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Abstract

We introduce a class of analytically tractable jump processes with contagion ef-

fects by generalising the classical Hawkes process. This model framework combines

the characteristics of three popular point processes in the literature: (1) Cox process

with CIR intensity; (2) Cox process with Poisson shot-noise intensity; (3) Hawkes

process with exponentially decaying intensity. Hence, it can be considered as a self-

exciting and externally-exciting point process with mean-reverting stochastic intensi-

ty. Essential probabilistic properties such as moments, Laplace transform of intensity

process, and probability generating function of point process as well as some impor-

tant asymptotics have been derived. Some special cases and a method for change of

measure are discussed. This point process may be applicable to modelling contagious

arrivals of events for various circumstances (such as jumps, transactions, losses, de-

faults, catastrophes) in finance, insurance and economics with both endogenous and

exogenous risk factors within one framework. More specifically, these exogenous

factors could contain relatively short-lived shocks and long-lasting risk drivers. We

make a simple application to calculate the default probability for credit risk and price

defaultable zero-coupon bonds.
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1 Introduction

Contagion risk in finance and economics has become much more prevalent, particularly

after the global financial crisis 2007-2008 and the recent sovereign debt crisis in the eu-

rozone. It is important to analyse and quantify the contagion feature of event arrivals.

However, there are not plenty of continuous-time models available for it in the literature

that could go beyond the simple measure of correlation. Hawkes (1971a,b)1 early intro-

duced a self-exciting point process, and its stochastic intensity process is a function of the

past of point process itself, and jumps occur simultaneously in the point process and it-

s intensity process. It now has been widely adopted for modelling contagion effects in

finance and insurance, such as trade arrivals in market microstructure, defaults in cred-

it market, jumps in returns of investments, and loss claims in insurance portfolios, see

Chavez-Demoulin et al. (2005), Bowsher (2007), Large (2007), Stabile and Torrisi (2010),

Embrechts et al. (2011), Bacry et al. (2013), Zhu (2013b), and more recently, Aït-Sahalia

et al. (2014) and Aït-Sahalia et al. (2015)2. The theoretical framework was later extended

by Brémaud and Massoulié (1996, 2002), Zhu (2013a) and Boumezoued et al. (2016). It

also has various applications in many other fields, see Vere-Jones (1978), Chornoboy et al.

(1988), Ogata (1988), Crane and Sornette (2008), Marsan and Lengline (2008), Veen and

Schoenberg (2008), Mohler et al. (2011), Xu et al. (2014), Zadeh and Sharda (2014) and

Hall and Willett (2016).

Although the framework has been set up, the exact mathematical properties have

not been fully understood, as pointed by Errais et al. (2010). Dassios and Zhao (2011)

analysed some key probabilistic properties in details for dynamic contagion process (DCP),

a generalised univariate Hawkes process with extra externally-excited components3. In

this paper, we further extend the DCP, and allow the stochastic intensity process being

perturbed by an additional independent diffusion4. The resulting process named dynamic

contagion process with diffusion (DCPD) here in fact is a self-excited5 and externally-excited

1See also a series of pioneering work in Hawkes (1971a,b), Hawkes and Oakes (1974) and Oakes (1975).
2Bacry et al. (2015) provide a very good survey of the recent academic literature devoted to the applica-

tions of Hawkes processes in finance.
3The associated applications to ruin problem in insurance can also be found in Dassios and Zhao (2012).
4It is also an extension of Hawkes process with general immigrants (Brémaud and Massoulié, 2002).
5The term "self-excited" is treated equivalently as "self-exciting" throughout this paper.
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point process with mean-reverting stochastic intensity. More precisely, it is a hybrid of

three popular point processes:

(1) a Cox process with CIR intensity;

(2) a Cox process with Poisson shot-noise intensity;

(3) a Hawkes process with exponentially decaying intensity.

These three separate models have been widely applied to finance, insurance and eco-

nomics, particularly, for risk management and asset pricing. Now we consider combin-

ing all of them together within one framework6.

Our main contribution of this paper is that, with the aid of martingale approach (Das-

sios and Embrechts, 1989) and infinitesimal generator analysis (also known as Dynkin’s

formula), we fundamentally investigate the DCPD’s distributional properties of intensity

process and point process. This extension from the DCP is nontrivial, as the DCPD is

a point process that acts very differently from a DCP: it could not be classified neither

as a piecewise-deterministic Markov process (Davis, 1984) nor as a branching process; the

trajectory between two successive jumps in intensity process is no longer deterministic,

due to the oscillation character of the additional component of independent Brownian

motion; moreover, the intensity process is possible to go down below the mean-reverting

level and even reach zero. Hence, some methods of deriving the distributional proper-

ties for the DCPD are not the same as the ones for the DCP in Dassios and Zhao (2011),

for instance, the Laplace transform of stationary distribution of intensity process as lat-

er given by Theorem 3.2. Additionally, we also investigate the asymptotics of stationary

distribution of the intensity around zero. Our motivation of this extension for potential

applications in finance is that, the DCPD equipped with all these three components could

provide a more realistic model, for instance, the default intensity (or frequency) could be

influenced by some internal and external risk shocks (e.g. financial reports, crises, earth-

quakes) in the economy, as well as some additional certain degree of external risks or

noises (e.g. GDP, CPI, stock indexes) persistently driving in the market. These two types

of relatively short-lived shocks are modelled by our jump components, and the long-

lasting external factors could be captured by the component of mean-reverting diffusion.

By further introducing the addition of this supplementary diffusion, risk factors with d-

ifferent characteristics of short-lived and long-lasting effects could be more specifically
6Our model is also the generalisation of so-called generalised Hawkes process used in Zhang et al. (2009) (see

also Giesecke and Kim (2007), Giesecke et al. (2011) and Zhu (2014)) by adding another series of externally-
excited jumps in the underlying intensity process.
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distinguished and captured respectively.

The paper is organised as follows. Section 2 provides a mathematical definition of the

DCPD. In Section 3, we derive its key distributional properties, such as the moments,

Laplace transform of asymptotic and stationary distribution of intensity process, and

the probability generating function of point process; some special cases of exponential

distribution are discussed. A method for change of measure via Esscher transform is

also presented in Section 4. We apply our model to study the probability of default for

credit risk and price defaultable zero-coupon bonds with numerical examples in Section

5. Finally, Section 6 makes a brief conclusion for this paper.

2 Definition

We provide a mathematical definition for the DCPD via the stochastic intensity represen-

tation in Definition 2.1.

Definition 2.1 (Dynamic Contagion Process with Diffusion). Dynamic contagion pro-

cess with diffusion (DCPD) is a point process N ≡
n

T(2)
k

o
k=1,2,...

with the non-negative

Ft−stochastic (conditional) intensity

λt = a + (λ0 − a) e−δt + σ
Z t

0
e−δ(t−s)

È
λsdWs

+
X

0≤T(1)
i <t

Y(1)
i e−δ

�
t−T(1)

i

�
+

X
0≤T(2)

k <t

Y(2)
k e−δ

�
t−T(2)

k

�
, t ≥ 0, (2.1)

where

• {Ft}t≥0 is a history of the process Nt, with respect to which {λt}t≥0 is adapted;

• λ0 > 0 is the initial intensity at time t = 0;

• a ≥ 0 is the constant mean-reverting level;

• δ > 0 is the constant mean-reverting rate;

• σ > 0 is the constant volatility of intensity diffusion (i.e. the volatility of diffusion part

of intensity process);

• {Wt}t≥0 is a standard Brownian motion;

•
n

Y(1)
i

o
i=1,2,...

are the sizes of externally-excited jumps, a sequence of i.i.d. positive

random variables with distribution function H(y), y > 0;
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•
n

T(1)
i

o
i=1,2,...

are the arrival times of a Poisson process Mt with constant rate $ > 0;

•
n

Y(2)
k

o
k=1,2,...

are the sizes of self-excited jumps, a sequence of i.i.d. positive random

variables with distribution function G(y), y > 0;

• the sequences
n

Y(1)
i

o
i=1,2,...

,
n

Y(2)
k

o
k=1,2,...

