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Abstract 
 

The purpose of this paper is to introduce and examine two alternative, although 

similar, approaches to the Moving Blocks and subsampling Bootstraps to 

bootstrapping the estimator of the parameters for time series regression models. 

More specifically, the first bootstrap is based on resampling from the normalised 

discrete Fourier transform of the residuals of the model, whereas the second is from 

the residuals of the model itself. It is shown that the bootstraps are asymptotically 

valid under quite mild conditions. As a consequence of the result we are able to 

eleminate the apparent drawback of choosing the block length in empirical 

examples. A small Monte Carlo study of finite sample performance is included. 
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1. INTRODUCTION

Since Efron’s (1979) seminar paper, Bootstrap algorithms have attracted considerable
effort to its development, being perhaps two the main motivations. First, bootstrap
methods are capable of approximating the finite sample distribution of statistics more
effectively than those based on their asymptotic counterparts. The second being that
they allow computing valid asymptotic quantiles of the limiting distribution in situa-
tions where a) the limiting distribution is unknown or b) if known, the practitioner is
unable to compute its quantiles. The basic idea of the bootstrap is, given a stretch of
data ZT = {zt, t = 1, ..., T} say, to treat the data as if it were the true population, and
to carry out Monte-Carlo experiments in which pseudo-data is drawn from ZT . Based
on the underlying distributional properties of {zt, t = 1, ..., T}, different schemes have
been adopted and proposed.
To fix ideas, let us suppose that zt = (yt, x0t)

0 follows the (linear) regression model

yt = µ0 + β00xt + ut, t = 1, ..., T (1.1)

where β0 is a p−dimensional vector, and we are interested in making inferences on
β0. When ut is a sequence of independent identically distributed data, abbreviated
henceforth as iid, the bootstrap entails to obtain a random sample {bu∗t , t = 1, ..., T}
from the empirical distribution of the (centered) OLS residuals but = eyt − bβ0ext, t =
1, ..., T , where

bβ = Ã TX
t=1

extex0t
!−1 TX

t=1

exteyt, (1.2)

and ewt stands for wt−w with w = T−1
PT

t=1wt. Next, generate the bootstrap version
of (1.1) as ey∗t = bβ0ext + bu∗t , t = 1, ..., T , (1.3)

and perform the OLS estimator in (1.3). This bootstrap is known as Residual Boot-
strap, in contrast to the Paired Bootstrap, which entails to draw a random sample
from the empirical distribution of ezt = (eyt, ex0t)0, that is ez∗t = (ey∗t , ex∗0t )0, and perform
the OLS of ey∗t on ex∗t .
However, if the errors ut were not iid the above scheme would not be valid, as it

was first noted by Singh (1981) in the context of bootstrapping the sample mean of
m-dependent data. To circumvent this problem, when the errors are heteroscedastic,
Wu (1986) proposed the wild or external bootstrap. This bootstrap amounts to
replace bu∗t in (1.3) by |but| ξt where ξt is a sequence of iid (0, 1) random variables and
independent of zt. In a time series setup, following ideas in Carlstein (1986), Künsch
(1989) proposed to resample, not from zt but from (overlapping) blocks of data, say
Z� =

¡
z0�, ..., z

0
�+b−1

¢0
where  = 1, ..., T − b + 1. This bootstrap is known as the

Moving Blocks Bootstrap (MBB). It is worth noting that Efron’s (1979) bootstrap
is identical to the MBB when b = 1.
Another approach is subsampling, see Politis and Romano (1994). The subsam-

pling in the context of model (1.1) is as follows. Consider a subsample (block) of the
data of size b, Yb,� = (ey�, ..., ey�+b−1)0 and Xb,� = (ex�, ..., ex�+b−1)0, and compute the
OLS estimator based on the subsample Yb,� and Xb,�, that is

bβb,� = ¡X0
b,�Xb,�

¢−1
X0
b,�Yb,�.



Then, the distribution of T 1/2
³bβ − β0

´
, say bFbβ (z) = Pr

n
T 1/2

³bβ − β0

´
≤ z

o
, is

estimated by

1

T − b+ 1

T−b+1X
�=1

I
³
b1/2

³bβb,� − bβ´ ≤ z
´

where I (A) denotes the indicator function of the set A. Both methods, subsampling
and moving blocks, are similar in that they utilize blocks of data of size b. The im-
portant difference is that subsampling looks upon these blocks as ”subseries” whereas
moving blocks use the blocks as ”building stones” to construct new pseudo-time series.
The last two methods have been advocated by Politis et al. (1997) or Fitzenberger

(1998) in a model as (1.1) with time series data, motivated by the poor finite sample
performance of inferences using the so-called HAC estimator. The latter estimator
entails the estimation of the spectral matrix at frequency zero of xtut, say Ω. In
particular, following Parzen (1957), Ω is often estimated by

Ω̌ =
1

T

T−1X
r=1−T

wrT

X
t(r)

extbutex0t+rbut+r (1.4)

where
P

t(r) denotes the sum over 1 ≤ t, t+r ≤ T and wrT is a weight function which
normally takes the form w (r/m) and where m is a bandwidth parameter increasing
slowly to infinity with T , that is m−1 + mT−1 → 0. This approach, or versions
thereof, has been extensively employed, see Andrews (1991) for a latter reference.
All these methods date back to ideas in Jowett (1955) and Hannan (1957) for scalar
series to ”studentize” its sample mean and further developed by Brillinger (1979) in a
multivariate setting. Recent surveys on the literature are den Haan and Levin (1997)
and Robinson and Velasco (1997).
One potential drawback, however, of the MBB or the subsampling bootstrap

is their implementation in empirical examples and in particular, the choice of the
block-length b. This apparent drawback is motivated by the observation that, more
than anything else, their performance depends rather critically on b, especially for
moderate sample sizes. Although some automatic or semiautomatic procedures have
recently appeared, see Hall et al. (1995) or Loh’s (1987) calibration, the methods can
be extremely expensive in computing time.
The purpose of this paper is, under some regularity conditions, to describe and

analyse two different approaches which eliminate the problem of the choice of b and
the choice of the bandwidth parameter m, as in Robinson (1998), but at the same
time able to achieve better finite sample properties. The proposed procedures are easy
to implement and computationally no more expensive than other bootstrap methods
valid in the context of regression models where the errors are iid or heteroscedastic.
We now describe the main ideas of the bootstraps. In the frequency domain the

OLS estimator given in (1.2) can be written as

bβ =
T−1X

j=1

Ixx (λj)

−1 T−1X
j=1

Ixy (λj) , (1.5)

where
Ixx (λ) = wx (λ)w

0
x (−λ) and Ixy (λ) = wx (λ)w

0
y (−λ)
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are the periodogram of xt and cross-periodogram of xt and yt respectively, and

wa (λ) =
1

(2πT )
1/2

TX
t=1

ate
itλ (1.6)

denotes the discrete Fourier transform of a generic sequence of random variables at.
It should be noted that because wa (λ) is invariant to additive constants when

evaluated at the Fourier frequencies λj = (2πj) /T for integer j, we have that omission
of the frequency j = 0 (and j = T ) in (1.5) entails sample-mean correction.
A closer inspection of (1.5) suggests that bβ can be regarded as the OLS estimator

in the ”regression” model

wy (λj) = β00wx (λj) +wu (λj) j = 1, ..., T − 1, (1.7)

where wx (λj) and wu (λj) play the role of being the regressors and error term re-
spectively. One interesting property of wu (λj) is that they are asymptotically un-
correlated although, possibly, heteroscedastic, see Hannan (1970) or Brillinger (1981)
among others. It is precisely this observation that motivated Hannan’s (1963) (semi-
parametric) generalized least squares estimator of β0 for the model (1.1) and conse-
quently extended to other useful models in econometrics, see Robinson (1991) and
references therein. So, looking at (1.7), vu (λj) = wu (λj) / |wu (λj)| can be regarded
as a sequence of zero mean and asymptotically independent homoscedastic random
variables. This observation and writing (1.7) as

wy (λj) = β00wx (λj) + |wu (λj)| vu (λj) j = 1, ..., T − 1,
motivates the bootstrap schemes, differing in STEP 2 below, which we now describe
in the following four steps.

STEP 1 Obtain the OLS estimator via (1.2) or (1.5), and the ordinary least squares
residuals but = eyt − bβ0ext, t = 1, ..., T .

STEP 2 (a) Compute the discrete Fourier transform of the residuals but, denoted
wbu (λj), and let vbu (λj) = wbu (λj) / |wbu (λj)|, j = 1, ..., [T/2]. Draw independent
bootstrap residuals η∗j,1, j = 1, ..., [T/2], from the empirical distribution function
of evbu (λj) = bσ−1v (vbu (λj)− vbu) , j = 1, ..., [T/2]

where vbu = [T/2]−1
P[T/2]

j=1 vbu (λj) and bσ2v = [T/2]−1
P[T/2]

j=1 |vbu (λj)− vbu|2.
That is, for all j = 1, ..., [T/2],

Pr
©
η∗j,1 = evbu (λk)ª = [T/2]−1 , k = 1, ..., [T/2] .

(b) Let eu∗∼= (eu∗1, eu∗2, ..., eu∗T )0 be a random sample with replacement from the stan-

dardized residuals

eut = eσ−1bu but; eσ2bu = 1

T

TX
t=1

bu2t ,
and obtain the ”discrete Fourier transform” of eu∼∗ as

η∗j,2 =
1

T 1/2

TX
t=1

eu∗t e−itλj , j = 1, ..., [T/2] .

3



Remark 1. Recall that because (1.1) contains an intercept, the sample mean of but
is zero.

