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Abstract

We study the role of re-election concerns in incumbent parties’ incentives to shape

the information that reaches voters. In a probabilistic voting model, candidates rep-

resenting two groups of voters compete for office. In equilibrium, the candidate rep-

resenting the majority wins with a probability that increases in the degree of political

disagreement—the difference in expected payoffs from the candidates’ policies. Prior

to the election, the office-motivated incumbent party (IP) can influence the degree of

disagreement through policy experimentation—a public signal about a payoff-relevant

state. We show that if the IP supports the majority candidate, then it strategically

designs this experiment to increase disagreement and, hence, the candidate’s victory

probability. We define conditions such that the IP chooses an upper-censoring exper-

iment and the experiment’s informativeness decreases with the majority candidate’s

competence. The IP uses the experiment to increase disagreement even when political

disagreement is due solely to belief disagreement.
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1 Introduction

Voters and politicians are often uncertain about the possible repercussions of different poli-

cies. When candidates advocate different policies, this uncertainty plays an important role

in defining electoral outcomes. Learning about the payoff consequences of policies can then

change voters’ preferences over politicians and affect electoral outcomes. The incumbent

party (IP), through its control over the government, is in a privileged position to affect

what voters can learn. In this paper, we study the effects of re-election concerns on the

incumbents’ incentives to shape the information that reaches voters.

There are many ways in which the incumbent can affect voters’ learning. For example,

the IP can run a small-scale pilot test of a novel policy or design an experiment to evaluate

unobserved effects of existing policies.1 Moreover, when designing the rollout of a complex

new law, the IP can determine which aspects of the law will be enforced before and after

the next election and which preliminary information will be released during the early stages

of the reform.2 Similarly, the IP can establish disclosure rules for government agencies.3

In all these cases, government’s control of information affects what voters can learn and,

consequently, electoral outcomes.4

Although our model fits all these interpretations, to simplify presentation, we will say that

the IP engages in strategic policy experimentation — i.e., the IP can design a public signal

that generates information about the expected payoffs from different policies. We model this

strategic supply of information as a persuasion game (see Kamenica and Gentzkow (2011),

KG henceforth).

Our probabilistic voting model has the following ingredients: (i) Electorate: Uninformed

voters are divided into two groups, majority A and minority B, with differing preferences over

1See Greenberg and Shroder (2004) for many examples of social experiments.
2For instance, the Affordable Care Act (commonly called “ObamaCare”) was signed into law in March

2010, but many of its payoff-relevant features were implemented only after the 2012 presidential election —

e.g., the program’s website HealthCare.org was launched in October 2013.
3For example, the IP can regulate what government agencies can investigate regarding current trends

in gun violence, including what information can be collected. The information (or lack of information)

generated by the government can influence voters’ beliefs about the most appropriate gun control laws.
4See Bernecker, Boyer and Gathmann (2015) for an empirical study of how re-election concerns shape

the incumbent’s incentives to experiment.
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policies. (ii) Parties and Candidates: Two parties compete for office. Parties’ candidates are

differentiated in two dimensions — a position issue (policy) and a valence issue (competence).

With regard to policy, the candidate from Party A will implement the preferred policy of

group A if elected, while the candidate from party B defends the preferred policy of group

B. Candidates also differ in their competence. (iii) Policy Experiment: Party A currently

controls the government and, hence, has the authority to carry out a policy experiment

that reveals information about voters’ policy payoffs. Party leaders (or bureaucrats) are

purely office-motivated; thus, Party A chooses an experiment that maximizes its re-election

probability. (iv) Election: After observing the experiment’s outcomes, candidates revise

their beliefs, and, therefore, the policies that they will implement if elected, while voters

update their evaluation of the candidates’ policies. Voters already know the valence of the

incumbent from party A. During the electoral campaign, voters also observe a noisy signal

about the valence of the untried candidate from party B. Each voter then chooses candidate

A if she is expected to deliver a higher total payoff (valence + policy) than B.

We first note that, in equilibrium, the candidate representing the majority group wins

with a probability that increases in the degree of political disagreement — defined as the

difference in expected payoffs from the policies supported by the candidates. Therefore, the

IP designs the experiment with the sole purpose of increasing political disagreement, which

benefits its candidate.5

We start our analysis by studying, in Section 3, the effect that the incumbent’s valence

vA has on the informativeness of the IP’s optimal policy experiment. We first consider the

case in which the valence distribution of the untried candidate has a log-concave probability

density function (p.d.f.), such as a Normal Distribution. Then, regardless of the preferences of

majority and minority voters, the following single-crossing property holds: If an experiment

does not increase the incumbent’s probability of victory when her competence is vA, then

this experiment does not increase her victory probability if her competence is higher than vA

(Lemma 1). This result implies that there are two cutoffs in the extended real line, such that

the IP prefers to be fully transparent about policy payoffs and, thus, favors fully informative

experiments when the majority candidate is sufficiently incompetent; prefers to be partially

5Stokes (1963) highlights the strategic use of information to shift the salience of issues. See Iyengar and

Simon (2000) for a survey.
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transparent for intermediate levels of competence; and prefers to be completely opaque —

thus providing a completely uninformative experiment — when the majority candidate is

sufficiently competent (Proposition 1 and Corollary 1).

The single-crossing property in Lemma 1 holds for every specification of the preferences

of voters in the majority and minority groups. To characterize the optimal experiment, in

Section 4, we focus on cases in which political disagreement endogenously increases in the

voters’ expectation over an unknown state. Experimental outcomes that lead to an upward

revision of the average state would then magnify political disagreement, which benefits the

IP, and outcomes that produce a downward revision of the average state would reduce dis-

agreement. We show that, under the assumption of a log-concave p.d.f., it is optimal for

the IP to use an upper-censoring experiment (Proposition 3). Such experiments define a

cutoff state, and voters learn the true state when it falls below this cutoff; otherwise, voters

learn only that the state is above the cutoff. That is, an upper-censoring experiment fully

reveals low-disagreement states and pools high-disagreement states. An important implica-

tion is that, as the incumbent’s competence improves, the IP monotonically provides less

information to the electorate.

All of our results derive from the curvature properties of the incumbent’s re-election

probability. Under the log-concave assumption, the re-election probability is locally con-

vex when the incumbent’s valence and disagreement are low and locally concave when they

are high. Intuitively, convexity gives the incumbent incentives to gamble on information

— i.e., to generate an experiment that might increase or decrease disagreement — while

concavity gives incentives to avoid such a gamble. Our results are reversed if the p.d.f. of

the challenger’s valence is log-convex. In the log-convex case, the incumbent’s re-election

probability is convex when her valence and disagreement are low and concave when they are

high. Therefore, the single-crossing property goes in the opposite direction: lower values of

the incumbent’s competence induce less experimentation, while higher competence induces

more experimentation. Moreover, if political disagreement increases with the expected state,

then the IP would favor lower-censoring experiments in the log-convex case.

Our results highlight that one should view the idea of gambling for resurrection (e.g.,

Downs and Rocke (1994)) with caution. In a simple version of this story, an incumbent

politician with a bad reputation and a low probability of re-election is willing to engage in
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war, hoping that a favorable outcome in the battlefield will increase her re-election chances.

Our model complements these papers, by explicitly showing how the gambling for resurrec-

tion result relies on the shape of the probability of re-election — in particular, the opposite

result holds in the log-convex case. Moreover, engaging in war can be viewed as implement-

ing a “full scale,” very informative experiment. As we show, in many cases, the optimal

experiment is only partially informative (upper-censoring in the log-concave case).6

In Section 5, we present alternative interpretations of our model to emphasize that our

results apply to a wide set of economic models. We consider the case in which the incum-

bent’s public signal generates information about her own competence, the case in which the

incumbent generates information about multiple policy dimensions, and the case in which

the IP generates information during the rollout of a major policy reform.

In Section 6, we present the main extension of our model: we allow for heterogeneous

prior beliefs. As Callander (2011, pg. 657) notes, “[M]uch political disagreement is over

beliefs rather than outcomes” — that is, much disagreement is rooted in members of the

electorate holding different views of the likely effects of various policies. To focus on the role

of belief disagreement, we restrict attention to cases in which voters share the same payoff

function, so that political disagreement stems solely from belief disagreement. That is, in the

absence of uncertainty, all voters would agree on the optimal policy, and candidates would

be judged solely on their valence. In this case, one may conjecture that public information

creates consensus among voters; hence, the IP will seldom benefit from persuasion, and belief

disagreement will foster opaqueness. However, we show that this view is flawed. For exam-

ple, if there are more than four possible states, and political disagreement is increasing in the

distance between each group’s expectation of the state, then the IP can generically design

an experiment that increases political disagreement with probability one (Proposition 4).

Section 7 presents additional extensions of the model (the IP supports the minority can-

didate; parties are policy motivated; and the case of competition in information provision).

Section 8 concludes. All proofs are in Appendix A, and additional results are available online

in Appendix B. We next discuss the related literature.

6In our model, the incumbent can choose any signal that is correlated with the state, while other models

consider restrictions on the choice of signals — e.g., the gamble in Carrillo and Mariotti (2001) is constrained

to be normally distributed, while the gamble in Duggan and Martinelli (2011) must be a “slant.”
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Related Literature: Our paper is related to, and borrows from, various literatures.

Policy experimentation and electoral outcomes : A number of papers explore how policy

experimentation (learning how different policies map into payoffs) can influence future poli-

cies and electoral outcomes, as well as how re-election concerns by office-motivated politicians

guide the choice of policy experiments. One strand of the literature focuses on the role that

experimentation plays in uninformed voters’ learning about the incumbent’s or the chal-

lenger’s characteristics (Biglaiser and Mezzeti, 1997; Majumdar and Mukand, 2004; Duggan

and Martinelli, 2011; Willens, 2013; Fu and Li, 2014; and Dewan and Hortala-Vallve, 2014).

In the benchmark interpretation of our model, the IP controls the flow of information about

policy payoffs, given the exogenous information about valence available to voters. However,

in Section 5.3, we reinterpret our model as the IP controlling the flow of information about

valence, given the exogenous information about policy payoffs. Bernecker, Boyer and Gath-

mann (2015) consider a model in which politicians use their choice of policy experiment to

signal competence and test it with data from the 1996 US Welfare Reform. While theirs is a

“signaling” model of competence, their finding that governors with high reputation are less

likely to experiment is consistent with our results in Proposition 1 and Corollary 1.

Some papers consider how information revelation about valence during an election in-

fluences the strategies of parties and politicians. For instance, Carrillo and Mariotti (2001)

study how information about valence affects parties’ choice of whether to run a known or

an untried candidate; Carrillo and Castanheira (2008) study how this information affects

parties’ investments in improving candidate or policy quality; and Boleslavsky and Cotton

(2015) study how this information affects parties’ incentives to run moderate candidates.

Our paper complements these papers by studying how information about valence affects

policy experimentation by the incumbent. In all four papers, through different, but related,

mechanisms, an increase in information leads to a change in party strategy, which can lead

to a decrease in voter welfare.

Another strand considers the effect of policy experimentation on voters’ learning about

policies. For instance, Callander (2011) and Callander and Hummel (2014) study the incen-

tives of politicians to engage in trial-and-error experimentation, while Callander and Harstad

(2015) consider the effect of learning spillovers on the incentives of heterogeneous districts to

experiment. Millner, Ollivier, and Simon (2014) show that a policy-motivated party — in or-
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der to show the opposite party that its belief is “wrong” and to reduce belief disagreement—

may over-experiment when politicians have heterogeneous prior beliefs. In contrast, in our

model, the purely office-motivated IP strategically discloses information to increase belief

disagreement and influence elections.