,
n

T(1)
i

o
i=1,2,...

and {Wt}t≥0 are assumed to

be independent of each other.

In fact, {Nt}t≥0 is a simple point process so that there is no double jumps at any

particular time. More precisely, it can be defined by Nt :=
P∞

k=1 1
n

T(2)
k ≤ t

o
where 1 {}

is the indicator function, and λt is a conventional intensity of point process that satisfies

Pr
¦

Nt+∆t − Nt = 1 | Ft
©
= λt∆t + o(∆t), Pr

¦
Nt+∆t − Nt > 1 | Ft

©
= o(∆t),

where ∆t is a sufficiently small time interval, and o(∆t)/∆t → 0 when ∆t → 0. The

joint process of
¦
(λt, Nt)

©
t≥0

is a Markov process in the state space R×
�
N ∪ {0}

�
. By

Markov property, the infinitesimal generator of process (λt, Nt, t) acting on a function

f (λ, n, t) within its domain Ω(A) is given by

A f (λ, n, t) =
∂ f
∂t
− δ (λ− a)

∂ f
∂λ

+
1
2

σ2λ
∂2 f
∂λ2 + $

�Z ∞

0
f (λ + y, n, t)dH(y)− f (λ, n, t)

�
+λ

�Z ∞

0
f (λ + y, n + 1, t)dG(y)− f (λ, n, t)

�
. (2.2)

Note that, this point process is not a classical doubly stochastic Poisson process or Cox pro-

cess (Cox, 1955), since Nt conditional on λt is not of Poisson type and does not satisfy the

fundamental definition, more precisely, for any time t ∈ [0, T],

E
�
θ(NT−Nt) | Ft

�
6= E

�
e−(1−θ)(ΛT−Λt) | Ft

�
, θ ∈ [0, 1], (2.3)

where Λt =:
Z t

0
λsds is the aggregated intensity process (or, the compensator of point pro-

cess Nt).

If there is no externally-excited jumps and diffusion, and all the sizes of self-excited

jumps are fixed to be the same, then, it recovers the classical Hawkes process. The dy-

namic contagion process with diffusion is a generalised Hawkes process which is still

within the general framework of affine processes, see Duffie et al. (2000), Duffie et al.

(2003) and Glasserman and Kim (2010). A sample path of simulated intensity process λt

based on discretisation scheme7 is plotted in Figure 1.

7The numerical algorithm of exact Monte Carlo simulation for generating this point process Nt is devel-
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Figure 1: A sample path of simulated intensity process λt based on the standard discretisation
scheme with the parameters (a, $, δ; α, β; σ; λ0) = (0.9, 0.1, 1.0; 10, 1.2; 1.0; 0.9) where the
jump sizes of two types are assumed to follow exponential distributions, i.e. H ∼ Exp(α)
and G ∼ Exp(β)

Remark 2.1. Externally-excited jumps
n�

Y(1)
i , T(1)

i

�o
i=1,2,...

and self-excited jumps
n�

Y(2)
k , T(2)

k

�o
k=1,2,...

are designated to capture the relatively short-lived endogenous and exogenous risk shock-

s, respectively. The diffusion driven by {Wt}t≥0 is for modelling certain external risk al-

ways persisting in the market. δ controls the time decay of impacts. We assume the same

decay rate of δ for the diffusion process, self-excited and externally-excited jumps, as this

assumption makes our model analytically tractable.

3 Distributional Properties

To simplify notations, for the two types of jump sizes Y(1) and Y(2) in λt of (2.1), the first,

second moments and Laplace transforms are denoted respectively by

µ1H :=
Z ∞

0
ydH(y), µ2H :=

Z ∞

0
y2dH(y), ĥ(u) :=

Z ∞

0
e−uydH(y),

µ1G :=
Z ∞

0
ydG(y), µ2G :=

Z ∞

0
y2dG(y), ĝ(u) :=

Z ∞

0
e−uydG(y),

and the constant κ := δ − µ1G . The moments and Laplace transforms above are all as-

sumed to be finite.

oped in Dassios and Zhao (2015).
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3.1 Joint Laplace Transform – Probability Generating Function of (λT, NT)

We first look at the joint distributional property of intensity process and point process via

their joint transform function.

Lemma 3.1. For constants 0 ≤ θ ≤ 1, v ≥ 0 and time 0 ≤ t ≤ T, the conditional joint Laplace

transform – probability generating function of (λT, NT) is given by

E
�
θ(NT−Nt)e−vλT | Ft

�
= e−

�
c(T)−c(t)

�
× e−B(t)λt , t ∈ [0, T], (3.1)

where B(t) is determined by the ODE

− B′(t) + δB(t) + θ ĝ
�

B(t)
�
− 1 +

1
2

σ2B2(t) = 0, (3.2)

with the boundary condition B(T) = v; and c(T)− c(t) is determined by

c(T)− c(t) = aδ
Z T

t
B(s)ds + $

Z T

t

�
1− ĥ

�
B(s)

��
ds. (3.3)

Proof. Consider a function f (λ, n, t) with an exponential affine form f (λ, n, t) = ec(t)An(t)e−B(t)λ.

Substitute into A f = 0 in (2.2), we then have

A′(t)
A(t)

n +

�
− B′(t) + δB(t) + A(t)ĝ(B(t))− 1 +

1
2

σ2B2(t)
�

λ

+

�
c′(t) + $ĥ(B(t))− $− aδB(t)

�
= 0. (3.4)

Since this equation holds for any n and λ, it is equivalent to solving three separated

equations 8>>><>>>:
A′(t)
A(t) = 0, (.1)

−B′(t) + δB(t) + A(t)ĝ(B(t))− 1 + 1
2 σ2B2(t) = 0, (.2)

c′(t) + $ĥ(B(t))− $− aδB(t) = 0. (.3)

(3.5)

We have A(t) = θ immediately from (3.5.1); and substitute it into (3.5.2) by adding the

boundary condition B(T) = v, we have the ODE as (3.2). Then, by (3.5.3), the integration

of (3.3) follows. By the property of infinitesimal generator, ec(t)θNt e−B(t)λt is a martingale,

and we have

E
�
ec(T)θNT e−B(T)λT | Ft

�
= ec(t)θNt e−B(t)λt . (3.6)

Then, with the boundary condition B(T) = v, (3.1) follows.
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3.2 Laplace Transform of λT

Based on Lemma 3.1, we then investigate the distributional properties of intensity process

{λt}t≥0 in detail as follows.

Theorem 3.1. For κ > 0, the Laplace transform λT conditional on λ0 is given by

E
�
e−vλT | λ0

�
= exp

�
−

vZ
G−1

v,1 (T)

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

�
× e−G

−1
v,1 (T)λ0 , (3.7)

where

Gv,1(L) :=
Z v

L

du
δu + ĝ(u)− 1 + 1

2 σ2u2
, L ∈ (0, v]. (3.8)

Proof. By setting t = 0 and θ = 1 in Lemma 3.1, we have

E
�
e−vλT | F0

�
= e−

�
c(T)−c(0)

�
e−B(0)λ0 , (3.9)

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + ĝ
�

B(t)
�
− 1 +

1
2

σ2B2(t) = 0,

with boundary condition B(T) = v. It can be solved, under the condition δ > µ1G , by the

following steps:

1. Set B(t) = L(T − t) and τ = T − t, it is equivalent to the initial value problem

dL(τ)
dτ

= 1− δL(τ)− ĝ(L(τ))− 1
2

σ2L2(τ), (3.10)

with the initial condition L(0) = v > 0; we define the right-hand side of (3.10) as

f1(L) := 1− δL− ĝ(L)− 1
2

σ2L2.

2. Under the condition δ > µ1G , we have

∂ f1(L)
∂L

=
Z ∞

0
ze−LzdG(z)− δ−σ2L ≤

Z ∞

0
zdG(z)− δ = µ1G − δ = κ < 0, for L ≥ 0,

then, f1(L) < 0 for L > 0, since f1(0) = 0.

3. Rewrite (3.10) as
dL

δL + ĝ(L)− 1 + 1
2 σ2L2

= −dτ,
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by integrating both sides from time 0 to τ with initial condition L(0) = v > 0, we

have Z v

L

du
δu + ĝ(u)− 1 + 1

2 σ2u2
= τ.

