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1 INTRODUCTION

Threshold autoregressive (TAR) models have been studied intensively last decade. The asymptotic

properties of the least squares estimation are established by Chan (1993) and Chan and Tsay (1998). See

also Hansen (1997) for a di¤erent asymptotic approach. Various testing methods have been developed

for the presence of a threshold e¤ect, see Chan and Tong (1990) and Hansen (1996) among others.

On the other hand, testing the unit root null hypothesis in a TAR model is a rather recent area of

investigation. For this purpose, the models are distinguished depending on whether the threshold

variable is a level or a di¤erence of the time series (we call them a level-based TAR model and a

di¤erence-based TAR model respectively). Unlike the di¤erences, the level is nonstationary under the

unit root hypothesis and the relevant distribution theory is completely di¤erent. Caner and Hansen

(2001) provide a rigorous treatment of statistical tests for the di¤erence-based model. In the absence

of an appropriate distribution theory, however, the standard unit root test such as the ADF test has

been commonly used for the level-based TAR models. The purpose of this paper is to develop such a

distribution theory and a bootstrap for �nite sample inferences.

The level-based TAR models have exhibited a great deal of empirical relevance. A leading example

is the threshold cointegration model introduced by Balke and Fomby (1997), in which deviation from

a long-run equilibrium follows a threshold autoregression, and the lagged level of the deviation is the

threshold variable. See Lo and Zivot (2001) for a review of this model�s wide application in the analysis

of the purchasing power parity hypothesis or the law of one price hypothesis. Many economic and

�nancial time series are also known to exhibit nonlinearities in mean, which may be well approximated

by the level-based TAR model. For example, the estimated drift function of short-run interest rate by

Ait-Sahalia (1996), appears to exhibit threshold e¤ects based on the level of the rate.

This paper provides a formal distribution theory for unit root testing in a level-based TAR model,

which allows for dependent heterogeneous innovations. The null model is a linear autoregression with

a unit root. Since the threshold parameters are not identi�ed under the null hypothesis, considered is

the Wald test, which is the sup-Wald type test motivated by Davies (1987). We �nd that the Wald

test has a non-standard asymptotic distribution; it is biased and depends on nuisance parameters in a

complicated manner, and thus cannot be tabulated.

The weak convergence of stochastic integrals for dependent heterogeneous arrays over the parameter
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space is developed to derive the asymptotic distribution of the supremum type statistic. Since Park

and Phillips (2001) have developed asymptotic theories for stochastic integrals for martingale arrays

involving a broad range of nonlinear transformations, an active research, including this paper, has been

undertaken to generalize the result to various situations. For a continuously di¤erentiable function

class, De Jong (2002) relaxes the martingale assumption in Park and Phillips (2001). On the other

hands, Bec, Guay, and Guerre (2002) study the weak convergence for the case in which a nonstationary

variable is appropriately normalized before the transformations.

We show that a residual-based block bootstrap (RBB) yields an asymptotically valid approximation

to the sampling distribution of the Wald statistic. The nonparametric nature of a block bootstrap is

appropriate to the weak assumption on the dependent structure of our model.1 The RBB is close to

that of Paparoditis and Politis (2003) in that the residuals are resampled by the block resampling of

Künsch (1989) and then integrated to produce a bootstrap integrated process. Despite the similarity,

the asymptotic developments are di¤erent in two aspects: First, the residuals are constructed from

a TAR model. Second, and more importantly, the weak convergence of stochastic integrals over the

parameter space should be established in the RBB context, unlike in the linear model in Paparoditis

and Politis (2003).

The �nite sample performances of the proposed bootstrap are examined and compared to the con-

ventional augmented Dickey Fuller (ADF) test through Monte Carlo simulations. It is well documented

in the literature that the ADF test loses power dramatically for some classes of threshold alternatives

(see, for example, Pippenger and Goering (1993)). We �nd that the power gain from explicitly consid-

ering the threshold alternative is substantial for various data generating processes. The �nding does

not depend on di¤erent block length selections.

The newly developed testing strategy is illustrated through an investigation of the law of one price

(LOP) hypothesis amongst used car markets in the US. An important feature of used car markets is the

presence of uncertainty of quality, which has generated a large debate on the e¢ ciency of these markets.

An implication for the study of the LOP is that it (in addition to the transaction costs) will obstruct

the arbitrage for at least a short period of time, and that the assumption of the linear adjustment in

conventional cointegration models is not likely. In fact, we �nd that conventional cointegration tests,

1 In fact, the �rst di¤erences of the time series instead of the residuals can also be employed for the resampling, see Park
(2002) and Chang and Park (2003). Although the di¤erence-based bootstrap is known to yield an asymptotically valid
approximation in the context of the linear autoregression, there is a concern about the power property of the bootstrap
as demonstrated in Paparoditis and Politis (2003), and, therefore, this paper concentrates on the RBB.
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such as the ADF test and Horvath and Watson (1995), fail to reject the null of no cointegration, while

the Wald test of this paper and the supW test by Seo (2003) provide much stronger evidence for the

LOP.

The remainder of this paper is organized as follows: Section 2 introduces the model and theWald test,

and develops the asymptotic theory for the test. The residual-based block bootstrap is introduced, and

its asymptotic validity is established in Section 3. Section 4 presents simulation evidence for reasonable

�nite sample performance of the bootstrap. Section 5 illustrates the testing strategy through the study

of the LOP in used car markets in the US. All proofs are collected in the appendix.

2 UNIT ROOT TESTING IN A TAR

Consider a threshold autoregressive model:

�yt = �1yt�11 fyt�1 � 
1g+ �2yt�11 fyt�1 > 
2g+ ut; (1)

t = 1; : : : ; n, where 1 fAg is the indicator function that has value 1 if A is true, and value 0 otherwise.

The threshold parameter 
 = (
1; 
2) ; 
1 � 
2; is unknown and belongs to a compact set S � R2.

The model (1), often called a band-TAR model, is a special case of a three-regime TAR model, and it

becomes a two-regime TAR model when 
1 = 
2:

We want to test the null of a unit root process against the alternative of a stationary TAR process:

Speci�cally, the null hypothesis of interest is :

H0 : �1 = �2 = 0: (2)

Note that the threshold e¤ect also disappears under the null. Unfortunately, however, our understanding

is not complete as to the stationarity conditions for general TAR processes. When the errors are

independent, Chan, Petruccelli, Tong, and Woolford (1985) provide a necessary and su¢ cient condition

of stationarity:

�1 < 0; �2 < 0; and (�1 + 1) (�2 + 1) < 1; (3)

which suggests that the natural alternative to H0 should be

H1 : �1 < 0 and �2 < 0: (4)

An important feature of the model (1) is that the threshold variable is not a lagged di¤erence

yt�1 � yt�m for some m > 1 but the lagged level yt�1: The lagged di¤erence is stationary, and Caner
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and Hansen (2001) develop a distribution theory for unit root testing in this case. Unlike the lagged

di¤erence, the lagged level yt�1 is nonstationary under the null of a unit root, so that the statistical

inference for the testing relies on a totally di¤erent distribution theory from that of Caner and Hansen

(2001).