Bayesian Persuasion: Our paper relates to the recent literature on Bayesian persuasion

that follows KG. In Alonso and Câmara (2016b), the goal of the “sender” is also to sway

elections in favor of her preferred alternative. However, in their model, there is no uncertainty

over voters’ preferences after the results of the experiment are realized. Therefore, the only

information that is relevant for electoral outcomes is whether voters prefer one policy or the

other — how strongly they do so is irrelevant. In our probabilistic voting model, however,

this intensity is crucial — the IP wins re-election with a probability that increases in the

the degree of political disagreement. Therefore, the IP would like to convince voters from

the majority group not only that its candidate supports a good policy, but also that the

minority candidate supports a bad policy.

Kolotilin et al. (2015) study a Bayesian persuasion model with a single receiver that has

private information about his type and a sender with a payoff that is a linear increasing func-

tion of the expected state. Although their setup and focus are quite different from ours, they

find (Theorem 2) that if the receiver’s type has a log-concave (log-convex) p.d.f., then it is

optimal to use an upper (lower) censorship signal. Their proof relies on a mechanism-design

approach, while our proof of Proposition 3 is closer to the concave-closure approach of KG.

Polarization and Disagreement : A number of papers argue that access to information

can increase polarization and disagreement (e.g., Dixit and Weibull, 2007; Van den Steen,

2011; and Alonso and Câmara, 2016c). In most papers, a higher disagreement is a somewhat

unintended side effect of the actions of individuals generating information, such as the media

catering to the demand of biased voters. In our main extension (Section 6), the IP generates

information with the sole purpose of increasing belief disagreement to benefit its candidate.

2 Model

Overview: There are two parties and two groups of voters. Party A represents voters in

group A and party B represents voters in group B, where group A is larger than B. In our
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benchmark model, party A holds office at the beginning of the game (Section 7 presents

the opposite case). The incumbent party (IP) strategically designs a policy experiment to

influence the next election. Voters observe the experiment’s results and update their beliefs

about policy payoffs. Voters then observe a (possibly noisy) signal about the valence of

untried candidate B — voters already know the valence of incumbent A. The election takes

place; the elected candidate implements a policy; payoffs are realized; and the game ends.

Voters’ Preferences: Voters care about the policy choice and the valence (i.e., competence)

of the elected official. If elected, the candidate has to choose one policy x from the compact,

convex set X ⊂ Rd, with a finite d ≥ 1. For example, X can represent the set of feasible

governmental budget allocations across d projects, the government’s policy on a left-right

Downsian model, or a proportional income tax rate. Each citizen’s payoff from policy x

depends on an unknown state θ ∈ Θ ≡ {θ1, . . . , θN}, with a finite N ≥ 2. To simplify

presentation, let Θ ⊂ R and θ1 < . . . < θN . Players share a common prior belief p in the

interior of the simplex ∆(Θ). Citizens within each group are homogeneous, but groups differ

in their policy preferences. Formally, each citizen in group i ∈ {A,B} has preferences over

policies characterized by the von Neumann-Morgenstern utility function ui(x, θ), where ui is

a differentiable function of x. Each candidate is also endowed with a valence v ∈ R, which

we discuss momentarily. For a voter in group i, the total payoff from electing a politician

with valence v who implements policy x when state θ is realized is

U i(v, x, θ) = v + ui(x, θ).

Political Parties: We model each party as a primarily office-motivated institution (or,

similarly, party leaders and bureaucrats as purely office-motivated individuals), with ties to

the policy interests of a particular group of voters. Formally, each party receives payoff one

if its candidate is elected and zero otherwise. If elected, party A implements the policy that

maximizes the expected payoff of voters in group A, while party B implements the best policy

for voters in group B. Our assumption is equivalent to assuming that parties are both office-

and policy-motivated, but myopic (or having lexicographic preferences): they first maximize

the probability of winning the election, and, once elected, they implement their preferred

policy. Consequently, the preferences of each party and those of the voters it represents are
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only partially aligned. Party A always strictly prefers to elect its own candidate, indepen-

dently of policies and valences. However, given parties’ policies, voters in group A prefer to

elect the candidate from party B if she is sufficiently more competent than the candidate

from party A. See Section 7 for further discussion on policy-motivated parties.

Strategic Policy Experimentation: The IP controls the government and has the monopoly

over a policy experiment (a public signal that is correlated with the state). By strategically

designing this experiment, the party can influence voters’ beliefs and electoral outcomes.

Formally, prior to the election, the IP chooses a policy experiment π, consisting of a finite

realization space S and a family of distributions over S, {π(·|θ)}θ∈Θ, with π(·|θ) ∈ ∆(S).

Experiment π is “commonly understood”: π is observed by all players who agree on the

likelihood functions π(·|θ), θ ∈ Θ. Players process information according to Bayes rule, so

that q(s|π, p) is voters’ updated posterior belief after observing realization s ∈ S of π. To

simplify notation, we use q or q(s) as shorthand for q(s|π, p).

Our learning technology follows important assumptions from KG: the IP has the monopoly

over the experiment; it has no private information; it can choose any experiment that is cor-

related with the state; and experiments are costless to the IP. As in our model, Callander

(2011) and Callander and Hummel (2014) consider a learning technology in which the in-

cumbent party has the monopoly over the policy experiment and has no private information.

However, they consider a different learning technology — one related to a Brownian process.

In order to learn, the incumbent must implement a new policy, and all players (including the

IP) incur the resulting policy payoff of this experiment. Thus, we interpret these as models

of “full-scale” policy experimentation. In our benchmark model, we view the experiment as a

small-scale policy trial, that does not directly affect the payoff of the IP. The IP controls the

informativeness of the trial by strategically designing its protocol (designing treatment and

control groups, evaluation tools, etc.). In Section 5, we consider alternative interpretations

of this public signal.7

Candidate’s Policy: We refer to the candidates from parties A and B as candidates A and

B, respectively. Parties and their candidates have the same preferences: they want to max-

7In Section B.7 of online Appendix B, we consider costs that increase in the experiment’s informational

content.
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imize the probability of winning the election, and, if elected, they will implement their pre-

ferred policy. There are no exogenous commitment devices available to politicians. However,

since the candidates’ party affiliations and the experiment’s results are common knowledge,

in equilibrium, voters can correctly anticipate the policy that each candidate would choose.

If elected, candidate i ∈ {A,B} will implement policy xi∗(q) ≡ arg maxx∈X
∑

θ∈Θ qθu
i(x, θ).

We refer to xi∗(q) as the “preferred policy” of candidate i.

The only distinction that we make is that candidates are endowed with valence, which

we define next, while party bureaucrats control the flow of information in the government.

We could also assume that the incumbent politician directly chooses the policy experiment.

Candidate’s Valence: Besides the policy dimension, candidates also differ in a valence

dimension. All players already know the valence vA of incumbent A since they observe her

performance in office. After the IP chooses its experiment, but before the election, voters

observe valence vB of untried candidate B. Our timing assumption is rooted in the fact that

it takes time to set up and implement policy experiments, while the identity (and, hence,

the actual valence) of the challenger is only defined much closer to the election. Hence, at

the time that the IP chooses an experiment, there is significant uncertainty over the valence

of the next challenger.8

We assume that challenger’s valence vB is a random variable distributed according to the

cumulative distribution function F , with probability density function f . In this paper, we

focus on two cases. We first assume that:

(A1) F is twice differentiable and has full support on the real numbers;9 and f is log-concave.

Condition (A1) holds, for example, for the normal, logistic, and extreme value distribu-

tions. See Bagnoli and Bergstrom (2005) for a discussion of the properties of log-concave

density functions. In Section 4.1, we consider the case in which f is log-convex and show that

the main equilibrium features are reversed. We show how this sharp contrast between the two

8Valence is a preference shock that smooths out the probability of victory, as is standard in other proba-

bilistic voting models. We can reinterpret valence as other types of preference shock — see Section 5.3.
9The full-support assumption simplifies presentation, as it avoids corner solutions in which expected vic-

tory probabilities are either zero or one. When this support is bounded, but sufficiently large, our qualitative

results continue to hold if we restrict attention to preference parameters such that solutions are interior.
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cases helps us better understand the IP’s equilibrium incentives to design the experiment.

The model is easily extended to the case in which the incumbent politician is not running

for re-election. The incumbent party A then runs with an untried candidate, and voters

simultaneously observe valences vA and vB of the untried candidates. Although we say that

voters observe candidates’ “true” valences, the model can easily be reinterpreted as voters

observing a noisy, exogenous signal about the valence of each candidate (e.g., information

from media coverage during the campaign). In this case, variables vA and vB are interpreted

as the new expected valence of each candidate, after voters observe the implicit realization

of the signals about valence.10

Election: At the time of the election, voters can predict candidates’ policies xA∗(q) and

xB∗(q). Voters also observe the realized valences vA and vB. Thus, for a citizen in group i,

the total expected payoff of electing candidate j is

U ij(q, vA, vB) = vj +
∑
θ∈Θ

qθu
i(xj∗(q), θ). (1)

To rule out uninteresting equilibria, we eliminate weakly dominated voting strategies. This

implies that each voter votes for the candidate who provides him with the highest expected

utility11. The candidate who wins the majority of the votes is elected and then implements

her preferred policy. Voters in group A are decisive since the group encompasses a majority of

voters. That is, a candidate wins if and only if she receives the support of the majority group.

2.1 Political Disagreement

The previous discussion implies that a voter from group i votes for the candidate from group

A if and only if12

U iA(q, vA, vB) ≥ U iB(q, vA, vB)

⇐⇒
∑
θ∈Θ

qθ
[
ui(xA∗(q), θ)− ui(xB∗(q), θ)

]
≥ −(vA − vB). (2)

10Defining the new random variable ξ ≡ vB − vA, our assumption (A1) refers to the distribution of ξ. In

this case, our results on changes in vA would then refer to location shifts of the distribution of ξ.
11Voters have no private information about the state, so there is no information aggregation problem.

Hence, the strategic voting considerations related to the probability of being pivotal are not relevant.
12We abstract from abstentions. One could extend our model so that a citizen is less likely to abstain if

his expected payoff difference between the candidates is higher, similar to Matsusaka (1995).
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The RHS of (2) captures the realized valence differential. The LHS of (2) captures the

degree of political disagreement between the two groups. That is, from the point of view of a

voter in group i, it captures the expected policy-payoff difference from electing the different

candidates. Define the political disagreement from the point of view of group A voters as

D(q) ≡
∑
θ∈Θ

qθ
[
uA(xA∗(q), θ)− uA(xB∗(q), θ)

]
. (3)

Majority group A is decisive: after an experiment outcome that induces belief q, candidate A

wins the election if and only if she receives the support of voters in group A, D(q) ≥ −vA+vB.

If the realized vB is sufficiently high, then even voters from group A vote for candidate B,

and vice-versa.13 Since vB ∼ F , given vA, the majority candidate wins with probability

W (q; vA) ≡ F (D(q) + vA). (4)

Therefore, candidate A wins the election with a probability that increases in the degree of

political disagreement — candidate A has a “policy advantage” because a majority of voters

believe that she has the “correct” preference, and, hence, she will implement the “correct”

policy.