Define the function on the left-hand side as (3.8), then, Gv,1(L) = τ. Obviously

L→ v when τ → 0; by convergence test,

lim
u→0

1
u
1

δu+ĝ(u)−1+ 1
2 σ2u2

= δ + lim
u→0

ĝ(u)− 1
u

= δ− µ1G = κ > 0,

and we know that
Z v

0

1
u

du = ∞, then, limL↓0 Gv,1(L) = ∞, hence, L→ 0 when τ →

∞; the integrand of (3.8) is positive in the domain u ∈ (0, ∞) and also for 0 < L ≤ v,

Gv,1(L) is a strictly decreasing function; therefore, Gv,1(L) : (0, v] → [0, ∞) is a

well defined (monotone) function, and its inverse function G−1
v,1 (τ) : [0, ∞) → (0, v]

exists.

4. The unique solution is found by L(τ) = G−1
v,1 (τ), or B(t) = G−1

v,1 (T − t).

5. B(0) is obtained by B(0) = L(T) = G−1
v,1 (T).

Then, c(T)− c(0) is determined by

c(T)− c(0) = aδ
Z T

0
G−1

v,1 (τ)dτ + $
Z T

0

�
1− ĥ

�
G−1

v,1 (τ)
� �

dτ, (3.11)

by change of variable G−1
v,1 (τ) = u, we have τ = Gv,1(u), and

Z T

0

�
1− ĥ

�
G−1

v,1 (τ)
� �

dτ =

G−1
v,1 (T)Z

G−1
v,1 (0)

�
1− ĥ(u)

�∂τ

∂u
du =

vZ
G−1

v,1 (T)

1− ĥ(u)
δu + ĝ(u)− 1 + 1

2 σ2u2
du,

similarly, Z T

0
G−1

v,1 (τ)dτ =

vZ
G−1

v,1 (T)

u
δu + ĝ(u)− 1 + 1

2 σ2u2
du.

Finally, substitute B(0) and c(T)− c(0) into (3.9), and Theorem 3.1 follows.

Corollary 3.1. For κ > 0, the Laplace transform of asymptotic distribution of λT conditional on

λ0 is given by

lim
T→∞

E
�
e−vλT | λ0

�
= Π̂(v),
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where

Π̂(v) := L
¦

Π(λ)
©
= exp

 
−
Z v

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

!
. (3.12)

Proof. Let T → ∞ in Theorem 3.1, then G−1
v,1 (T)→ 0 which largely simplifies the expression

(3.7), and the Laplace transform of asymptotic distribution follows immediately as given

by (3.12).

Π is denoted as the distribution determined by its Laplace transform of (3.12), and

Π(λ) is denoted as the associated density function.

Corollary 3.2. For κ > 0 and any time T ≥ 0, if λ0 ∼ Π, then λT ∼ Π.

Proof. By Theorem 3.1 and given the Laplace transform of distribution Π by (3.12), we

have

E
�
e−vλT

�
= E

�
E
�
e−vλT | λ0

��
= exp

�
−

vZ
G−1

v,1 (T)

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

�
E
h
e−G

−1
v,1 (T)λ0

i
= exp

�
−

vZ
G−1

v,1 (T)

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

�
exp

�
−
G−1

v,1 (T)Z
0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

�

= exp

 
−
Z v

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

!
= Π̂(v).

The stationarity property revealed in Corollary 3.2 can be formally proved in Theorem

3.2 as below. To rigorously prove the existence and uniqueness of this stationary process,

one can easily follow the same approach as adopted in the proof for Theorem 3.3. in

Dassios and Zhao (2011).

Theorem 3.2. For κ > 0, (3.12) is also the Laplace transform of stationary distribution of

{λt}t≥0.

Proof. By the martingale property of infinitesimal generator of (2.2), we have a martingale

f (λt, Nt, t)− f (λ0, N0, 0)−
Z t

0
A(λs, Ns, s)ds. Set f (λ, n, t) = e−vλ, we have

A
�
e−vλ

�
= e−vλ

�
−aδv + $[ĥ(v)− 1] +

�
δv + ĝ(v)− 1 +

1
2

σ2v2
�

λ

�
,

10



then,

E
�
e−vλt | F0

�
=

Z t

0
E
�
A
�
e−vλs

�
| F0

�
ds + e−vλ0

=
Z t

0

��
− aδv + $[ĥ(v)− 1]

�
E
�
e−vλs | F0

�
+

�
δv + ĝ(v)− 1 +

1
2

σ2v2
�

E
�
λse−vλs | F0

� �
ds + e−vλ0 .

Differentiate two sides with respect to t, as

∂

∂t

Z t

0
E
�
λse−vλs | F0

�
= − ∂

∂v
E
�
e−vλs | F0

�
,

we have

∂E
�
e−vλt | F0

�
∂t

=

�
− aδv+ $[ĥ(v)− 1]

�
E
�
e−vλt | F0

�
−
�

δv + ĝ(v)− 1 +
1
2

σ2v2
�

∂

∂v
E
�
e−vλs | F0

�
.

Denote Π̂(v, t) := E
�
e−vλt | F0

�
, then, we have the first-order PDE

∂Π̂(v, t)
∂t

=

�
− aδv + $[ĥ(v)− 1]

�
u(v, t)−

�
δv + ĝ(v)− 1 +

1
2

σ2v2
�

∂Π̂(v, t)
∂v

,

with the boundary conditions Π̂(0, t) = 1 and Π̂(v, 0) = e−vλ0 . Because of the stationari-

ty, Π̂(v, t) should be independent of time t, i.e. Π̂(v, t) = Π̂(v) for any t, so ∂
∂t Π̂(v) = 0,

then, we have the ODE�
− aδv + $[ĥ(v)− 1]

�
Π̂(v)−

�
δv + ĝ(v)− 1 +

1
2

σ2v2
�

dΠ̂(v)
dv

= 0. (3.13)

Given the initial condition Π̂(0) =
Z ∞

0
Π(λ)dλ = 1, we have the solution (3.12). Since

Π is the unique solution to the ODE (3.13), we have the stationarity of intensity process

{λt}t≥0.

Now, we investigate the asymptotics of distribution Π via its Laplace transform (3.12).

Theorem 3.3. We have the asymptotics of stationary distribution of intensity around zero,

Π(λ) ∼ ε
2δ

σ2 a

Γ
�

2δ
σ2 a
�Π̂(ε)E(ε)λ

�
2δ

σ2 a−1
�

, λ→ 0, (3.14)

where ε is any positive constant and

E(ε) := exp

 
−
Z ∞

ε

$[1− ĥ(u)]u− 2δ
σ2 a [δu− ĝ(u)− 1]�

δu + ĝ(u)− 1 + 1
2 σ2u2

�
u

du

!
< ∞, ε > 0.

11



Proof. By convergence test

lim
u→∞

aδu+$[1−ĥ(u)]
δu+ĝ(u)−1+ 1

2 σ2u2

aδ
δ+ 1

2 σ2u

= lim
u→∞

u + $
aδ [1− ĥ(u)]

u + ĝ(u)−1
δ+ 1

2 σ2u

= lim
u→∞

�
u + $

aδ [1− ĥ(u)]
�′�

u + ĝ(u)−1
δ+ 1

2 σ2u

�′ = 1,

since

lim
v→∞

Z v

0

aδ

δ + 1
2 σ2u

du = ∞,

we have

lim
v→∞

Z v

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du = ∞.

For ε > 0, we have

ε
− 2δ

σ2 a lim
v→∞

v
2δ

σ2 aΠ̂(v)

= lim
v→∞

exp

 
−
Z v

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du +

2δ

σ2 a
Z v

ε

1
u

du

!
= exp

 
−
Z ε

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

!
× lim

v→∞
exp

 
−
Z v

ε

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du +

2δ

σ2 a
Z v

ε

1
u

du

!
= Π̂(ε) lim

v→∞
exp

 
−
Z v

ε

"
aδu + $[1− ĥ(u)]

δu + ĝ(u)− 1 + 1
2 σ2u2

−
2δ
σ2 a
u

#
du

!
= Π̂(ε) lim

v→∞
exp

 
−
Z v

ε

$[1− ĥ(u)]u− 2δ
σ2 a [δu− ĝ(u)− 1]�

δu + ĝ(u)− 1 + 1
2 σ2u2

�
u

du

!
= Π̂(ε)E(ε).

