction. My measure
of physical capital destruction may contain measurement
error. To investigate how measurement error attenuates the
bombing results, I instrument for department-level destruc-
tion with university-level destruction.27 Because university-
level destruction is constructed from different sources (see
appendix 8.4), the two measurement errors should be uncor-
related. The instrumental variable strategy therefore min-
imizes attenuation bias. First-stage regressions, reported
in table A6, indicate that university-level destruction is
a strong predictor for department-level destruction.28 The

26 An alternative explanation for the larger coefficient (in absolute mag-
nitude) could be lower measurement error for science-wide destruction
compared to destruction in individual science departments.

27 Because the university-level destruction measure captures destruction
of all university buildings, it is different from the average destruction in
science departments that I have used above.

28 I instrument for six interactions of department-level destruction with
year dummies. As a result, the usual F-test on the excluded instruments is not
appropriate in this context. Stock and Yogo (2005) propose a test for weak
instruments based on the Cragg-Donald (1993) eigenvalue statistic. Stock
and Yogo provide critical values only for up to two endogenous regressors.
With two endogenous regressors and two instruments, the critical value is
7.03. Here, I use six instruments for six endogenous regressors. Appropriate
critical values should be lower than 7.03. The Cragg-Donald EV statistic

instrumental variable results indicate that in 1950, publica-
tions fell by 0.13 standard deviations in departments with
10% more destruction. In 1961, output was still 0.11 standard
deviations lower in these departments. By 1970, however,
output had recovered in the bombed departments (table 6,
column 8). Equivalent results for citation-weighted publi-
cations also suggest that measurement error attenuates the
bombing effects for 1950 and 1961 (table A5, column 8). The
finding that bombed departments had completely recovered
by 1970, however, is not distorted by measurement error.

University-wide changes after 1945. The following
specifications investigate whether university-wide changes
after 1945 affect results. Universities that were heavily
exposed to one of the shocks may have changed their focus
away from the sciences toward other fields. To investigate
this hypothesis, I include the interaction of university fixed
effects with a post-1945 dummy in the regression. Results
indicate that the dismissal of one scientist led publication
output to fall by 0.16 to 0.23 standard deviations, with the
majority of results remaining significant at the 1% level
(table 6, column 9). The coefficient on bombing destruc-
tion interacted with the 1950 dummy indicates that output
fell by 0.04 standard deviations in 1950, but this result is no
longer significant. Equivalent results for citation-weighted
publications indicate that the dismissal of one scientist led
publication output to fall by 0.12 to 0.18 standard devia-
tions, but only the 1940 coefficient remains significant at the
5% level (table A5, column 9). The coefficient on bombing
destruction interacted with the 1950 dummy indicates that
output fell by 0.03 SD in 1950 (not significantly different
from 0).29

Controlling for mean reversion. In other specifications
I explore whether the results are driven by mean reversion.
Some of the dismissed scientists worked in the best uni-
versities at the time, such as Göttingen or Berlin. These
departments may have declined regardless of the dismissals.
To investigate this possibility I include the interaction of
department quality in 1926 with the number of years that
have passed since 1926 as an additional control.30 Results
yield smaller coefficients for the dismissals and indicate that
the dismissal of one scientist lowered publication output by
between 0.10 and 0.15 standard deviations. Most coefficients
remain significant at the 1% level (table 6, column 10). The
bombing results are almost unaffected. Equivalent results for

reported in table A6 is 19.6, suggesting that weak instruments do not bias
the results.

29 Alternatively, one could include the interaction of university fixed
effects with a dummy for each year (i.e., adding 35 × 6 = 210 interac-
tions). As the degrees of freedom become small (714 observations – 210
university FE × year – 105 department fixed effects – 18 subject × year FE –
30 time-varying controls – 1 constant) and dismissals and bombings within
universities are positively correlated, the results are no longer significant.

30 Department quality in 1926 is measured as the sum of (citation-
weighted) publications for the specification with (citation-weighted) pub-
lications as the dependent variable.
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citation-weighted publications indicate that the dismissal of
one scientist lowered output by between 0.11 and 0.17 stan-
dard deviations with most coefficients significant at the 5%
level (table A5, column 10). Bombing results indicate a small
but significantly negative effect in 1950 that did not persist.