In order to guarantee the existence of an optimal experiment and simplify notation,

throughout the paper, we maintain the following assumption:

(A2) Political disagreement D is upper semicontinuous in ∆(Θ) and differentiable at the

prior belief.

Condition (A2) holds for a large class of models, including the applications that we study

throughout this paper. Differentiability of F and (A2) imply thatW is upper semicontinuous

in ∆(Θ) and differentiable at the prior belief.14

13Voters for which the final vote goes in consonance with valence preferences, rather than with policy

preferences, are dubbed “Stokes voters” by Groseclose (2001).
14Assumption (A2) implicitly establishes the following. Given q, if there are multiple optimal policies

xi∗(q), then we select an optimal policy such that D is upper semicontinuous. Moreover, it implicitly implies

that we restrict attention to language-invariant equilibria — see Alonso and Câmara (2016a) for a discussion

of language-invariant equilibria.
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2.2 Notational Conventions

For vectors q, w ∈ RJ , we denote by 〈q, w〉 the standard inner product in RJ — i.e., 〈q, w〉 =∑J
j=1 qjwj — and we denote by qw the component-wise product of vectors q and w — i.e.,

(qw)j = qjwj.

For an arbitrary real-valued function g, define g̃ as the concave closure of g,

g̃(q) = sup {y|(q, y) ∈ co(g)} ,

where co(g) is the convex hull of the graph of g.

We use π � π′ to denote that experiment π is Blackwell more informative than experiment

π′. Finally, card(S) denotes the cardinality of the set S.

2.3 Party’s Expected Payoff

The incumbent party’s problem is to choose an experiment π that maximizes the expected

probability of victory Eπ[W (q; vA)]. Upper semicontinuity of W ensures the existence of an

optimal experiment, and choosing an optimal experiment is equivalent to choosing a proba-

bility distribution σ over q that maximizes Eπ[W (q; vA)], subject to the constraint Eσ[q] = p

(see KG). That is, the supremum of the expected victory probability is

W ∗ = sup
σ
Eσ[W (q; vA)], s.t. Eσ[q] = p.

The following remarks follow immediately from KG:

(R1) An optimal experiment exists.

(R2) There exists an optimal experiment with card(S) ≤ N .15

(R3) The IP’s maximum expected payoff is W ∗ = W̃ (p; vA).

(R4) The value of persuasion is W ∗ −W (p; vA) = W̃ (p; vA)−W (p; vA).

15Note that, in the original setup of KG, there exists an optimal straightforward signal that directly

recommends an action to the receiver. In our setup, the pivotal majority voter has a binary action space:

vote for candidate A or B. However, when N > 2 in our model, an optimal experiment might require more

than two realizations. This is so because, from the point of view of the IP, before the valence shock is

realized, the voting behavior is probabilistic rather than binary. That is, voting behavior can be interpreted

ex ante as a continuous “action” (probability of electing A) in the interval [0, 1] rather than a binary choice.
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2.4 Application: Spatial Policy Model

Although we prove our main results using the general setup described above, for concreteness

throughout the paper, we illustrate our results using the following application.

Consider a spatial policy model in which the state θ ∈ Θ ⊂ R captures voters’ uncertainty

over the optimal policy in a left-right dimension. Let X = [−x,+x], with x sufficiently large.

Voters in group A have a quadratic policy payoff uA(x, θ) = −(x − θ)2. From the point of

view of majority voter A, with belief q, the optimal policy is linear on the expected value

of the state, xA∗(q) = E[θ|q]. Let xB∗(q) be the optimal policy from the point of view of

minority voter B. Political disagreement (3) is

D(q) =
∑
θ∈Θ

qθ

[
uA(x∗A(q), θ)− uA(x∗B(q), θ)

]
=

∑
θ∈Θ

qθ

[
−
(
E[θ|q]− θ

)2
+
(
x∗B(q)− θ

)2
]

=
(
E[θ|q]− x∗B(q)

)2
. (5)

From (5), political disagreement translates naturally into the degree of disagreement over

optimal policies, D(q) = (x∗A(q)− x∗B(q))2.

The shape of the disagreement function D depends fundamentally of the nature of prefer-

ence misalignment between the two groups. We next present three examples, using different

payoff functions for group B. In Example 1, disagreement endogenously becomes a strictly

convex function of beliefs; therefore, any experiment π increases the expected political dis-

agreement, Eπ[D(q)] ≥ D(p). The opposite is true in Example 2: since disagreement is

strictly concave, information, on average, decreases disagreement. In Example 3, disagree-

ment is neither concave nor convex. In these examples, we consider a binary state space

Θ = {0, 1}, and let q2 be the probability that the state is θ = +1. Formally,

Example 1 — Suppose that uB(x, θ) = −(x− 1
2
θ)2. Then, x∗B(q) = 1

2
E[θ|q], and disagree-

ment (5) becomes D(q) = 1
4
E[θ|q]2.

Example 2 — Suppose that uB(x, θ) = −(x
2

2
− θ)2. Then, x∗B(q) =

√
2E[θ|q], and

disagreement (5) becomes D(q) =
(
E[θ|q]−

√
2E[θ|q]

)2

.

Example 3 — Suppose that uB(x, θ) = −(x − θ)3. Then, x∗B(q) =
q2−
√
q2(1−q2)

2q2−1
, and
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disagreement (5) becomes D(q) =

(
q2 −

q2−
√
q2(1−q2)

2q2−1

)2

.

Figure 1 illustrates these examples. The three figures on the top contrast the optimal

policy xA∗(q) = q2 (dashed lines) and the different optimal policies xB∗(q) (solid lines). The

three figures on the bottom depict the corresponding political disagreement.

0 1
q2

x*

(a) Example 1: Optimal Policies

.50 1
q2

x*

(b) Example 2: Optimal Policies

0 1
q2

x*

(c) Example 3: Optimal Policies

0 1
q2

D

(d) Example 1: Disagreement

.50 1
q2

D

(e) Example 2: Disagreement

0 1
q2

D

(f) Example 3: Disagreement

Figure 1: Top: Optimal policies xA∗ (solid line) and xB∗ (dashed line); Bottom: Political

disagreement D, with Θ = {0, 1}, q2 = Pr(θ = 1).

3 Valence and Information

In this section, we show that the incumbent party’s gain from any given experiment π has

a single-crossing property with respect to the incumbent’s valence. This property leads to

a monotone behavior of the informativeness of optimal experiments: as we increase the in-

cumbent’s competence vA, her party does not benefit from providing a more-informative

experiment.
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3.1 Single-Crossing

In our model, the incumbent party seeks to maximize its candidate’s chances of re-election.

Following (4), the likelihood that candidate A wins the election increases in the degree of

political disagreement — a larger D implies that, in the eyes of group A voters, the minority

candidate B is expected to implement a much “worse policy” than A. As the outcome of the

experiment can change the policy championed by each candidate, as well as voters’ expected

payoff from these policies, it follows that policy experimentation can change the degree of

political disagreement. As a result, the IP’s choice of an experiment is driven by its desire

to uncover information that increases political disagreement.

As the underlying state θ is independent of both candidates’ valences, the IP’s choice of

experiment cannot affect the distribution of the challenger’s valence. Nevertheless, if the IP

has access to an experiment that, on average, increases disagreement, as in the example in

Figure 1(d), then it is not clear why the IP would not gain from this experiment indepen-

dently of vA. The next lemma shows that, for any experiment π, this gain actually satisfies a

single-crossing condition: If the IP prefers not to experiment rather than provide experiment

π when its candidate’s valence is vA, then the IP continues to find no experimentation better

than experiment π for any higher valence vA′ > vA.

Lemma 1 Suppose that (A1) and (A2) hold. Consider any experiment π and incumbent’s

valence vA. If, for the IP, no experimentation is better than experiment π when the incumbent

has valence vA, then no experimentation continues to be better for all higher valences. That

is, if Eπ[W (q; vA)] ≤ W (p; vA), then Eπ[W (q; vA′)] ≤ W (p; vA′) for all vA′ > vA.

To understand Lemma 1, note that the effect of changing disagreement by an amount ∆

is that it changes the probability of victory by F (z + ∆) − F (z), with z = D(p) + vA. If

∆ > 0, then the benefit in increasing victory probability, relative to the likelihood that the

challenger’s valence induces z, is given by

F (z + ∆)− F (z)

f(z)
=

∫ ∆

0

f(z + s)

f(z)
ds. (6)

If ∆ < 0, then the cost of decreasing victory probability relative to f(x) is

F (z)− F (z + ∆)

f(z)
=

∫ 0

∆

f(z + s)

f(z)
ds. (7)
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Lemma 1 then follows from the fact that, for log-concave probability density functions, the

ratio f(z+ ∆)/f(z) decreases in z if ∆ > 0, but increases in z if ∆ < 0. That is, the relative

benefit (6) of increasing victory probability decreases in z — hence, in the incumbent’s

competence vA — while the relative cost (7) increases in z. Integrating over all possible

realizations of ∆ generated by experiment π, we then have that the relative gain from an

experiment π weakly decreases in the incumbent’s competence. In other words, if the IP

does not gain from experiment π when the incumbent’s valence is vA, this is still true for

an incumbent candidate of higher valence. Notice that this property is satisfied irrespective

of whether, in the absence of the IP’s experiment, the incumbent is expected to win the

election (F (z) > 1/2) or the minority candidate is the frontrunner (F (z) < 1/2).

The next proposition builds upon Lemma 1 to show that, if we increase the competence

of the majority candidate, then the IP does not benefit from providing a more-informative

experiment.

Proposition 1 Suppose that (A1) and (A2) hold. Suppose, also, that π∗ is an optimal

experiment given incumbent’s valence vA. Then, for any higher valence, experiment π∗ is

weakly better than any Blackwell more informative experiment. That is, for every vA′ > vA

and every π′ � π∗, we have

Eπ∗ [W (q; vA′)] ≥ Eπ′ [W (q; vA′)]. (8)

In the proof of the proposition, we first rewrite the Blackwell more informative experiment

π′ as a payoff equivalent grand experiment. In this grand experiment, voters first observe re-

alization s of π∗, and then they observe an additional experiment πs conditional on s. When

the incumbent’s valence is vA, optimality of π∗ implies that the IP does not benefit from

disclosing any additional information πs after each realization s of π∗. We then apply Lemma

1 to each posterior belief q∗ in the support of π∗: if the IP does not benefit from disclosing in-

formation in addition to π∗ when the incumbent’s valence is vA, then the IP does not benefit

from disclosing any information in addition to π∗ when the incumbent’s valence is higher.16

16Although Lemma 1 holds for any experiment, the result in Proposition 1 is deeply rooted in the endoge-

nous properties of optimal experiments. In general, two Blackwell-ordered experiments do not enjoy this

single-crossing property. If π′ � π for some non-optimal pair of experiments, then it might be the case that
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Next, we apply Proposition 1 to characterize the relationship between the IP’s optimal

level of transparency and the incumbent’s valence.

Corollary 1 Suppose that (A1) and (A2) hold. There are cutoffs vA1 and vA2 in the ex-

tended real line, with vA1 ≤ vA2 , such that:

(i) a fully informative experiment is optimal if vA < vA1 ;

(ii) a partially informative experiment is optimal if vA1 < vA < vA2 ; and

(iii) an uninformative experiment is optimal if vA2 < vA.

