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Abstract

This paper develops statistical methodology for semiparametric models for multiple time

series of possibly high dimension N . The objective is to obtain precise estimates of unknown

parameters (which characterize autocorrelations and cross-autocorrelations) without fully pa-

rameterizing other distributional features, while imposing a degree of parsimony to mitigate a

curse of dimensionality. The innovations vector is modelled as a linear transformation of in-

dependent but possibly non-identically distributed random variables, whose distributions are

nonparametric. In such circumstances, Gaussian pseudo-maximum likelihood estimates of the

parameters are typically
√
n-consistent, where n denotes series length, but asymptotically in-

effi cient unless the innovations are in fact Gaussian. Our parameter estimates, which we call

"adaptive", are asymptotically as first-order effi cient as maximum likelihood estimates based

on correctly-specified parametric innovations distributions. The adaptive estimates use non-

parametric estimates of score functions (of the elements of the underlying vector of independent

random varables) which involve truncated expansions in terms of basis functions; these have

advantages over the kernel-based score function estimates used in most of the adaptive estima-

tion literature. Our parameter estimates are also
√
n-consistent and asymptotically normal. A

Monte Carlo study of finite sample performance of the adaptive estimates, employing a variety

of parameterizations, distributions and choices of N , is reported.

Keywords and phrases. Multiple time series, independent component analysis, effi cient semi-

parametric estimation, adaptive estimation, stationary processes, forecast error.
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1. INTRODUCTION

In many substantive fields, such as in the natural, engineering and social sciences, regularly-spaced

time series observations are recorded on several related variables. For example macroeconomic data

may consist of quarterly observations on GDP, unemployment and interest rates, though in many

studies the number of variables of interest can be far reater than 3. It is generally desirable to treat

such observations as a single, multiple time series, rather than as individual series, because one may

expect there to be causal relations across the series or common effects, and forecasting of a given

series to be improved by using others. Whereas cross-sectional observations are often assumed to be

statistically independent, the likely temporal dependence in time series data raises the possibility of

non-instantaneous correlations, along with the instantaneous correlations possible with multivariate

cross-sectional data. The modelling of multiple time series typically entails features common across

two or more of the individual series, including common parameters, which can be more precisely

estimated if information from all the time series is combined. The estimated multivariate model

can then be used in forecasting.

The modelling and statistical analysis of multiple time series faces diffi culties that are significantly

greater than ones encountered in a univariate setting. Denote a multiple time series by xt, t = 1,

2, ..., n, where xt is an N × 1 vector. Though we shall proceed as if the xt are observable our

methods can be readily extended to situations in which the basic time series modelling problem

concerns unobservable errors in a location or more general linear or nonlinear regression model,

whence observable proxiues for these errors would be inserted in place of xt in our computing

formulae. It will be supposed that n is large relative to N, which is treated as fixed, but as

suggested above N can itself be large, and the larger it is the greater the impact on modelling and

subsequent statistical inference. For stationary series, an important class of dynamic models is

A (B; θ0)xt = et, t = 0,±1, ..., (1)

where B is the backshift operator, A (B; θ) is a known N ×N matrix function of B and the K × 1

vector θ, θ0 is an unknown K × 1 parameter vector while θ denotes any admissible value, and et is

a sequence of unobservable N × 1 vector random variables, independent across t, such that

E (et) = 0,

E
(
ete

T
t

)
= Ω0,

where Ω0 is an unknown N ×N positive definite matrix and T denotes transposition. In particular,
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we suppose the existence of a possibly infinite autoregressive representation,

A (B; θ) = IN −
∞∑
j=1

Aj (θ)Bj , (2)

where IN is the N ×N identity matrix and the Aj (θ) are given N ×N matrix functions of θ. In

the finite vector autoregression of order p, VAR(p), model we have Aj (θ) = 0, j > p, so

A (B; θ) = IN −
p∑
j=1

Aj (θ)Bj . (3)

However, (2) covers also stationary and invertible vector moving averages and autoregressive moving

averages, and indeed along with these short memory models it also covers ones with long memory

and negative dependence, such as fractional models. The need for a finite parameterization explains

the notational dependence of the Aj (θ) on θ in these latter models, where though the Aj (θ) decay

as j diverges, they never actually vanish.

The modelling of all elements of the Aj (θ) in terms of θ is important even in the VAR(p) (3). Here,

whereas in the univariate time series case N = 1, where unrestricted Aj (θ) (so there is identification

of each Aj (θ) with an element of θ) entails only K = p parameters describing temporal dependence,

when on the other hand N > 1, unrestricted matrices Aj (θ) give rise to K = N2p parameters.