Complementarities of human and physical capital shocks.
The empirical model estimated above does not allow for
complementarities of human and physical capital. To inves-
tigate whether complementarities are important, I add triple
interactions of number dismissed, percentage destruction,
and year dummies to the regression, that is, I estimate

Outputdt = β1 +
t∑

t �=1931

β2tHCShock(1933-40)d × Yeart

+
t∑

t �=1940

β3tPCShock(1942-45)d × Yeart

+
t∑

t≥1950

β4tHCShock(1933-40)d

× PCShock(1942-45)d × Yeart

+ β5DepartmentFEd + β6YearFEt + εdt . (2)

The first data point that could have been affected by both
shocks is 1950, and I thus include triple interactions for 1950,
1961, 1970, and 1980. The publication results show that
departments with dismissals and bombings did significantly
worse than other departments in 1950. The estimated coeffi-
cient indicates a reduction in publications by 0.03 standard
deviations in departments that lost one scientist and 10%
of department buildings. Because departments recovered
quickly from the physical capital shock, triple interactions
with later years are no longer significant (table A7, column
2). For the citation-weighted publications, all triple interac-
tions are insignificant (table A7, column 4). The dismissal
results are remarkably robust to the inclusion of the triple
interactions. These findings suggest that complementarities
between human and physical capital are relatively small. Fur-
thermore, human capital effects are not driven by important
complementarities with physical capital.

C. Subject-Specific Results

I also investigate whether the human and physical capital
shocks had different effects across disciplines. While phys-
ical capital may be more important in chemistry and some
fields of physics, it may be less important in mathematics.
The estimation results, however, indicate that the decline in
output after the physical capital shock barely differed across
fields (table A8).

By contrast, the dismissal results reveal interesting dif-
ferences across subjects, despite the fact that most results
are less precisely estimated because of smaller sample sizes.
For citation-weighted publications, the results are largest and

most persistent in mathematics, followed by physics (even
though most coefficients in physics are not significant) and
then chemistry (table A8, columns 2, 4, and 6). Because dis-
missed scientists in mathematics and physics were of higher
quality than in chemistry (table 1) the results suggest that
high-quality scientists may be particularly important.

D. The Effect of High-Quality Scientists

To further investigate this hypothesis, I assign scientists
to quality percentiles (of both dismissed and nondismissed
scientists) based on their pre-dismissal citation-weighted
publications. I then investigate how the dismissal of high-
quality scientists affected department output. The dismissal
of any scientist lowered department output by 0.18 to 0.32
standard deviations (table 7, columns 1 and 2). The dis-
missal of an above-median-quality scientist lowered output
by between 0.24 and 0.50 standard deviations (columns 3
and 4). The dismissal of higher-quality scientists caused even
larger reductions in output that persisted in the long run. The
dismissal of a scientist in the top 5th percentile, for example,
lowered output by 0.74 to 1.58 standard deviations (columns
9 and 10). Figure 4 summarizes these findings graphically.31

V. Mechanisms for the Persistence of
the Human Capital Shock

The previous results indicate that the dismissal of scien-
tists, especially high-quality ones, caused larger declines in
output than the bombing of universities. Furthermore, the
human capital shock was more persistent. In the following
section, I investigate possible mechanisms for the long-run
persistence of the human capital shock.

A. The Effect of Dismissals on Department Size

One possible explanation for the decline in output could
be a relative fall in department size from which departments
never recovered. I investigate this hypothesis by regressing
department size on the dismissal and destruction variables.
Departments with dismissals were significantly smaller until
1970 but completely recovered by 1980 (table A10). These
results indicate that a fall in department size can explain only
some of the persistence of the human capital shock.32

31 To improve clarity, I do not report confidence intervals. The majority of
estimated coefficients are significantly different from 0 (table 7). The coef-
ficients reported in the figure are estimated in separate regressions for each
quality group. Because dismissals in different quality groups are correlated
within departments, it is difficult to jointly estimate results for five quality
groups. To investigate how results are affected when I jointly investigate
the effect of losing scientists of different quality, I split dismissals into three
quality groups (bottom 50th percentile, between the top 50th and the top
10th percentile, and top 10th percentile and above). Results, reported in
figure A6 and table A9, confirm that high-quality dismissals are particu-
larly detrimental. In further results (available on request) I also show that
results are not driven by scientists in the top 5th percentile only.