Corollary 1 defines partitions on the expected competence of the majority candidate.

When the incumbent party’s candidate is sufficiently incompetent, it prefers to be com-

pletely transparent about policies, and engages in fully informative experimentation; the

IP is partially transparent for intermediate levels of competence and is completely opaque

(forgoes experimentation) when its candidate is sufficiently competent.

Corollary 1 does not guarantee that cutoffs vA1 and vA2 are finite.17 Proposition B.1 in

online Appendix B provides sufficient conditions so that vA1 and vA2 are finite.

3.2 Examples

We next provide some examples to illustrate the effects of the incumbent’s valence vA on the

IP’s payoff function W and on the optimal experiment.

Recall that W (q; vA) = F (D(q) + vA). Figure 2 illustrates how a higher vA increases W

for each q and changes the overall curvature of W . It assumes that F follows a Normal Dis-

tribution and uses the political disagreement D from the spatial policy model in Figure 1(d).

Recall that we can derive the optimal experiment from the concave closure of W (see KG

for details). In particular, whether W is concave or convex is important to define whether

or not the IP benefits from implementing an informative experiment. Although in Figure

1(d) disagreement D is strictly convex, the resulting payoff W might be locally concave or

the IP prefers the less informative π when valence is low and prefers the more informative π′ when valence

is high: Eπ[W (q; vA)] > Eπ′ [W (q; vA)] and Eπ[W (q; vA′)] < Eπ′ [W (q; vA′)] for some vA′ > vA. See Section

B.2 in online Appendix B for details.
17E.g., in Example 2 from Section 2.4, if the prior belief already maximizes disagreement, p2=0.5, then no

information disclosure is optimal for all values of vA, so that vA1 = vA2 = −∞.
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Figure 2: Effects of vA on victory probability W , using disagreement D from Figure 1(d).

locally convex, depending on belief q2 and on valence vA. Log-concavity of f implies that

F (D(q) + vA) is locally concave for sufficiently high values of D(q) + vA and locally convex

for sufficiently low values. The red solid lines in Figure 3 depict the concave closure of W .

We next use Figure 3 to derive an optimal experiment.

First, suppose that vA is sufficiently low, as in Figure 3(a). The IP’s payoff W is every-

where strictly convex; hence, any optimal experiment must be fully informative, indepen-

dently of the prior belief.
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q
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(b) Intermediate Values of vA

q '
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˜

(c) High Values of vA

Figure 3: Concave closure of W from Figure 2.

Now suppose that vA is intermediate, as in Figure 3(b). The concave closure W̃ is given

by a straight line in the set of beliefs q2 ≤ q̄, and by W itself for q2 ≥ q̄. Consequently, no

experimentation is optimal for all priors p2 ≥ q̄. When p2 ≥ q̄, although any informative ex-

periment increases average disagreement (D is strictly convex), any informative experiment

is strictly worse for the IP than no information disclosure. Signal realizations that increase

political disagreement increase victory probability by only a small amount, while signal re-

alizations that decrease political disagreement decrease victory probability by a relatively

large amount. Now suppose that p2 ≤ q̄. Since in this set W̃ (q; vA) > W (q; vA), policy
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experimentation is valuable. Every optimal experiment is partially informative and induces

exactly two posterior beliefs, q2 = 0 and q2 = q̄. Finally, for each prior belief p2 ∈ (0, 1),

optimal experiments are less informative in Figure 3(b) than in Figure 3(a).

As we further increase vA, the cutoff q̄ decreases to q̄′ — see Figure 3(c). Therefore, no

experimentation is optimal for a larger set of prior beliefs. Moreover, for the prior beliefs in

the set p2 ≤ q̄′, every optimal experiment is supported only on the posterior beliefs q2 = 0 and

q2 = q̄′. Consequently, the partially informative experiment in Figure 3(c) is less informative

than the partially informative experiment in Figure 3(b).

What if political disagreement is everywhere strictly concave, as in Figure 4? Figures 5

and 6 use a normally distributed vB to illustrate the corresponding victory probability W ,

which might be locally concave or convex, depending on the incumbent’s valence. See online

Appendix B (Section B.4.1) for a detailed discussion of this example.

We conclude by highlighting that the IP might find it optimal to experiment even when

its candidate is the frontrunner and might find it optimal not to experiment even when its

candidate is the underdog. For example, in Figure 3(b), if the prior belief is p2 = 0.8, then,

without experimentation, the majority candidate wins with a very high probability, above

90%. Nevertheless, it is optimal for the incumbent party to provide a partially informative

experiment, because it increases its candidate’s expected victory probability even further. In

Figure 6(a), if the prior belief is p2 = 0.45, then, without information disclosure, the majority

candidate wins with a very low probability, around 26%. Nevertheless, any informative

experiment decreases the candidate’s expected victory probability even further .

qmax0 1
q2

D

Figure 4: Strictly Concave Political Disagreement.
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Figure 5: Effects of vA on victory probability W , using disagreement D from Figure 4.
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Figure 6: Concave closure of W from Figure 5.

3.3 Information and Voter Welfare

We next apply our results to highlight the possible negative effects of the incumbents’ policy

experimentation on voters’ welfare.

In many voting models, interested parties strategically provide information to voters. In

some cases, this information can adversely affect voters’ equilibrium welfare — voters’ payoff

would be higher if they made uninformed choices. For instance, in Alonso and Câmara

(2016b), the information provided by the IP always weakly decreases the expected payoff

of a majority of voters under a simple majority voting rule. This is so because the optimal

experiment has signal realizations targeting different winning coalitions of voters.

In our model, the IP cannot target different winning coalitions because voters in group A

are representative. Nevertheless, the next proposition shows that the IP’s optimal experiment

may hurt all voters in majority group A.

Proposition 2 Suppose that (A1) holds. Consider the spatial policy model from Section

2.4, with payoffs ui(x, θ) = −(x − βiθ)2. If either βAβB < 0 or |βB| > 2|βA|, then there

exists a finite cutoff v̄A such that, for any vA < v̄A, the IP’s optimal experiment strictly
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decreases the expected payoff of all voters in majority group A.

The result follows from the different interests of the IP and voters A, and from the fact

that the IP benefits from promoting disagreement. The IP’s goal is to elect candidate A, not

to ensure that the elected candidate implements a good policy for voters A. Candidate A is

more likely to win when information leads candidate B to adopt a new policy that voters A

consider worse. This worse policy benefits the IP, but it hurts voters A when candidate B

is elected.

Under the conditions of the proposition, the IP implements a fully informative experi-

ment, and the information (on average) leads candidate B to implement a worse policy for

voters A. This is the case here, as preference misalignment is sufficiently severe: If βAβB < 0

(candidates want policies with opposing signals) or |βB| > 2|βA| ≥ 0 (from A’s point of view,

candidate B “overreacts” to information), then voter A strictly prefers an elected candidate

B not to have access to any informative experiment. When vA is sufficiently low, candidate

A is unlikely to win (the benefit of providing information to candidate A is small), while

candidate B is likely to win (the loss of providing information to candidate B is large).

Hence, voters in group A are strictly worse off because of the IP’s experiment. They would

prefer no experiment over the IP’s equilibrium experiment.

4 Disagreement as a Function of the Expected State

To derive a sharper characterization of optimal experiments, in this section, we focus on

models in which political disagreement is a strictly increasing function of the expected value

of some unknown state. Formally, we assume:

(A2′) Political disagreement takes the form D(q) = H(E[θ|q]), where H is twice differen-

tiable and strictly increasing. Moreover, the ratio H′′

(H′)2 is non-increasing.

Assumption (A2′) holds in many important cases. For example, it holds if disagreement is

a power function of expectation D(q) = γE[θ|q]ρ, with γ > 0, θ1 ≥ 0 and ρ ≥ 1. It also holds

in the spatial policy model of Section 2.4, when voters have quadratic payoffs.18 Later in this

section, we study another relevant application in which (A2′) holds (choice of an income tax).

18If uA(x, θ) = −(x − βAθ)2 and uB(x, θ) = −(x − βBθ)2, where βA and βB are known preference
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Given (A2′), political disagreement increases if voters learn that the realized state is

“high,”which benefits the incumbent, and disagreement decreases if they learn that the

state is “low.”One could then conjecture that the incumbent party would prefer to hide

information about low-disagreement states, and to fully disclose information about high

states. However, Proposition 3 shows that the opposite is true. Borrowing from the statistics

literature, we define an upper-censoring experiment (or right-censoring experiment) as one

that fully reveals low-disagreement states and pools high-disagreement states. Formally:

Definition: Experiment π is upper-censoring at cutoff state θk if it has a realization

space S = {s1, . . . , sk, spooling} and the following holds. For each n < k, state θn induces

signal realization sn with probability one. For each n > k, state θn induces signal realization

spooling with probability one. Cutoff state θk induces realization spooling with some probability

αk ∈ [0, 1] and induces realization sk with probability 1− αk.

Proposition 3 Suppose that (A1) and (A2′) hold. Then, there exists an optimal exper-

iment π∗ that is upper-censoring at some cutoff state θk. Moreover, cutoff state θk weakly

decreases with the incumbent’s valence vA.

In the proof of Proposition 3, we show that for each optimal experiment π∗, there ex-

ists a payoff-equivalent upper-censoring experiment. The intuition behind the result is as

follows. Under (A1) and (A2′), given vA, the IP’s payoff W (q; vA) = F (H(E[θ|q]) + vA)

is concave if E[θ|q] is high and strictly convex if E[θ|q] is low — see the example in Figure

7(a). Strict convexity implies that the IP always strictly benefits from providing additional

information if the initial experiment yields a non-degenerate belief corresponding to a low

expected state. Therefore, outcomes under optimal experiments that indicate the state to be

low must be fully revealing. Conversely, concavity of the incumbent’s payoffs implies that the

IP cannot be made worse off by an experiment that pools all outcomes corresponding to high

expected states into a single realization. That is, the incumbent then (weakly) gains from

bundling all states in the concave (high-disagreement) region: they all induce signal spooling

with probability one, resulting in a single posterior belief q+ and a high expectation E[θ|q+].

parameters and θ1 ≥ 0, then disagreement is proportional to the square of the expectation of the state,

D(q) = (βA − βB)2E[θ|q]2.
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Figure 7: Re-election Probability as a Function of the Expected State.

While the IP does not gain from designing an experiment that pools together only states

in the convex region, it may gain from “hiding” some low-disagreement states, such that these

states induce signal spooling with positive probability. Of course, pooling low-disagreement

states would make spooling more likely but would reduce expected disagreement if spooling

occurs. Still, the incumbent must decide which disagreement states should be pulled in

spooling. Suppose that θl and θh are in the convex region, with θl < θh. Should θl or θh be

the incumbent’s first choice to be mixed with the high-disagreement signal spooling? The IP

now faces an important tradeoff. One the one hand, pooling θh leads to a lower reduction in

posterior disagreement resulting from spooling. On the other hand, disclosing θl to voters is

worse than disclosing θh; thus, “hiding” θl by pooling it with spooling is more important than

hiding θh. The proof of Proposition 3 shows that, given (A1) and (A2′), the first effect

always dominates: the IP’s optimal decision must be a cutoff on θ, independent of prior

beliefs, the incumbent’s valence, and the other parameters of the model — these values are

relevant only for defining the actual cutoff state.