STEP 3 For i = 1, 2, obtain the bootstrap regression

wy∗,i (λj) = bβ0wx (λj) + |wbu (λj)| η∗j,i j = 1, ..., [T/2] . (1.8)

STEP 4 Compute the bootstrap estimator of bβ as
bβ∗i =

[T/2]X
j=1

Ixx (λj)

−1 [T/2]X
j=1

Re (Ixy∗,i (λj)) , i = 1, 2, (1.9)

where Ixy∗,i (λj) = wx (λj)w
0
y∗,i (−λj) and Re (a) denotes the real part of the

complex number a.

Remark 2. Observe that by symmetry of Ixx (λj) and Ixy∗,1 (λj) = Ixy∗,1 (−λj),
where a indicates transposition combined with complex conjugation, the estimatorbβ∗1 in (1.9) becomes

bβ∗1 =
T−1X

j=1

Ixx (λj)

−1 T−1X
j=1

Ixy∗,1 (λj)

where η∗j,1 = η∗(T−j),1, for j = 1, ..., [T/2]. In fact for the validity of the bootstrap, if

the latter estimator bβ∗1 were to be employed, it would be crucial to have η∗j,1 = η∗(T−j),1.
The reason is that if η∗j,1 and η

∗
(T−j),1 were generated as in STEP 2, e.g. independently,

then by symmetry, the right side of the last displayed equation would be

bβ1 +
2 [T/2]−1X

j=1

Ixx (λj)

−1 [T/2]−1X
j=1

³
wx (λj) |wbu (λj)|³η∗j,1 + η∗(T−j),1

´´
,

whose bootstrap variance would converge to Φ/2 since E
¯̄̄
η∗j,1 + η∗(T−j),1

¯̄̄2
= 2 instead

of 4 as would be needed for the validity of the bootstrap.

Remark 3. It is worth mentioning that STEP 2 only requires η∗j,i, conditional on
the data, to be a sequence of iid (0, 1) random variables in the unit sphere. So, Wu’s
(1986) wild/external bootstrap could be implemented. However, it appears that the
proposed bootstrap performs better than the wild bootstrap. One possible reason is
that η∗j,i is a random sample from the empirical distribution of vbu (λj), so that it may
capture better the finite sample distributional features of the model/data than if the
sample were drawn from a population with the ”same” distributional properties as
those from the asymptotic distribution function of vbu (λj) or a distribution as that
used by Mammen (1993).

The proposed bootstraps described in STEPS 1-4 eliminate the need to choose the
block-length b of Künsch’s (1989) MBB or Politis and Romano’s (1994) subsampling
approach, see also Politis et al. (1997, 1999). It should be mentioned that resampling
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methods in the frequency domain are not new, see for instance Franke and Härdle
(1992), Politis and Romano (1992), Dahlhaus and Janas (1996) or Hidalgo and Kreiss
(1999) among others. However, in all the latter aforementioned papers, the resam-
pling techniques are based on the empirical distribution function of the periodogram
ordinates and their motivation and emphasis are on the estimation of the spectral
density function or functionals of the periodogram, such as the covariance.
The remainder of the paper is organized as follows. In the next section the con-

ditions and main results of the paper are introduced. Section 3 illustrates how the
bootstrap can be employed for statistical inferences on the parameters β0. Section 4
presents a small Monte-Carlo simulation to illustrate the small sample performance
of the bootstraps. Section 5 gives the proofs of our results in Sections 2 and 3, which
make use of a Lemma shown in Section 6. Finally Section 7 concludes and discusses
extensions to more general models of interest in econometrics.

2. CONDITIONS AND MAIN RESULTS

Denote by fxx (λ) and fuu (λ) the spectral density matrix and function of xt and ut
respectively, defined from the relationships

γx,j = Cov (xt, xt+j) =

Z π

−π
fxx (λ) e

−ijλdλ, j = 0,±1, ...

γu,j = Cov (ut, ut+j) =

Z π

−π
fuu (λ) e

−ijλdλ, j = 0,±1, ....

Let us introduce the following regularity conditions:

C1 {xt} and {ut} are two covariance stationary linear processes defined as

xt =
∞X
j=0

ζjξt−j,
∞X
j=0

°°ζj°°2 <∞ and ut =
∞X
j=0

ϑjεt−j;
∞X
j=0

ϑ2j <∞,

respectively, where ζ0 is the identity matrix, ϑ0 = 1, and kHk denotes the norm
of the matrix H. Moreover, the processes εt and ξs are uncorrelated for all
t, s = 0,±1,±2, ....

Let Ft and Gt be the σ-algebras of events generated by εs, s ≤ t and ξs, s ≤ t,
respectively.

C2 {εt} is an ergodic process that satisfies (a) E (εt |Ft−1 ∪ Gt ) = 0,
(b) E

¡
ε2t |Ft−1 ∪ Gt

¢
= E

¡
ε2t
¢
= σ2ε a.s. and (c) the joint fourth cumulant of

εti , i = 1, ..., 4 satisfies

cum (εt1 , εt2 , εt3 , εt4) =

½
κ, t1 = t2 = t3 = t4,
0, otherwise,

with |κ| <∞.
C3 {ξt} is a stochastic process that satisfies (a) E (ξt |Gt−1 ∪Ft ) = 0,

(b) E
¡
ξtξ

0
t |Gt−1 ∪Ft

¢
= E

¡
ξtξ

0
t

¢
= Ξ a.s. and (c) the joint fourth cumulant of

ξtiji , ji = 1, ..., p and i = 1, ..., 4 satisfies

cum
¡
ξt1j1 , ξt2j2 , ξt3j3 , ξt4j4

¢
=

½
κξ,j1,j2,j3,j4 , t1 = t2 = t3 = t4,
0, otherwise,

5



with κξ = maxji=1,...,p,i=1,...,4 |κξ,j1,j2,j3,j4 | <∞.
C4 |(∂/∂λ)A (λ)| = O (|A (λ)| /λ) and k(∂/∂λ)Ψ (λ)k = O (kΨ (λ)k /λ) as λ→ 0+,

where

A (λ) =
∞X
j=0

ϑje
ijλ and Ψ (λ) =

∞X
j=0

ζje
ijλ,

and such that |A (λ)| > 0 and kΨ (λ)k > 0 for all λ ∈ [0, π] and continuously
differentiable in any open set outside the origin. In addition, for all g = 1, ..., p+
1, f−1/2gg (λ)

¯̄
ηg (λ)

¯̄
is a non-zero finite vector, where ηg (λ) denotes the gth

row of diag (Ψ (λ) , A (λ)) and fgg (λ) is the gth diagonal element of f (λ) =
diag (diag (fxx (λ)) , fuu (λ)).

C5
R π
−π kfxx (λ) fuu (λ)kdλ <∞ and Extx

0
t = Σ > 0.

We now comment on the conditions, which for the most part are similar to those
used in Robinson (1995a, b, 1998). The first three conditions are restricted in the
linearity they impose but not otherwise. Part (a) of Conditions C2 and C3, together
with the first part of C1, indicate that the best linear predictor is the best predictor,
in the least squares sense. The last part of Condition C1 and part (b) of Condition
C2 are presumably stronger than needed and some heterogeneity could be allowed,
although it rules out heteroscedasticity. However, as the main motivation of the paper
is to illustrate the possibility of avoiding the drawbacks of the MBB or subsampling
bootstrap in a model like (1.1), we have preferred keeping them as they stand. Another
motivation is due to the fact that these conditions allow us to consistently estimate
the asymptotic covariance matrix of the OLS without resorting to any bandwidth or
tuning parameter as Robinson (1988) proved. In particular that

eΩ = 4π2

T

[T/2]−1X
j=1−[T/2]

Ixx (λj) Ibubu (λj) (2.1)

is a consistent estimator of 2π
R π
−π fxx (λ) fuu (λ) dλ.

Moreover, Conditions C1− C3 also imply that E (xtutx0u0) = E (xtx0)E (utu0)
for all t, so that the spectral density of xtut at frequency zero, fxu (0), is 2π

R π
−π fxx (λ) fuu (λ) dλ.

It seems that for (2.1) to be a consistent estimator of fxu (0), the previous condition
is required. Another set of conditions for which E (xtutx0u0) = E (xtx0)E (utu0)
holds is if xj and u0 are independent for all negative and nonnegative values of j or
that xt and ut are Gaussian and Cov (xj , u0) = 0 for all j ≤ 0. In the terminology
of Engle, Hendry and Richard (1983), they imply strong exogeneity of xt or that xt
is predetermined respectively. So, we are implicitly assuming that the practitioner is
willing to take seriously this assumption. However, as discussed by Robinson (1988),
if this were not the case, then (2.1) would only converge to one of the components of
the long run variance of xtut, that is Ω, being the other component a function of the
fourth cumulants. This component can be estimated using results in Taniguchi (1982)
or Keenan (1987), although under long-memory no results are available. It should
be mentioned that in this case, the proposed bootstrap is not valid. But, following
ideas and arguments similar to those of Hall and Horowitz (1996), when analysing
the t-statistic or the J-statistic for overidentifying restrictions in a GMM framework,
similar corrections should apply in our context. However, we do not proceed as that
will involve technicalities and it may obscure the main message of the paper. That
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is, that even with time series data, there are setups encountered in applied work for
which MBB/subsampling is not required. On the other hand, in some respects our
conditions are quite general. For instance, it allows for long memory dependence for
which the MBB has yet to be justified in a general setting as ours, although the
latter algorithm is valid if xt and ut are strong mixing without assuming that xt is
strong exogenous or ut homoscedastic.
Condition C4 effectively allows for a possible singularity of the spectral density

matrix and function of xt and ut respectively to be at frequency zero, but smooth
elsewhere. This is done merely for notational convenience. The results do not depend
on this assumption and they follow similarly if the singularity(ies) were located at
some other(s) frequency(ies). So, we allow xt and/or ut to be, possibly, a long-
memory process which has attracted immense attention in recent years in econometric
literature. An example of a (scalar) process whose spectral density function satisfies
C4 is the Fractional Integrated Autoregressive Moving Average (FARIMA) model,
see Granger and Joyeux (1980) or Hosking (1981). The FARIMA model has a
spectral density function defined as

f (λ) =
σ2ε
2π

¯̄
1− eiλ

¯̄−d ¯̄Θ ¡eiλ; θ¢¯̄2
|∆ (eiλ; θ)|2 , 0 ≤ λ ≤ π, (2.2)

where 0 < C < ∞ and 0 ≤ d < 1/2, and where ∆ and Θ are the autoregressive
and moving average polynomials respectively and such that they have no common
roots and are outside the unit circle. An earlier example of a process exhibiting long-
memory is the fractional Gaussian noise (fgn) process, introduced by Mandelbrot
and Van Ness (1968), and whose autocorrelation structure is given by

γj =
1

2

³
|j − 1|1+2d − 2 |j|1+2d + |j + 1|1+2d

´
. (2.3)

It is known that both models (2.2) and (2.3) satisfy

f (λ) ∼ Cλ−2d, as λ→ 0 + .