32 It is important to note that the results for department size do not imply
that departments with dismissals remained smaller in absolute terms until
1980. They remained smaller only in relative terms.
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Table 7.—Dismissal of Top Scientists

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Citation- Citation- Citation- Citation- Citation-

Publi- Weighted Publi- Weighted Publi- Weighted Publi- Weighted Publi- Weighted
Dependent Variable: cations Publications cations Publications cations Publications cations Publications cations Publications

All Dismissals Above Median Quality Top 25th Percentile Top 10th Percentile Top 5th Percentile

Number of Dismissals 0.026 −0.087 −0.047∗ −0.098 0.039 −0.161 −0.079 −0.471∗∗ −0.241 −0.784∗
× 1926 (0.026) (0.077) (0.028) (0.071) (0.057) (0.127) (0.067) (0.202) (0.237) (0.444)

Number of Dismissals −0.175∗∗∗ −0.181∗∗∗ −0.267∗∗∗ −0.243∗∗∗ −0.329∗∗∗ −0.349∗∗∗ −0.550∗∗∗ −0.712∗∗∗ −0.833∗∗∗ −1.198∗∗∗
× 1940 (0.038) (0.064) (0.039) (0.085) (0.059) (0.111) (0.157) (0.153) (0.262) (0.298)

Number of Dismissals −0.246∗∗ −0.187∗∗∗ −0.343∗∗ −0.254∗∗∗ −0.416∗ −0.354∗∗∗ −0.719∗∗ −0.739∗∗∗ −0.740 −1.078∗∗∗
× 1950 (0.099) (0.028) (0.157) (0.056) (0.221) (0.099) (0.321) (0.122) (0.467) (0.309)

Number of Dismissals −0.286∗∗∗ −0.191∗∗∗ −0.433∗∗∗ −0.237∗∗∗ −0.539∗∗∗ −0.345∗∗∗ −0.798∗∗∗ −0.662∗∗∗ −0.918∗∗∗ −1.189∗∗∗
× 1961 (0.071) (0.039) (0.102) (0.061) (0.149) (0.094) (0.258) (0.148) (0.291) (0.280)

Number of Dismissals −0.323∗∗∗ −0.215∗∗∗ −0.498∗∗∗ −0.278∗∗∗ −0.621∗∗∗ −0.428∗∗∗ −0.896∗∗∗ −0.845∗∗∗ −1.136∗∗∗ −1.441∗∗∗
× 1970 (0.069) (0.050) (0.088) (0.097) (0.130) (0.113) (0.265) (0.145) (0.295) (0.296)

Number of Dismissals −0.272∗∗∗ −0.181∗∗∗ −0.399∗∗∗ −0.237 −0.546∗∗∗ −0.417∗∗ −0.730∗∗∗ −0.764∗∗∗ −1.019∗∗∗ −1.583∗∗∗
× 1980 (0.061) (0.064) (0.104) (0.160) (0.125) (0.155) (0.259) (0.184) (0.270) (0.381)

% Destruction × Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Extended controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 714 714 714 714 714 714 714 714 714 714
R2 0.718 0.552 0.726 0.548 0.720 0.555 0.708 0.572 0.683 0.584

Significant at ***1%, **5%, *10%. (SE clustered at university level.)
The dependent variable Publications reported in odd columns is the sum of publications published by all scientists in department d in a five-year window around year t. The dependent variable Citation-Weighted

Publications reported in even columns is the sum of citation-weighted publications published by all scientists in department d in a five-year window around year t. Dependent variables are normalized to have 0 mean
and a standard deviation of 1 within subjects. In columns 1–2, Number of Dismissals × 1926 is equal to the number of dismissals in Nazi Germany between 1933 and 1940 interacted with an indicator that is equal to
1 for observations from 1926. In columns 3–4, Number of Dismissals × 1926 is equal to the number of dismissals of above median quality interacted with an indicator that is equal to 1 for observations from 1926.
The other interactions are defined accordingly. The excluded interaction is the number of dismissals with 1931, the last observation before the dismissals. % Destruction × Year FE is equal to percentage destruction
caused by Allied bombings between 1940 and 1945 interacted with a set of year indicators as in the main specification. Extended Controls are all controls as reported in column 6 of table 5.

Figure 4.—Persistence of High-Quality Dismissals

The figure plots regression coefficients reported in table 7. The dependent variable is the total number of
publications in department d and year t. The top line reports coefficients on the interaction of the number
of dismissals (between 1933 and 1940) with year dummies as in column 1. The second line from the
top reports coefficients on the interaction of the number of dismissals of above median quality with year
dummies as in column 3, and so on.