The parameter dimension thus increases rapidly with N, presenting a ’curse of dimensionality’. For

multiple time series it is thus often important to consider parsimonious modelling of the Aj (θ) , a

possibility formally permitted by the notational dependence of the Aj (θ) on θ. For example, the

Aj (θ) can be chosen to be relatively sparse, with many a priori zero elements, even diagonal, for

example.

If et (and thus xt) is Gaussian, the distribution of et is entirely characterized by Ω0, and likewise

the joint distribution of xt, t = 1, 2, ..., n, is entirely characterized by θ0 and Ω0. Gaussian maximum

likelihood estimates of the latter parameters have been studied, being asymptotically effi cient under

additional regularity conditions. Such estimates are also of interest when Gaussianity is relaxed

to milder assumptions, on moments, when they are termed pseudo-maximum likelihood estimates.

In standard parameterizations, where θ0 does not overlap with Ω0, the (multivariate normal) limit

distribution of the estimate of θ0 is desirably the same irrespective of whether or not et is Gaussian.

However, asymptotic effi ciency is lost in the absence of Gaussianity.

There is thus interest in developing estimates of θ0 that are asymptotically effi cient in the presence

of vector et with possibly non-Gaussian distribution. Gaussian maximum likelihood asymptotic

theory extends relatively straightforwardly to non-Gaussian parametric distributions, but though
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obvious candidates for the latter, such as multivariate-t, present themselves, there is immense variety

in the possible choices, even relative to the univariate case N = 1, and often little basis for singling

out one, and moreover the consistency-robustness of Gaussian-based estimates to departures from

Gaussianity generally does not extend to non-Gaussian-based estimates. We can achieve the same

asymptotic effi ciency by what we call "adaptive" estimates, which do not require full parametric

distributional assumptions on et. Such a goal was achieved by Stone (1975) in the context of

location estimation in the setting of independent scalar observations, which was then extended by

Bickel (1982) to linear regression. Time series extensions were developed by Kreiss (1987), Drost

et al. (1997), Koul and Schick (1997), Robinson (2005), for example, again for N = 1. A principal

theme underlying these works is estimation of the score function of the independent innovations et,

that is, the negative of the ratio of the derivative of the probability density function of et to the

density itself. As is well known, estimation of such functions becomes problematic for vector random

variables, and to a rapidly increasing extent with increasing dimension, with decreasing precision in

the score function estimates, infecting the properties of the adaptive parameter estimates, even in

large samples.

This issue has long been recognised by the literature on independent component analysis (ICA),

see e.g. Hyvarinen, Karhunen and Oja (2001), Vlassis (2001), Bach and Jordan (2002), Hastie and

Tibshirani (2003), Samarov and Tsybakov (2004), Nascimento and Dias (2005), Chen and Bickel

(2005, 2006), Samworth and Yuan (2012). With respect to the independent vectors et, this assumes

the structure

et = M0εt, (4)

where M0 is an N ×N nonsingular mixing matrix and the elements of εt are mutually independent

zero-mean random variables. Some, but by no means all, of the literature, focusses on parametric

distributions for εt. Various estimation methods, algorithms, and theoretical results, appear in the

literature.

There is also a time series ICA literature, see eg Aires and Chedin (2000), Cheung and Xu (2001),

Lin et al (2007), Lu et al (2009), Chen et al (2011), Garcia-Ferrer et al (2011) . This focusses not

on (4) with (1) but on the structure

xt = M0ut, (5)

where the elements of the N×1 unobservable vector ut are mutually independent autocorrelated time

series. Here, the fundamental dynamics are modelled in a univariate way, and then instantaneously

mixed by the matrix M0.
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The modelling and motivation with respect to (5) differ from those with respect to combining (4)

with (1). It is the latter setup which suits our goal of obtaining effi cient estimates which avoid a

curse of dimensionality. Note that without further restrictions M0 is not identified, in particular

unless at most one element of εt is Gaussian, M0 is not identified even up to order and scaling.

To avoid identifiability problems we explicitly fix M0 to be the unique positive definite square root

of Ω0, so Ω0 = M2
0 , entailing Eεtε

T
t = IN , though there is no loss of generality in the Gaussian

case. Note too that a curse of dimensionality resides also in the fact that Ω0, and thus M0, have

potentially N (N + 1) /2 distinct unknown elements, which quantity again increases rapidly with N.

Thus, some a priori restrictions on Ω0 might be imposed, either directly or indirectly via M0.

Our adaptive parameter estimates, which employ nonparametric score function estimates using

truncated expansions in terms of specified basis functions, are described in the following section.

Section 3 imposes regularity conditions and describes the consequent asymptotic statistical proper-

ties of the parameter estimates, in particular asymptotic normality with
√
n rate and asymptotic

effi ciency. Section 4 reports a Monte Carlo study of finite sample behaviour, using a variety of pa-

rameterizations, distributions and choices of N , and examining relative mean squared error, relative

mean squared forecast error and interval estimation bases on our central limit theorem. Section 5

contains some final comments.