Finally, the cutoff state defined by Proposition 3 monotonically decreases with the in-

cumbent’s valence vA. This implies that the set of optimal upper-censoring experiments

that we construct is Blackwell-ordered: experiments become less Blackwell-informative as

the majority candidate become more competent.

It is important to note that the logic behind the proof of Proposition 3 applies to a broad

class of models. Consider a Bayesian persuasion game between a sender and a receiver, as

in KG. Suppose that the sender’s payoff can be written as a twice differentiable, strictly

increasing function of the expected state. If the derivative of the sender’s payoff function
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is single-peaked, then there exists an optimal experiment that is upper-censoring. In our

model, conditions (A1) and (A2′) simply imply that this derivative is log-concave, hence

single-peaked. See Proposition A.1 in Appendix A for details.

4.1 Log-convex Valence Distribution

Our previous results depend fundamentally on the assumption that the p.d.f. of the chal-

lenger’s valence distribution is log-concave. The results are reversed if we change (A1) so

that f is log-convex.19 In the log-convex case, the single-crossing property goes in the oppo-

site direction: lower values of the incumbent’s competence vA induce less experimentation,

while higher competence induces more experimentation.

Moreover, suppose that political disagreement is a strictly increasing function of the ex-

pected state, as in Section 4. With a log-convex f , if we change assumption (A2′) so that

the ratio H′′

(H′)2 is non-decreasing,20 then the optimal experiment is lower-censoring at some

cutoff state θk. Furthermore, this cutoff state decreases with the incumbent’s valence vA;

hence, the experiment becomes more informative.

The reason for the sharp change in results is rooted in the change in the curvature of

the incumbent’s victory probability as a function of political disagreement and valence vA.

Loosely speaking, in the log-concave case, it is as if the IP features increasing absolute

risk aversion (IARA). When disagreement and the incumbent’s valence are low, the IP

benefits from gambling on disagreement. That is, the IP benefits from implementing a risky

experiment that might increase or decrease disagreement. When disagreement and valence

are high, the IP prefers to avoid these gambles. In the log-convex case, it is as if the IP

features DARA, and the reverse results hold.

Figure 7 illustrates our point with an example in which disagreement equals the expected

state. In Figure 7(a), with a single-peaked p.d.f., the re-election probability changes from

convex to concave. Hence, the incumbent wants to disclose information for low states and

19With a log-convex p.d.f., we can no longer assume full support on the real numbers. To simplify

presentation, we want to avoid corner solutions — that is, cases such that the victory probability F (D(q)+vA)

equals one or zero. To this end, we assume that the support of the challenger’s valence vB is large, and we

restrict attention to valence vA and disagreement D such that F (D(q) + vA) ∈ (0, 1) for all q ∈ ∆(Θ).
20For example, if disagreement is a power function D(q) = γE[θ|q]ρ, with γ > 0, θ1 ≥ 0 and ρ ∈ (0, 1].
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hide information for high states. In Figure 7(b), with a single-dipped p.d.f., the re-election

probability changes from concave to convex; thus, we find the opposite incentives.

We next present an application of our model, in which political disagreement endoge-

nously becomes a function of the expected state, and Proposition 3 applies.

4.2 Application: Optimal Tax

Consider the following model, in which the elected politician must choose a proportional

income tax x ∈ [0, 1]. Voters care about the consumption of a private good and a public good.

Each voter in group i ∈ {A,B} is endowed with income βi > 0, where βA 6= βB. Given the

implemented tax rate x, voter i consumes (1−x)βi units of the private good. The government

uses all tax revenues to produce the public good. The production technology is such that the

government produces xψ units of the public good, where ψ ∈ (0, 1) is a known technology

parameter.21 Voters’ policy payoff is ui(x, θ) = (1 − x)βi + θxψ, where state θ represents

the unknown marginal value of the public good, with 0 ≤ θ1 < . . . < θN < max{βA, βB} 1
ψ

.

Given belief q, the optimal tax rate of voter i is xi∗(q) =
(
ψE[θ|q]
βi

) 1
1−ψ

. Both groups want

higher taxes if the marginal value of the public good is higher. However, voters agree on the

optimal tax if and only if the expected marginal value of the public good is zero. Political

disagreement increases with E[θ|q]:

D(q) = (1− xA∗(q))βA + E[θ|q](xA∗(q))ψ − (1− xB∗(q))βA − E[θ|q](xB∗(q))ψ

= γE[θ|q]ρ,

where γ ≡ ψ
ψ

1−ψ

{
(1− ψ)(βA)

−ψ
1−ψ + βAψ(βB)

−1
1−ψ − (βB)

−ψ
1−ψ

}
> 0 and ρ ≡ 1

1−ψ > 1.

Independently of whether the majority group is richer or poorer than the minority group

(βA is higher or lower than βB), disagreement is a power function of the expected state

and satisfies the conditions of Proposition 3. To maximize the majority candidate’s victory

probability, the IP’s optimal experiment either partially reveals that the public good is

sufficiently important, or fully reveals that the public good has a low marginal value.

21Without loss of generality, let mAβA +mBβB = 1, where mi is the number of voters in group i. Total

tax revenue is then x.
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5 Alternative Interpretations

In this section, we emphasize that our model can take on many other interpretations, and,

hence, our results apply to a wide set of economic models. In particular, we can change

the interpretation and structure of the policy space, the set of voters, the public signal, and

the random shock on voters’ preferences. To illustrate the flexibility of our model, we next

present three alternative interpretations. In these applications, we study multiple policy

dimensions; we replace the assumption of a majority and a minority group by one decisive

median voter; we interpret the policy experiment as disclosure of information about a major

policy reform; and we consider the case in which the IP strategically controls information

about its competence.

5.1 The Relative Importance of Policy Dimensions

There is a single policy issue in the spatial policy model of Section 2.4 and in the optimal

tax model of Section 4.2. Moreover, information about θ induces politicians to re-evaluate

their beliefs and choose a new policy. In other important cases, the policy issue is multidi-

mensional, and voters and politicians are convinced about what the optimal policy is, but

they are uncertain about the relative importance of different policy dimensions.

To study these cases, consider the following alternative model. There are d ≥ 2 policy

dimensions (e.g., public education, public health, national defense, etc.). A policy is a d-

dimensional vector x = (x1, . . . , xd). The preferences of voter i ∈ {A,B} are captured by

the preference vector βi = (βi1, . . . , β
i
d) and by the loss function l, with l(0) = 0 and l′ > 0.

Voters’ policy payoff is

ui(x, θ) =
d∑
j=1

−λj(θ)l(|xj − βij|),

where each function λj(θ) captures the relative importance of policy dimension j given state

θ, with
∑d

j=1 λj(θ) = 1 and λj(θ) > 0. Note that voters’ preferred policies are independent

of beliefs about θ, xi∗j (q) = βij. Although voters know their preferred policies for education

and national defense, they are uncertain about which policy issue will be more important

during the next term.

The degree of political disagreement, from the point of view of voters in group A, is
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simply the expected (weighted) loss from the policy of candidate B,

D(q) = E

[
d∑
j=1

−λj(θ)l(|βAj − βAj |)]−
d∑
j=1

−λj(θ)l(|βBj − βAj |)

]

= E

[
d∑
j=1

λj(θ)l(|βBj − βAj |)

]
.

Given the valence of the incumbent and the valence distribution of the challenger, victory

probability is F (D(q) + vA), as before. To apply Proposition 3, rewrite the unknown state

as follows. For each θ ∈ Θ, compute θ′ ≡
∑d

j=1 λj(θ)l(|βBj − βAj |). Define a new state space

Θ′ as the collection of θ′. We can then rewrite disagreement simply as the expected value of

θ′, so that victory probability becomes F (E[θ′] + vA) and we can apply Proposition 3.

In summary, voters have a fundamental disagreement over the optimal policy but are un-

certain about how important each policy dimension will be. For instance, suppose that there

are only two issues, and voters disagree relatively more on national defense and less on educa-

tion (that is, |βBj −βAj | is larger for the national defense dimension). The incumbent’s optimal

experiment pools together states that attach more weight to national defense and fully reveals

states that attach more weight to education. That is, the optimal experiment either reveals

that the controversial national defense issue will be “sufficiently important” in the upcoming

years, or it fully reveals that the more agreed-upon education issue will be more important.

We can extend this model to study wedge issues.22 For example, suppose that there are

three groups of voters, i ∈ {A,B,C}. No single group forms a majority, but any pair of

groups forms a majority. The incumbent party A is committed to the preferred policy of

group A, while party B is committed to the preferred policy of group B. Voters in group C

have preferences βCj that are the same as voters’ in group A in some dimensions, but that

are the same as voters’ in group B in the remaining dimensions. Therefore, in equilibrium,

voter C servers as a decisive median voter: for any realized valences vA and vB, and for any

belief q, if voters in group C prefer candidate A over candidate B, then voters in group A

also prefer candidate A; if group C prefers candidate B over candidate A, then group B also

prefers candidate B. Consequently, the incumbent party would like to convince the decisive

voter C that the issues on which they share the same preferences are important, while the

22We thank Ben Golub for suggesting this question.
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issues on which they disagree are not important. The optimal experiment of the incumbent

party is designed to endogenously select the wedge issues that it wants to emphasize.

5.2 The Rollout of a Major Reform

Suppose that the incumbent has implemented a major policy reform (e.g., a major change in

the healthcare system). However, it takes time for voters to observe the true long-run payoff

consequences of this complex new law. During the rollout, the government can choose which

information to publicly collect about the initial effects of the reform. Let the state space Θ

represent how much information the government can potentially collected, in the short-run,

about the long-run consequences of the new policy. Let E[θ|q] be the expected payoff for the

majority voter from keeping the reform, and normalize to zero the payoff from reversing the

reform. To simplify exposition, suppose that, for all short-run information in Θ, the incum-

bent party wants to keep the reform, and the opposing party wants to reverse the reform.

Given the valences, the incumbent’s re-election probability is then F (E[θ|q] + vA) and we

can apply Proposition 3. An incumbent with higher valence is less transparent about the

early effects of her policy reform. Similarly, government transparency decreases in players’

optimism about the reform — if players’ prior beliefs regarding θ are high (in the sense of a

location shift in the prior distribution), then the government becomes less transparent.

5.3 Strategic Information about Competence

Our main results continue to hold if we invert the interpretation of the model: the incumbent

party uses the experiment to strategically reveal information about its competence, while

voters observe an exogenous signal about the relative payoff of parties’ policies. Moreover,

instead of having majority and minority groups of voters, we can assume a continuum of

voters with a representative median voter.

To illustrate this equivalence, consider the following alternative model. The incumbent

party is committed to a policy xA, while the opposing party is committed to a different policy

xB. Without loss of generality, let the incumbent party be the right-wing party xA = +1

and the challenger be the left-wing party xB = −1. There is a continuum of voters indexed

by their ideology y ∈ [y, y]. Let ym be the voter with the median ideology. For voter y, the
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payoff from electing candidate j ∈ {A,B} is vj − (xj − (y − θ))2, where vj is the valence of

candidate j and θ is the current state of the economy.