B. The Effect of Dismissals on the Quality of Hires

An alternative mechanism for the persistence of the human
capital shock may be a permanent fall in the quality of
hires. Star scientists are often instrumental in attracting other
high-quality faculty. Before 1933, for example, the great
mathematician David Hilbert helped to attract theoretical
physicist Max Born (Nobel Prize, 1954) to the University of
Göttingen. Born then used his influence to hire experimental
physicist James Franck (Nobel Prize, 1925) (Jungk, 1963).

Born and Franck were dismissed from the University of Göt-
tingen in 1933. It is likely that these and other dismissals
permanently affected the quality of subsequent hires.

To investigate changes in the quality of hires, I regress
a measure of hiring quality on the dismissal variables and
other controls. To identify hires, I use the faculty rosters
documenting changes in the composition of departments.
For 1931, for example, I classify all scientists who joined a
department between 1926 and 1931 as hires. I obtain equiv-
alent measures for subsequent years. I then construct two
measures for the quality of each hire. First, I measure quality
using average citation-weighted publications over the entire
career of each scientist. While this measure is presumably the
best summary statistic of a scientist’s lifetime productivity,
the measure may be endogenous to a scientist’s moving deci-
sion. I therefore compute a second measure that quantifies
quality by the number of pre-hire citation-weighted publi-
cations. This second measure is not affected by endogeneity
concerns but is a noisier measure of quality, in particular for
young scientists. I normalize both measures to have 0 mean
and a standard deviation of 1 within subjects. I then construct
hiring quality for each department and year by calculating
the average quality of all hires.

Hiring quality fell significantly in departments with dis-
missals. The dismissal of one scientist lowered hiring quality
by between 0.05 and 0.06 SD of lifetime citations. Estimated
effects are significant for all years and persist until 1980
(table 8, panel A, column 1). Hiring quality fell even more
dramatically after losing high-quality scientists, in partic-
ular after losing scientists of exceptional quality (columns
2–5). Figure 5 shows the reduction in hiring quality after the
dismissal of scientists with different qualities.
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Figure 5.—Dismissals and the Quality of Hires

The figure plots regression coefficients as reported in table 8, panel A. The dependent variable is quality
of new hires in department d and year t. The top line reports coefficients on the interaction of the number
of dismissals (between 1933 and 1940) with year dummies as in column 1. The second line from the
top reports coefficients on the interaction of the number of dismissals of above-median quality with year
dummies as in column 2, and so on. To improve clarity, 95% confidence intervals are omitted from the
graph. All post-dismissal regression coefficients are significantly different from 0.

I obtain similar, but less precisely estimated, results if I use
pre-hire citation-weighted publications to measure quality
(table 8, panel B).

The fall in the quality of hires could have been caused
by two different channels. First, the loss of high-quality sci-
entists may have reduced a department’s ability to identify
promising scholars. Second, the loss of high-quality scien-
tists may have reduced the quality of applications for open
positions. My data do not allow me to distinguish these two
channels because I cannot observe the pool of applicants.
However, I can investigate whether the dismissal of older or
younger scientists is driving the hiring results. I find that the
loss of younger scientists (below median age) is particularly
detrimental for the quality of new hires (table A11).33 The
scientists in my data are most productive at the beginning of
their careers (figure A7). This suggests that hiring quality is
driven by research-active scientists.

Some of the fall in hiring quality was likely driven by a
decline in the quality of Ph.D. students in departments with
dismissals after 1933 (Waldinger, 2010). As some depart-
ments hire their former Ph.D. students, the fall in Ph.D.
quality may have translated into lower-quality faculty down
the line.34

Historical data on professorial salaries suggest that the
large and permanent decline in hiring quality was not driven
by a compressed wage structure in German universities.
While my data on all German and Austrian professors do

33 Median age is 49 years for physics and chemistry and 46 years for
mathematics.

34 While German universities usually do not appoint full professors from
their own staff, many researchers return to their former university in later
years. Among mathematics Ph.D. students who graduated between 1912
and 1940 and obtained a university position in Germany, about 20% returned
to the university that had granted their Ph.D.