2. ADAPTIVE ESTIMATES

Our adaptive estimate of θ0, with its asymptotic effi ciemcy in the presence of unknown error

distributional form, is an approximate Gauss-Newton step from an initial
√
n−consistent estimate

of θ0. It is typical in the adaptive estimation literature to develop theory for such an estimate,

rather than for an implicitly-defined semiparametric maximum likelihood estimate, because, it has

the advantage of avoiding the initial consistency proof required in estabkishing a central limit theorm

for the latter. Consequently, the basic nonparametric building blocks are not densities but score

functions. Thus we require the elements of εt introduced in (4) to have differentiable probability

density functions. In general the score function of a vector random variable with differentiable

probability density function f (z) has column vector score function ψ (z) = −f ′ (z) /f (z) , where

f
′
(z) = (∂/∂z) f (z) . However, since the elements of εt are independent its vector score function

can be expressed in terms of scalar score functions. In particular, denoting by εit the ith element of

εt and by fi, f ′i respectively the probability density function of εit and its derivative for i = 1, ..., N,
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the score function of εit is

ψi (s) = −f
′

i (s) /fi (s) , (6)

for i = 1, ..., N, and the vector score function of εt is

ψ (z) = − (ψ1 (z1) , ..., ψN (zN ))
T
, (7)

where zi denotes the ith element of z. Thus, (4) enables us to deal with only univariate score

functions. It may be helpful to describe our construction of an adaptive esttimate and effi cient

inference in a step-by-step fashion, with discussion,

Step 1: innovation proxies. Estimation of the ψi (s) in (6) requires observable proxies for the εt.

For any admissible θ and any positive definite N ×N matrix M, define the N × 1 vectors

ε1 (θ,M) = M−1x1,

εt (θ,M) = M−1

(
xt −

t−1∑
j=1

Aj (θ)xt−j

)
, t = 2, ..., n. (8)

In general εt (θ0,M0) only approximates εt, due to the truncation of the infinite series in (2). In

the V AR (p) case (3) we have, however, εt (θ0,M0) = εt, t ≥ p+ 1, and here the practitioner might

prefer to take εt (θ,M) = 0, t ≤ p. Though εt has zero mean, demeaning the εt (θ,M) has been

found to improve finite sample properties, so we introduce

zt (θ,M) = εt (θ,M)− n−1
n∑
t=1

εt (θ,M) , t = 1, ..., n. (9)

Now denoting the ith element of zt (θ,M) by zit (θ,M) , we define the n× 1 vectors

Γi (θ,M) = (zi1 (θ,M) , ...,zin (θ,M))
T
, i = 1, ..., N.

Step 2: score function estimation. Most of the adaptive estimation literature has employed

kernel estimation of the score function using the ratio of a derivative-of-density estimate to a density

estimate. The consequent stochastic denominator causes technical diffi culties, and typically entails

one or more forms of trimming, sometimes sample-splitting and discretization of the initial estimate,

and requires strong conditions on some aspects. In a scalar observation setting, these problems were

avoided by Beran (1976), who proposed directly estimating the score function, after modelling it as

a linear combination, with unknown coeffi cients, of finitely many given basis functions. This works

due to an integration-by-parts argument, heuristically described below. Since the number of basis

functions is finite, Beran’s (1976) score function estimate was parametric. For a nonparametric
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score function we need to assume an infinite expansion in terms of basis functions, approximating this

by a truncated expansion contaiining L terms, and then in asymptotic theory allowing L to increase,

at a suitably slow rate, with n. This was achieved by Newey (1988) in a cross-sectional regression

model for scalar observables, and by Robinson (2005) in a scalar time series model with parametric

trend and errors that can be fractionally integrated, and stationary or nonstationary. Though a

number of modifications are necessary, we follow the latter’s notation as much as possible. Our

basis functions are denoted φ`(s), ` = 1, 2, ..., and chosen to be at least continuously differentiable,

having derivatives φ′`(s), ` = 1, 2, .... For L ≥ 1, scalar ht, t = 1, ..., n, and h = (h1, , , hn)T , define

φ(L)(ht) = (φ1(ht), ..., φL(ht))
T ,Φ(L)(ht) = φ(L)(ht)− n−1

n∑
s=1

φ(L)(hs),

φ
′(L)(ht) = (φ′1(ht), ..., φ

′
L(ht))

T ,

and

W (L)(h) = n−1
n∑
t=1

Φ(L)(ht)Φ
(L)(ht)

T , w(L)(h) = n−1
n∑
t=1

φ
′(L)(ht),

â(L)(h) = W (L)(h)−1w(L)(h), ψ(L)(ht; â
(L)(h)) = â(L)(h)TΦ(L)(ht).