Hence,

lim
v→∞

v
2δ

σ2 aΠ̂(v) = ε
2δ

σ2 aΠ̂(ε)E(ε),

i.e.

Π̂(v) ∼ ε
2δ

σ2 aΠ̂(ε)E(ε)v−
2δ

σ2 a, v→ ∞,

and by Tauberian Theorem (Feller, 1971), we have (3.14).

Remark 3.1. If 2δ
σ2 a > 1, then, lim

u→0
Π(u) = 0 and there is no mass at zero for distribution

Π. The Feller’s condition 2δ
σ2 a > 1 is also a well known condition that guarantees CIR

process positive with probability one (Feller, 1951).

If the sizes of two types of jumps follow exponential distributions, the explicit ex-

pressions for the Laplace transforms of asymptotic/stationary λt can be derived, and for

12



some special cases, the exact distributions can further be identified.

Corollary 3.3. For the special case of pure diffusion, i.e. without externally excited and self-

excited jumps, we have ¦
λt
©

t≥0
∼ Gamma

�
2δ

σ2 a,
2δ

σ2

�
.

Proof. By Theorem 3.2, we have

Π̂(v) = exp

 
−
Z v

0

aδu
δu + 1

2 σ2u2
du

!
= exp

 
−2δ

σ2 a
Z v

0

1
2δ
σ2 + u

du

!
=

 2δ
σ2

v + 2δ
σ2

! 2δ

σ2 a

.

Corollary 3.4. For the special case without self-excited jumps, assume H ∼ Exp(α), we have

Π̂(v) =

 2δ
σ2

v + 2δ
σ2

!� 2δ

σ2 a− 2$

2δ−ασ2

� �
α

α + v

� 2$

2δ−ασ2
.

Proof. By Theorem 3.2, we have

Π̂(v) = exp

 
−
Z v

0

aδu
δu + 1

2 σ2u2
du

!
exp

 
−
Z v

0

$
�
1− α

α+u

�
δu + 1

2 σ2u2
du

!
=

 2δ
σ2

v + 2δ
σ2

! 2δ

σ2 a  2δ
σ2

v + 2δ
σ2

!− 2$

2δ−ασ2 � α

α + v

� 2$

2δ−ασ2
.

Corollary 3.5. For the special case without externally excited jumps, assume G ∼ Exp(β) and

δβ > 1, we have¦
λt
©

t≥0
∼ Gamma

�
2aδ

σ2 w1, − u−
�

+ Gamma
�

2aδ

σ2 w2, − u+

�
,

where constants w1, w2 > 0, u−, u+ < 0,

w1 :=
u− + β

u− − u+
, w2 := − u+ + β

u− − u+
, u± :=

−
�

2δ
σ2 + β

�
±
É�

2δ
σ2 − β

�2
+ 8

σ2

2
.

Proof. By Theorem 3.2, we have

Π̂(v) = exp

�
−
Z v

0

aδu

δu + β
β+u − 1 + 1

2 σ2u2
du

�
=

� −u−
v− u−

� 2aδ

σ2 w1
� −u+

v− u+

� 2aδ

σ2 w2

.

Denote f (u) = u2 +
�

2δ
σ2 + β

�
u + 2

σ2 (δβ− 1). u− and u+ are the two solutions to f (u) = 0

13



under the condition δβ > 1, and it is easy to check they are both negative. Also f (−β) =

− 2
σ2 < 0, we have u− < −β < u+ < 0, then w1, w2 > 0. Note that, w1 + w2 = 1.

Remark 3.2. For the special case without diffusion, i.e. σ = 0, assume H ∼ Exp(α), G ∼

Exp(β) and δβ > 1, we have

¦
λt
©

t≥0
∼

8>>><>>>:
a + Γ̃1 + Γ̃2, for α ≥ β,

a + Γ̃3 + B̃, for α < β and α 6= β− 1
δ ,

a + Γ̃4 + P̃, for α = β− 1
δ ,

where Γ̃1, Γ̃2, Γ̃3, Γ̃4 are different gamma random variables; B̃ follows a compound neg-

ative binomial distribution with underlying exponential jumps; P̃ follows a compound

Poisson distribution with underlying exponential jumps. They are all independent of

each other. This interesting result of explicit distributional decomposition in detail to-

gether with the associated proof is provided as Theorem 4.1. in Dassios and Zhao (2011).

Corollary 3.6. For the general case, assume H ∼ Exp(α), G ∼ Exp(β) and δβ > 1, we have

Π̂(v) =

8>>><>>>:
�

α
v+α

� 2aδ

σ2 (ω1a1+ω2b1) ×
� −u−

v−u−

� 2aδ

σ2 ω1a2 ×
� −u+

v−u+

� 2aδ

σ2 ω2b2 , α 6= −u−,−u+,�
α

v+α

� 2δa
σ2 (ω1+ω2b1) ×

� −u+
v−u+

� 2aδ

σ2 ω2b2 × exp
�
− 2δa

σ2α
ω1(β− α) v

α+v

�
, α = −u−,�

α
v+α

� 2aδ

σ2 (ω1a1+ω2) ×
� −u−

v−u−

� 2aδ

σ2 ω1a2 × exp
�
− 2δa

σ2α
ω2(β− α) v

α+v

�
, α = −u+,

where

ω1 := −
u− + α + $

aδ

u+ − u−
, ω2 :=

u+ + α + $
aδ

u+ − u−
,

a1 :=
α− β

α + u−
, a2 =

u− + β

α + u−
, b1 :=

α− β

α + u+
, b2 =

u+ + β

α + u+
.

Proof. By Theorem 3.2, we have

Π̂(v) = exp
�
−2δa

σ2 ω1

Z v

0

u + β

(u + α)(u− u−)
du
�

exp
�
−2δa

σ2 ω2

Z v

0

u + β

(u + α)(u− u+)
du
�

.

If α 6= −u− and α 6= −u+, then,

Π̂(v) =
�

α

v + α

� 2aδ

σ2 ω1a1
� −u−

v− u−

� 2aδ

σ2 ω1a2 � α

v + α

� 2aδ

σ2 ω2b1
� −u+

v− u+

� 2aδ

σ2 ω2b2

.

If α = −u− or α = −u+, we haveZ v

0

u + β

(u + α)2 du = ln
�v + α

α

�
+ (β− α)

�
1
α
− 1

v + α

�
,
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so, if α = −u−, then,

Π̂(v) = exp
�
−2δa

σ2 ω1

Z v

0

u + β

(u + α)2 du
�

exp
�
−2δa

σ2 ω2

Z v

0

u + β

(u + α)(u− u+)
du
�

=
�

α

v + α

� 2δa
σ2 ω1

exp
�
− 2δa

σ2α
ω1(β− α)

�
1− α

α + v

���
α

v + α

� 2aδ

σ2 ω2b1
� −u+

v− u+

� 2aδ

σ2 ω2b2

;

if α = −u+, then,

Π̂(v) = exp
�
−2δa

σ2 ω1

Z v

0

u + β

(u + α)(u− u−)
du
�

exp
�
−2δa

σ2 ω2

Z v

0

u + β

(u + α)2 du
�

=
�

α

v + α

� 2aδ

σ2 ω1a1
� −u−

v− u−

� 2aδ

σ2 ω1a2 � α

v + α

� 2δa
σ2 ω2

exp
�
− 2δa

σ2α
ω2(β− α)

�
1− α

α + v

��
.

Remark 3.3. For Corollary 3.6, in particular, if α = β, then we have

Π̂(v) =
� −u−

v− u−

� 2aδ

σ2 ω1
� −u+

v− u+

� 2aδ

σ2 ω2

.

3.3 Probability Generating Function of NT

Based on Lemma 3.1, we can derive the distributional properties of point process {Nt}t≥0.