The first part of Condition C5, that is
R π
−π kfxx (λ) fuu (λ)k dλ <∞, seems to be

very mild and due to results in Robinson (1994) and Robinson and Hidalgo (1997), it
also appears to be necessary and minimal for the central limit theorem of bβ to hold
true. This condition is satisfied if, for instance, ut follows a FARIMA or an fgn
model with d = du and xt follows a model whose th element is a FARIMA or an
fgn model with d = d� satisfying the condition 2 (d� + du) < 1 for all  = 1, ..., p.
Alternatively, C5 could have been written in terms of the autocovariance function of
xt and ut. C5 could be replaced by assuming that γu,jγx,j is summable under our
framework. It entails that the spectral density function of xtut to be finite and positive
at frequency zero. It is important to note that this is implied by summability of¯̄
γu,jγx,j

¯̄
but not the other way round. A standard example is when xt exhibits strong

”cyclical” behaviour as is the case with Gengebauer models. For the latter models,
the autocovariance function behaves as Cj2d−1 cos (jλ) with λ > 0 and 0 ≤ d < 1

2 . It
should be mentioned that if the possible singularities of fx and fu do not coincide, then
d� and du can take any value smaller than 1

2 . Finally, the second part of Condition
C5 is a standard condition on the regressors xt and needed for the identification of
the parameters β0.
We then achieve the following:

7



Theorem 2.1. Assuming C1-C5, as T →∞,

T 1/2
³bβ−β0´ d→ N ¡0 ,Σ−1ΩΣ−1¢ .

We now focus on the properties of the bootstrap estimators bβ∗i , i = 1, 2, given
in (1.9). For the latter to be valid, the resampling scheme must be such that the

conditional distribution of T 1/2
³bβ∗i − bβ´, for i = 1, 2, given

³
x
∼
0, u∼

0
´0
where x

∼=

(x1, ..., xT )
0 and u

∼= (u1, ..., uT )
0, consistently estimates the limiting distribution of

T 1/2
³bβ − β0

´
, that is

Pr

½
T 1/2

³bβ∗i − bβ´ ≤ z
¯̄̄ ³

x
∼
0, u∼

0
´0¾ P→ G (z) , for i = 1, 2

where G (z) is the probability distribution function of a N ¡0,Σ−1ΩΣ−1¢ random
variable, see Giné and Zinn (1989). Such a convergence will be denoted as “d

∗→”.
To prove the validity of the bootstraps described in STEPS 1-4, we need to

strengthen slightly Condition C5.

C5’
R π
−π kfxx (λ) fuu (λ)k |log (|λ|)| dλ <∞ and Extx

0
t = Σ > 0.

Theorem 2.2. Assuming C1-C4 and C5’, for i = 1 , 2 as T →∞

T1/2
³bβ∗i−bβ´ d∗→ N ¡

0 ,Σ−1ΩΣ−1
¢
.

So Theorem 2 indicates that the bootstraps are consistent, and more importantly,
that we can avoid the drawback of the MBB and the subsampling bootstrap, e.g.
the choice of the block length b. Moreover, the results of Theorem 2 will allow us the
implementation of tests for the parameters β0, say, such as that given in (3.1) below.
This will be addressed in the next section.

3. APPLICATIONS OF THE BOOTSTRAP

Suppose that we are interested in the following hypothesis testing

H0 : Cβ0 = c against H1 : Cβ0 6= c, (3.1)

where C is a full rank (r × p) matrix and c is an (r × 1) vector. A common method
to test H0 is based on the F − statistic

F = T
³
Cbβ − c

´0 ³
CbΦC0´−1 ³Cbβ − c

´
, (3.2)

where bΦ = bΣ−1eΩbΣ−1 is a consistent estimator of Φ = AsyV ar
³
T 1/2

³bβ − β0

´´
, witheΩ given in (2.1) and bΣ = (2π)T−1PT−1

j=1 Ixx (λj).
Suppose that we want to bootstrap the test F in (3.2), being denoted by F ∗. For

F ∗ to be asymptotically valid, it should satisfy two basic requirements. First, under
H0 or local alternatives, e.g. Ha : Cβ0 = c+D/T 1/2 for any vector D with bounded
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norm, the conditional distribution of F ∗, given the data
³
x
∼
0, u∼

0
´0
, should converge in

probability to the limiting distribution of F given in (3.2). The second requirement
on F ∗ is that, under H1, F ∗ should be bounded in probability. The latter is achieved
once the bootstrap sample/model is obtained under H0.
More specifically, for i = 1, 2, let bβ∗i denote the bootstrap estimator of β given in

(3.6) below. Let us introduce Ibu∗bu∗,i (λj) = |wbu∗,i (λj)|2, where
wbu∗,i (λj) = wy∗,i (λj)− bβ∗0i wx (λj) , j = 1, ..., [T/2] ,

with wy∗,i (λj) as defined in (3.4) below. Then the bootstrap test F ∗ is defined as F
in (3.2) but with bβ and bΦ = bΣ−1eΩbΣ−1 being replaced by their bootstrap counterpartsbβ∗i and bΦ∗i = bΣ−1bΩ∗i bΣ−1 respectively, and where

bΩ∗i = 4π2

T

[T/2]−1X
j=1−[T/2]

Ixx (λj) Ibu∗bu∗,i (λj) , i = 1, 2. (3.3)

We need to show that

Pr
n
T 1/2C

³bβ∗i − eβ´ ≤ z
¯̄̄³
x
∼,

u
∼

´o
P→ lim

T→∞
Pr
n
T 1/2C

³bβ − β0

´
≤ z

o
when Cβ0 = c+D/T 1/2 for any vector D with bounded norm, where eβ is defined in
(3.5) below, and

Pr
n
T 1/2C

³bβ∗i − eβ´ ≤ z
¯̄̄³
x
∼,

u
∼

´o
= Op∗ (1)

when Cβ0 6= c+D/T 1/2 for all |D| ≤ T 1/2, that is under H1.
To achieve this goal, we proceed as in Mammen (1993) in the context of iid data.

That is,

STEPS 1 AND 2 The same as those given in the introduction.

STEP 3 For i = 1, 2, obtain the bootstrap regression

wy∗,i (λj) = eβ0wx (λj) + |wbu (λj)| η∗j,i j = 1, ..., [T/2] , (3.4)

where eβ is the restricted least squares, that is
eβ = bβ + (X 0X)−1C 0

³
C (X0X)−1C0

´−1 ³
c−Cbβ´ . (3.5)

STEP 4 Compute the bootstrap counterpart of bβ as the OLS estimator from the
regression model wy∗,i (λj) on wx (λj), that is

bβ∗i =
[T/2]X

j=1

Ixx (λj)

−1 [T/2]X
j=1

Re (Ixy∗,i (λj)) , (3.6)

where Ixy∗,i (λj) = wx (λj)w
0
y∗,i (−λj) for i = 1, 2.

9



STEP 5 For i = 1, 2, the bootstrap test is given by

F ∗i = ϕ∗
³
T 1/2C

³bβ∗i − eβ´´ ,
where bΦ∗i = bΣ−1bΩ∗i bΣ−1 with bΩ∗i given in (3.3) and ϕ∗ (a) = a0

³
CbΦ∗iC 0´−1 a.

STEP 6 For i = 1, 2, reject H0 if F ≥ c∗(1−α),i, where c∗(1−α),i is the (1− α) th
quantile of the bootstrap distribution of F∗i , that is

Pr
n
ϕ∗
³
T 1/2C

³bβ∗i − eβ´´ ≤ z
¯̄̄³
x
∼,

u
∼

´o
.

Theorem 3.1. Assuming C1 −C4 and C5 0, under H0∪H 1 in (3 .1 ), for i = 1 , 2 as
T →∞

F∗i
d∗→ χ2r ,

where r = rank (C ).

The result of Theorem 3 allows us to implement the (bootstrap) test as follows.

Denote ϕ (a) = a0
³
CbΦC 0´−1 a and let cfT,(1−α) and ca(1−α) be such that

Pr
n¯̄̄
ϕ
³
T 1/2

³
Cbβ − c

´´¯̄̄
> cfT,(1−α)

o
= α

and
lim
T→∞

Pr
n¯̄̄
ϕ
³
T 1/2

³
Cbβ − c

´´¯̄̄
> ca(1−α)

o
= α,

respectively. Then, Theorem 1 indicates that cfT,(1−α) → ca(1−α), whereas Theorem 3

indicates that c∗(1−α),i satisfies c
∗
(1−α),i

P→ ca(1−α) where

Pr
n
ϕ
³
T 1/2C

³bβ∗i − eβ´´ > c∗(1−α),i
¯̄̄³
x
∼,

u
∼

´o
= α,

for i = 1, 2. (Observe that Ceβ = c.)