2.1 TEST STATISTICS

The standard Wald statistic is employed to test the null (2) : In particular, a constant and some lagged

�rst di¤erence terms are included in the estimation, as is common in the conventional unit root testing.

That is, we compute the Wald statistic based on the following Dickey Fuller type regression:

�yt = �̂1 (
) yt�11 fyt�1 � 
1g+ �̂2 (
) yt�11 fyt�1 > 
2g

+�̂ (
) + �̂1 (
)�yt�1 + � � �+ �̂p (
)�yt�p + êt (
) ; (5)

for each 
 2 S: We de�ne �̂2 (
) as the residual variance from OLS estimation of (5), and �̂20 as that of

the null model: Then, we obtain the least squares (LS) estimators:


̂ = argmin

2S

�̂2 (
) ; �̂2 = �̂2 (
̂) ; �̂i = �̂i (
̂) ; etc, (6)

and the Wald statistic:

Wn = n

�
�̂20
�̂2
� 1
�
= sup


2S
n

�
�̂20

�̂2 (
)
� 1
�
= sup


2S
Wn (
) (7)

where Wn (
) is the standard Wald statistic with a �xed 
 2 S: The above equality follows, since �̂20 is

independent of 
; andWn (
) is a decreasing function of �̂
2 (
) : Thus, the statisticWn is the well-known

�sup-Wald�statistic advocated by Davies (1987).

As will be shown shortly, the OLS estimator �̂i (
) of the regression (5) is a consistent estimator for

any p: In practice, we expect that �̂i (
) is less biased than the OLS estimator from (1) by including

those lagged di¤erence terms. However, we do not attempt to increase the lag-order p as the sample

size increases, as in Said and Dickey (1984), which is an approximation of an ARMA process by an

in�nite order AR process. Note that the approximation does not make sense in our case, since the error

process ut is not con�ned to an ARMA process.

2.2 ASYMPTOTIC DISTRIBUTION

We assume the following:
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Assumption 1 Let yt = y0 +
Pt

s=1 us; and futg be strictly stationary with mean zero and Ejutj
2+�

<

1; for some � > 0; and strong mixing with mixing coe¢ cients am satisfying
P1

m=1 a
1=2�1=(2+�)
m < 1:

Furthermore, fu (0) > 0, where fu denotes the spectral density of futg :

Assumption 1 allows for conditional heteroskedasticity that is commonly observed in economic data.

It di¤ers from a �nite order autoregressive process with iid innovations assumed in Bec, Guay, and

Guerre (2002) or Kapetanios and Shin (2003).2 The linear process need not be strong mixing, but

can be shown to be strong mixing provided that the distribution of the innovation satis�es certain

smoothness conditions (see section 14.4 of Davidson (1994)). Furthermore, the results developed in this

paper including the bootstrap theory are readily modi�ed to include the process.

The development of the asymptotic theory is based on the martingale approximation of Hansen

(1992), which is based on the following representation of futg. De�ne

"t =
1X
s=0

(Etut+s � Et�1ut+s) ; �t =
1X
s=1

Etut+s;

where EtX = E(XjFt) and Ft is the typical natural �ltration. Then,

ut = "t �
�
�t � �t�1

�
; (8)

and f"tg is a martingale di¤erence sequence, and fut�t � Eut�tg is a uniformly integrable L1�mixingale

(see Hansen (1992), p. 499). The representation (8) yields a useful decomposition of a stochastic integral

process:
1

�n

nX
t=2

f (yt�1; �)ut =
1

�n

nX
t=2

f (yt�1; �) "t +Dn; (9)

where

Dn =
1

�n

nX
t=2

(f (yt; �)� f (yt�1; �)) �t �
1

�n
f (yn�1; �) �n:

Of our interest is the weak convergence of the stochastic integral on a compact parameter space, say

�; when f (x; �) = x1 fx � �g, � 2 �: Although the convergence of the �rst term in the right hand

side of (9) and the convergence rate �n are developed by Park and Phillips (2001) for various classes

of functions f (�; �) ; the development is made �xing � at a give value. Hansen (1992) provides a limit

of the bias Dn when f (x) = x or x2, and De Jong (2003) extends the result to one of the classes of

2 I found these two working papers, independently developed of this paper, studying the simliar testing problem as the
one in this paper. However, They do not develop any bootstrap theory.
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functions considered by Park and Phillips (2001), which is di¤erent from the class of functions of our

interest.

To state the asymptotic development, we introduce some notations. Let �[x] " denote the integer

part of x, and �) " the weak convergence with respect to the uniform metric on the parameter space.

Next, de�ne the autocovariance function r (k) =Eutut+k and let �2 = r (0) ; � =
P1

s=1 r (s) and the

long-run variance !2 =
P1

s=�1 r (s) = �2 + 2�: Assume y0 is zero for the sake of simplicity. It is

well-known that, under Assumption 1, 1p
n
y[nr] =

1p
n

P[nr]
t=1 ut ) B (r) where B is a Brownian motion

with variance !2: We denote
R 1
0
B (r) dr as

R 1
0
B; and similarly

R 1
0
B (r) dB (r) as

R 1
0
BdB:

The following lemma is useful to develop the asymptotics of the bias term Dn; and stated more

generally than necessary for our speci�c purpose. However, its generality may prove useful in other

cases.

Lemma 1 Suppose the sequence fwt � �wg is a uniformly integrable L1-mixingale and Assumption 1

holds. Then, for k = 0; 1; 2; :::

1

n1+k=2

X
t

ykt 1 fyt � �gwt ) �w

Z 1

0

Bk1 fB � 0g

on �:

Lemma 1 shows that (yt1 fyt � �g =
p
n)
k and wt are asymptotically uncorrelated. Similar asymp-

totic uncorrelatedness between stationary process and nonstationary process is can be found in Theorem

3.3 of Hansen (1992) and Theorem 3 of Caner and Hansen (2001). The case of k = 0 is required for

the following main theorem and of interest as the transformation of the limit Brownian motion is dis-

continuous. Unlike linear autoregression in which the bias is �; we have the bias �
R 1
0
1 fB � 0g in the

following theorem.

Theorem 2 Under Assumption 1,

1

n

X
t

yt�11 fyt�1 � �gut )
Z 1

0

B � 1 fB � 0g dB + �
Z 1

0

1 fB � 0g

on �:
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Now we turn to the convergence of the parameter estimators and the Wald statistic. To ease the

exposition of the main theorem, we introduce some notations:

�BL = B1 fB � 0g �
Z 1

0

B1 fB � 0g ; �BU = B1 fB > 0g �
Z 1

0

B1 fB > 0g ;

Gp =

0BBB@
r (0) r (1) � � � r (p� 1)
r (1) r (0) � � � r (p� 2)
...