The incumbent was recently elected and players do not know her realized valence vA ∈

V A ≡ {vA1 , . . . , vAN}, with a finite N ≥ 2 and vAj < vAj+1 . Players share a common prior

belief p in the interior of the simplex ∆(V A). The incumbent can then design a public signal

π that will reveal information about her competence vA. After voters observe the signal

realization s of π, they reach the common posterior belief q and update their belief about

the incumbent’s competence E[vA|q]. Voters then observe the realized state of the economy

θ, distributed according to the c.d.f. F, which satisfies (A1). The expected valence of the

challenger is vB, and players do not observer further information about it.

Given any posterior belief q, it is straightforward to verify that the median voter is

decisive, and the incumbents’ victory probability is

W (q; ym) = F

(
E[vA|q]− vB

4
+ ym

)
.

Hence, we can apply Proposition 3: the incumbent’s optimal choice is an upper-censoring

experiment on competence vA. Moreover, as we move the median voter’s ideology ym to

the right, it increases the advantage of the right-wing incumbent. Hence, the right-wing

incumbent chooses to be Blackwell less informative about its competence when facing a

more right-wing voting district, and more informative when facing a more left-wing district.

6 The Role of Belief Disagreement

Heterogeneous prior beliefs play an important role in politics — see Millner, Ollivier, and

Simon (2014) for a recent review of the literature on heterogeneous priors in politics. We

now extend our analysis to the case in which voters in the same group share a common prior

belief, but voters in opposite groups openly disagree over the likelihood of state θ.

Formally, voters in group i have a common prior belief pi in the interior of the simplex

∆(Θ), but priors differ across groups, pA 6= pB. Each party shares its affiliates’ beliefs. Pref-

erences and prior beliefs are common knowledge — voters “agree to disagree.” If we interpret

θ as describing the mapping between policy x and outcomes, then different priors represent

differences in voters’ views about the outcomes that different government policies produce.
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Let qA and qB be the posterior beliefs of voters in groups A and B after observing the

experiment’s results. Voters can correctly predict the policies xA∗(qA) and xB∗(qB) that each

candidate would implement if elected. From the point of view of voters in group A, political

disagreement (3) becomes

D(qA, qB) ≡
∑
θ∈Θ

qAθ
[
uA(x∗A(qA), θ)− uA(x∗B(qB), θ)

]
. (9)

As in the common priors case, voters in majority group A are decisive, and candidate A wins

with probability F (D(qA, qB)+vA). Again, candidate A wins the election with a probability

that increases in the degree of political disagreement — candidate A has a “policy advantage”

because a majority of voters believe that she has not only the “correct” preference, but also

the “correct” belief, and, thus, she will implement the “correct” policy.

Let rθ ≡
pBθ
pAθ

and r ≡ (rθ)θ∈Θ capture the likelihood ratio of prior beliefs. We can then

use the results from Alonso and Câmara (2016a) to express disagreement D(qA, qB) as a

function D(qA), which depends only on the beliefs of voters in group A:

D(qA) ≡ D
(
qA, qA

r

〈qA, r〉

)
.

Victory probability then becomes F (D(qA) + vA), and our results continue to hold for this

new function — see online Appendix B for a more detailed analysis.

6.1 Increasing Belief Disagreement

To shed some light on the role of belief disagreement, we now focus on cases in which all voters

share the same preferences, so that political disagreement is zero when voters hold a common

belief. As Callander (2011, pg. 657) notes, “[o]n some policy issues it is conceivable that we

all share common outcome preferences (or at least similar preferences), yet we disagree as to

how best to go about achieving the desired outcome. [...] Viewed this way, much political

disagreement is over beliefs rather than outcomes.”

For example, consider the spatial policy model from Section 2.4. Suppose that voters

share the same payoff function uA(x, θ) = uB(x, θ) = −(x − θ)2. Recall that the optimal

policy is xi∗(qi) = E[θ|qi]. Political disagreement (9) translates naturally into the degree of
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belief disagreement over expectations,

D(qA, qB) =
∑
θ∈Θ

qAθ
[
uA(x∗A(qA), θ)− uA(x∗B(qB), θ)

]
=

∑
θ∈Θ

qAθ
[
−(E[θ|qA]− θ)2 + (E[θ|qB]− θ)2

]
= (E[θ|qA]− E[θ|qB])2. (10)

Similarly, consider the tax model from Section 4.2. Suppose that voters have the same

income normalized to one, βA = βB = 1, and the production technology of the public good is

ψ = 1
2
. The optimal tax rate becomes xi∗(qi) = E[θ|qi]2

4
, and political disagreement takes the

simple form D(qA, qB) = 1
4
(E[θ|qA]− E[θ|qB])2. In this case, disagreement over the optimal

tax derives solely from the belief disagreement over the marginal value of the public good.

When voters have the same payoff function but different beliefs, can the IP increase

political disagreement? As in these two applications, suppose that political disagreement

is a strictly increasing function of the difference between voters’ expectation over the state.

Although voters share a common payoff function, we show in the next proposition that if the

state space is rich enough, then the IP can generically design an experiment that increases

political disagreement with probability one.

Proposition 4 Suppose that political disagreement strictly increases in the degree of belief

disagreement over expectations, D(qA, qB) = R(|E[θ|qA]− E[θ|qB]|), where R ≥ 0 and R′ >

0. If N ≥ 4, then the IP can generically23 design an experiment that increases political

disagreement with probability one. Consequently, if F has full support on the real numbers,

the value of persuasion is positive for each finite incumbent’s valence vA.

The following example illustrates how the IP can guarantee a higher disagreement.24

Example 4 — Increasing Belief Disagreement: Let Θ = {1, 2, 3, 4}. Consider pri-

ors pA = (.05, .45, .45, .05) and pB = (.45, .05, .05, .45), so that E[θ|pA] = E[θ|pB] = 2.5.

Although prior beliefs are different, initial political disagreement is zero. The following bi-

nary experiment S = {s1, s2} is optimal for the IP. States 1 and 3 induce signal s1 with

23Genericity is interpreted over the space of pairs of prior beliefs.
24See Kartik, Lee and Suen (2015) for conditions such that a Blackwell more informative experiment, on

average, brings posterior beliefs closer to each other.
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probability one, while states 2 and 4 induce signal s2 with probability one. After observing

signal s1 beliefs become E[θ|qA] = 2.8 and E[θ|qB] = 1.2, while s2 induces E[θ|qA] = 2.2

and E[θ|qB] = 3.8. Therefore, every realization induces a strictly higher belief disagreement.

From the point of view of voters A, candidate B not only “overreacts” to the information

(updates her policy “too much”), but also moves the policy in the wrong direction. �

7 Extensions

In this section, we consider other extensions of our model. We discuss the case in which the

IP supports the minority candidate, the case in which parties are both office- and policy-

motivated, and the impact of competition in information provision — when the opposing

party can also generate some information about the state. We discuss additional extensions

in online Appendix B (costly experiments, post-election information, and valence shocks that

are independent across voters).

IP Supports the Minority: So far, we have assumed that the IP supports the majority

candidate — that is, candidate A is the incumbent. Now suppose that the minority party B

is in power (hence controls the experiment) and supports the incumbent candidate B. Since

the political advantage of the majority candidate is due solely to political disagreement, the

IP now benefits from decreasing political disagreement. The results from Section 3 now

apply to the valence vB of the incumbent: the IP uses less-informative experiments when

the minority incumbent is more competent (vB is high) and more-informative experiments

when she is less competent. Interestingly, the optimal experiment in Proposition 3 becomes

lower-censoring : the minority party pools low disagreement states and fully reveals high

disagreement states.

Moreover, consider the models of Section 6.1, in which citizens share the same payoff

function but hold different prior beliefs. In these cases, regardless of priors, full information

disclosure is always optimal for the minority candidate. Complete transparency eliminates

political disagreement and the policy advantage of the majority candidate, thus increasing the

chances of the minority candidate. Therefore, for policy issues in which political disagreement

derives solely from belief disagreement, we should empirically observe that policy experiments
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by minority incumbents are more informative than those of majority incumbents.

Policy-Motivated Parties: In this paper, we focus on a purely office-motivated incum-

bent party, whose primary concern is to be re-elected. Consider, now, the opposite case: a

purely policy-motivated party. Suppose that each party has the same payoff function as the

voter it represents, and parties do not receive any direct benefit from holding office. That

is, when party i ∈ {A,B} is the incumbent, it chooses the experiment that maximizes the

expected payoff of voter i.

Intuitively, if the payoff functions of the two groups are sufficiently aligned, then a fully

informative experiment is optimal, independently of the incumbent’s valence. This is in spite

of the fact that a fully informative experiment might reduce the probability of re-electing the

incumbent. That is, the policy-motivated IP is willing to sacrifice its re-election probability

in order to generate more information to both candidates and guarantee a better policy.

However, the incumbent faces a more intricate problem when there is a large conflict

of preferences (for example, see the preferences in Proposition 2). In this case, the IP

prefers a more-informative experiment when the incumbent’s valence is large and she is

almost sure to win. In this case, it is valuable to provide information to the likely winner.

In contrast, when the incumbent is very incompetent and likely to lose, the IP prefers to

implement a less-informative experiment. Again, the policy-motivated IP is willing to forgo

the possibility of implementing a more-informative experiment — and, hence, increase its

re-election probability — simply to avoid detrimental policies from the opposing party.

Interestingly, it seems that the purely policy-motivated case resembles the case of a purely

office-motivated party, with a log-convex valence distribution. If, empirically, one finds that

more competent incumbents tend to implement weakly more-informative experiments, then

it is harder to say whether politicians are policy-motivated or office-motivated with a log-

convex distribution of valence. However, if, empirically, one finds that more competent

incumbents choose less-informative experiments, then it is more likely that parties are purely

office-motivated with a log-concave valence distribution.

It would be interesting to consider an alternative model in which parties are both policy-

and office-motivated. We leave this promising agenda to future work.

Competition-in-persuasion: In this paper, we have focused on the case in which the
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incumbent has the monopoly over the information that reaches voters. What happens if the

challenger can launch her own public investigation? We next describe some results on this

“competition-in-persuasion” game (see the online Appendix for details).

The timing of this extended game is as follows. The incumbent party implements an

experiment π, and its outcome becomes public. The opposing party then chooses an exper-

iment, and its result becomes public.25 The valence of the challenging candidate is realized

and becomes public information. The election takes place. We consider two cases. In the first

case, the challenger is unconstrained — she has access to every experiment that is correlated

with the state. In the second case, the challenger is constrained on her access to experiments.

When the challenger is unconstrained, we show that there is always a subgame perfect

equilibrium in which the incumbent selects a fully informative experiment. The intuition

behind the result follows from the fact that parties have opposite preferences over the dis-

closure of information. Loosely speaking, if the incumbent benefits from “garbling” certain

information, then the challenger benefits from disclosing it. Therefore, the incumbent can

do no better than fully disclosing the state.

In practice, however, the incumbent typically has access to a richer set of experiments

than the challenger does since the incumbent directly controls the government. How do

constraints in the challenger’s access to experiments alter, in equilibrium, the information

that reaches voters? To provide some insights into this question, in online Appendix B

we consider an information technology in which the challenger’s ability to launch a fully

informative investigation is captured by an exogenous technology parameter α ∈ (0, 1). We

show that, in equilibrium, voters have access to more information if the challenger has easier

access to the government’s information (a higher α).