not include information on salaries, other researchers have
collected salary data. Before WWII, professorial salaries in
Germany were very high, and professors belonged to the
top 1% of the German wage distribution (Sohn, 2014). Even
in the 1960s, professors belonged to the top 2.5% of the
wage distribution. Sohn’s data also indicate that the period
studied in this paper was characterized by surprisingly large
differences in professorial salaries both within and across
universities.35 In Sohn’s random sample of 75 chemistry
professors for the period 1926 to 1965, the highest-paid
chemistry professor received an age-adjusted fixed salary
that was 32% to 79% higher (depending on the time period)
than the fixed salary of the lowest-paid chemistry profes-
sor. Professorial salaries also varied because of differences
in variable pay that comprise housing allowances, add-ons
for administrative positions, and lecture fees that could
be negotiated by professors but were generally determined
by the number of students who attended their lectures. In
Sohn’s sample of chemistry professors, the highest-paid
chemistry professor’s total earnings (including variable pay)
were between 43% and 124% higher (depending on the time
period) than total earnings of the lowest-paid professor. After
a reform of professorial salaries in 1978, the wage struc-
ture of German professors became much more compressed.
Sohn’s auxiliary data suggest that in the time period studied
in this paper, German universities could offer high salaries
to attract highly productive scientists. Even so, departments
with dismissals experienced a fall in hiring quality, pre-
sumably because they could no longer identify promising
scholars or because promising scholars no longer wanted to
join these departments.

C. Localized Productivity Spillovers

Localized productivity spillovers cannot drive persistence
in this context. Prior research has shown that individual
output of scientists who stayed in department with dis-
missals did not decline (Waldinger, 2012). If the productivity
of scientists who were directly exposed to losing high-
quality peers did not decline, it is unlikely that spillovers
explain a large part of the persistence of the human capital
shock.

VI. Conclusion

I use two WWII events—the dismissal of scientists in Nazi
Germany and the Allied bombing campaigns—as exogenous
and temporary shocks to the human and physical capital of
science departments. In the short run, before departments

35 I thank Alexander Sohn for generously sharing his data on German
professorial salaries. Before 1978, German professorial earnings were a
fixed salary plus variable pay (Blomeyer, 2013). The fixed salary contained
an age-related base salary (along with the option of anticipating age-related
pay raises), plus fixed add-ons that universities could offer to attract highly
productive professors. Professors who anticipated age-related pay increases
and bargained for add-ons could increase their fixed salary by up to 50% in
the postwar period (Blomeyer, 2013).
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Table 8.—Quality of New Hires

(1) (2) (3) (4) (5)
Quality Quality Quality Quality Quality

Dependent Variable: of Hires of Hires of Hires of Hires of Hires
All Above Top 25th Top 10th Top

Dismissals Median Quality Percentile Percentile 5th Percentile

A. Quality measured by lifetime citation-weighted publications
Number of Dismissals × 1940 −0.059∗∗∗ −0.096∗∗∗ −0.145∗∗∗ −0.249∗∗∗ −0.428∗∗∗

(0.014) (0.018) (0.040) (0.051) (0.133)

Number of Dismissals × 1950 −0.055∗∗ −0.090∗∗∗ −0.138∗∗∗ −0.234∗∗∗ −0.400∗∗∗
(0.020) (0.027) (0.046) (0.061) (0.139)

Number of Dismissals × 1961 −0.054∗∗∗ −0.089∗∗∗ −0.134∗∗∗ −0.226∗∗∗ −0.417∗∗∗
(0.013) (0.018) (0.037) (0.049) (0.120)

Number of Dismissals × 1970 −0.055∗∗∗ −0.090∗∗∗ −0.141∗∗∗ −0.266∗∗∗ −0.484∗∗∗
(0.020) (0.028) (0.041) (0.054) (0.130)

Number of Dismissals × 1980 −0.064∗∗∗ −0.112∗∗∗ −0.171∗∗∗ −0.285∗∗∗ −0.520∗∗∗
(0.017) (0.031) (0.054) (0.069) (0.160)

B. Quality measured by prehiring citation-weighted publications
Number of Dismissals × 1940 −0.010 −0.046∗ −0.060 −0.166∗ −0.174

(0.013) (0.024) (0.044) (0.094) (0.214)

Number of Dismissals × 1950 −0.051∗∗∗ −0.111∗∗∗ −0.162∗∗∗ −0.220∗∗∗ −0.287∗
(0.010) (0.023) (0.046) (0.068) (0.156)

Number of Dismissals × 1961 −0.030∗∗ −0.075∗∗ −0.123∗ −0.142 −0.199
(0.014) (0.035) (0.061) (0.087) (0.181)