However, since the finite sample distribution of T 1/2C
³bβ∗i − eβ´, and thus that

of ϕ∗
³
T 1/2C

³bβ∗i − eβ´´, is not available, c∗(1−α),i is approximated as accurately as
desired by a standard Monte-Carlo simulation algorithm. To that end, consider the

bootstrap samples η∗(�) =
³
η
∗(�)
1 , ..., η

∗(�)
[T/2]

´0
for  = 1, ..., B, and compute bβ∗(�)1 as in

(3.6) for each . Then, c∗(1−α),1 is approximated by the value c
∗B
(1−α),1 that satisfies

1

B

BX
�=1

I
µ
ϕ

µ
T 1/2C

µbβ∗(�)1 − eβ¶¶ > c∗B(1−α),1

¶
= α,

whereas for the second bootstrap, consider the bootstrap samples eu∗(�) = ³eu∗(�)1 , ..., eu∗(�)T

´0
for  = 1, ..., B, and compute bβ∗(�)2 as in (3.6) for each . Then, c∗(1−α),2 is approxi-
mated by the value c∗B(1−α),2 that satisfies

1

B

BX
�=1

I
µ
ϕ

µ
T 1/2C

µbβ∗(�)2 − eβ¶¶ > c∗B(1−α),2

¶
= α.
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4. MONTE CARLO SIMULATION

In order to investigate how well the bootstrap estimators bβ∗i , for i = 1, 2, perform
in finite samples, a small Monte Carlo experiment was conducted. In (1.1) we took
µ0 = β0 = 1. We have considered two sets of experiments. In the first set, xt and/or
ut are long-memory whereas in the second set both xt and ut are strong-mixing
sequences. The main motivation to consider the second set of experiments is to assess
the relative performance of bβ∗i to the MBB in a framework for which theoretical
results are available for the latter bootstrap. So that a more ”fair” comparison is
given between the two methods. All throughout the experiments, we have calculated
the size of the tests for the null hypothesisH0: β0 = 1. To that end, we have employed
5000 replications with samples sizes T = 32, 64 and 128. In order to calculate the
bootstrap for all the models and sample sizes considered, 2000 bootstrap samples were
employed, that is we have chosen B = 2000.
In the first set of simulations, two groups of six models were generated. Specifically,

for the first group, xt was generated as a fractional Gaussian noise process (2.3) with
parameter dx = 0.3 and 0.45 respectively. On the other hand, ut was generated as an
AR (1) process

ut = ρut−1 + εt (4.1)

with ρ = 0.0, 0.5 and 0.9 respectively, with εt being a sequence of iid N (0, 1) random
variables. For the second group, xt was generated as a fractional Gaussian noise
process (2.3) with parameter dx = 0.3 and 0.4 respectively, whereas ut was generated
by (4.1) with εt as a fractional Gaussian noise process (2.3) with parameter du = 0.15
and 0.05 respectively, so that du + dx = 0.45 in the latter case. Both xt and εt were
generated using an algorithm due to Davies and Harte (1987).
In addition, to assess the relative finite sample performance of the bootstrap test,

we have compared the results with those obtained using (a) the χ21 limiting distribu-
tion of

F = T 1/2
³
Cbβ − c

´³
CbΣ−1eΩbΣ−1C0´−1 T 1/2 ³Cbβ − c

´
(4.2)

where eΩ was defined in (2.1), and (b) the MBB with four different block-lengths
b, namely b = 2, 4, 8 and 16. It is worth noting that eΩ is the frequency domain
counterpart of the more natural estimator of Ω, bΩ =PT−1

r=1−T bγx,rbγu,r, where bγx,r =
T−1

P
t(r) extex0t+r and bγu,r = T−1

P
t(r) butbut+r. Following Robinson (1998), under

C1−C5, both bΩ and eΩ are consistent estimators of Ω.
For the first set of experiments, the results for the first and second group of

models are displayed in TABLES 4.1 and 4.2 respectively, where ASY denotes the
results of the test using (4.2), whereas BOOT1 and BOOT2 are those using the
bootstrap approaches for i = 1, 2 respectively. Finally, the results for the MBB are
only given for T = 128 and they are displayed in TABLE 4.3. The MBB algorithm
was implemented as follows. Given the OLS residuals bu1, ..., buT , we considered blocks
of size b, bU� = (bu�, ..., bu�+b−1)0,  = 1, ..., [T/b]. Then, a random sample from bU�,
 = 1, ..., [T/b], was obtained and thus a bootstrap sample bU∗ = (bu∗1, ..., bu∗T )0. GivenbU∗, we compute the DFT , denoted wbu∗ (λj), and the bootstrap regression

wy∗ (λj) = eβ0wx (λj) +wbu∗ (λj) j = 1, ..., [T/2]

and perform the OLS. Observe that we could have similarly computed the bootstrap
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regression model as
y∗t = eβ0ext + bu∗t , t = 1, ..., T ,

and compute the OLS in the latter.

TABLES 4.1 TO 4.3 ABOUT HERE

The overall picture of TABLES 4.1 to 4.3 indicates that inferences based on the
proposed bootstraps work substantially better than inferences based on the asymp-
totic χ21 distribution of the OLS estimator bβ and with Ω being estimated by (2.1)
or those inferences based on the MBB. It seems that the performance of BOOT1
tends to be better than BOOT2 for larger sample sizes, whereas BOOT2 tends to
perform better than BOOT1 for smaller sample sizes, although the difference is not
very substantial. At the 1% level, the empirical sizes of the bootstrap tests are some-
what disappointing compared to that obtained using the limiting distribution of F .
However, as the sample size increases, the performance of the BOOT1 and BOOT2
tend to be similar to that of the ASY at the 1% significance level. On the other hand,
at the 5% and 10% levels, the BOOT1 and BOOT2 clearly dominate the performance
of the ASY and even for sample sizes as small as 32, the performance of the BOOT1
and BOOT2 tests are outstanding. Finally, when comparing BOOT1 and BOOT2
with the MBB, the proposed bootstraps clearly outperform the MBB, indicating
that the former ones possess better finite sample properties than the latter.
For our second set of experiments, we have considered six models. Specifically,

xt and ut were generated as AR (1) with Gaussian innovations and parameters ρx =
0.5, 0.9 and ρu = 0.0, 0.5, 0.9 respectively. The results for BOOT1, BOOT2 and ASY
are displayed in TABLE 4.4, whereas those using theMBB are in TABLE 4.5 below.

TABLES 4.4 AND 4.5 ABOUT HERE

The first conclusion we can draw from TABLES 4.4 and 4.5 is that they are
qualitatively similar to those obtained for the first set of experiments. When we
compare the performance of the bootstraps BOOT1 and BOOT2 to ASY we observe
that there is substantial gain by using the bootstrap approach, specially for very
small sample sizes, being the gain more noticeable the higher the autocorrelation of
xt becomes. Moreover, it seems that the autocorrelation of the regressors have a more
negative impact than that from the errors. In fact, it appears that the performance of
the bootstrap is very uniform across the different correlation levels of ut. Finally, as it
happened with the first set of experiments, the results for theMBB are far worst than
those obtained for BOOT1 and BOOT2. Also, the results for the MBB appear to be
in agreement with those obtained elsewhere, see for instance Fitzenberger (1988).

5. PROOFS

5.1. Proof of Theorem 1

The proof of the theorem will be split into two steps. Assuming that the integrable
function g (λ) satisfies the same conditions of fxx (λ) or fuu (λ) in C4, in Proposition
1 a Central Limit Theorem is achieved for the weighted cross-periodogram of εt and ξt
with weights g1/2 (λj). On the other hand, in Proposition 2 we show that once g (λ)
is identified as fxx (λ) fuu (λ), the average cross-periodogram of xt and ut converges
in distribution to a normal random variable. For notational convenience, in the proof
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of the next two results we will assume, without loss of generality, that xt is a scalar
sequence of random variables.

Proposition 1. Let g (λ) be a symmetric integrable function in [−π, π] which satisfies
the same conditions of fxx (λ) and fuu (λ) in C4 . Assuming C1-C3, as T →∞,

2π

T 1/2

T−1X
j=1

g1/2 (λj )wξ (−λj )wε (λj ) d→ N
µ
0 , (2π)

−1
σ2ξ σ

2
ε

Z π

−π
g (λ) dλ

¶
, (5.1)

where σ2ξ and σ2ε denote the variances of ξt and εt respectively.

Proof. The left side of (5.1) can be written as

1

T 1/2

TX
t=1

εt

Ã
TX
s=1

ξsht−s

!

where

ht =
1

T

T−1X
j=1

g1/2 (λj) e
itλj (5.2)

suppressing any reference to T in the definition of ht. (5.1) is implied if the con-
vergence holds true conditional on {ξt} and we establish the latter. Denote dt =

T−1/2
PT

s=1 ξsht−s. Then following Scott (1973), see also Robinson and Hidalgo
(1997), the proposition is proven if, as T →∞,

(a)
TX
t=1

d2tE
¡
ε2t |Ft−1 ∪ Gt

¢ P→ (2π)
−1

σ2ξσ
2
ε

Z π

−π
g (λ) dλ (5.3)

and for any ψ > 0,

(b) E

Ã
TX
t=1

d2tE
³
ε2tI

³
|dtεt|2 > ψ

´
|{ξt}

´!
→ 0, (5.4)

where I (A) denotes the indicator function of the set A. In fact, we can see that this is
a CLT applied to dtεt, a martingale difference sequence with respect to the σ-algebra
generated by {ξi, i = 1, ..., T ; εj , j = 1, ..., t− 1}.
We begin with (a). By C2, the left side of (5.3) is

σ2ε

TX
t=1

d2t =
σ2ε
T

TX
t=1

Ã
TX
s=1

ξsht−s

!2
, (5.5)

whose first moment is, by C3,

σ2εσ
2
ξ

T

TX
t=1

TX
s=1

h2t−s =
σ2εσ

2
ξ

T 3

TX
t,s=1

T−1X
j,k=1

g1/2 (λj) g
1/2 (λk) e

i(t−s)(λj−λk)

=
σ2εσ

2
ξ

T

T−1X
j=1

g (λj)
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since
PT

t=1 e
it(λj−λk) = 0 unless j = k in which case it is T . But, Lemma 6.1 implies

that the right side of the last displayed equation converges to (2π)−1 σ2ξσ
2
ε

R π
−π g (λ) dλ.