8 Conclusion

In this paper, we study the strategic control of information by an incumbent who wants to be

re-elected. The incumbent, through her direct control of the government, is in a privileged

position to control the information that reaches voters. For example, she can run a small-scale

25We believe that the most natural assumption for our model is to have the incumbent playing first. See

Gentzkow and Kamenica (2016) for a model in which players choose experiments simultaneously.
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pilot test of a novel policy, design an experiment to evaluate unobserved effects of existing

policies, decide which information is released during the early stages of a complex policy

reform, and establish disclosure rules for government agencies. In all these cases, the public

information generated by the government can affect the incumbent’s re-election probability.

In our benchmark model, information changes the degree of political disagreement and

sways future elections — experimental outcomes that increase disagreement increase the

victory probability of the candidate whose preferences and beliefs are similar to those of

a majority of voters. Therefore, an incumbent supported by the majority benefits from

policy experiments that create more dissent between the majority and the minority. We

derive conditions such that more-competent politicians are less informative than incompetent

politicians, and conditions for an upper-censoring experiment to be optimal — it fully reveals

low disagreement states and pools high disagreement states. Finally, we consider cases in

which all voters share the same payoff function, so that political disagreement is due solely

to belief disagreement. We show that, even in these cases, policy experiments can be used

to increase disagreement.

In this paper, we focus on an incumbent who has the monopoly over the information

generated by the government. In this case, she often chooses to hide some information,

in order to maximize her re-election probability. We then extend our model to consider

competition in information provision between the incumbent and the challenger. We show

that if the challenger has full access to the same government information as the incumbent,

then there always exists an equilibrium in which competition forces the incumbent to be

fully transparent. However, we believe that, in most cases, the challenger has only limited

access to government information. In this case, we show that the incumbent retains the

incentives to hide some information. That is, if the challenger has less-than-perfect access

to information, then voters might not become fully informed. We hope that our model

can be further extended to study the roles of different political institutions in providing the

correct incentives to incumbent politicians. For instance, in a related model, Bernecker,

Boyer and Gathmann (2015) provide empirical evidence that term limits affect incumbents’

incentives to experiment. It would be important to also understand how the decentralization

of information generation, from the federal government to the states, affects the behavior of

governors from different parties, who are concerned with re-election.
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A Appendix

Before we present the proof of Lemma 1, we provide the following lemma.

Lemma A.1 Fix any a, b, c ∈ R. Define

G
(
a, b, vA

)
≡
F
(
b+ vA

)
− F

(
a+ vA

)
f (a+ vA)

. (11)

If F satisfies (A1), then G(a, b, vA) is non-increasing in vA.

Proof of Lemma A.1: We first rewrite the function G as

G
(
a, b, vA

)
=

∫ b−a

0

f
(
a+ vA + z

)
f (a+ vA)

dz.

Since f is log-concave, it exhibits decreasing ratios in the sense that for every z > 0 and

vA ≥ vA′ we have

f
(
a+ vA′ + z

)
f (a+ vA′)

≥
f
(
a+ vA + z

)
f (a+ vA)

. (12)

Suppose first that b > a. Then integrating both sides of (12) between 0 and b− a shows

that G
(
a, b, vA′

)
≥ G

(
a, b, vA

)
. Now suppose that a > b. Then for any z ∈ [0, a− b] we can

rewrite (12) as
f
(
a+ vA − z

)
f (a+ vA)

≥
f
(
a+ vA′ − z

)
f (a+ vA′)

.

Integrating between 0 and b− a we conclude that

−G
(
a, b, vA

)
=

∫ a−b

0

f
(
a+ vA − z

)
f (a+ vA)

dz ≥
∫ a−b

0

f
(
a+ vA′ − z

)
f (a+ vA′)

dz = −G
(
a, b, vA′

)
,

or, in other words, G
(
a, b, vA′

)
≥ G

(
a, b, vA

)
. �

Proof of Lemma 1: Consider an experiment π that generates a distribution σ ∈ ∆(∆(Θ))

over posterior beliefs. Note that this distribution is independent of valences. For any q in

the support of σ, the change in the victory probability of the majority candidate is

W (q; vA)−W (p; vA) = F (D(qA) + vA)− F (D(p) + vA) = f(D(p) + vA)G(D(p), D(q), vA),
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where G is defined by (11). Therefore, the expected change in victory probability from

experiment π can be written as

Eπ[W (q; vA)−W (p; vA)] = f(D(p) + vA)

∫
q∈ supp(σ)

G(D(p), D(q), vA)dσ.

Because f > 0 rewrite

Eπ[W (q; vA)−W (p; vA)]

f(D(p) + vA)
=

∫
q∈supp(σ)

G(D(p), D(q), vA)dσ. (13)

From Lemma A.1, we know that G is non-increasing in vA, hence the LHS of (13) is non-

increasing in vA. This implies that if Eπ[W (q; vA) − W (p; vA)] ≤ 0 then Eπ[W (q; vA′) −

W (p; vA′)] ≤ 0 for any vA′ > vA, concluding the proof. �

Proof of Proposition 1: Suppose π∗ is an optimal experiment given valence vA. Take

any vA′ > vA and any π′ that is Blackwell more informative than π∗. The proof has two

steps. In the first step, we construct a sequential experiment {π∗, {πs}s∈S} that is payoff

equivalent to π′. In the second step, we show that since π∗ is weakly better than {π∗, {πs}s∈S}

when valence is vA, then π∗ is weakly better than {π∗, {πs}s∈S} when the valence is higher.

Consequently, π∗ is weakly better than π′ for any vA′ > vA.

Step 1: If π′, with realizations zπ′ ∈ Zπ′ , is Blackwell more informative than π∗, with

realizations s ∈ S, then there exist an stochastic transformation γ(s|zπ′) such that

Pr [θ, s] =
∑

zπ′∈Zπ′

γ(s|zπ′) Pr [θ, zπ′ ] . (14)

Let τ (zπ′ ; s) be

τ (zπ′ ; s) =
γ(s|zπ′) Pr [zπ′ ]∑
ẑπ′
γ(s|ẑπ′) Pr [ẑπ′ ]

= γ(s|zπ′)
Pr [zπ′ ]

Pr [s]
(15)

and define the experiment πs as the experiment that, when voters have belief qs, it leads

to a posterior qzπ′ with probability τ (zπ′ ; s). In other words, experiment πs is described by

the conditional probabilities πs (zπ′|θ) = qθzπ′τ (zπ′ ; s) /q
θ
s (see KG). We now show that this

experiment is well defined. First, it is immediate that τ (zπ′ ; s) ≥ 0 with
∑

zπ′∈Zπ′
τ (zπ′ ; s) =

1. Next, using (15) we have

qθs =
Pr [θ, s]

Pr [s]
=

∑
zπ′∈Zπ′

γ(s|zπ′) Pr [θ, zπ′ ]∑
ẑπ′∈Zπ′

γ(s|ẑπ′) Pr [ẑπ′ ]
=

∑
zπ′∈Zπ′

τ (zπ′ ; s)
Pr [θ, zπ′ ]

Pr [zπ′ ]
=

∑
zπ′∈Zπ′

τ (zπ′ ; s) q
θ
zπ′
,
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so that experiment πs is Bayes feasible.

Finally, we show that the observation by voters of the outcomes of the sequential ex-

periment {π∗, {πs}s∈S} leads to the same joint distribution over posteriors and the state as

experiment π′. Let ∪s∈S {s, zπ′} be the event in which voters have posterior qzπ′ . We have

Pr [θ,∪s∈S {s, zπ′}] =
∑
s∈S

πs (zπ′|θ) Pr [θ, s] =
∑
s∈S

qθzπ′τ (zπ′ ; s)

qθs
Pr [θ, s]

=
∑
s∈S

qθzπ′τ (zπ′ ; s) Pr [s] = qθzπ′
∑
s∈S

γ(s|zπ′) Pr [zπ′ ]

= qθzπ′ Pr [zπ′ ] = Pr [θ, zπ′ ] .

Step 2: When the incumbent’s valence is vA, optimality of π∗ implies that IP does not

benefit from further disclosing information after each signal realization s of π∗. That is, for

every posterior belief qs in the support of π∗ and every experiment πs, we have

Eπs [W (q; vA)|qs] ≤ W (qs; v
A). (16)

Apply Lemma 1-(i) to (16): for each posterior belief qs in the support of π∗, for every vA′ >

vA, and every experiment πs, we have Eπs [W (q; vA′)|qs] ≤ W (qs; v
A′). Taking expectations

over the realizations of π∗ yields E{π∗,{πs}s∈S}[W (q; vA′)] ≤ Eπ∗ [W (q; vA′)]. �

Proof of Corollary 1: Suppose that for some vA2 a completely uninformative experiment

is optimal, and note that every possible experiment is Blackwell more informative than

no information. Then Proposition 1 immediately implies that a completely uninformative

experiment is weakly better than every other experiment for any vA > vA2 .

Suppose that for some vA1 the fully informative experiment πFD is optimal. Alonso and

Câmara (2016a, Corollary 2) show that a fully informative experiment is optimal if and

only if EπFD [W (q′; vA1 )|q] ≥ W (q; vA1 ) for all q ∈ ∆(Θ). Lemma 1 implies that26 for every

vA < vA1 , we have EπFD [W (q′; vA)|q] ≥ W (q; vA) for all q ∈ ∆(Θ). Hence, πFD is optimal for

all vA < vA1 . �

Proof of Proposition 2: Suppose βAβB < 0 or |βB| > 2|βA|. This implies that βA 6= βB

and βB(2βA − βB) < 0.

26Lemma 1 implies that if Eπ[W (q; vA) − W (p; vA)] ≥ 0, then Eπ[W (q; vA′) − W (p; vA′)] ≥ 0 for any

vA′ < vA.
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We first show that, from the point of view of voter A, the expected policy payoff if can-

didate B is elected is strictly lower if the candidate observes a fully informative experiment,

compared to no information. That is, full information makes candidate B choose a strictly

worse policy on average.

Without further information, candidate B chooses policy βBE[θ|p], which yields expected

policy payoff E[−(βBE[θ|p]−βAθ)2|p] to voter A. With a fully informative signal, candidate

B chooses policy βBθ after learning that the state is θ. This yields an expected policy payoff

E[−(βBθ − βAθ)2|p] to voter A. No information yields a strictly higher payoff than full

information if and only if

E[−(βBE[θ|p]− βAθ)2|p] > E[−(βBθ − βAθ)2|p]

−(βB)2E[θ|p]2 + 2βAβBE[θ|p]2 − (βA)2E[θ2|p] > −(βB)2E[θ2|p] + 2βAβBE[θ2|p]− (βA)2E[θ2|p]

(2βAβB − (βB)2)E[θ|p]2 > (2βAβB − (βB)2)E[θ2|p]

0 > βB(2βA − βB)(E[θ2|p]− E[θ|p]2).

Since the variance (E[θ2|p] − E[θ|p]2) is strictly positive given any interior prior belief, the

inequality holds if and only if 0 > βB(2βA − βB), concluding this step of the proof.

Disagreement is a convex function of the posterior belief, D(q) = (βB − βA)2(E[θ|q])2.

Consequently, if vA is sufficiently low, then the IP’s optimal experiment is fully informative.

From the point of view of voter A, compared to no information, full information leads

candidate B to choose a worse policy on average, while it leads candidate A to choose a

better policy when elected. Moreover, if vA is sufficiently low, then candidate B is sufficiently

likely to win the election, and the strictly negative effect of a worse policy from candidate B

dominates the positive effect from the better policy from candidate A. �

In Proposition A.1 below, we show that upper-censoring is an optimal experiment for a

large class of Bayesian persuasion games. Then, in the proof of Proposition 3, we show that

our model satisfies the conditions of Proposition A.1.