...
. . .

...
r (p� 1) r (p� 2) � � � r (0)

1CCCA ; ~rp =
0BBB@
r (0)
r (0) + r (1)
...
r (0) + � � �+ r (p� 1)

1CCCA ;
and gp = (r (1) ; � � � ; r (p))0 : Let �p be a p-dimensional vector of ones. The following theorem provides

the limit distribution of �̂i; i = 1; 2 and that of Wn:

Theorem 3 Suppose that Assumption 1 holds. Then, as n!1;

(i)

�
n�̂1 (
)
n�̂2 (
)

�
)
 R 1

0
�B2L �

R 1
0
�BL �BU

�
R 1
0
�BL �BU

R 1
0
�B2U

!�1�
Ap;L
Ap;U

�
;

(ii) Wn )
�
�2 � g0pG�1p gp

��1 �
Ap;L Ap;U

� R 1
0
�B2L �

R 1
0
�BL �BU

�
R 1
0
�BL �BU

R 1
0
�B2U

!�1�
Ap;L
Ap;U

�
;

on S, where

Ap;L =
�
1� g0pG�1p �

��Z 1

0

�BLdB + �

Z 1

0

1 fB � 0g
�
� g0pG�1p ~rp

Z 1

0

1 fB � 0g

Ap;U =
�
1� g0pG�1p �

��Z 1

0

�BUdB + �

Z 1

0

1 fB > 0g
�
� g0pG�1p ~rp

Z 1

0

1 fB > 0g :

Due to the recursion property of Brownian motion, the limit distributions above are well-de�ned,

even though they are nonstandard and nonconventional. They depend on nuisance parameters, such

as !2; �; r (0) ; :::; r (p). The dependence on the data structure is quite complicated, and thus critical

values cannot be tabulated. In the next section, we turn to a bootstrap procedure to approximate the

sampling distribution of Wn:

3 RESIDUAL-BASED BLOCK BOOTSTRAP

We discuss a bootstrap approximation of the sampling distribution of the statistic (7). Under nonsta-

tionarity we cannot resample the data fytg directly. Instead, we apply conventional bootstrap methods

developed for dependent data to the �rst di¤erences of yt or to regression residuals using consistent

estimators �̂0is, and then integrate the resampled ones. Speci�cally, we apply the overlapping block
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bootstrap of Künsch (1989) to the appropriately centered residuals and call it a residual-based block

bootstrap (RBB).

In the context of conventional unit root testing, Paparoditis and Politis (2003) introduce the idea of

RBB and establish its asymptotic validity. Although our RBB is similar to theirs, it should be noted

that our procedure is distinguished in the manner of constructing centered residuals. Furthermore, the

convergence of our bootstrapped Wald statistic is more complicated due to the involved nonlinearity.

Compared to a di¤erence-based bootstrap, the RBB is believed to have a power advantage, because

it does not impose the null hypothesis to obtain the residuals. Paparoditis and Politis (2003) show

analytically that this is true in case of block bootstrap scheme in the context of conventional unit

root testing. Expecting similar power advantage, we focus on the RBB. Following the convention in

the literature, we denote the bootstrap quantities such as sample, probability measure, expectation,

variance, etc, with an asterisk �.

3.1 BOOTSTRAP ALGORITHM

The RBB resampling is conducted through the following algorithm: First, we de�ne the residuals using

the estimators �̂i; 
̂i; i = 1; 2 in (6) as

ût = �yt � �̂1yt�11 fyt�1 � 
̂1g � �̂2yt�11 fyt�1 > 
̂2g ; t = 2; : : : ; n; (10)

and then calculate centered residuals

~ut = ût �
1

n� b

n�bX
i=1

1

b

bX
j=1

ûi+j ; t = 2; : : : ; n: (11)

The centering here appears crucial to a valid bootstrap approximation, since ût in (10) does not have

mean zero while ut has mean zero. However, the centering in (11) is di¤erent from that of Paparoditis

and Politis (2003), who adopt a simple demeaning.

Second, we resample ~ut by the overlapping blocking scheme of Künsch (1989) and integrate the

resampled ~u0ts to get an integrated process. Speci�cally, for a positive integer b (< n) ; k = [(n� 1) =b]

and l = kb+ 1; a bootstrap pseudo-series y�1 (= y1) ; : : : ; y
�
l is constructed as follows

y�t = y
�
t�1 + ~uim+s; t = 2; : : : ; l;

where m = [(t� 2) =b] ; s = t�mb� 1 and i0; i1; : : : ; ik�1 are random variables drawn i.i.d. uniform on

the set f1; 2; : : : ; n� bg :
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Third, we compute the pseudo-statistic W �
l using the generated bootstrap sample y�1 ; : : : ; y

�
l as

de�ned in (7) : Repeating the second and third steps su¢ ciently many times, we can obtain the empirical

quantiles of the bootstrap statistic W �
l :

The centering (11) is commonly observed in the standard block bootstrap literature because the

block bootstrapped series is not stationary, even in the �rst moment. It ensures that the expectation

(based on the bootstrap distribution) of the sample mean of �y�t ; not of �y
�
t itself, is zero. Hall,

Horowitz, and Jing (1995) show that the centering (11) accelerates the convergence of the estimation

error of the block bootstrap in case of a sample mean statistic with stationary data. This higher order

property is, however, unclear in our case, in which an integration is involved.

3.2 CONSISTENCY OF THE RBB

In this subsection, we show that the bootstrap statistic W �
l converges to the proper limit distribution

de�ned in Theorem 3. Since the distribution of the statistic W �
l depends on each realization of fytg ;

we de�ne the following notation:

T �n ) T in P,

meaning that the distance between the law of a statistic T �n based on the bootstrap sample and that

of a random measure T tends to zero in probability for any distance metrizing weak convergence (see

Paparoditis and Politis (2003)).

First, we establish an invariance principle for our bootstrap. De�ne a standardized partial sum

process fS�l (r) ; 0 � r � 1g by

S�l (r) =
1p
l!�

j�1X
t=1

u�t for
j � 1
l

� r < j

l
(j = 2; : : : ; l)

=
1p
l!�

lX
t=1

u�t for r = 1;

where u�1 = y
�
1 ; u

�
t = y

�
t � y�t�1 for t = 2; 3; : : : ; l and !�

2

= var�
�
l�1=2

Pl
j=2 u

�
j

�
: Due to the fast rate

of convergence of �̂0is, it can be shown that the partial sum process of the resampled centered residuals

(11) is asymptotically equivalent to that of the resampled futg : The invariance principle for the latter

is derived in Paparoditis and Politis (2003). Let W denote a standard Brownian motion. Then we have

the following invariance principle.
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Theorem 4 Suppose that Assumption 1 holds. If b!1 such that b=
p
n! 0 as n!1; then

S�l (r))W (r) in P,

on [0; 1] :

Next, we establish the convergence of the stochastic integral for the RBB, i.e., a bootstrap version

of Theorem 2. Without loss of generality, assume u�t = 0 if t > l: Let u�t = "�t �
�
��t � ��t�1

�
where

"�t =
P1

j=0

�
E�tu

�
t+j � E�t�1u�t+j

�
and ��t =

P1
j=1E

�
tu
�
t+j : Recalling that u

�
t = ~uim+s; we have

E�t u
�
t+j =

�
u�t+j ; if j � b� s
E�u�t+j ; o/w,

;

so that

"�t =

� Pb�1
j=0 u

�
t+j ; if s = 1;

0; o/w,
; and ��t =

b�sX
j=1

u�t+j ;

since
Pb

j=1E
�u�t+j = 0 for any t � 2: Note that "�t is, in fact, an independent resampling of the sums

of blocks. Based on this decomposition, we derive the following convergence of the stochastic integral

for our RBB.