Next, the second moment of the right side of (5.5) is

σ4ε
T 2

TX
t,r=1

E

Ã TX
s=1

ξsht−s

!2Ã TX
s=1

ξshr−s

!2
=

σ4εσ
4
ξ

T 2

TX
t,r=1

Ã
TX
s=1

h2t−s

!Ã
TX
s=1

h2r−s

!
+
2σ4εσ

4
ξ

T 2

TX
t,r=1

Ã
TX
s=1

ht−shr−s

!2
(5.6)

+
σ4εcum (ξs, ξs, ξs, ξs)

T 2

TX
t,r,s=1

h2t−sh
2
r−s,

by C3. The first term on the right of (5.6) isÃ
σ2εσ

2
ξ

T

TX
t=1

Ã
TX
s=1

h2t−s

!!2
which converges to the square of (2π)−1 σ2ξσ

2
ε

R π
−π g (λ) dλ, proceeding as we did with

the first term of (5.5). So, to complete the proof of part (a), it suffices to show that
the last two terms on the right of (5.6) converge to 0, since the latter will imply that
the second moment of (5.5) converges to the square of the first moment and so (5.5)
converges in probability to the right of (5.3) by Markov inequality.
The third term on the right of (5.6) is, using the definition of ht in (5.2), propor-

tional to

1

T 6

TX
t,r,s=1

T−1X
j,k,�,q=1

g1/2 (λj) g
1/2 (λk) g

1/2 (λ�) g
1/2 (λq) e

i((t−s)(λj−λk)−(r−s)(λ�−λq))

=
1

T 2

TX
t,r,s=1
t=r=s

 1
T

T−1X
j=1

g1/2 (λj)

4

+
3

T 3

TX
t,r,s=1
t6=r=s

 1
T

T−1X
j=1

g (λj)

 1

T 2

T−1X
�,q=1

g1/2 (λ�) g
1/2 (λq)



+
1

T 4

TX
t,r,s=1
t6=r 6=s

 1

T 2

T−1X
�,q=1

g (λ�) g (λq)


which is bounded by

D

T


 1
T

T−1X
j=1

g1/2 (λj)

4

+

 1
T

T−1X
j=1

g1/2 (λj)

2 1
T

T−1X
j=1

g (λj)

+
 1
T

T−1X
j=1

g (λj)

2
 .

But the last displayed expression isO
¡
T−1

¢
since Lemma 6.1 implies that T−1

PT−1
j=1 g (λj) =

O (1) and Schwarz inequality that
¯̄̄
T−1

PT−1
j=1 g1/2 (λj)

¯̄̄2
≤ T−1

PT−1
j=1 g (λj). The
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second term on the right of (5.6), proceeding as with the third, is easily shown to be
O
¡
T−1

¢
also and so it is omitted. This concludes the proof of part (a).

Next, we show part (b). For any δ > 0, the left side of (5.4) is bounded by

E

"
TX
t=1

d2tE
¡
ε2tI

¡
ε2t > ψ/δ

¢ |{ξt}¢
#
+Pr

n
max
t

d2t > δ
o
. (5.7)

The first term of (5.7) can be made arbitrarily small by choosing δ small enough,
from the uniform integrability of ε2t . (Recall that a sufficient condition for the latter
property is that E |εt|2+κ < D for some κ > 0.) Next,

max
t

d2t = max
t

T−1
¯̄̄̄
¯
TX
s=1

ξsht−s

¯̄̄̄
¯
2

≤
 D

T 2

TX
t=1

¯̄̄̄
¯
TX
s=1

ξsht−s

¯̄̄̄
¯
4
1/2

because for any sequence φt, (maxt |φt|)2 = maxt φ2t ≤
PT

t=1 φ
2
t . But

1

T 2

TX
t=1

E

¯̄̄̄
¯
TX
s=1

ξsht−s

¯̄̄̄
¯
4

=
1

T 2

TX
t=1

TX
s,r,q,v=1

E
¡
ξsξrξqξvht−sht−rht−qht−v

¢
=

3σ4ξ
T 2

TX
t=1

Ã
TX
s=1

h2t−s

!2
+

cum (ξs, ξs, ξs, ξs)

T 2

TX
t=1

Ã
TX
s=1

h4t−s

!
= O

¡
T−1

¢
proceeding as with the proof of part (a), (cf. (5.6)). So,

E
³
max
t

d2t

´2
= O

¡
T−1

¢
.

Then by Markov inequality, the second term of (5.7) is o (1), which completes the
proof of part (b) and the proposition. ¤

Proposition 2. Assuming C1-C5, as T →∞,

1

T 1/2

T−1X
j=1

Ixu (λj )
d→ N

³
0 , (2π)−2 Ω

´
.

Proof. Since by C4, fxx (λ) fuu (λ) has the same properties of g (λ) in Proposition
1, then by symmetry it suffices to show that

1

T 1/2

[T/2]X
j=1

f
1/2
xx,jf

1/2
uu,j

Ã
wx,jwu,−j
f
1/2
xx,jf

1/2
uu,j

− (2π) wξ,j

σξ

wε,−j
σε

!
P→ 0,

which is the case, as we now show and where henceforth for a generic function h (λ),
hj denotes h (λj). The left side of the last displayed expression is, after standard
calculations,

1

T 1/2

[T/2]X
j=1

f
1/2
xx,jf

1/2
uu,j

Ã
wx,j

f
1/2
xx,j

− (2π)1/2 wξ,j

σξ

!Ã
wu,−j
f
1/2
uu,j

− (2π)1/2 wε,−j
σε

!
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+
(2π)1/2

T 1/2

[T/2]X
j=1

f
1/2
xx,jf

1/2
uu,j

Ã
wx,j

f
1/2
xx,j

− (2π)1/2 wξ,j

σξ

!
wε,−j
σε

(5.8)

+
(2π)1/2

T 1/2

[T/2]X
j=1

f
1/2
xx,jf

1/2
uu,j

wξ,j

σξ

Ã
wu,−j
f
1/2
uu,j

− (2π)1/2 wε,−j
σε

!
.

First, observe that C4 and integrability of fuu (λ) fxx (λ) imply that

f1/2uu (λ) f1/2xx (λ) ≤ Dλ−1/2 |log |λ||−(1+δ)/2 (5.9)

for any arbitrarily small δ > 0, and by Robinson’s (1995a) Theorem 2 and its obvious
extension to [0, π], see Lemma 4.4 of Giraitis et al. (2001),

E

¯̄̄̄
¯ wx,j

f
1/2
xx,j

− (2π)1/2 wξ,j

σξ

¯̄̄̄
¯
2

≤ D log j

j
.

Then, by the Schwarz inequality, we obtain that the expectation of the first term of
(5.8) is bounded by

D

[T/2]X
j=1

log j

j3/2 (logT − log j + log 2π)(1+δ)/2
= O

³
log−(1+δ)/2 T

´
.

Next we examine the second term of (5.8). Because by C2, E (wε,jwε,−k) =
σ2εI (j = k), we have that the second moment of that term is bounded by

D
1

T

[T/2]X
j=1

fxx,jfuu,j
log j

j
≤ D

[T/2]X
j=1

log j

j2 (logT − log j + log (2π))1+δ

= O
³
log−(1+δ) T

´
,

by (5.9), so it is the third term of (5.8) proceeding as with the second term but using
C3 instead of C2. This concludes the proof of the proposition. ¤
Now we turn to the proof of Theorem 1, which follows by Proposition 2 and

Cràmer’s Theorem because

1

T

T−1X
j=1

Ixx,j =
1

2πT

T−1X
t=1

(xt −Ext) (xt −Ext)
0 p→ (2π)

−1
Σ > 0 (5.10)

by C1 and C3. ¤

5.2. Proof of Theorem 2

The proof of this theorem is split into two propositions. Proposition 3 shows that
the bootstrap second moment converges in probability to Φ, whereas Proposition 4
proves the Lindeberg’s condition. These two propositions will imply the statement of
the theorem. Henceforth, we shall denote E∗ (·) as the bootstrap expectation, that
is, for any random variable Y , E∗ (Y ) = E

³
Y
¯̄̄n
x
∼,

u
∼

o´
, where x∼= (x1, ..., xT )

0 and

u
∼= (u1, ..., uT )

0.
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Proposition 3. Assuming C1 −C4 and C5 0, as T →∞, for i = 1 , 2

E∗
³
T 1/2

³bβ∗i − bβ´´2 P→ Φ. (5.11)

Proof. By the definition of bβ∗i , we have that
T 1/2

³bβ∗i − bβ´ =
 1
T

T−1X
j=1

Ixx,j

−1 1

T 1/2

T−1X
j=1

wx,j |wbu,j| η∗j,i.

Since for i = 1, η∗j,1 is a sequence of uncorrelated distributed (0, 1) random variables,
it follows by standard manipulations that the left side of (5.11) is 1

T

T−1X
j=1

Ixx,j

−1 1
T

T−1X
j=1

Ixx,jIbubu,j
 1

T

T−1X
j=1

Ixx,j

−1 . (5.12)

On the other hand, for i = 2, because conditional on the sample, eu∗t is a sequence
of independent identically distributed (0, 1) random variables, it implies that

E∗
¡
η∗j,2η

∗
−k,2

¢
=

1

T
E∗
Ã

TX
t=1

eu∗t e−itλj

TX
s=1

eu∗seisλk

!

=
1

T

TX
s=1

eit(λk−λj)

= I (j = k) .

So for i = 2, the left side of (5.11) is also (5.12).
To conclude the proof we need to show that (5.12) converges in probability to Φ.