The quantity w(L) arises because â(L)
(

Γi

(
θ̃, M̃

))
employed below is essentially a least squares

estimate of the unknown coeffi cients of the basis functions of the ith score function approximation,

after using the integration-by-parts property E (φ`(εit)ψi (εit)) = −E
(
φ′`(εit)

)
to justify replacing

n−1
n∑
t=1

φ(L)(ht)ψi (ht) , which involves the unknown function ψi , by w
(L)(h), which involves the

given φ′` functions. The same basis functions φ`(s) and L are used across i, but with variation across

i and t introduced by the score estimates

ψ̃
(L)

it (θ,M) = ψ(L)
(
zit (θ,M) ; â(L) (Γi (θ,M))

)
, i = 1, ..., N, t = 1, ..., n.

Step 3: adaptive point estimation. Now assuming the Aj (θ) are differentiable introduce the K×1

vectors

z′it (θ,M) =
∂

∂θ
zit (θ,M) , i = 1, ..., N, t = 1, ..., n,

which from (9) are given linear functions of derivatives of the elements of the Aj (θ) . Then define

rL (θ,M) =
N∑
i=1

n∑
t=1

ψ̃
(L)

it (θ,M)z′it (θ,M) ,

JiL (θ,M) = n−1
n∑
t=1

ψ̃
(L)

it (θ,M)
2
, i = 1, ..., N,

SL (θ,M) =
N∑
i=1

JiL (θ,M)
n∑
t=1
z′it (θ,M)z′it (θ,M)

T
.
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Essentially, rL (θ,M) and SL (θ,M) are used to estimate respectively the first and second derivatives

of the semiparametric log likelihood, with JiL (θ,M) being used to estimate the information for εit.

Now for given initial,
√
n -consistent estimates θ̃, M̃ define the adaptive estimate (essentially a

Gauss-Newton iterative step from θ̃, M̃)

θ̂ = θ̃ − SL
(
θ̃, M̃

)−1
rL

(
θ̃, M̃

)
. (10)

Step 4: effi cient inference. In the following section we establish the useful large sample approxi-

mation

θ̂
.∼
. d
N
(
θ0, SL

(
θ̃, M̃

)−1)
, (11)

implying that θ̂ is asymptotically effi cient. We might thence expect forecasts on the basis of (1)

that employ θ̂ to be generally more accurate than ones using θ̃, say. If desired we can iterate,

applying (10) with θ̃ replaced on the right hand side by θ̂, and so on, or to improve convergence (to

an approximate nonparametric maximum likelihood estimate) by shrinking the steps, multiplying

the correction term in (10) by a positive scalar less than 1.

Notice that the structure (4) and the consequent simple score vector (7) has led to the simple

summations across i in the formulae for rL (θ,M) and SL (θ,M). A general strategy for choosing

the initial estimates θ̃, M̃ is exact or approximate Gaussian pseudo-maximum likelihood estimation,

possibly the conditional-sum-of squares estimate (as in Box and Jenkins (1971)), which also uses

directly the residual functions (8), see also Robinson (2005) in a scalar time series setting.

Given its popularity and computational convenience, especially in forecasting, the implications

for the VAR(p) process (3) are worth describing. As discussed in Section 1, we may wish to impose

a parsimonious parameterization on A1 (θ) , ..., Ap (θ) , especially when N is large. Many of these

are covered by the linear restrictions v (θ) = vec (A1 (θ) , ..., Ap (θ)) = Qθ + q for given pN2 × K

rank K matrix Q and pN2 × 1 vector q (often q = 0). Thus
(
∂/∂θT

)
v (θ) = Q. As mentioned

above, in the VAR(p) case we might modify (8) by taking εt (θ,M) = 0, t ≤ p, and correspondingly

dropping summands for t = 1, ..., p from calculations. Thus write for t > p, Xt =
(
xTt−1, ..., x

T
t−p
)T

and xt −
p∑
j=1

Aj (θ)xt−j = xt −
(
XT
t ⊗ IN

)
(Qθ+ q). We can take θ̃ to be the least squares estimate

θ̃ =

(
n∑

t=p+1
QT

(
XtX

T
t ⊗ IN

)
Q

)−1
n∑

t=p+1

(
QT (Xt ⊗ IN )xt −QT

(
XtX

T
t ⊗ IN

)
q
)

(12)

and likewise

Ω̃ (θ) = (n− p)−1
n∑

t=p+1

(
xt −

p∑
j=1

Aj (θ)xt−j

)(
xt −

p∑
j=1

Aj (θ)xt−j

)T
, (13)
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M̃ positive definite, Ω̃
(
θ̃
)

= M̃2.