Theorem 3.4. For κ > 0, the probability generating function of NT conditional on λ0 and

N0 = 0 is given by

φT(θ) := E
�
θNT | λ0

�
= exp

�
−
G−1

0,θ (T)Z
0

aδu + $[1− ĥ(u)]
1− δu− θ ĝ(u)− 1

2 σ2u2
du

�
× e−G

−1
0,θ (T)λ0 ,

(3.15)

where

G0,θ(L) :=
Z L

0

du
1− δu− θ ĝ(u)− 1

2 σ2u2
, θ ∈ [0, 1). (3.16)

Proof. By setting t = 0, v = 0 and assuming N0 = 0 in Lemma 3.1, we have

E
�
θNT | F0

�
= e−

�
c(T)−c(0)

�
e−B(0)λ0 , (3.17)

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + θ ĝ
�

B(t)
�
− 1 +

1
2

σ2B2(t) = 0,

with the boundary condition B(T) = 0. Under the condition δ > µ1G , it can be solved for
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σ > 0 by the following steps:

1. Set B(t) = L(T − t) and τ = T − t,

dL(τ)
dτ

= 1− δL(τ)− θ ĝ(L(τ))− 1
2

σ2L2(τ), θ ∈ [0, 1), (3.18)

with the initial condition L(0) = 0; we define the right-hand side of (3.18) as

f2(L) := 1− δL− θ ĝ(L)− 1
2

σ2L2. (3.19)

2. There is only one positive singular point to the equation f2(L) = 0, which is denot-

ed by v∗ = v∗(θ) > 0. This is because,

• for the case 0 < θ < 1, the equation f2(L) = 0 is equivalent to

ĝ(u) =
1
θ

�
1− δu− 1

2
σ2u2

�
, θ ∈ (0, 1),

note that, ĝ(·) is a convex function, then it is clear that there is only one positive

solution to this equation;

• for the case θ = 0, the equation f2(L) = 0 is equivalent to

1− δu− 1
2

σ2u2 = 0,

which has only one positive solution

v∗ :=
−δ +

√
δ2 + 2σ2

σ2 > 0;

and for both cases,

0 <
−δ +

È
δ2 + 2σ2(1− θ)

σ2 < v∗ ≤ −δ +
√

δ2 + 2σ2

σ2 ; (3.20)

then, we have f2(L) > 0 for 0 ≤ L < v∗ and f2(L) < 0 for L > v∗.

3. Rewrite (3.18) as
dL

1− δL− θ ĝ(L)− 1
2 σ2L2

= dτ,

and integrate, we haveZ L

0

du
1− δu− θ ĝ(u)− 1

2 σ2u2
= τ, L ∈ [0, v∗).
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Figure 2: Numerical example: the function G0,θ(L) of (3.16) when G ∼ Exp(β) with parameters
(δ; β; σ; θ) = (2.0; 1.5; 0.5; 0.5) and v∗ = 0.2848

Define the function on the left-hand side as (3.16), then, G0,θ(L) = τ. Note that,Z v∗

0

1
u− v∗

du = ∞, limL↑v∗ G0,θ(L) = ∞; hence, as L → 0 when τ → 0, and L → v∗

when τ → ∞; the integrand is positive in the domain u ∈ (0, v∗), and G0,θ(L) is

a strictly increasing function of L, L ∈ (0, v∗), see a numerical example of function

G0,θ(L) in Figure 2; therefore, G0,θ(L) : [0, v∗) → [0, ∞) is a well defined function,

and its inverse function G−1
0,θ (τ) : [0, ∞)→ [0, v∗) exists.

4. The unique solution is found by L(τ) = G−1
0,θ (τ), or, B(t) = G−1

0,θ (T − t).

5. B(0) is obtained by B(0) = L(T) = G−1
0,θ (T).

Then, c(T)− c(0) is determined by

c(T)− c(0) = aδ
Z T

0
G−1

0,θ (τ)dτ + $
Z T

0

�
1− ĥ

�
G−1

0,θ (τ)
��

dτ, (3.21)

where, by change of variable,

Z T

0
G−1

0,θ (τ)dτ =

G−1
0,θ (T)Z
0

u
1− δu− θ ĝ(u)− 1

2 σ2u2
du,

Z T

0

�
1− ĥ

�
G−1

0,θ (τ)
��

dτ =

G−1
0,θ (T)Z
0

1− ĥ(u)
1− δu− θ ĝ(u)− 1

2 σ2u2
du.

Finally, substitute B(0) and c(T)− c(0) into (3.17), and the result follows.
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Corollary 3.7. For the special case of zero reversion level and no external excitement, i.e. a =

$ = 0, we have

E[θNT | λ0] = e−G
−1
0,θ (T)λ0 , E[θN∞ | λ0] = e−v∗λ0 .

where the function G0,θ(·) is given by (3.16) and v∗ is the unique positive solution to (3.19).

Proof. Set a = $ = 0 in Theorem 3.4 and T → ∞, and the results follow immediately.

3.4 Moments of λT and NT

The moments of λt and Nt can be derived by differentiating the Laplace transform of λt

in Section 3.2 and the probability generating function of Nt in Section 3.3. Alternatively,

they can be obtained by solving the ODEs as below.

3.4.1 Moments of Intensity Process λt

Theorem 3.5. The expectation of λt conditional on λ0 is given by

µ1(t; λ0) := E [λt | λ0] =

8<: µ1H $+aδ

κ +
�

λ0 −
µ1H $+aδ

κ

�
e−κt, κ 6= 0,

λ0 + (µ1H $ + aδ) t, κ = 0.
(3.22)

Proof. By the martingale property of infinitesimal generator (2.2), we have aF−martingale

f (λt, Nt, t)− f (λ0, N0, 0)−
Z t

0
A f (λs, Ns, s)ds for f ∈ Ω(A). Set f (λ, n, t) = λ, we have

Aλ = −κλ + µ1H $ + aδ,

and λt− λ0−
Z t

0
Aλsds is a F−martingale, then we have E

�
λt − λ0 −

Z t

0
Aλsds | λ0

�
=

0, and

E [λt | λ0] = λ0 + E

�Z t

0
Aλsds

��� λ0

�
= λ0 − κ

Z t

0
E [λs | λ0]ds + (µ1H $ + aδ) t.

Differentiate it with respect to t, we obtain the non-linear inhomogeneous ODE

µ′1(t; λ0) = −κµ1(t; λ0) + µ1H $ + aδ,

with the initial condition µ1(0; λ0) = λ0. This ODE has the solution of (3.22).
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Theorem 3.6. The second moment of λt conditional λ0 is given by

µ2(t; λ0) := E
�
λ2

t | λ0
�
=

8>>>><>>>>:
λ2

0e−2κt +
2(µ1H $+aδ)+µ2G+σ2

κ

�
λ0 −

µ1H $+aδ

κ

��
e−κt − e−2κt

�
+

"�
2(µ1H $+aδ)+µ2G+σ2

�
(µ1H $+aδ)

2κ2 +
µ2H $

2κ

#�
1− e−2κt

�
, κ 6= 0,

λ2
0 +

�
2(µ1H $ + aδ) + µ2G + σ2

� �
λ0t + 1

2
�
µ1H $ + aδ

�
t2
�
+ µ2H $t, κ = 0.

(3.23)

Proof. By setting f (λ, n, t) = λ2 in (2.2), we have

Aλ2 = −2κλ2 +
�
2(µ1H $ + aδ) + µ2G + σ2

�
λ + µ2H $.

Since λ2
t − λ2

0−
Z t

0
A(λ2

s )ds is a F−martingale, we have E

�
λ2

t −
Z t

0
A(λ2

s )ds | λ0

�
= λ2

0,

and

E
�
λ2

t | λ0
�
= λ2

0− 2κ
Z t

0
E
�
λ2

s | λ0
�

ds+
�

2(µ1H $+ aδ)+µ2G +σ2
� Z t

0
E [λs | λ0]ds+µ2H $t.

Differentiate it with respect to t, we have the ODE

µ′2(t; λ0) + 2κµ2(t; λ0) =

�
2(µ1H $ + aδ) + µ2G + σ2

��
λ0 −

µ1H $ + aδ

δ− µ1G

�
e−κt

+

�
2
�
µ1H $ + aδ) + µ2G + σ2

�
(µ1H $ + aδ)

κ
+ µ2H $,

with the initial condition µ2(0; λ0) = λ2
0. This ODE has the solution of (3.23).