Theorem 5 Suppose that Assumption 1 holds. If b!1 such that b=
p
n! 0 as n!1; then

(i) l�1�k=2
lX

t=2

y�
k

t�11
�
y�t�1 � �

	
)

Z 1

0

Bk1 fB � 0g in P,

(ii) l�1
lX

t=2

y�t�11
�
y�t�1 � �

	
u�t )

Z 1

0

B1 fB � 0g dB + �
Z 1

0

1 fB � 0g in P.

on �:

The consistency of the RBB of Wn follows.

Theorem 6 Suppose that Assumption 1 holds. If b!1 such that b=
p
n! 0 as n!1; then

W �
n )

�
�2 � g0pG�1p gp

��1 �
Ap;L Ap;U

� R 1
0
�B2L �

R 1
0
�BL �BU

�
R 1
0
�BL �BU

R 1
0
�B2U

!�1�
Ap;L
Ap;U

�
in P,

on S.
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4 MONTE CARLO SIMULATION

This section examines the �nite sample performance of the RBB of Wn, compared to that of the

conventional ADF test. For the sake of fair comparison, we also apply RBB to the conventional ADF

test as explained in Paparoditis and Politis (2003). Due to the heavy burden of computation, the

number of simulation repetitions and of bootstrap iterations is set at 200 in the following computations.

Several details remain to be determined in order to implement the RBB in practice. One is the

selection of the block length b and the lag order p: In this experiment we try several values of b and

p to see how dependent the performance of the RBB is on those choices. We do not attempt a data-

dependent method. Another is the matter of how to set the parameter space S. Typically, we construct

the set S in the form of an interval, such as [��
; �
] ; where �
 is a sample quantile of jytj : Since �
 should

be bounded and, fytg is an integrated process, we need to use lower and lower quantiles as the sample

size increases. In practice, however, this argument does not answer the question of which quantile is

optimal. In this regard, the bootstrap-based inference is expected to have some advantage over the

asymptotics based inference, since the dependence on the particular choice of quantile is replicated by

bootstrap.

In this experiment, we let �
 = maxt�n jyt�1j due to the small sample size, and then compute a

bootstrap statistic W �
l ; taking supremum of W �

l (
) over the set(

1; 
2 2 [��
; �
] ; j

nX
t=2

1
�
y�t�1 � 
1

	
� m and

nX
t=2

1
�
y�t�1 > 
2

	
� m;

)
: (12)

As mentioned above, �
 could be other quantiles, and the choice of quantile does not matter much in

RBB, as long as �
 is not too low a quantile. The restriction in (12) is to guarantee that the regime-

speci�c parameters �0is are estimated properly; however, the constraint (12) is not binding in large

samples because of the recursion property of the Brownian motion. The number m is set at 10 in our

experiment.

We generate data from the following process:

�yt = �yt�11 fjyt�1j > 
g+ ut (13)

ut = �ut�1 + "t + �"t�1

where f"tg follows iid standard normal distributions. As is common in the conventional unit root testing

11



(�; �) (0; 0) (�:5; 0) (:5; 0) (0;�:5) (0; :5)
ADF b = 6 p = 3 .050 .065 .075 .085 .050

p = 6 .030 .065 .060 .045 .050
b = 8 p = 3 .065 .065 .060 .080 .050

p = 6 .075 .075 .070 .060 .050
Wn b = 6 p = 3 .040 .065 .070 .080 .075

p = 6 .055 .055 .090 .040 .060
b = 8 p = 3 .080 .050 .060 .105 .100

p = 6 .085 .035 .070 .065 .095
Note: n = 100: Nominal size 5%: RBB-based inference.

Table 1: Size of unit root tests

(�; �) (0; 0) (�:5; 0) (:5; 0) (0;�:5) (0; :5)
n : 100 ADF b = 6 
 = 4 .140 .115 .195 .125 .190


 = 8 .110 .080 .145 .110 .105
Wn b = 6 
 = 4 .165 .140 .190 .115 .205


 = 8 .195 .070 .195 .095 .180
n : 250 ADF b = 6 
 = 4 .380 .270 .755 .305 .745


 = 8 .140 .105 .230 .140 .270
b = 10 
 = 4 .415 .245 .730 .295 .700


 = 8 .200 .125 .260 .185 .225
Wn b = 6 
 = 4 .715 .460 .735 .425 .765


 = 8 .475 .250 .695 .145 .665
b = 10 
 = 4 .725 .490 .645 .460 .740


 = 8 .435 .245 .700 .250 .720
Note: Nominal size 5%: p = 3: RBB-based inference.

Table 2: Power of unit root tests

literature, we consider the following combination of (�; �) :

(0; 0) ; (�0:5; 0) ; (0:5; 0) ; (0;�0:5) ; and (0; 0:5) :

When � is not zero, we set the threshold parameter 
 as 4 or 8: As the parameter 
 increases, the

no-adjustment region becomes larger, which may have an in�uence on the power of the tests.

We �rst study the size of nominal 5% tests. The data are simulated from (13) with � = 0 and with

the sample size n = 100: Note that there is no threshold e¤ect if � = 0: We choose the block length

b = 6; 8 and the lag order p = 3; 6: The rejection frequencies are reported in Table 1, which shows that

both the ADF and Wn tests have reasonable size for most error types, even in this small sample size.