In connection with calculating the z′it (θ,M) note that for t > p,

∂

∂θT
εt (θ,M) = − ∂

∂θT
M−1 (A1 (θ) , ..., Ap (θ))Xt = −

(
X ′t ⊗M−1

)
Q,

whence the z′it (θ,M) are constant across θ. The above formulae were employed in the computations

in the Monte Carlo study of Section 4, below which focusses on various VAR(1) settings.

3. ASYMPTOTIC NORMALITY

This section presents regularity conditions for asymptotic properties of the adpative estimate θ̃.

Assumption 1 The multiple time series xt is generated by (1), (2) and (4), where the εt, t =

0,±1, ..., are independent and identically distributed with elements that are independent and have

zero means and unit variances, and M0 is the unique positive definite square root of the finite,

positive definite matrix Ω0.

Assumption 2 The elements εi0 of ε0 satisfy Eε4i0 <∞, i = 1, ...., N.

Assumption 3 For i = 1, ...., N, εi0 has probability density function, fi(s), that is absolutely

continuous, and

0 < Ji <∞,

where Ji =
∫
ψi (s)

2
fi (s) ds is the information of εi0.

Assumption 4 On a suffi ciently small neighbourhood N of θ0, A(s; θ) is thrice continuously

differentiable in θ for |s| = 1, B(s; θ) = A(s; θ)−1 = IN +
∞∑
j=1

Bj(θ)s
j exists for |s| = 1, and

denoting by γj the modulus of any element of Bj(θ) or the supremum over N of the modulus of

any element of Aj(θ) or of its first, second or third derivatives, with respect to any element of θ,

we have
∞∑
j=1

j3γj <∞.

Assumption 5 Denoting by θ the Gaussian pseudo likelihood estimate of θ0, the limiting covariance

matrix of n1/2
(
θ − θ0

)
is finite and positive definite.

Assumption 6 As n→∞,

n
1
2

(
θ̃ − θ0

)
= Op(1), n

1
2 (M̃ −M0) = Op(1).

Assumption 7 For ` = 1, , 2, ..., φ`(s) satisfies

φ`(s) = φ(s)`, (14)
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where φ(s) is strictly increasing and thrice continuously differentiable and is such that, for some

κ ≥ 0, C <∞,

|φ(s)| ≤ 1(|s| ≤ 1) + |s|κ 1(|s| > 1),
∣∣φ′(s)∣∣+

∣∣φ′′(s)∣∣+
∣∣φ′′′(s)∣∣ ≤ C(1 + |φ(s)|C),

with φ′, φ′′ and φ′′′ denoting the first, second and third derivatives of φ.

Assumption 8 As n→∞, L→∞ such that

lim
n→∞

(
log n

L

)
> 8

{
log
(

1 + 2
1
2

)
+ max(logϕ, 0)

}
' 7.05 + 8 max(logϕ, 0);

where ϕ = (1 + |φ(s1)|) / (φ(s2)− φ(s1)) , [s1, s2] being an interval on which the fi (s) are bounded

away from zero.

The details of Assumption 1 have already been introduced, Assumptions 3 and 6 are standard,

and Assumption 4 includes mild smoothess conditions on A(s; θ) and weak dependence conditions

on xt. Trade-offs are possible between Assumptions 2 and 8, with the possibility of stronger moment

conditions permitting milder restrictions on the rate of growth of L with n, as described in a scalar

time series setting by Robinson (2005). Assumption 5 appears unprimitive but is designed to

minimise introduction of additional notation, employing the fact that the limiting covariance matrix

of an asymptotically effi cient estimate is a scalar multiple of that of the Gaussian pseudo likelihood

estimate, where primitive conditions for the finiteness and non-singularity of the latter are available.

The polynomial structure of Assumption 7, in terms of a single basic function φ(s), could be relaxed

but seems suffi ciently flexible for practical purposes.

Theorem Let Assumptions 1-8 hold. Then as n→∞, SL
(
θ̃, M̃

)1/2
(θ̂ − θ0) →d N (0, IK).

The lengthy proof of this theorem is omitted, because it relatively straightforwardly extends that

of Robinson (2005) for the case of scalar series, N = 1, the structure (4) having led to summations

across i = 1, ...N of similar formulae to those in that reference. We present the Theorem for a

studentized statistic for ease of application, but the matrix SL
(
θ̃, M̃

)−1
converges in probability

to the limiting covariance matrix of the maximum likelihood estimate that would be obtained from

correctly specified parametric distributions for the elements of εt in (4), and θ̂ is thus asymptotically

effi cient.
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4. FINITE SAMPLE PERFORMANCE