Corollary 3.8. The variance of λt conditional on λ0 is given by

Var [λt | λ0] =

8>>>>><>>>>>:
1

2κ

"�
µ2G+σ2

�
(µ1H $+aδ)

κ − µ2H $− 2
�
µ2G + σ2

�
λt

#
e−2κt

+
µ2G+σ2

κ

�
λ0 −

µ1H $+aδ

κ

�
e−κt + 1

2κ

"
µ2H $ +

�
µ2G+σ2

�
(µ1H $+aδ)

κ

#
, κ 6= 0,

1
2

�
µ2G + σ2

�
(µ1H $ + aδ) t2 +

��
µ2G + σ2

�
λ0 + µ2H $

�
t, κ = 0.

Proof. Var [λt | λ0] = E
�
λ2

t | λ0
�
− (E [λt | λ0])

2 where E
�
λ2

t | λ0
�

and E [λt | λ0] are giv-

en by Theorem 3.6 and Theorem 3.5.

Corollary 3.9. Under the condition κ > 0, the asymptotic first and second moments of intensity
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level λt are given by

µ1 := E [λt] = lim
t→∞

E [λt | λ0] =
µ1H $ + aδ

κ
,

µ2 := E
�
λ2

t

�
= lim

t→∞
E
�
λ2

t | λ0
�
=

�
2(µ1H $ + aδ) + µ2G + σ2

�
(µ1H $ + aδ)

2κ2 +
µ2H $

2κ
.

3.4.2 Moments of Point Process Nt

Theorem 3.7. The expectation of Nt conditional on N0 = 0 and λ0 is given by

ν1(t; λ0) := E [Nt | λ0] =

8<: µ1t + (λ0 − µ1)
1
κ

�
1− e−κt

�
, κ 6= 0,

λ0t + 1
2 (µ1H $ + aδ) t2, κ = 0.

(3.24)

Proof. By setting f (λ, n, t) = n in (2.2), we have An = λ. Since Nt − N0 −
Z t

0
λsds is a

martingale, we have

E [Nt | λ0] = E

"Z t

0
λsds

����� λ0

#
=
Z t

0
E[λs | λ0]ds,

where E[λs | λ0] is given by Theorem 3.5.

Lemma 3.2. The expectation of Ntλt conditional on N0 = 0 and λ0 is given by

ϑ(t; λ0) := E [Ntλt | λ0] = e−κt
Z t

0
eκs p(s; λ0)ds, (3.25)

where

p(t; λ0) := (µ1H $ + aδ)ν1(t; λ0) + µ2(t; λ0) + µ1G µ1(t; λ0).

Proof. Set f (λ, n, t) = nλ in (2.2), we have

A (nλ) = −κλn + (µ1H $ + aδ)n + λ2 + µ1G λ,

then,

E [Ntλt | λ0] = E

�Z t

0

�
− κλuNu + (µ1H $ + aδ)Nu + λ2

u + µ1G λu

�
du
��� λ0

�
.

Differentiate it w.r.t. t, we have the ODE

d
dt

ϑ(t; λ0) = −κϑ(t; λ0) + (µ1H $ + aδ)E [Nt | λ0] + E
�
λ2

t | λ0
�
+ µ1G E [λt | λ0] ,
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with the initial condition ϑ(0; λ0) = 0. More concisely, it can be expressed by

d
dt

ϑ(t; λ0) = −κϑ(t; λ0) + p(t; λ0).

Solve this ODE, we have the solution (3.25).

Theorem 3.8. The second moment of Nt conditional on N0 = 0 and λ0 is given by

ν2(t; λ0) := E
�
N2

t | λ0
�
= 2

Z t

0
ϑ(s; λ0)ds +

Z t

0
µ1(s; λ0)ds. (3.26)

Proof. Set f (λ, n, t) = n2 in (2.2), we haveA
�
n2
�
= (2n+ 1)λ. Since N2

t −N2
0 −

Z t

0
(2Ns + 1) λsds,

we have

E
�
N2

t | λ0
�
= 2

Z t

0
E [Nsλs | λ0]ds +

Z t

0
E [λs | λ0]ds,

which can be expressed by (3.26).

Based on Theorem 3.5 and Theorem 3.8, it is straightforward to derive the variance of

Nt by

Var [Nt | λ0] = ν2(t; λ0)− ν2
1(t; λ0).

All of the moments of Nt given the formulas above can be easily calculated explicitly, but

their expressions would be very long with various simple exponential functions. To save

the space, we just leave their concise expressions there.

4 Change of Measure

In this section, we develop a simple method of change of measure for the joint process

(λt, Nt) via Esscher transform (Gerber and Shiu, 1994) (or exponential tilting) and scaling

the jump-size distributions. By appropriately choosing a set of parameters, it might be

useful for pricing under alternative probability measures or improving simulation effi-

ciency via importance sampling.

By Lemma 3.1, Theorem 3.1 and Theorem 3.4, we have a FP
t −martingale

ec(t)θNt e−B(t)λt , (4.1)
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where parameters c(t) and B(t) satisfy the equations8<: −B′(t) + δB(t) + θ ĝ(B(t))− 1 + 1
2 σ2B2(t) = 0, (.1)

c′(t) + $ĥ(B(t))− $− aδB(t) = 0. (.2)
(4.2)

It can be uniquely determined for the following two cases (I, II) under the condition

δ > µ1G for 0 ≤ t ≤ T:

I. θ = 1, B(T) = v > 0:

B(t) ∈ (0, v], c(t) ∈
"

0,
Z v

0

aδu + $[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2 σ2u2
du

!
, t ∈ [0, T = ∞),

(4.3)

II. 0 ≤ θ < 1, B(T) = v = 0:

B(t) ∈ [0, v∗), c(t) ∈
"

0,
Z v∗

0

aδu + $[1− ĥ(u)]
1− δu− θ ĝ(u)− 1

2 σ2u2
du

!
, t ∈ [0, T = ∞),

(4.4)

where v∗ is the unique positive solution to the equation

1− δu− θ ĝ(u)− 1
2

σ2u2 = 0.

Theorem 4.1. Define an equivalent probability measure ÜP, via the Radon-Nikodym derivative

dÜP
dP

�����
Ft

:= ec(t)−c(0)θNt−N0 e−(B(t)λt−B(0)λ0), θ ∈ [0, 1],

then, under the condition κ > 0, we have the parameter transformation for (Nt, λt) from P→ ÜP
by

• a→ aθ ĝ(B(t))
h
1 + σ2

δ B(t)
i
,

• δ→ δ

1+ σ2
δ B(t)

,

• $→ ĥ(B(t))$,

• h(u)→
eh� 1

θ ĝ(B(t)) u
�

θ ĝ(B(t)) ,

• g(u)→
eg� 1

θ ĝ(B(t)) u
�

θ ĝ(B(t)) ,

• σ→ σ,
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where eh(y) :=
e−B(t)y

ĥ(B(t))
1

dy
, eg(y) :=

e−B(t)y

ĝ(B(t))
1

dy
.

Proof. We use the martingale of (4.1) to define an equivalent martingale probability mea-

sure ÜP via the Radon-Nikodym derivative

Lt :=
dÜP
dP

�����
Ft

:=
ec(t)θNt e−B(t)λt

E
�
ec(t)θNt e−B(t)λt

� = ec(t)−c(0)θNt−N0 e−(B(t)λt−B(0)λ0),

which is a FP
t −martingale with mean value 1. Let ÜA be the generator and ÜE be the

expectation under the new measure ÜP. Based on the definition of infinitesimal generator

(Øksendal, 2003), we have

ÜA ef = lim
∆→0

ÜE� ef (t + ∆t) | Ft
�
− ef (t)

∆t
.

By the change of measure, we have

ÜA ef = lim
∆→0

E
�
eg(t+∆t)−g(t) ef (t + ∆t) | Ft

�
− ef (t)

∆t
= e−gA

¦
eg ef© ,

where

eg(t) = ec(t)θNt e−B(t)λt .