One exception may be that Wn slightly over-rejects when the error ut has a MA component, b = 8 and

p = 3. It is di¢ cult to �nd any dependence structure of rejection on the block length b or the lag order

p:

12



Next, we examine the power properties of the tests. Let � = �0:1 and let 
 equal either 4 or 8: We

also consider two di¤erent sample sizes of 100 and 250. The tests are the same as before except that the

lag order p is �xed at 3: The block length b is 6 at the sample size 100; and both 6 and 10 at the sample

size 250. Table 2 reports the simulation results. Across most parametrizations, Wn has better power

than ADF, which can be seen more clearly as the sample size n increases from 100 to 250: Especially

when n = 250 and 
 = 8; the rejection frequencies ofWn are about two or three times higher than those

of ADF, regardless of the block length: We can also �nd that the increase of the threshold parameter


 results in the decrease of power for both the ADF and Wn tests, more or less. This drop of power

is natural in the sense that the higher 
 means the broader no-adjustment region. Yet, this change in


 deteriorates ADF much more than it does Wn: For example, see the case with (�; �) = (0; 0) ; (0:5; 0)

and (0; 0:5) when n = 250: Another feature of the simulation results is that both tests have relatively

low power when the error ut has a negative AR or MA component. This is due to the fact that the

proportion of the no-adjustment region is higher for a given 
 in those cases than in the other cases.

5 AN EMPIRICAL ILLUSTRATION

We investigate the law of one price (LOP) hypothesis amongst used car markets in the US. US Bureau

of Labor Statistics Monthly Consumer Price Indexes of 29 di¤erent locations3 are used for the period of

December 1986-June 1996 (115 observations). This data set is the same as the one used in Lo and Zivot

(2001) and in Seo (2003). Like these researchers, 28 bivariate systems of log prices are constructed with

a benchmark city, New Orleans.

We perform several di¤erent cointegration tests using the cointegrating vector (1;�1)0 implied by the

LOP. We compare the tests developed for threshold cointegration with those developed for conventional

cointegration. In the univariate framework, we compare the RBB of the Wald statistic Wn developed

in this paper to that of the conventional ADF. In the multivariate framework, the supW test of Seo

(2003) is compared with the Wald test by Horvath and Watson (1995) (HW). In order to compute the

p-values for the supW statistic, we follow the residual-based bootstrap developed in Seo (2003). All

the bootstrap p-values are computed with 500 replications. For the lag order selection, the Schwarz

3Cities Abbv. : 1. Anchorage AN, 2. Atlanta AT, 3. Baltimore BT, 4. Boston BO, 5. Bu¤alo BU, 6. Chicago CH, 7.
Cleveland CL, 8. Cincinnati CI, 9. Dallas DA, 10. Denver DN, 11. Detroit DT, 12. Honolulu HO, 13. Houston HS, 14.
Kansas City KC, 15. Los Angeles LA, 16. Miami MA, 17. Milwaukee MI, 18. Minneapolis MS, 19. New York NY, 20.
Philadelphia PH, 21. Pittsburgh PI, 22. Portland PO, 23. San Diego SD, 24. San Francisco SF, 25. Seattle SE, 26. St.
Louis SL, 27. Tampa Bay TA, 28. Washington D.C. DC, Benchmark: New Orleans NO
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Cities supW(p-value) HW(10%:8.3) Wn(p-value) ADF(p-value)
NY 0.009 1.214 0.96 0.9
PH 0.661 1.109 0.89 0.87
CH 0.22 0.285 0.85 0.96
LA 0.372 1.339 0.91 0.88
SF 0.7 1.549 0.62 0.89
Bo 0.293 0.7 0.93 1
Cl 0.432 5.371 0.32 0.56
Ci 0.71 2.017 0.03 1
DC 0.839 0.822 0.67 0.9
Ba 0.061 3.621 0.44 0.43
SL 0.087 0.03 0.43 0.97
MS 0.567 0.062 0.28 0.98
Ma 0.052 0.541 0.29 0.85
SD 0.299 3.789 0.41 0.37
Po 0.515 1.572 0.06 0.93
BU 0.038 0.707 0.77 0.98
DA 0.034 0.264 0.01 0.9
AT 0.064 7.714 0.27 0.5
AN 0.091 1.204 0.47 1
DN 0.044 2.838 0.17 0.1
DT 0.536 0.342 0.89 0.92
MI 0.677 2.86 0.08 0.88
KC 0.299 0.507 0.13 0.92
HS 0.506 0.511 0.85 0.88
HO 0.155 1.061 0.5 0.83
PI 0.888 0.575 0.01 0.95
TA 0.556 2.714 0.57 0.57
SE 0.854 0.416 0.23 0.9

Table 3: Tests for LOP in used car markets from 29 di¤erent locations (28 bivariate systems with a
benchmark city, New Orleans)

Criterion (BIC) is used based on linear models for comparison.

Table 3 reports the results of these four tests. In the case of the conventional methods, HW and

ADF, it is very hard to �nd evidence for the LOP. Only two systems are rejected for the LOP by those

tests, on the basis of which Lo and Zivot (2001) argue that there is no LOP in the used car markets,

since used cars are more heterogeneous than other categories that they consider, such as meats, fresh

fruits and vegetables. Yet, it is unclear why used cars are more heterogeneous than meats or vegetables

across locations. In contrast to those conventional tests, the RBB of Wn or the supW test provides

much more evidence for the LOP in the used car markets. Thirteen systems are rejected for the LOP.

These di¤erent testing results indicate that we need be more cautious about the used car markets.

An important feature of the used car markets is the presence of uncertainty of quality, which has
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Used car market New car market
SupW 9 14
Wn 5 10

either SupW or Wn 13 17
HW 1 17
ADF 1 14

either HW or ADF 2 18
# of rejections of no cointegration out of 28 systems at 10% size

Table 4: LOP in used car and new car market

generated a large empirical debate as to whether the used car markets are e¢ cient or not. An implication

of the debate for the study of the LOP is that the uncertainty acts as a kind of transaction barrier

in the used car markets. In other words, in the band type threshold cointegration models, a longer

no-adjustment period is expected in used car markets than in, for example, new car markets. We make

a simple comparison between the two markets by applying all four tests to the new car markets. The

results are summarized in Table 4. In contrast to the testing results of the used car markets, that of the

new car markets do not seem to depend on whether we use the threshold models or the linear models.

This may imply that the nominal transaction costs are not signi�cant enough to a¤ect the power of

the conventional tests, and that transaction barriers, such as the uncertainty, can be more important

in analysis of the LOP in the used car markets. Arguably, a signi�cant power loss of the conventional

linear cointegration tests is likely, and so those tests can be quite misleading.

6 Conclusion

In this paper, we have developed the Wald statistic and the RBB to test the null hypothesis of a unit

root in the threshold autoregression. From our simulation, the RBB of the Wald statistic outperforms

the ADF test when the alternative is a stationary threshold autoregression, and vice versa when it is

a stationary linear process. In practice, it will be prudent to apply both methods and to interpret the

rejection by any of the two tests as the evidence for the rejection of the presence of unit root in the

process.

An important avenue of future research will be the following two: First, the intercept also plays an

important role in determining the stationarity of a threshold process. We did not pursue this issue in

this paper, but it should be done to fully understand the stationarity of the process. Second, there is

15



another hypothesis of interest in which the process is a nonstationary threshold process4 . It is much

more involved to develop a test to investigate this null hypothesis, since we do not have any asymptotic

theory applicable to the process under this null.