It is desirable to investigate the finite-sample properties of our asymptotically-justified adaptive

estimates by Monte Carlo simulations. The main features of interest in designing these are perhaps

the impact of various choices of dimension N , the degree of mixing afforded by the matrix M0, and

heterogeneity in the elements of εt. We used M0 of form

M0 = (1− c) IN + c1N1TN ,

where 1N is the N × 1 vector of 1’s. Then M0 is positive definite for c < 1, and Ω0 has similar

structure, Ω0 = (1− c)2 IN +(Nc+ 2c (1− c)) 1N1TN . We took c = 0.5 and 0.9. We focussed on the

VAR(1) case of (3), subjecting A1 (θ) to linear restrictions as discussed in Section 2, in particular

A1 (θ) = diag (θ1, ..., θN ) , so K = N, (15)

denoting by θi the ith element of θ, and

A1 (θ) = θIN , so K = 1. (16)

In (15) we took elements of θ0 within the interval [0.5, 0.9], for example θ0 = (0.50, 0.57, 0.63, 0.7, 0.77, 0.83, 0.90)T

when N = 7, while in (16) we took θ0 as 0.5 and 0.9. We chose N = 2, and 7, along with n = 50

and 100, and also a high-dimensional case N = 56, with n = 560. The candidate distributions for

εt are listed in Table 1.

Table 1: Source distributions.

0 N (0, 1)

1 0.5N (−3, 1) + 0.5N (3, 1)

2 0.05N (0, 1) + 0.95N (0, 1)

3 Laplace

4 t(5)

5 Laplace+N (0, 1)

6 t(5) + U [0, 1]

The methods were implemented using (12) and (13) for θ̃ and M̃, and with either φ(s) = s or

φ(s) = s(1 + s2)−
1
2 (which is bounded) in (14), with L = 1, 2, 3 and 4. As well as computing the
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one-step estimate (10), we went on to compute an iterative sequence of estimates, defined as

θ̂j+1 = θ̂j − 0.2SL

(
θ̂j , M̃

)−1
rL

(
θ̂j , M̃

)
, j = 1, 2, ..., (17)

where θ̂1 = θ̂, stopping when
∣∣∣θ̂j+1 − θ̂j∣∣∣ < 0.001.

The results are based on R = 1000 replications, except for N = 56, where R = 100. For

the purpose of the immediately following definitions only, for convenience we take θ̂ either to de-

note (10) or the final iterative estimate obtained from (17). We report relative mean squared

error, RMSE =MSE(θ̂)/MSE(θ̃), where MSE(θ) = R−1
∑R
i=1

(
θ(i) − θ0

)2
, θ(i) referring in each

case to the ith replicate. We also report the relative out-of-sample 5 steps ahead forecast MSE,

RFMSE=FMSE(θ̂)/FMSE(θ̃), where FMSE(θ) = R−1
∑R
i=1(x̂

(i)
n+5(θ)−x

(i)
n+5)

2 with x̂n+5(θ) = θ5xn,

only when θ0 = 0.5 (results for other θ0 were similar).

Finally, for the case (16) we computed coverage of nominal 95% and 99% confidence intervals based

on (11), reporting only results for θ0 = 0.5. In cases where there was a substantial difference between

the one-step estimate (10) and the final iterative one obtained from we report results for both. The

first column in each of the following tables corresponds to the value of the mixing parameter c, the

second indicates the value of n, and the third the value of θ0.

[Tables 2-6 about here]

The models relating to Tables 2 and 5, N = 2, are regarded as the baseline cases, with K = 2 and

K = 1 respectively, where we take εt to be Gaussian. For A1(θ) = INθ, (16), there is little difference

between the two estimates for c = 0.5, as is to be expected since there is relatively little mixing and

least squares (12) is effi cient under Gaussianity. For c = 0.9 we see a slight improvement of the

adaptive estimates’relative performance, again as expected since we now have a more even mixture

of Gaussian innovations.
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Table 2

A1 (θ) = diag (θ1, ..., θN ) , K = N = 2 elements of εt

each distributed according to 0 in Table 1.