First, by Sluztky’s Theorem and (5.10), the first and third factors of (5.12) converge
in probability to (2π)Σ−1. So, the proof is completed if the second factor of (5.12)
converges in probability to (2π)−1

R π
−π fxx (λ) fuu (λ) dλ. But that factor is

1

T

T−1X
j=1

Ixx,jIuu,j +
1

T

T−1X
j=1

Ixx,j (Ibubu,j − Iuu,j) , (5.13)

whose first term, under C1− C4 and C50, converges in L1−norm, and thus in prob-
ability, to (2π)−1

R π
−π fxx (λ) fuu (λ) dλ, see Robinson (1998). So, it remains to show

that the second term of (5.13) converges to zero in probability. Using that

but = eut − ³bβ − β0

´0 ext,
the second term of (5.13) is

1

T

T−1X
j=1

Ixx,j

µ³bβ − β0

´0
Ixx,j

³bβ − β0

´
− 2

³bβ − β0

´0
Re (Ixu,j)

¶
= op (1) (5.14)

as we now show, where Re (z) denotes the real part of the complex number z.
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Now,

tr

 1
T

T−1X
j=1

I2xx,j

 =

pX
r=1

 1T
T−1X
j=1

f2xrxr,j

Ã
Ixrxr,j

fxrxr,j
− (2π) Iξrξr,j

σ2ξr

!2

+
4π

σ2ξrT

T−1X
j=1

f2xrxr,j

Ã
Ixrxr,j

fxrxr,j
− (2π) Iξrξr,j

σ2ξr

!
Iξrξr,j

+
4π2

σ4ξrT

T−1X
j=1

f2xrxr,jI
2
ξrξr,j

 ,
where Iξrξr,j = wξr,jw

0
ξr,−j, and zr denotes the rth element of the vector z. But pro-

ceeding as in the proof of (4.8) in Robinson (1995b, pp. 1648-1651), the expectation
of the right side of the last displayed equation is dominated by the expectation of the
third term. But E

³
I2ξrξr,j

´
≤ D by Brockwell and Davis’s (1991) Proposition 10.3.2.

So, the expectation of the left side of the last displayed equation is bounded by

D

pX
r=1

1

T

T−1X
j=1

f2xrxr,j ≤ D
1

T

T−1X
j=1

λ−2j |log |λj||−2−2δ = o (T ) (5.15)

since by C4 and integrability of fxx (λ), for all r = 1, ..., p, fxrxr,j ≤ Dλ−1j |log |λ||−1−δ,
for some δ > 0. The right side of (5.15) together with Theorem 1, that is that³bβ − β0

´
= Op

¡
T−1/2

¢
, implies that the first term of (5.14) is op (1). Proceeding simi-

larly with the second term of (5.14) and observing thatRe (Ixu,j) = 2−1 (Ixu,j + Ixu,−j),
we conclude that the second term of (5.14) is also op (1), which completes the proof
of the proposition. ¤

Proposition 4. Assuming C1-C4 and C5’, for all ψ > 0 as T →∞, , for i = 1 , 2

E∗
Ã
1

T

T−1X
j=1

°°¡wx ,j |wbu,j | η∗j ¢°°2 I ³T−1 °°¡wx ,j |wbu,j | η∗j ,i¢°°2 > ψ
´!

P→ 0 . (5.16)

Proof. We first examine supj T−1 kIxx,jIbubu,jk which, after standard inequalities, is
bounded by

pX
r=1

sup
j=1,...,[T/2]

T−1fxrxr,jfuu,j

¯̄̄
f
−1/2
xrxr,j

wxr,jf
−1/2
uu,j wu,−j

¯̄̄2
(5.17)

+

pX
r=1

sup
j=1,...,[T/2]

T−1fxrxr,j

¯̄̄
f
−1/2
xrxr,j

wxr,j

¯̄̄2
|Ibubu,j − Iuu,j| .

Next, by Robinson’s (1995a) Theorem 2 and an obvious extension to all
1 ≤ j ≤ [T/2], see Lemma 4.4 of Giraitis et al. (2001),

E

¯̄̄̄
f
−1/2
uu,j wu,j − (2π)1/2 wε,j

σε

¯̄̄̄2
= O

µ
log j

j

¶
and

E

¯̄̄̄
f
−1/2
xrxr,j

wxr,j − (2π)1/2
wξr,j

σξr

¯̄̄̄2
= O

µ
log j

j

¶
for r = 1, ..., p.
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So, using the inequality supt |φt|2 ≤
P

t |φt|2, we have for instance that, for all
r = 1, ..., p,

E

 sup
j=1,...,[T1/2]

1

j

¯̄̄̄
f
−1/2
xrxr,j

wxr,j − (2π)1/2
wξr,j

σξr

¯̄̄̄2
≤

[T1/2]X
j=1

1

j
E

¯̄̄̄
f
−1/2
xrxr,j

wxr,j − (2π)1/2
wξr,j

σξr

¯̄̄̄2
= O (1) , (5.18)

and

E

 sup
j=[T 1/2]+1,...,[T/2]

1

j

¯̄̄̄
f
−1/2
xrxr,j

wxr,j − (2π)1/2
wξr,j

σξr

¯̄̄̄2
≤

[T/2]X
j=[T1/2]+1

1

j
E

¯̄̄̄
f
−1/2
xrxr,j

wxr,j − (2π)1/2
wξr,j

σξr

¯̄̄̄2
= O

³
T−1/2 log T

´
. (5.19)

On the other hand, by An et al. (1983),

sup
j=1,...,[T/2]

³
(2π)σ−2ε log−1 T |wε,j|2

´
≤ 1 a.s.. (5.20)

Then, combining (5.18), (5.19) and (5.20), the first term of (5.17) is bounded by

D

pX
r=1

sup
j=1,...,[T1/2]

T−1jfxrxr,jfuu,j sup
j=1,...,[T 1/2]

1

j

¯̄̄
f
−1/2
xrxr,j

wxr,jf
−1/2
uu,j wu,−j

¯̄̄2
+D

pX
r=1

sup
j=1+[T1/2],...,[T/2]

T−1jfxrxr,jfuu,j sup
j=1+[T1/2],...,[T/2]

1

j

¯̄̄
f
−1/2
xrxr,j

wxr,jf
−1/2
uu,j wu,−j

¯̄̄2
≤ D

pX
r=1

sup
j=1,...,[T1/2]

T−1jfxrxr,jfuu,j log
2 T

+DT−1/2 log T
pX

r=1

sup
j=1+[T 1/2],...,[T/2]

T−1jfxrxr,jfuu,j log
2 T

≤ D log−δ T

in probability since integrability of kfxx (λ) fuu (λ)k |log (|λ|)| implies that for some
δ > 0, kfxx,jfuu,jk |log |λj|| ≤ Dλ−1j |log |λj||−1−δ, and hence kfxx,jfuu,jk ≤ Dλ−1j |log |λj||−2−δ.
On the other hand, because

Ibubu,j − Iuu,j =
³
β0 − bβ´0 Ixx,j ³β0 − bβ´+ 2³β0 − bβ´0Re (Ixu,j) ,

the second term of (5.17) is bounded by

sup
j=1,...,[T/2]

T−1fxx,j
¯̄̄
f
−1/2
xx,j wx,j

¯̄̄2µ°°°β0 − bβ°°°2 fxx,j ¯̄̄f−1/2xx,j wx,j

¯̄̄2
+
°°°β0 − bβ°°° f1/2xx,jf

1/2
uu,j

¯̄̄
f
−1/2
xx,j wx,jf

−1/2
uu,j wu,j

¯̄̄´
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which, by (5.18) and (5.20), is upper bounded by

sup
j=1,...,[T/2]

T−1fxx,j

µ°°°β0 − bβ°°°2 fxx,j + °°°β0 − bβ°°° f1/2xx,jf
1/2
uu,j

¶
log2 T ≤ D log−δ T

because
°°°β0 − bβ°°° = Op

¡
T−1/2

¢
, kfxx,jk ≤ Dλ−1j |log |λj||−1−δ and

°°°f1/2xx,jf
1/2
uu,j

°°° ≤
Dλ
−1/2
j |log |λj||−1−δ/2 by integrability of fxx (λ) and kfxx (λ) fuu (λ)k |log (|λ|)| re-

spectively. Thus, for i = 1, 2 we conclude that the left side of (5.16) is bounded
by

D

T

T−1X
j=1

Ixx,jIuu,jE
∗
³¯̄
η∗j,i
¯̄2 I ³¯̄η∗j,i¯̄2 > ψ logδ T

´´
. (5.21)

However, conditional on the data, η∗j,1 is a sequence of iid random variables, so for
i = 1 (5.21) is

E∗
³¯̄
η∗j,1

¯̄2 I ³¯̄η∗j,1¯̄2 > ψ logδ T
´´ D

T

T−1X
j=1

Ixx,jIuu,j,

which converge to zero in probability since δ > 0 and η∗j,1 has finite second moments
and by Proposition 3 the second factor of the last displayed expression converges in
probability to (2π)−1Ω <∞.
On the other hand, for i = 2, (5.21) is bounded by

sup
j

E∗
³¯̄
η∗j,2

¯̄2 I ³¯̄η∗j,2¯̄2 > ψ logδ T
´´D

T

T−1X
j=1

Ixx,jIuu,j

 ,
which converges to zero in probability for all δ > 0 as we now show. First, by Robinson
(1988), the second factor converges in probability to (2π)−1Ω < ∞. On the other
hand, standard algebra implies that

E∗
³¯̄
η∗j,2

¯̄2 I ³¯̄η∗j,2¯̄2 > ψ logδ T
´´

≤ D

ψ2 log2δ T
E∗
¯̄
η∗j,2

¯̄4
≤ D

ψ2 log2δ T

 1T
TX
t=1

u4t +

Ã
1

T

TX
t=1

u2t

!2 .
But, by a well-know argument, see Stout’s (1974) Theorem 3.5.8, ut is also ergodic
which implies that the right side of the last displayed inequality converges to zero
because δ > 0. So, we conclude that (5.21) P→ 0 and the proof of the proposition. ¤

5.3. Proof of Theorem 3

We only sketch the proof since it follows immediately from Theorem 2 and the con-
tinuous mapping theorem. First, since T 1/2

³
Cbβ∗i − c

´
= T 1/2C

³bβ∗i − eβ´, Theorem
2 implies that

T 1/2C
³bβ∗i − eβ´ d∗→ N (0, CΦC0)
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for i = 1, 2. On the other hand, proceeding as in the proof of (5.10), bΣ P→ (2π)−1Σ > 0

and if eΩ∗i P∗→ Ω for i = 1, 2, we obtain that

CbΣ−1eΩ∗i bΣ−1C 0 P∗→ CΦC0.