A Proof of Theorems

We �rst prove the following lemma, which will be repeatedly used to prove main theorems. It is more

general than required and holds for any bounded intervals.

Lemma 7 Suppose fat; btg is strictly stationary with Ejatj <1 and Ejbtj <1; and fwtg is uniformly
integrable. Then,

E

 
1

n

nX
t=1

j1 fat < yt < btgwtj
!
! 0:

Proof of Lemma Fix " > 0:For any c > 0; we have

1

n

nX
t=1

E j1 fat < yt < btgwtj

� c
1

n

nX
t=1

E1 fat < yt < btg+ sup
t
E [jwtj 1 fjwtj > cg]

First, due to the uniform integrability of fwtg ; there is a constant c s.t. suptE[jwtj 1 fjwtj > cg] < "=2:
Second, for any M > 0;

E1 fat < yt < btg � E1 fjytj < Mg+ Pr fat < �M or bt > Mg ; (14)

and there exists N (c) s.t., for all n > N (c) and for small enough � > 0;

1

n

nX
t=1

E1 fjytj < Mg =

Z 1

0

E1
�����y[nr]p

n

���� < Mp
n

�
�
Z 1

0

E1
�����y[nr]p

n

���� < �� (15)

�
Z 1

0

E1 fjB (r)j < �g+ "

8c
� "

4c
;

by the weak convergence of y[nr]p
n
and by the dominated convergence theorem. Furthermore, we can

chooseM large enough so that supt Pr fat < �M or bt > Mg < "
4c by the strict stationarity of fat; btg :Thus,

it follows from (14) and (15) that

c
1

n

nX
t=1

E1 fat < yt < btg �
"

2

for all n > N (c) : Since " is arbitrary, the proof is complete. �

Remark 1 The uniform integrability is quite general in that it includes any strictly stationary process

with a �nite �rst moment, any weakly stationary with a �nite second moment.
4That is, one of the �i; i = 1; 2 is nonzero, but the other is zero. Caner and Hansen (2001) call this a partial unit root

process.
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A.1 Proof of Theorem 1

For simplicity of exposition, assume � � 0 and let �� = max f� 2 �g : Since ykt 1 f0 < yt � �g �
��
k
1
�
0 < yt � ��

	
; we note that

sup
0�����

����� 1

n1+k=2

nX
t=1

ykt 1 f0 < yt � �gwt

����� � ��
k

nk=2
1

n

nX
t=1

��1�0 < yt � ��	wt�� ; (16)

which is op (1) due to Lemma 7. Therefore, it remains to show the convergence of

1

n1+k=2

nX
t=1

ykt 1 fyt � 0gwt:

When k > 0; theorem 3.3 of Hansen (1992) applies directly to get the results. When k = 0; however,

the transformation is not continuous and the theorem is not applicable.

Let vt = wt � �w and 1� (y) = 1 fy � 0g+
�
1� 1

� y
�
1 f0 < y � �g for some � > 0; and write that

1

n

nX
t=1

1 fyt � 0g vt =
1

n

nX
t=1

1� (yt) vt �
1

n

nX
t=1

�
1� yt

�

�
1 f0 < yt � �g vt:

The �rst term on the right hand side is op (1) due to Theorem 3.3 of Hansen (1992). Noting that����1� yt
�

�
1 f0 < yt � �g vt

��� � j1 f0 < yt � �g vtj ;
we conclude the second term is also op (1) by Lemma 7. Finally, it follows from Theorem 3.1 of Park

and Phillips (2001) that

�w
1

n

nX
t=1

1 fyt � 0g ) �w

Z 1

0

1 fB � 0g :

�

A.2 Proof of Theorem 2

Due to (16) ; we only have to develop the convergence of 1
n

Pn
t=2 yt�11 fyt�1 � 0gut. Based on (8) ;

write
1

n

nX
t=2

yt�11 fyt�1 � 0gut =
1

n

nX
t=2

yt�11 fyt�1 � 0g "t + Ln +R1n +R2n;

where

Ln =
1

n

nX
t=2

ut�t � 1 fyt�1 � 0g 1 fyt � 0g

R1n =
1

n
yn�11 fyn�1 � 0g �n

R2n =
1

n

nX
t=2

(yt1 fyt � 0 < yt�1g+ yt�11 fyt�1 � 0 < ytg) �t:
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Since the transformation s1 fs � 0g is continuous and f"tgnt=1 is a martingale di¤erence sequence,
it follows from Kurtz and Protter (1991) that

1

n

nX
t=2

yt�11 fyt�1 � 0g "t )
Z 1

0

B � 1 fB � 0g dB:

Next, since yt = yt�1 + ut and ut�t is uniformly integrable, we note that, by Lemma 7,

1

n

nX
t=2

ut�t � 1 fyt�1 � 0g 1 fyt � 0g �
1

n

nX
t=2

ut�t � 1 fyt � 0g

=
1

n

nX
t=2

ut�t � 1 fyt�1 + ut � 0 < yt�1g

= op (1) :

Then, since ut�t � � is a uniformly integrable L1-mixingale, it follows from Theorem 1 that

Ln =
1

n

nX
t=2

ut�t � 1 fyt � 0g+ op (1)) �

Z 1

0

1 fB � 0g :

Finally, we show that R1n and R2n are op (1) : First, note that

sup
t�n

1

n

��yt1 fyt � 0g �t+1�� � sup
t�n

1p
n
jytj sup

t�n

1p
n

���t+1��
= Op (1) op (1) :

Second, by replacing yt by yt�1 + ut; we have

yt1 fyt � 0 < yt�1g+ yt�11 fyt�1 � 0 < ytg

= yt�1 (1 f0 < yt�1 � �utg+ 1 f�ut < yt�1 � 0g) + ut1 f0 < yt�1 � �utg ;

and, therefore,

jR2nj � 1

n

nX
t=2

jyt�1�t (1 f0 < yt�1 � �utg+ 1 f�ut < yt�1 � 0g)j

+
1

n

nX
t=2

jut�t1 f0 < yt�1 � �utgj

� 1

n

nX
t=2

(jyt�1�tj+ jut�tj) 1 fjyt�1j � jutjg

� 1

n

nX
t=2

2 jut�tj 1 fjyt�1j � jutjg ; (17)

which is op (1) by Lemma 7. �
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A.3 Proof of Theorem 3

We introduce some notations to ease our exposition. Let �ut = ut � 1
n

Pn
t=p+2 ut; and

x1t =

�
yt�11 fyt�1 � 
1g � 1

n

Pn
t=p+2 yt�11 fyt�1 � 
1g

yt�11 fyt�1 > 
2g � 1
n

Pn
t=p+2 yt�11 fyt�1 > 
2g

�
;

x2t =

 
ut�1 �

1

n

n�1X
t=p+1

ut; � � � ; ut�p �
1

n

n�pX
t=2

ut

!0
;

xt = (x01t; x
0
2t)