Set f (λ, n, t) = ec(t)θne−B(t)λ ef (λ, n, t) in the original generator (2.2), we have

ÜA ef =
�
c′(t)− B′(t)λ

� ef + ∂ ef
∂t

+ δ (a− λ)

 
−B(t) ef + ∂ ef

∂λ

!
+

1
2

σ2λ

 
∂2 ef

∂. +−+ λ2 − 2B(t)
∂ ef
∂λ

+ B2(t) ef!
+$

�Z ∞

0
ef (λ + y, n, t)e−B(t)ydH(y)− ef (λ, n, t)

�
+λ

�
θ
Z ∞

0
ef (λ + y, n + 1, t)e−B(t)ydG(y)− ef (λ, n, t)

�
.

Given the parameter relationship by (4.2) without explicitly solving the equations, we

can implement the Esscher Transform

dÜH(y) :=
e−B(t)y

ĥ(B(t))
dH(y), dÜG(y) :=

e−B(t)y

ĝ(B(t))
dG(y),

then,

ÜA ef =
∂ ef
∂t

+ δ

�
a−

�
1 +

σ2

δ
B(t)

�
λ

�
∂ ef
∂λ

+
1
2

σ2λ
∂2 ef
∂λ2 + ĥ(B(t))$

�Z ∞

0
ef (λ + y, n, t)dÜH(y)− ef (λ, n, t)

�
+θ ĝ(B(t))λ

�Z ∞

0
ef (λ + y, n + 1, t)dÜG(y)− ef (λ, n, t)

�
.
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Let eλ = θ ĝ(B(t))λ, we have

ÜA ef =
∂ ef
∂t

+
δ

1 + σ2

δ B(t)

�
aθ ĝ(B(t))

�
1 +

σ2

δ
B(t)

�
− eλ� ∂ ef

∂eλ +
1
2

σ2eλ ∂2 ef
∂eλ2

+ĥ(B(t))$
�Z ∞

0
ef �eλ + θ ĝ(B(t))y, n, t

�
dÜH(y)− ef (eλ, n, t)

�
+eλ �Z ∞

0
ef �eλ + θ ĝ(B(t))y, n + 1, t

�
dÜG(y)− ef (eλ, n, t)

�
.

Change the variable by u = θ ĝ(B(t))y, we have

ÜA ef =
∂ ef
∂t

+
δ

1 + σ2

δ B(t)

�
aθ ĝ(B(t))

�
1 +

σ2

δ
B(t)

�
− eλ� ∂ ef

∂eλ +
1
2

σ2eλ ∂2 ef
∂eλ2

+ĥ(B(t))$
�Z ∞

0
ef �eλ + u, n, t

�
dÜH(y)− ef (eλ, n, t)

�
+eλ �Z ∞

0
ef �eλ + u, n + 1, t

�
dÜG(y)− ef (eλ, n, t)

�
.

Since dÜH(y) = eh(y)dy and dÜG(y) = eg(y)dy, finally, we have

ÜA ef =
∂ ef
∂t

+
δ

1 + σ2

δ B(t)

�
aθ ĝ(B(t))

�
1 +

σ2

δ
B(t)

�
− eλ� ∂ ef

∂eλ +
1
2

σ2eλ ∂2 ef
∂eλ2

+ĥ(B(t))$

24Z ∞

0
ef �eλ + u, n, t

� eh � 1
θ ĝ(B(t))u

�
θ ĝ(B(t))

du− ef (eλ, n, t)

35
+eλ24Z ∞

0
ef �eλ + u, n + 1, t

� eg � 1
θ ĝ(B(t))u

�
θ ĝ(B(t))

du− ef (eλ, n, t)

35 . (4.5)

Therefore, we can uniquely specify the dynamics of the process under ÜP measure based

on (4.5). By comparing the original generator (2.2) with this new generator (4.5), it is

straightforward to identify the parameter transformation from the original measure P to

the new measure ÜP as given by Theorem 4.1.

Corollary 4.1. If the condition holds under the original measure P, i.e. δ > µ1G , then, it still

holds under the new measure ÜP, i.e. eδ > µ1eG .

Proof. Under the new measure ÜP, by the parameter transformation given by Theorem 4.1

and change variable y = 1
θ ĝ(B(t))u, we have

µ1eG =
Z ∞

0
u
eg � 1

θ ĝ(B(t))u
�

θ ĝ(B(t))
du

=
Z ∞

0
u

1
θ ĝ(B(t))

e−B(t) 1
θ ĝ(B(t)) u

ĝ(B(t))
g
�

1
θ ĝ(B(t))

u
�

du

= θ
Z ∞

0
ye−B(t)ydG(y).
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Since 0 ≤ θ ≤ 1 and B(T) = v ≥ 0 as given by (4.3) and (4.4) and the condition holds

under the measure P, we have

eδ = δ > µ1G =
Z ∞

0
ydG(y) > θ

Z ∞

0
ye−B(t)ydG(y) = µ1eG .

Remark 4.1. In particular, we assume the jump-sizes follows exponential distributions,

say, H ∼ Exp(α) and G ∼ Exp(β), and the condition δβ > 1. By Theorem 4.1, we have a

nice explicit transformation:

• a→ 1+ σ2
δ B(t)

β+B(t) θβa,

• δ→ δ

1+ σ2
δ B(t)

,

• $→ α
α+B(t)$,

• H ∼ Exp(α)→ Exp
�
(α+B(t))(β+B(t))

θβ

�
,

• G ∼ Exp(β)→ Exp
�
(β+B(t))2

θβ

�
,

• σ→ σ.

5 Application to Finance: Probability of Default

We propose a generalised intensity-based model for modelling default probabilities, and

extend the credit model of Dassios and Zhao (2011)8. We assume a final default or

bankruptcy is caused by a number of adverse events relevant to the underlying com-

pany. These bad events could be, for instance, credit rating downgrades announced by

rating agencies, or worse-than-expected financial reports, and the arrivals of these events

often present contagion effects, i.e. one of events tends to trigger more of them. The

frequency or intensity of the arrivals of these events depends on three key factors:

1. internal risk factor: a series of past credit events from the underlying company itself;

2. external risk factor: a series of other exogenous adverse events in the past that are

independent of the company but common to the entire market;

3. independent market noises: a certain degree of noises that are persistently existing in

the market and are time-varying with small fluctuations.

8This model, i.e. the general formula of (5.1) for survival probability, was also adopted by Aït-Sahalia
et al. (2014) for pricing credit default swaps.
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The arrivals of these events are modelled by our point process Nt with intensity λt of

Definition 2.1. These three factors can be captured, as their impacts acting on its intensity

are self-excited jumps
¦

Y(2)
k

©
k=1,2,...

, externally-excited jumps
¦

Y(1)
k

©
k=1,2,...

and diffusion

{Wt}t≥0, respectively. We assume each jump, or bad event could cause default of a con-

stant probability d, 0 < d ≤ 1, as the company has a certain degree of resistance to survive

through these bad events. Hence, Ps(T), the survival probability of underlying company

within the time period [0, T] as seen from from time 0, is simply

Ps(T) = E
�
(1− d)NT | λ0

�
, d ∈ (0, 1]. (5.1)

It can be calculated via (3.15) by setting θ = 1− d, i.e.

Ps(T) = φT(1− d). (5.2)

This simple model goes beyond the standard credit models such as Duffie and Singleton

(1999): the point process here is to model the arrivals of adverse credit events instead of

defaults, and these credit events include defaults as the special cases. In particular, if we

set d = 100% (which means that each bad event could cause default of 100% probability,

i.e. each of the credit events is default), it recovers the standard model for credit defaults.

To illustrate its applications, we further assume the two types of jump-sizes both fol-

low exponential distributions, i.e. H ∼ Exp(α), G ∼ Exp(β) and δβ > 1 with the param-

eter setting of

Θ := (a, $, δ; α, β, σ; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5, 0.5; 0.7).