φ(s) = s φ(s) = s(1 + s2)−
1
2

c n θ0 L 1 2 3 4 1 2 3 4

One-step

0.5 RMSE 0.96 0.92 0.99 1.05 1.05 1.00 1.01 1.05

50 0.9 RMSE 1.75 1.69 1.56 1.40 1.71 1.67 1.80 1.58

0.5 0.5 RFMSE 0.52 0.54 0.66 0.66 0.58 0.64 0.60 0.71

0.5 RMSE 0.70 0.74 0.81 0.84 0.78 0.79 0.74 0.84

100 0.9 RMSE 1.05 1.12 1.23 1.33 1.27 1.36 1.24 1.14

0.5 RFMSE 0.75 0.76 0.78 0.78 0.73 0.75 0.79 0.78

0.5 RMSE 0.51 0.48 0.63 0.62 0.65 0.63 0.60 0.69

50 0.9 RMSE 1.41 1.48 1.73 1.51 1.92 1.45 1.56 1.69

0.9 0.5 RFMSE 0.62 0.65 0.73 0.75 0.81 0.67 0.72 0.85

0.5 RMSE 0.66 0.73 0.57 0.57 0.81 0.78 0.58 0.67

100 0.9 RMSE 3.30 3.37 2.66 2.53 3.71 3.39 2.87 2.96

0.5 RFMSE 0.93 1.01 0.96 0.99 1.00 1.00 0.93 0.97

Iterative

0.5 RMSE 0.23 0.23 0.32 0.33 0.26 0.25 0.31 0.33

50 0.9 RMSE 0.34 0.34 0.53 0.54 0.38 0.36 0.43 0.45

0.9 0.5 RFMSE 0.68 0.67 0.66 0.58 0.66 0.65 0.64 0.65

0.5 RMSE 0.12 0.13 0.13 0.15 0.14 0.15 0.15 0.17

100 0.9 RMSE 0.16 0.17 0.17 0.21 0.19 0.21 0.21 0.31

0.5 RFMSE 0.81 0.89 0.85 0.83 0.83 0.86 0.86 0.79
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Table 3

A1 (θ) = diag (θ1, ..., θN ) , K = N = 7 elements of εt distributed

according to (0− 6) in Table 1 with each distribution used only once.

φ(s) = s φ(s) = s(1 + s2)−
1
2

c n θ0 L 1 2 3 4 1 2 3 4

One-step

0.5 RMSE 0.56 0.60 0.74 0.69 0.62 0.57 0.68 0.74

50 0.9 RMSE 1.38 1.30 1.24 1.09 1.26 1.06 1.21 1.14

0.5 0.5 RFMSE 0.41 0.51 0.52 0.56 0.45 0.48 0.55 0.50

0.5 RMSE 0.38 0.37 0.40 0.41 0.40 0.42 0.36 0.43

100 0.9 RMSE 0.94 0.96 1.10 0.88 1.00 1.06 0.94 0.84

0.5 RFMSE 0.70 0.70 0.70 0.72 0.67 0.72 0.73 0.69

0.5 RMSE 0.55 0.52 0.56 0.57 0.66 0.64 0.58 0.57

50 0.9 RMSE 1.59 1.46 1.64 1.45 2.01 1.72 1.62 1.42

0.9 0.5 RFMSE 0.62 0.68 0.67 0.59 0.64 0.70 0.66 0.66

0.5 RMSE 0.83 0.78 0.75 0.69 0.96 0.94 0.76 0.70

100 0.9 RMSE 3.54 3.65 3.65 3.47 3.95 4.01 3.65 3.23

0.5 RFMSE 0.98 0.97 1.09 1.06 1.33 1.09 1.05 1.00

Iterative

0.5 RMSE 0.17 0.19 0.19 0.27 0.14 0.17 0.20 0.26

50 0.9 RMSE 0.23 0.26 0.23 0.37 0.20 0.22 0.24 0.31

0.9 0.5 RFMSE 0.65 0.65 0.64 0.63 0.69 0.66 0.71 0.68

0.5 RMSE 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.08

100 0.9 RMSE 0.12 0.09 0.10 0.10 0.10 0.09 0.11 0.11

0.5 RFMSE 0.83 0.84 0.86 0.84 0.83 0.88 0.81 0.78
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Table 4

A1 (θ) = diag (θ1, ..., θN ) , K = N = 56 elements of εt distributed

according to (0− 6) in Table 1 with each distribution used eight times.

φ(s) = s φ(s) = s(1 + s2)−
1
2

c n θ0 L 1 2 3 4 1 2 3 4

One-step

0.5 RMSE 3.44 4.02 4.07 3.89 4.26 3.57 4.06 3.65

0.5 560 0.9 RMSE 19.2 22.1 15.0 20.7 32.0 16.8 25.1 18.1

0.5 RFMSE 2.03 1.28 1.24 1.50 1.73 1.36 1.26 1.43

Iterative

0.5 RMSE 0.07 0.07 0.08 0.07 0.08 0.08 0.08 0.07

0.5 560 0.9 RMSE 0.19 0.20 0.14 0.22 0.21 0.19 0.22 0.15

0.5 RFMSE 0.95 0.98 0.98 0.92 0.98 0.99 0.97 0.98

One-step

0.5 RMSE 12.8 12.5 12.5 14.6 14.4 11.1 14.3 10.1

0.9 100 0.9 RMSE 55.5 60.2 43.0 64.9 87.3 45.7 75.1 44.8

0.5 RFMSE 3.44 2.33 2.04 2.71 3.51 2.33 1.88 2.23

Iterative

0.5 RMSE 0.09 0.11 0.06 0.06 0.08 0.09 0.09 0.11

0.9 50 0.9 RMSE 0.53 0.61 0.40 0.30 0.55 0.56 0.61 0.62

RFMSE 0.99 1.00 0.98 0.96 1.00 1.01 0.99 1.00
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Table 5

A1 (θ) = θIN , K = 1, N = 2 elements of εt each

distributed according to 0 in Table 1.