Number of Dismissals × 1970 −0.051∗∗∗ −0.103∗∗∗ −0.146∗∗∗ −0.223∗∗∗ −0.300∗
(0.011) (0.024) (0.043) (0.072) (0.169)

Number of Dismissals × 1980 −0.053∗∗∗ −0.120∗∗∗ −0.192∗∗∗ −0.281∗∗∗ −0.380∗∗
(0.016) (0.032) (0.049) (0.076) (0.172)

% Destruction × Year FE Yes Yes Yes Yes Yes
Extended controls Yes Yes Yes Yes Yes
Observations 602 602 602 602 602

Significant at ***1%, **5%, *10%. (SE clustered at university level.)
The dependent variable Quality of Hires measures the average quality of new hires in department d between year t and year t − 1. In panel A, quality of hires is measured by the career average of citation-weighted

publications averaged across all hires in a department. In panel B, quality of hires is measured by age-adjusted average citation-weighted publications measured before year t, averaged across all hires in a department.
The average is calculated for five years at the midpoint between year t and year t − 1. The dependent variables are normalized to have 0 mean and a standard deviation of 1 within subjects. In column 1 Number of
Dismissals × 1926 is equal to the number of dismissals in Nazi Germany between 1933 and 1940 interacted with an indicator that is equal to 1 for observations from 1926. In column 2 Number of Dismissals × 1926
is equal to the number of dismissals of above-median quality interacted with an indicator that is equal to 1 for observations from 1926. The other interactions are defined accordingly. The excluded interaction is the
number of dismissals with 1931, the last observation before the dismissals. % Destruction × Year FE is equal to percentage destruction caused by Allied bombings between 1940 and 1945 interacted with a set of year
indicators as in the main specification. Extended Controls are all controls as reported in column 6 of table 5.

could fully respond, the human capital shock caused a four-
times-larger decline in output than the physical capital shock.
While the physical capital shock did not cause long-run
declines in output, the human capital shock persisted in the
long term, until 1980, and most likely beyond as departments
with dismissals had not recaptured their former output levels
until 1980. The dismissal of high-quality scientists caused
particularly large declines in output. These findings suggest
that human capital is more important than physical capital
for the output of science departments.

The long-run results also indicate that recovering from
losing professors is much more difficult than rebuilding facil-
ities. Especially the loss of star scientists has long-lasting
effects because the quality of hires falls after stars have left
the department.

Of course, my findings do not indicate that physical capital
is irrelevant for scientific output because postwar reconstruc-
tion targeted destroyed departments and because physical
capital may have been less important than today—a time
when advances in some fields (e.g., particle physics) rely
on very large physical capital investments. While funding
for West German universities increased substantially in the
postwar period in absolute terms and in percent of GNP, the
largest increases took place after 1960 when the West Ger-
man economy was booming (figure A8; Pfetsch, 2010). In

1950, university funding in percent of GNP was very sim-
ilar to funding in 1940, suggesting that universities did not
benefit from disproportionate funding increases in the imme-
diate postwar period. The results in this paper suggest that
German universities may have spent too little of the funding
increase on human capital compared to physical capital, not
only in the postwar period but also in the long run.

An important question is whether evidence from his-
torical events in Germany can help our understanding of
science departments today and in other countries. As I have
highlighted in this paper, recent evidence on evolutionary
biology departments suggests that human capital plays a
similarly important role in contemporary times and in other
countries as it did in the historical German period I ana-
lyze here (Agrawal et al., 2014). Other research has shown
that chemists who were dismissed from Nazi Germany and
migrated to the United States increased patenting by U.S.
inventors (Moser et al., 2014). The overall increase in patent-
ing was driven by new researchers who entered the research
fields of émigrés from Nazi Germany. The productivity
of incumbent scientists, however, did not increase. Other
research has shown that the arrival of Soviet mathemati-
cians in the United States did not increase the productivity
of incumbent U.S. mathematicians (Borjas & Doran, 2012).
Furthermore, the output of mathematicians who worked in
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the same location but remained in the Soviet Union did not
decrease after their peers left the Soviet Union (Borjas &
Doran, 2015).

The findings of this paper, and other recent papers, sug-
gest that human capital is key for the creation of scientific
knowledge, especially because star scientists attract other
good researchers. Spillovers on existing researchers seem
much less important, and may even be absent. Attracting
stars seems the most promising policy to improve the quality
of academic departments.
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