0
:

Here, the dependence of x1t and xt on 
 is suppressed. We �rst derive limit distributions of �̂
0
is: Under

the null,

�
n�̂1 (
)
n�̂2 (
)

�
=

0@ 1

n2

nX
t=p+2

x1tx
0
1t �

1

n
� 1
n

nX
t=p+2

x1tx
0
2t

 
1

n

nX
t=p+2

x2tx
0
2t

!�1
1

n

nX
t=p+2

x2tx
0
1t

1A�1

�

0@ 1
n

nX
t=p+2

x1t�ut �
1

n

nX
t=p+2

x1tx
0
2t

 
1

n

nX
t=p+2

x2tx
0
2t

!�1
1

n

nX
t=p+2

x2t�ut

1A
Similarly in (16) ; we have,

sup
�

1

n

nX
t=p+2

jyt�11 fyt�1 � �g � yt�11 fyt�1 � 0gj = op (1) ;

where the supremum is taken over a compact set, and, by the continuous mapping theorem,

1

n
p
n

nX
t=p+2

yt�11 fyt�1 � 0g )
Z 1

0

B1 fB � 0g :

Therefore,
1

n2

nX
t=p+2

x1tx
0
1t )

 R 1
0
�B2L �

R 1
0
�BL �BU

�
R 1
0
�BL �BU

R 1
0
�B2U

!
; (18)

where �BL = B1 fB � 0g �
R 1
0
B1 fB � 0g ; �BU = B1 fB > 0g �

R 1
0
B1 fB > 0g : Furthermore, by The-

orem 2,
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1

n

nX
t=p+2

x1t�ut

=

0BB@
1
n

nP
t=p+2

yt�11 fyt�1 � 
1gut

1
n

nP
t=p+2

yt�11 fyt�1 > 
2gut

1CCA�
0BB@

1
n
p
n

nP
t=p+2

yt�11 fyt�1 � 
1g 1p
n

nP
t=p+2

ut

1
n
p
n

nP
t=p+2

yt�11 fyt�1 > 
2g 1p
n

nP
t=p+2

ut

1CCA
)

 R 1
0
B1 fB � 0g dB + �

R 1
0
1 fB � 0g �B (1)

R 1
0
B1 fB � 0gR 1

0
B1 fB > 0g dB + �

R 1
0
1 fB > 0g �B (1)

R 1
0
B1 fB > 0g

!

=

 R 1
0
�BLdB + �

R 1
0
1 fB � 0gR 1

0
�BUdB + �

R 1
0
1 fB > 0g

!
; (19)

on S.
Next, we show that

1

n

nX
t=p+2

yt�11 fyt�1 � 
1gut�p )
Z 1

0

B1 fB � 0g dB + (�+ �rp)
Z 1

0

1 fB � 0g ; (20)

where �rp = r (0) + r (1) � � �+ r (p� 1) : Since

yt�11 fyt�1 � 
1gut�p = yt�p�11 fyt�p�1 � 
1gut�p

+(yt�11 fyt�1 � 
1g � yt�p�11 fyt�p�1 � 
1g)ut�p

and
1

n

nX
t=p+2

yt�p�11 fyt�p�1 � 
1gut�p )
Z 1

0

B1 fB � 0g dB + �
Z 1

0

1 fB � 0g

from Theorem 2, it remains to show that

1

n

nX
t=p+2

(yt�11 fyt�1 � 
1g � yt�p�11 fyt�p�1 � 
1g)ut�p ) �rp

Z 1

0

1 fB � 0g :

To do so, note that

yt�11 fyt�1 � 
1g � yt�p�11 fyt�p�1 � 
1g

= utp1 fyt�1 � 
1g+ yt�p�1 (1 f
1 < yt�p�1 � 
1 � utpg � 1 f
1 � utp < yt�p�1 � 
1g) ;

where utp = ut�1 + � � �+ ut�p = yt�1 � yt�p�1: Next, by Lemma 7, we have

1

n

nX
t=p+2

jyt�p�1 (1 f
1 < yt�p�1 � 
1 � utpg � 1 f
1 � utp < yt�p�1 � 
1g)ut�pj

� 1

n

nX
t=p+2

(j�
j+ jutpj) jut�pj 1 fjyt�p�1j � j�
j+ jutpjg !p 0; (21)
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and by Theorem 1,
1

n

nX
t=p+2

utput�p1 fyt�1 � 
1g ) �rp

Z 1

0

1 fB � 0g : (22)

Then Theorem 2, (21) ; and (22) establish the convergence in (20) ; which in turn yields

1

n

nX
t=p+2

x1tx
0
2t )

 R 1
0
�BLdB + (�+ �r1)

R 1
0
1 fB � 0g ; � � �

R 1
0
�BLdB + (�+ �rp)

R 1
0
1 fB � 0gR 1

0
�BUdB + (�+ �r1)

R 1
0
1 fB > 0g ; � � �

R 1
0
�BUdB + (�+ �rp)

R 1
0
1 fB > 0g

!
;

on S. Finally, it follows from the law of large numbers that

1

n

nX
t=p+2

x2tx
0
2t ) Gp and

1

n

nX
t=p+2

x2t�ut ) gp; (23)

which completes the proof of part (i) :

�

A.3.1 Limit distribution of Wn

We �rst derive the limit of �̂2 (
) : De�ne �n as a p + 2 dimensional diagnal matrix whose �rst two

elements are n�1 and the others are n�1=2. Then, the convergences (18) ; (19) ; (20) and (23) yield

�̂2 (
) =
1

n

nX
t=p+2

�u2t �
 
n�1=2�n

nX
t=p+2

xt�ut

!0 
�n

nX
t=p+2

xtx
0
t�n

!�1 
n�1=2�n

nX
t=p+2

xt�ut

!
) �2 � g0pG�1p gp: (24)

Finally, from (18) ; (??) and (24) ; we conclude (ii) :

�

A.4 Proof of Theorem 4

LetMr = [([lr]� 2) =b] andB = min fb; [lr]�mb� 1g : Then, 1p
l

P[lr]
t=1 u

�
t can be written as

1p
l

PMr

m=0

PB
j=1 ~uim+j ,

and it is su¢ cient to consider 1p
l

PMr

m=0

Pb
j=1 ~uim+j ; as demonstrated in Theorem 3.1 (see (8:1) and

the following sentence) of Paparoditis and Politis (2003) (hereafter PP).
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Since 1
n�b

Pn�b
i=1

Pb
j=1 ui+j =

Pb
j=1E

�uim+j ; we can write

1p
l

MrX
m=0

bX
j=1

~uim+j =
1p
l

MrX
m=0

bX
j=1

 
ûim+j �

1

n� b

n�bX
i=1

1

b

bX
s=1

ûi+s

!