Then, the continuous mapping theorem implies that F ∗i
d∗→ χ2r , for i = 1, 2. So, to

conclude the proof of the theorem, we need to show that eΩ∗i P∗→ Ω. By definition,eΩ∗i = ¡4π2¢T−1PT−1
j=1 Ixx,jIbu∗bu∗,j. Next, because
wbu∗ (λj) = wy∗ (λj)− bβ∗iwx (λj)

=
³eβ − bβ∗i´wx (λj) + |wbu (λj)| η∗j,i,

we obtain that

eΩ∗i − eΩ =
4π2

T

T−1X
j=1

Ixx,j

µ³bβ∗i − eβ´0 Ixx,j ³bβ∗i − eβ´− 2³bβ∗i − eβ´0Re³|wbu (λj)| η∗j,iwx (λj)
´¶

+
4π2

T

T−1X
j=1

Ixx,jIbubu,j ³¯̄η∗j,i¯̄2 − 1´ .
Now proceeding as in the proof of (5.14), after we observe that by Theorem 2,³bβ∗i − eβ´ = Op∗

¡
T−1/2

¢
, in particular that in Proposition 3 we have shown that

E∗
³
T 1/2

³bβ∗i − eβ´´2 = Op (1), the first term on the right of the last displayed equa-

tion is op∗ (1). The second term on the right is also op∗ (1), by similar arguments and
that η∗j,i, conditional on the data, is a zero mean sequence of uncorrelated random
variables. Finally, the third term on the right of the last displayed equation. Becausebut = eut − ³bβ − β0

´ ext, this term can be written as

³bβ − β0

´0 4π2
T

T−1X
j=1

I2xx,j

³¯̄
η∗j,i
¯̄2 − 1´³bβ − β0

´

−2
³bβ − β0

´0 4π2
T

T−1X
j=1

Ixx,j Re (Ixu,j)
³¯̄
η∗j,i
¯̄2 − 1´+ 4π2

T

T−1X
j=1

Ixx,jIuu,j
³¯̄
η∗j,i
¯̄2 − 1´ .

Clearly the first two terms are op∗ (1), whereas the last term of the last displayed
expression is also op∗ (1) using the same arguments as those employed to examine the
behaviour of (5.21), since conditional on the data,

¯̄
η∗j,i
¯̄2 − 1 is a sequence of zero

mean uncorrelated random variables. Now, conclude the proof since we have already
shown that eΩ P→ Ω, e.g. (5.12). ¤

6. A TECHNICAL LEMMA

Lemma 1. Let ϕ (λ) be an integrable function which satisfies (a) ϕ (λ)> 0 for all
λ ∈ [0 , π], (b) |(∂/∂λ)ϕ (λ)|= O (|ϕ (λ)| /λ) as λ→ 0+ and (c) it is continuously
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differentiable in any open set outside the origin. Then, as T →∞,

1

T

[T/2 ]X
j=1

ϕ (λj )− (2π)−1
Z π

0

ϕ (λ) dλ = o (1 ) .

Proof. The left side of the last displayed expression is

1

T
ϕ (λπ)− 1

2π

Z λ1

0

ϕ (λ) dλ+
1

2π

[T/2]−1X
j=1

Z
λj<λ≤λj+1

(ϕ (λj)− ϕ (λ)) dλ. (6.1)

The first term of (6.1) is obviously o (1), whereas the second term of (6.1) is also o (1)
because by integrability of ϕ (λ), for any arbitrarily small δ > 0,Z λ1

0

ϕ (λ) dλ ≤ D

Z λ1

0

λ−1 |log λ|−1−δ dλ

≤ D |log λ1|−δ = o (1) .

Next, the absolute value of the third term of (6.1) is bounded by

D

[T/2]−1X
j=1

Z
λj<λ≤λj+1

λ−1j |λj − λ|ϕ ¡λ¢ dλ
by the properties of ϕ (λ) and the mean value theorem where λ is an intermediate
point in the interval (λj , λ). But the last displayed expression is bounded by

D

[T/2]−1X
j=1

1

j
ϕ (λj)

Z
λj<λ≤λj+1

dλ (6.2)

since supλj<λ≤λj+1
|λj − λ| ≤ DT−1 and by (b) and (c), supλj<λ≤λj+1

ϕ
¡
λ
¢ ≤ Dϕ (λj).

On the other hand, integrability of ϕ (λ) implies that

ϕ (λ) ≤ Dλ−1 |log (λ)|−1−δ

for any arbitrarily small δ > 0. So, we conclude that (6.2) is bounded by

D

[T/2]−1X
j=1

1

j2 (logT − log j + log (2π))1+δ
= o(1)

by standard arguments, which completes the proof. ¤

7. CONCLUSIONS

In a time series regression model, we have examined and discussed two similar boot-
straps, which contrary to the moving blocks and subsampling bootstraps, do not
require the choice of a tuning parameter, that is the block length b. The bootstraps
are based on resampling from the discrete Fourier transform of the least squares resid-
uals as in the original Efron’s bootstrap or from the residuals themselves. So, we were
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able to avoid the potential problem that the choice of the block length may have on
finite samples. Although we have examined the algorithms in the context of linear
regression models, the approach can be extended to more general models of interest
in econometrics. More specifically in the context of instrumental variable/GMM es-
timators, which includes most of the available estimators, such as the OLS, GLS or
MLE.
To that end, let (yt, x0t)

0 be a sequence of random variables observed at times
t = 1, ..., T , such that they follow the nonlinear model ut = ut (yt, xt; θ0), where θ0 is
p× 1 parameter vector. Suppose, for illustration purposes, that ut (·) can be written
as

h (yt, γ) = f (xt, β) + ut. (7.1)

A classical example of (7.1), and widely used, is the Box-Cox transformation, where

h (yt, γ) =
yγt − 1

γ
,

and θ =
¡
γ, β0

¢0
In this context, under the same conditions specified in Section 2, we propose the

following bootstrap procedure.

STEP 1 Let P (zt) be a set of valid instruments, and obtain the IV E or GMM

estimator of θ =
¡
γ, β0

¢0
defined as

³bγ, bβ0´0 = bθ = argmin
θ

Ã
TX
t=1

ut (θ)P
0 (zt)

!Ã
TX
t=1

P (zt)P
0 (zt)

!−1Ã TX
t=1

ut (θ)P (zt)

!

= argmin
θ

T−1X
j=1

wu(θ) (λj)wP (z) (λj)

T−1X
j=1

wP (z) (λj)wP (z) (λj)

−1

×
T−1X

j=1

wu(θ) (λj)wP (z) (λj)


where wu(θ) (λj) and wP (z) (λj) are the discrete Fourier transforms of ut (θ) =
h (yt, γ)− f (xt, β) and P (zt) respectively, and a stands for transpose together
with conjugation of a complex vector a. Next, obtain the residuals

but = h (yt, bγ)− f
³
xt, bβ´ , t = 1, ..., T .

STEP 2 The same as STEP 2 given in the introduction.

STEP 3 For i = 1, 2, using the discrete Riemann approximation of the identity

zt =

µ
T

2π

¶1/2 Z π

−π
wz (µ) e

iµtdµ, t = 1, ..., T ,

compute the bootstrap residuals

bu∗t,i = µ2πT
¶1/2 T−1X

j=1

eitλjwbu (λj) η∗j,i, t = 1, ..., T
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and the bootstrap observations y∗t,i as

y∗t,i = gbγ ³f ³xt, bβ´+ bu∗t,i´ , t = 1, ..., T

where ga (z) satisfies that h (ga (z) , a) = z, e.g. ga (z) is the inverse function of
h (z, a).

STEP 4 For i = 1, 2, compute the bootstrap estimator as

³bγ∗i , bβ∗0i ´0 = bθ∗ = argmin
θ

T−1X
j=1

wbu∗
i
(θ) (λj)wP (z) (λj)

T−1X
j=1

wP (z) (λj)wP (z) (λj)

−1

×
T−1X

j=1

wbu∗
i
(θ) (λj)wP (z) (λj)

 ,
where wbu∗

i
(θ) (λj) denotes the discrete Fourier transform of bu∗t,i = h

¡
y∗t,i, γ

¢ −
f (xt, β).