Proposition A.1 Consider a Bayesian persuasion game between a sender and a receiver,

as in KG. Suppose that the sender’s payoff uS(a, θ) and receiver’s optimal action a∗(q) satisfy∑
θ∈Θ

qθuS(a∗(q), θ) = K(E[θ|q]), (17)
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where K(·) is twice differentiable and strictly increasing, and E[θ|q] denotes the expected state

given posterior belief q. If K ′ is single-peaked (single-dipped), then there exists an optimal

signal that is upper-censoring (lower-censoring).

Proof of Proposition A.1:

Note that US(q) =
∑

θ∈Θ qθuS(a∗(q), θ) is the sender’s expected payoff, as a function of

posterior belief q. Therefore, (17) implies that the sender’s expected utility depends on pos-

terior beliefs only through the posterior expectation of the state. Furthermore, function K is

assumed to be twice differentiable, with a strictly positive derivative K ′(E) ≡ dK(e)
de

∣∣∣
e=E

> 0.

First, suppose that K ′ is single-peaked — that is, there exists an Ē in the extended real

line such that K ′′(E) ≥ 0 for all E < Ē, and K ′′(E) ≤ 0 for all E > Ē. Consequently, K

is locally convex in the range E < Ē, and locally concave in the range E > Ē. Since K ′

might be “flat” at its peak, we define Ē as the lowest expectation at the peak. That is, Ē

is defined such that K ′(E) < K ′(Ē) for all E < Ē, and K ′(Ē) ≥ K ′(E) for all E ≥ Ē.

Since θ1 < . . . < θN , players’ posterior expectation of the state must be in [θ1, θN ]. If

Ē ≥ θN , then the sender’s payoff is everywhere convex and a fully informative experiment

is optimal; if Ē ≤ θ1, then the sender’s payoff is everywhere concave and a completely

uninformative experiment is optimal (see KG for details). Note that full disclosure and no

disclosure are the extreme cases of upper-censoring, with cutoff states θN and θ1, respectively.

Now consider the remaining case: θ1 < Ē < θN . We next construct an optimal experi-

ment that is upper-censoring. The proof has two steps.

Step 1) We first show that, among the class of optimal experiments, there is always one that

induces at most one non-degenerate posterior belief. To see this, take any optimal experi-

ment π∗ and let σ∗ be the the distribution of posterior beliefs induced by this experiment. All

beliefs q− in the support of σ∗ such that E[θ|q−] < Ē are in the locally convex region of K.

Hence, the sender weakly benefits from further disclosing some information. All beliefs q+ in

the support of σ∗ such that E[θ|q−] ≥ Ē are in the locally concave region of K. Hence, the

sender weakly benefits from combining all these beliefs into a single belief. Repeated use of

this argument implies the following. There exists an experiment π′ that (i) is weakly better

than π∗, hence π′ is also optimal, and (ii) letting σ′ be the distribution of posterior beliefs

induced by π′, there is at most one non degenerate belief in the support of σ′. This non degen-
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erate belief is in the concave region of K, while every belief in the convex region is degenerate.

Step 2) We now solve for the optimal experiment in the class of experiments that induce

at most one non degenerate belief. Given Step 1, this experiment is then optimal for the

sender when she is unconstrained in her choice of experiment.

Consider any experiment that induces at most one non degenerate belief. Without loss

of generality, define the signal space as S ≡ {sθ1 , . . . , sθN , spooling}. Each state θ ∈ Θ induces

the pooling signal spooling with probability αθ ∈ [0, 1], and induces the fully revealing signal

sθ with probability 1 − αθ. Given α = (αθ1 , . . . , αθN ), let q+(α) ≡
(

αθpθ∑
θ′∈Θ αθ′pθ′

)
θ∈Θ

be the

updated posterior belief after observing spooling, and E+(α) ≡ 〈q+(α), θ〉 =
∑
θ∈Θ αθpθθ∑
θ∈Θ αθpθ

be the

updated expectation of θ. The sender’s problem then simplifies to choosing α that maximizes

her expected payoff:

max
αθ∈[0,1],θ∈Θ

Π(α) ≡

(∑
θ∈Θ

αθpθ

)
K(E+(α)) +

∑
θ∈Θ

(1− αθ)pθK(θ).

We now solve for an optimal α∗ and show that the optimal experiment is upper-censoring,

that is, there exists a cutoff state θk such that α∗θ = 0 if θ < θk and α∗θ = 1 if θ > θk.

From Step 1, the pooling belief q+(α∗) is in the concave region, E+[α∗] ≥ Ē. Moreover,

since posterior beliefs in the convex region are degenerate, we have α∗θ = 1 for all θ ≥ Ē.

Now consider the convex region θ < Ē. Taking the derivative of the objective function with

respect to αθ′ for each state θ′ < Ē, and noting that ∂E+(α)
∂αθ′

=
pθ′∑

θ∈Θ αθpθ
[θ′ − E+(α)] , we have

∂Π(α)

∂αθ′
= pθ′K(E+(α))− pθ′K(θ′) +

(∑
θ∈Θ

αθpθ

)
K ′(E+(α))

∂E+(α)

∂αθ′

= pθ′
{
K(E+(α))−K(θ′) +K ′(E+(α))

[
θ′ − E+(α)

]}
= pθ′

∫ E+(α)

θ′

[
K ′(E)−K ′(E+(α))

]
dE.

Since pθ′ > 0, the derivative ∂Π(α)
∂αθ′

has the same sign as

A(θ′) ≡
∫ E+(α)

θ′

[
K ′(E)−K ′(E+(α))

]
dE.

Suppose that α∗θ′ < 1 for some θ′ < Ē, which implies that A(θ′) ≤ 0. Single-peakedness

of K ′ implies that K ′ is increasing for θ < Ē. Therefore, K ′(θ) ≤ K ′(θ′) for all θ < θ′, which
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leads to A(θ) < A(θ′) ≤ 0 for all θ < θ′. This establishes that, for all θ < θ′, we must have

α∗θ = 0.

The same steps of the proof show the opposite (lower-censoring) result for the case of a

single-dipped K ′. �

Proof of Proposition 3: Suppose that (A.1) and (A.2′) hold. Then we can write the IP’s

payoff as a strictly increasing, twice differentiable function of the expected state, K(E) =

F (H(E) + vA). Moreover, the derivative K ′(E) = f(H(E) + vA)H ′(E) is log-concave,

therefore it is single-peaked. Consequently, the conditions of Proposition A.1 hold and

there is an optimal experiment that is upper-censoring. The fact that the optimal censoring

cutoff weakly decreases in vA follows immediately from Proposition 1: strictly increasing the

censoring cutoff increases the informativeness of the experiment, but the IP does not benefit

from a more informative experiment if vA increases. �

Proof of Proposition 4: The proof has two steps.

Step 1) Define the vector v = r
(
θ − E[θ|qB]

)
, the linear subspacesW1 =

{
x ∈ Rcard(Θ) : 〈x, 1〉 = 0

}
and Wθ−v =

{
x ∈ Rcard(Θ) : 〈x, θ − v〉 = 0

}
. In this first step, we prove that if the projec-

tions of θ and r are not negatively collinear with respect to W1 ∩Wθ−v, then there exists an

experiment π where all signal realizations increase political disagreement.

Since qBθ =
qAθ rθ
〈qA,r〉 (see Alonso and Câmara (2016a)), we can rewrite

D(qA, qB) = R(|E[θ|qA]− E[θ|qB]|) = R

(∣∣∣∣∣〈qA, θ〉−
〈
qAr, θ

〉
〈qA, r〉

∣∣∣∣∣
)
≡ D(qA).

Define qA = ελ+ pA, with λ ∈ W1 = {x : 〈x, 1〉 = 0} and ε ∈ R, and let

L(ε;λ) =
〈
qA, θ

〉
−
〈
qAr, θ

〉
〈qA, r〉

= ε 〈λ, θ〉+ E[θ|qA]− ε 〈λ, rθ〉+ E[θ|qB]

ε 〈λ, r〉+ 1
.

Disagreement is a strictly increasing function of the absolute value of L(ε;λ). First suppose

that L(ε;λ) ≥ 0. We will show that under the conditions of the proposition one can always

find a vector of “marginal beliefs” λ′ such that L achieves a local minimum with respect to ε

at ε = 0. This means that along the line λ′ and in a neighborhood of 0, any belief qA = ελ′+pA

with ε > 0 increases L, and thus D(qA) > D(pA), while any belief qA = ελ′ + pA with ε < 0

also increases L, yielding D(qA) > D(pA). That is, we have found collinear beliefs that can

average to the prior and that increase D.
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First, we have

dL

dε
= 〈λ, θ〉 −

〈λ, rθ〉 − 〈λ, r〉E
[
θ|qB

]
(ε 〈λ, r〉+ 1)2 ,

d2L

dε2
=

2 〈λ, r〉
[
〈λ, rθ〉 − 〈λ, r〉E

[
θ|qB

]]
(ε 〈λ, r〉+ 1)3 .

For L(ε;λ) to achieve a local minimum at ε = 0, it is sufficient to exist λ ∈ W such that

dL

dε

∣∣∣∣
ε=0

= 0⇒ 〈λ, θ〉 =
〈
λ, r

(
θ − E

[
θ|qB

])〉
, (18)

d2L

dε2

∣∣∣∣
ε=0

> 0⇒ 〈λ, r〉
〈
λ, r

(
θ − E

[
θ|qB

])〉
> 0. (19)

Since θ and r are not negatively collinear with respect to W1 ∩Wθ−v, then there exists

λ′ ∈ W1 ∩Wθ−v with 〈λ′, θ〉 〈λ′, r〉 > 0 — see Alonso and Câmara (2016a). Since λ′ ∈ Wθ−v

then λ′ satisfies (18). Then, given (18), the fact that 〈λ′, θ〉 〈λ′, r〉 > 0 implies that λ′ also

satisfies (19). Therefore, L(ε;λ′) achieves a local minimum at ε = 0.

Now consider the remaining case, L(ε;λ) < 0. Since disagreement strictly increases in

the absolute value of L, we now can increase disagreement by decreasing L. The same steps

of the proof above can be used to show that under the conditions of the proposition one can

always find a vector of “marginal beliefs” λ′′ such that L achieves a local maximum with

respect to ε at ε = 0. This follows as the fact that θ and r are not negatively collinear with

respect to W1 ∩Wθ−v implies the existence of λ′′ ∈ W1 ∩Wθ−v with 〈λ′′, θ〉 〈λ′′, r〉 < 0 (see

Alonso and Câmara 2016a), so that L(ε;λ′′) is locally concave at ε = 0. This concludes the

first step of the proof.

Step 2) The previous step shows that if the projection of θ and r are not negatively

collinear with respect to W1∩Wθ−v then persuasion is valuable. We now show that negative

collinearity of θ and r with respect to W1 ∩Wθ−v is a non-generic property if N ≥ 4. First

note that W1 ∩ Wθ−v has at least dimension N − 2, and thus the projections of θ and r

also have dimension N − 2 ≥ 2. As collinearity is a non-generic property with vectors of

dimension at least 2, this concludes the proof. �
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