Note that, the numerators and denominators of the integrand functions in (3.15) and

(3.16) are simple polynomial functions and both of the integrands can be factorised by

partial fraction expansion. Hence, we can explicitly calculate the survival probabilities

Ps(T) via (3.15). In fact, different levels of d correspond to different credit ratings, and

they can be considered as the measures for the capability to avoid default. Hence, higher

credit rating corresponds to lower value of d. For instance, the term structures of Ps(T)

for time from T = 1 to T = 5 and different levels of d are given by Table 1.

The sensitivity analysis is provided in Figure 3 for the survival probability at time

T = 1 with fixed d = 0.5 against the varying parameters of

26



1. mean-reverting level a ∈ (0, 2] for σ ∈ {1, 2, 3, 4}with ($, δ; α, β; λ0) = (0.5, 2.0; 2.0, 1.5; 0.7),

2. mean-reverting rate δ ∈ (0, 2] for σ ∈ {1, 2, 3, 4}with (a, $; α, β; λ0) = (0.7, 0.5; 2.0, 5.0; 0.7),

3. externally-excited jump rate $ ∈ (0, 2] for σ ∈ {1, 2, 3, 4}with (a, δ; α, β; λ0) = (0.7, 2.0; 2.0, 1.5; 0.7),

4. externally-excited jump mean µ1H ∈ (0, 2] for σ ∈ {1, 2, 3, 4} with (a, $, δ; β; λ0) =

(0.7, 0.5, 2.0; 1.5; 0.7),

5. self-excited jump mean µ1G ∈ (0, 2] for σ ∈ {1, 2, 3, 4}with (a, $, δ; α; λ0) = (0.7, 0.5, 2.5; 2.0; 0.7),

6. volatility of intensity diffusion σ ∈ (0, 5] for the initial intensity λ0 ∈ {0.1, 0.5, 0.7, 1.0}

with (a, $, δ; α, β) = (0.7, 0.5, 2.0; 2.0, 1.5),

respectively. In particular, the externally-excited jump mean µ1H = 1/α and the self-excited

jump mean µ1G = 1/β can be used to measure the negative impacts from external and in-

ternal shocks, respectively. We should be aware that, the intensity process has two parts:

diffusion and jumps. The parameter σ as defined in Definition 2.1 is not the volatility

of the whole intensity process λt but the volatility of diffusion part only. From all of the

subplots in Figure 3, we can observe the volatility σ poses positive effects, i.e. the sur-

vival probabilities are increasing functions of σ. This means that higher volatility in the

intensity diffusion may lead to higher survival probability. This can be proved by the

Taylor’s expansion that, for a small d, we have the approximation

E
�
(1− d)NT | λ0

�
≈ 1− dE[NT | λ0] +

1
2

d2E[N2
T − NT | λ0].

Obviously, based on the moments derived in Section 3.4, the second term is independent

of volatility σ, and the third term is a strictly increasing function of volatility σ. Hence,

E
�
(1− d)NT | λ0

�
is an increasing function of σ.

Table 1: Term Structure of survival probability Ps(T); (a, $, δ; α, β, σ; λ0) =
(0.7, 0.5, 2.0; 2.0, 1.5, 0.5; 0.7)

d
Time T 1 2 3 4 5

2% 98.15% 95.93% 93.65% 91.41% 89.22%
10% 91.27% 81.83% 73.07% 65.20% 58.15%
20% 83.70% 68.05% 55.01% 44.42% 35.85%
50% 66.09% 41.96% 26.49% 16.71% 10.54%
100% 47.13% 21.71% 9.99% 4.59% 2.11%

We could further relax the constant d to be variable, for instant, depending on Nt.
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Figure 3: Sensitivity analysis for the survival probability at time T = 1 with fixed d = 0.5 against
the varying parameters of (a, $, δ; µ1H , µ1G ; σ, λ0)
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Theorem 5.1. Suppose the kth bad event could cause default of a constant probability dk ∈ (0, 1].

If

dk = 1− f̂ (k)
f̂ (k− 1)

, k = 1, 2, ...,

where

f̂ (k) :=
Z ∞

0
e−ku f (u)du, k = 0, 1, ...,

and f (u) is a (sub-density) function such that f̂ (0) =
Z ∞

0
f (u)du ≤ 1, then, the survival

probability is given by

Ps(T) =
1

f̂ (0)

Z ∞

0
φ(e−u) f (u)du− Pr{NT = 0 | λ0}, (5.3)

where Pr{NT = 0 | λ0} is given by setting θ = 0 in (3.15).

Proof. We have the survival probability

Ps(T) = E

24 NTY
k=1

(1− dk)
��� λ0

35
=

∞X
n=1

nY
k=1

(1− dk)Pr{NT = n | λ0}

=
∞X

n=1

nY
k=1

f̂ (k)
f̂ (k− 1)

Pr{NT = n | λ0}

=
1

f̂ (0)

Z ∞

0

∞X
n=1

e−nu Pr{NT = n | λ0} f (u)du

=
1

f̂ (0)

Z ∞

0

�
E
�
e−uNT | λ0

�
− Pr{NT = 0 | λ0}

�
f (u)du

=
1

f̂ (0)

Z ∞

0
E
�
e−uNT | λ0

�
f (u)du− Pr{NT = 0 | λ0}.

Set θ = e−u in Theorem 3.4, then, we have (5.3).

Remark 5.1. For example, if f (u) = a2e−a1u, a2 ≤ a1, then,

f̂ (k) =
a2

a1 + k
, dk =

1
a1 + k

, k = 0, 1, ...,

and we have the survival probability

Ps(T) =
Z ∞

0
φT(e−u)a1e−a1udu− Pr{NT = 0 | λ0} = E

�
φT(e−X)

�
− Pr{NT = 0 | λ0},

where X ∼ Exp(a1).
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The term structure of default (or survival) probability indeed is the most critical input

to the risk management and asset pricing for credit risk. For example, based on our

generalised contagion model in this paper and fundamental pricing formula in Jarrow

and Turnbull (1995), we can easily price defaultable bonds: suppose the risk-free interest

rate and default timing are assumed to be independent of each other, and the present

value (at time 0) of a defaultable zero-coupon bond which pays $1 at maturity T is then

simply given by

BC(T) = BG(T)
�

R + (1− R)Ps(T)
�

, (5.4)

where BG(T) is the present value (at time 0) of a default-free zero-coupon bond which

pays $1 at maturity T, and R ∈ [0, 1] is the assumed constant recovery rate.

For numerical implementation, we assume that, the current price of this default-free

bond is $0.9 and the recovery rate is 40% with the parameter setting of (a, $, δ; σ; λ0) =

(0.7, 0.5, 2.5; 0.5; 0.7). Then, the associated defaultable zero-coupon bond price BC(T)

based on formulas of (5.2) and (5.4) can be exactly calculated. The plots of bond prices

BC(T) against the externally-excited jump mean µ1H = 1/α ∈ [0, 2] and the self-excited

jump mean µ1G = 1/β ∈ [0, 2] are presented in Figure 4 for the maturities T = 1, 2, 3, 4, re-

spectively. The negative impacts from external and internal risks to the underlying bond

price become more evident, as the bond price declines when the mean of externally-

excited or self-excited jumps increases.

6 Conclusion

In this paper, we introduce an analytically tractable point process with self-exciting,

externally-exciting and mean-reverting stochastic intensity in a single framework. Key

stochastic properties have been systematically analysed. This model may provide a very

useful quantitative tool in finance for modelling contagious arrivals of events in a variety

of circumstances in practice. In particular, relatively short-lived shocks and long-lasting

fluctuations of exogenous risk factors can be separately modelled, and this is the major

difference from most other models in the literature. A simple application to credit risk is

demonstrated. The associated empirical work (such as calibration to real data) as well as

other applications (such as credit derivative pricing) based on this model is proposed as

future research.
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Figure 4: Plots of the defaultable zero-coupon bond prices BC(T) against the externally-excited
jump mean µ1H = 1/α ∈ [0, 2] and the self-excited jump mean µ1G = 1/β ∈ [0, 2] for
the maturity T = 1, 2, 3, 4, respectively, based on the current default-free bond price $0.9,
recovery rate 40% and parameter setting of (a, $, δ; σ; λ0) = (0.7, 0.5, 2.5; 0.5; 0.7)
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