We conjecture that the preceding bootstrap should be valid. The intuition comes
from the observation that because wbu∗

i (bθ) = wbu (λj) η∗j,i, it implies that the covari-
ance structure of the data/model is preserved, so the asymptotic behaviour of the
bootstrap estimates should be that of bθ. The technical details of the bootstrap will
be more involved than those in the context examined in the paper. However, in view
of the available results for extreme estimators, it is expected that the results given in
Section 2 should hold true in the previous context/model. This topic and how we can
implement the bootstrap in the situation of heteroscedastic models will be examined
in a future paper.
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TABLE 4.1

Proportion of rejections in 5000 Monte Carlo experiments under H0 : β0 = 0 in
model (1.1), when xt is long memory with parameter dx and ut follows an AR (1)
model. Bootstrap critical values are computed using 2000 bootstrap samples.

dx Size T
ρ = .0

32 64 128
ρ = .5

32 64 128
ρ = .9

32 64 128

ASY
10% BOOT1

BOOT2
ASY

0.30 5% BOOT1
BOOT2
ASY

1% BOOT1
BOOT2

14.32 12.50 12.00
12.04 10.34 10.36
11.82 10.78 10.62
8.40 6.86 6.42
7.04 5.54 5.72
6.88 5.60 5.92
2.12 1.28 1.02
1.96 1.42 1.34
1.96 1.42 1.48

16.06 14.24 13.02
12.56 10.72 10.70
12.34 11.16 10.96
9.92 7.74 7.20
6.98 5.96 5.58
6.96 6.26 5.94
2.84 1.48 1.20
2.06 1.64 1.40
2.06 1.82 1.60

19.20 16.00 14.34
13.56 12.16 10.14
12.36 12.10 10.38
12.00 9.04 7.48
7.36 6.78 5.02
6.66 6.94 5.70
2.92 1.48 0.82
2.12 1.58 1.32
1.70 1.54 1.44

ASY
10% BOOT1

BOOT2
ASY

0.45 5% BOOT1
BOOT2
ASY

1% BOOT1
BOOT2

15.22 12.96 13.16
12.38 11.26 10.24
12.36 11.84 10.84
9.56 7.56 7.44
7.06 6.30 5.80
7.08 6.52 6.38
2.74 1.60 1.28
2.38 2.18 1.98
2.56 2.18 1.92

18.06 15.44 14.60
12.84 11.80 10.66
13.32 12.42 11.34
11.60 9.40 8.54
7.56 6.64 5.82
7.74 7.34 6.44
3.84 2.08 2.14
2.86 2.48 1.92
2.54 2.46 2.08

23.34 20.00 17.08
14.80 12.90 10.56
14.66 13.76 11.60
15.82 12.86 10.32
8.32 7.76 5.62
8.04 8.30 6.52
5.16 3.22 2.30
2.88 2.36 1.66
2.48 2.34 1.92



TABLE 4.2

Proportion of rejections in 5000 Monte Carlo experiments under H0 : β0 = 0 in
model (1.1), when xt and ut are long memory with parameters dx and du respectively.
Bootstrap critical values are computed using 2000 bootstrap samples.

dx/du Size T
ρ = .0

32 64 128
ρ = .5

32 64 128
ρ = .9

32 64 128

ASY
10% BOOT1

BOOT2
ASY

.40/.05 5% BOOT1
BOOT2
ASY

1% BOOT1
BOOT2

15.54 12.94 11.20
12.30 11.20 10.38
12.24 11.66 10.82
9.68 7.80 7.34
7.16 5.92 5.88
7.16 6.38 6.24
2.84 1.58 1.26
2.10 1.84 1.64
2.34 2.02 1.78

17.78 15.30 14.40
12.62 11.78 10.56
12.96 12.40 11.20
11.44 9.34 8.20
7.20 6.60 5.84
7.28 7.04 6.34
3.60 1.92 2.00
2.56 2.04 1.70
2.44 2.34 1.96

22.28 19.14 16.00
14.66 12.62 10.40
13.64 13.32 11.36
15.60 11.40 9.60
8.08 7.54 5.50
7.76 7.80 6.44
4.52 2.52 1.84
2.52 2.00 1.34
2.22 2.00 1.72

ASY
10% BOOT1

BOOT2
ASY

.30/.15 5% BOOT1
BOOT2
ASY

1% BOOT1
BOOT2

15.36 13.76 13.00
12.10 11.10 10.64
12.00 11.28 10.82
9.50 7.86 6.90
6.94 5.90 5.70
6.66 6.04 6.02
2.52 1.42 1.34
1.86 1.46 1.44
1.98 1.44 1.64

16.72 14.84 13.62
12.56 11.28 10.44
12.62 12.08 11.14
10.44 8.36 7.64
7.10 6.00 5.60
6.90 6.24 6.08
2.92 1.52 1.40
2.00 1.74 1.52
1.98 1.76 1.50

19.92 16.70 14.20
15.04 12.64 10.52
12.70 12.42 10.82
11.82 9.20 7.60
8.22 7.20 5.06
6.82 7.10 5.76
2.80 1.44 0.72
2.44 1.54 1.16
1.64 1.56 1.18



TABLE 4.3

Proportion of rejections in 5000 Monte Carlo experiments under H0 : β0 = 0 in
model (1.1), when xt and ut are long memory with parameters dx and du respectively,
using the moving block bootstrap algorithm. Bootstrap critical values are computed
using 2000 bootstrap samples.

dx/d b =
ρ =

2
.0 .5 .9

4
.0 .5 .9

8
.0 .5 .9

16
.0 .5 .9

10%
.30/.00 5%

1%

14.54 15.76 17.54
10.04 11.38 11.88
4.88 5.84 6.02

14.52 15.86 18.04
10.08 11.58 12.58
4.78 6.06 6.78

14.52 15.98 18.72
9.94 11.56 13.16
4.74 6.06 7.58

14.36 16.08 18.78
9.94 11.80 13.50
4.64 6.22 7.86

10%
.45/.00 5%

1%

18.36 20.54 23.32
13.46 15.58 18.08
7.88 9.36 11.54

18.20 20.60 23.96
13.40 15.82 18.72
7.84 9.78 12.72

18.02 20.92 24.34
13.38 15.96 19.64
7.74 9.66 13.62

18.16 20.86 24.82
13.20 15.94 19.84
7.96 9.86 14.20

10%
.40/.05 5%

1%

17.14 19.22 21.74
12.54 14.10 16.22
7.16 8.26 9.66

17.18 19.34 22.30
12.62 14.42 16.88
7.18 8.52 10.52

17.08 19.80 22.88
12.68 14.68 17.64
7.26 8.82 11.58

17.22 19.72 22.98
12.48 14.82 18.00
7.12 8.92 12.22

10%
.30/.15 5%

1%

15.38 16.86 18.30
11.02 11.74 12.48
5.56 6.18 6.16

15.58 17.36 18.80
11.06 11.98 13.12
5.76 6.46 7.16

15.40 17.60 19.20
11.14 12.32 13.98
5.84 6.82 8.22

15.52 17.52 19.96
11.32 12.36 14.26
5.80 6.92 8.60



TABLE 4.4

Proportion of rejections in 5000 Monte Carlo experiments under H0 : β0 = 0 in
model (1.1), when xt and ut were generated as AR (1) models. Bootstrap critical
values are computed using 2000 bootstrap samples.

Size T
ρ
u
= .0

32 64 128
ρ
u
= .5

32 64 128
ρ
u
= .9

32 64 128

ASY
10% BOOT1

BOOT2
ASY

ρ
x
= 0.50 5% BOOT1

BOOT2
ASY

1% BOOT1
BOOT2

14.88 12.42 11.26
12.34 11.00 10.70
11.96 10.86 10.76
8.50 7.24 5.86
6.60 5.46 5.66
6.94 5.58 5.78
1.96 1.42 0.96
2.12 1.54 1.40
2.28 1.72 1.48

15.80 13.62 11.32
12.40 11.34 10.38
12.64 11.48 10.48
9.80 7.68 6.52
7.46 5.90 5.44
7.90 6.14 5.74
2.64 1.44 0.98
2.94 1.50 1.50
3.04 1.54 1.74

17.12 14.00 11.50
13.14 11.58 10.28
12.12 11.68 10.24
10.06 7.28 6.46
7.64 5.56 5.34
6.98 5.70 5.64
2.36 1.26 0.86
2.58 1.52 1.30
2.04 1.44 1.48

ASY
10% BOOT1

BOOT2
ASY

ρ
x
= 0.90 5% BOOT1

BOOT2
ASY

1% BOOT1
BOOT2

18.62 16.00 15.00
13.86 12.42 11.94
14.42 13.48 12.90
12.76 10.04 8.70
9.56 7.88 7.36
9.56 8.50 8.04
4.46 3.20 2.08
5.30 4.22 3.18
4.50 4.02 3.38

23.22 18.58 16.04
14.62 12.72 12.26
15.88 13.84 13.00
16.48 12.68 10.00
10.06 8.06 7.40
10.28 8.76 8.06
6.64 4.60 2.92
6.16 4.28 3.32
5.30 3.90 3.52

29.60 24.04 19.38
18.10 13.94 13.00
18.58 14.92 13.36
22.70 17.42 12.54
12.82 8.72 7.26
12.72 9.36 8.20
10.92 7.36 4.38
7.04 4.34 2.74
5.62 4.02 2.88



TABLE 4.5

Proportion of rejections in 5000 Monte Carlo experiments under H0 : β0 = 0
in model (1.1), when xt and ut were generated as AR (1) models, and using the
moving block bootstrap algorithm. Bootstrap critical values are computed using 2000
bootstrap samples.

ρ
u
/ρ

x
b = 2 4 8 16

10%
.00/.50 5%

1%

14.32
10.02
4.76

14.36
10.18
4.74

14.30
10.18
4.76

14.46
10.18
4.72

10%
.00/.90 5%

1%

26.16
21.88
15.74

26.18
21.66
15.98

26.20
21.74
15.66

25.92
21.40
15.48

10%
.50/.50 5%

1%

15.60
10.30
5.20

15.72
10.66
5.32

15.76
10.76
5.46

15.70
10.72
5.50

10%
.50/.90 5%

1%

28.08
23.72
17.36

28.20
23.84
17.62

28.22
23.92
17.74

28.18
23.98
17.70

10%
.90/.50 5%

1%

16.18
10.66
5.00

16.10
11.28
5.54

16.46
11.52
6.00

16.72
11.82
6.08

10%
.90/.90 5%

1%

31.30
27.16
20.88

31.84
27.50
21.52

32.42
28.38
22.18

32.84
28.72
23.08