=
1p
l

MrX
m=0

0@ bX
j=1

uim+j �
bX
j=1

E�uim+j

1A
��̂1

1p
l

MrX
m=0

0@ bX
j=1

yim+j�11 fyim+j�1 � 
1g �
bX
j=1

E�yim+j1 fyim+j � 
1g

1A
��̂2

1p
l

MrX
m=0

0@ bX
j=1

yim+j�11 fyim+j�1 > 
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E�yim+j1 fyim+j > 
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1A ;
the last three terms of which are denoted as I1; I2; and I3. Note that

E�

24 bX
j=1

yim+j�11 fyim+j�1 � 
1g

35 =
1

n� b

n�bX
t=1

bX
j=1

yt+j�11 fyt+j�1 � 
1g

� b sup
t�n

jytj = Op
�
b
p
n
�
; (25)

and

E�

24 bX
j=1

yim+j�11 fyim+j�1 � 
1g

352 =
1

n� b

n�bX
t=1

24 bX
j=1

yt+j�11 fyt+j�1 � 
1g

352

�
�
b sup
t�n

jytj
�2
= Op

�
b2n
�
; (26)

which in turn establish

E�

0@ 1p
l

MrX
m=0

bX
j=1

0@yim+j�11 fyim+j�1 � 
1g � bX
j=1

E�yim+j1 fyim+j � 
1g

1A1A2

= Op (bn) ;

uniformly in 
1 2 S and r 2 [0; 1]. Therefore, E�I22 = Op
�
bn�1

�
; and, similarly,E�I23 = Op

�
bn�1

�
.

(This also proves Lemma 8 below).

Then, the convergence of 1p
l

P[lr]
t=1 u

�
t is completely determined by I1: However, I1 is based on the

resampling of u0ts and its convergence to the Brownian motion is already developed in Theorem 3.1 of

PP, and the convergence of !� is provided in the following lemma. �
Similarly as in the above proof, the following lemma is straightforward from Lemma 8.1 of PP:

Lemma 8 Under the assumptions of Theorem 4 and as n!1; we have

(i) l�1
Pl

j=1 u
�
j !p 0;

(ii) !�
2

= var�
�
l�1=2

Pl
j=2 u

�
j

�
!p !2;

(iii) ��
2

= l�1
Pl

j=1 u
�2
j !p �2:
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A.5 Proof of Theorem 5

For part (i) ; note that, for any � 2 �; �� = max fj�j ; � 2 �g ;

l�2

�����
lX

t=2

y�
2
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y�t�1 � �
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y�t�1 � 0

	�����
� l�2

�����
lX

t=2

y�
2
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���y�t�1�� � ��	

����� � l�1�� ! 0:

Then, it follows from the continuous mapping theorem and Theorem 4 that

l�2
lX

t=2

y�
2

t�11
�
y�t�1 � 0

	
)
Z 1

0

B21 fB � 0g :

For part (ii) ; without loss of generality, assume u�t = 0 if t > l: Let u
�
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�
t �
�
��t � ��t�1

�
where "�t =P1
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�
E�tu
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t+j � E�t�1u�t+j

�
and ��t =

P1
j=1E

�
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�
t+j : Recalling that u

�
t = ~uim+s where m = [(t� 2) =b]

and s = t�mb� 1; we have
E�t u

�
t+j =

�
u�t+j ; if j � b� s
E�u�t+j ; o/w,

and thus,
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since
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�u�t+j = 0 for any t � 2:
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�
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where L�l =
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lX
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t � 1
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y�t 1

�
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�
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To show that R�l = op (1) uniformly in � 2 �; write that

u�t �
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bX
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Note that (29) and (30) are op (1) uniformly in t and 
 as in the Proof of Theorem 4. Also note that
1

n�b
Pn�b

g=1
1
b

Pb
v=1 uv+g = Op

�
1p
n

�
(see Künsch (1989), p. 1227). Then, like (17) ; we have

jR�l j � 1
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� 1
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�1
���y�t�1�� � �� + ju�t j	 :

Since futg is independent of fimg,
Pb

j=s+1 uim+suim+j is uniformly integrable by Theorem 3.2 of Hansen

(1992), not to mention
Pb

j=s+1 uim+j and uim+s. And, write, for any M1 > 0;

1

l

lX
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l

lX
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Then it follows from Theorem 4 and (15) in the proof of Lemma 7 that the �rst term in the right hand

side of (32) is o (1) : Next, since

sup
x

��P � fu�t � xg � P � �u�j � x	�� � 2b=n
for any j and t; we observe that
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Furthermore, since futg is strictly stationary and independent of fimg ; and u�2 = ui1 + op (1) ; for any
" > 0; there is M1 satisfying

E [P � fu�2 > M1g] � P fui1 > M1 � "=2g+ "=2 < ";
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which in turn yield that the second term in the right hand side of (32) is also o (1) : Finally, we conclude

that jR�l j = op (1) by the uniform integrability and the observation that (32) is negligible (as in the

proof of Lemma 7).

Next, we have

E�u�t �
�
t =

b�sX
j=1

E�~uim+s~uim+s+j !p �;

by a similar argument in Lemma 8. Then, by the uniform integrability above, Theorem 4, and the same

argument as in the proof of Theorem 1 we can conclude that the limit of L�l is �
R 1
0
1 fB � 0g :

Finally, for the convergence of the �rst term in (27) ; write that
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�
s =

1p
b
y�mb+1: Note that fV �mg is an inde-

pendent identically distributed sequence under the bootstrap distribution, since fV �mg is a normalized
sum of each block that is resampled independently. And its mean is zero and its variance is Op (1) as

shown in Lemma 8. Furthermore,
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1

k

k�1X
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0 < Y �m�1 � ��=

p
b
o
E� jV �mj = op (1) ;

and the transformation s1 fs � 0g is continuous. Therefore, the convergence follows from the invariance
principle in Theorem 4, the continuous mapping theorem, and the convergence to stochastic integral of

Kurtz and Protter (1991). �

A.6 Proof of Theorem 6

Since we already have the invariance principle for our RBB and the bootstrap version of Theorem 2 in

hand, the proof of this Theorem is straightforward following the same line of argument of the proof of

Theorem 3. �
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Abstract 
 

There is a growing literature on unit root testing in threshold autoregressive models. 
This paper makes two contributions to the literature. First, an asymptotic theory is 
developed for unit root testing in a threshold autoregression, in which the errors are 
allowed to be dependent and heterogeneous, and the lagged level of the dependent 
variable is employed as the threshold variable. The asymptotic distribution of the 
proposed Wald test is non-standard and depends on nuisance parameters. Second, 
the consistency of the proposed residual-based block bootstrap is established based 
on a newly developed asymptotic theory for this bootstrap. It is demonstrated by a 
set of Monte Carlo simulations that the Wald test exhibits considerable power gains 
over the ADF test that neglects threshold effects. The law of one price hypothesis is 
investigated among used car markets in the US. 
 
 
 
Keywords: Threshold autoregression; unit root test; threshold cointegration; 
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