φ(s) = s φ(s) = s(1 + s2)−
1
2

c n θ0 L 1 2 3 4 1 2 3 4

One-step

0.5 RMSE 0.93 0.90 0.93 0.94 0.96 0.95 0.95 0.96

0.9 RMSE 1.33 1.33 1.26 1.24 1.33 1.33 1.29 1.18

50 RFMSE 0.44 0.44 0.58 0.56 0.45 0.50 0.50 0.55

0.5 95% 0.94 0.92 0.86 0.86 0.92 0.92 0.89 0.85

0.5 99% 0.98 0.97 0.94 0.94 0.98 0.97 0.96 0.93

0.5 RMSE 0.84 0.84 0.84 0.87 0.88 0.84 0.87 0.92

0.9 RMSE 1.15 1.07 1.07 1.09 1.14 1.15 1.09 1.06

100 RFMSE 0.54 0.55 0.60 0.67 0.71 0.60 0.63 0.67

0.5 95% 0.94 0.94 0.93 0.90 0.94 0.93 0.92 0.90

99% 0.99 0.99 0.98 0.97 0.99 0.99 0.98 0.97

0.5 RMSE 0.84 0.81 0.85 0.86 0.86 0.86 0.86 0.89

0.9 RMSE 1.11 1.10 1.07 1.07 1.11 1.11 1.09 1.00

50 RFMSE 0.36 0.35 0.48 0.48 0.35 0.38 0.41 0.46

0.5 95% 0.94 0.91 0.86 0.86 0.92 0.92 0.88 0.84

0.9 99% 0.98 0.97 0.94 0.93 0.98 0.97 0.96 0.93

0.5 RMSE 0.75 0.75 0.76 0.79 0.80 0.75 0.79 0.83

0.9 RMSE 0.99 0.90 0.92 0.95 0.99 0.99 0.91 0.90

100 RFMSE 0.47 0.48 0.52 0.61 0.64 0.53 0.56 0.59

0.5 95% 0.94 0.94 0.92 0.90 0.94 0.93 0.92 0.90

99% 0.99 0.99 0.98 0.97 0.99 0.98 0.98 0.97

16



Table 6

A1 (θ) = θIN , K = 1, N = 7 elements of εt each distributed

according to (0− 6) in Table 1 with each distribution used only once.

φ(s) = s φ(s) = s(1 + s2)−
1
2

c n θ0 L 1 2 3 4 1 2 3 4

One-step

0.5 RMSE 0.55 0.57 0.60 0.63 0.54 0.54 0.60 0.63

0.9 RMSE 0.98 0.90 0.91 0.86 0.90 0.89 0.82 0.83

50 RFMSE 0.20 0.22 0.27 0.28 0.20 0.19 0.25 0.29

0.5 95% 0.86 0.84 0.80 0.76 0.87 0.84 0.78 0.73

0.5 99% 0.97 0.91 0.91 0.88 0.95 0.93 0.89 0.85

0.5 RMSE 0.49 0.48 0.47 0.49 0.46 0.48 0.47 0.52

0.9 RMSE 0.71 0.69 0.69 0.63 0.66 0.68 0.66 0.67

100 RFMSE 0.34 0.35 0.38 0.38 0.40 0.44 0.40 0.44

0.5 95% 0.91 0.91 0.91 0.89 0.91 0.91 0.88 0.83

99% 0.98 0.97 0.98 0.96 0.98 0.97 0.96 0.94

0.5 RMSE 0.50 0.52 0.53 0.58 0.51 0.51 0.55 0.59

0.9 RMSE 0.82 0.77 0.76 0.77 0.77 0.80 0.73 0.79

50 RFMSE 0.15 0.16 0.13 0.20 0.15 0.16 0.23 0.30

0.5 95% 0.85 0.84 0.79 0.74 0.86 0.84 0.78 0.73

0.9 99% 0.96 0.94 0.90 0.87 0.95 0.95 0.90 0.83

0.5 RMSE 0.45 0.45 0.45 0.45 0.41 0.42 0.44 0.49

0.9 RMSE 0.63 0.61 0.57 0.60 0.55 0.58 0.57 0.61

100 RFMSE 0.34 0.37 0.29 0.34 0.31 0.37 0.37 0.36

0.5 95% 0.91 0.89 0.89 0.88 0.92 0.90 0.88 0.84

99% 0.98 0.96 0.97 0.95 0.98 0.97 0.96 0.93
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However, for A1(θ) = diag(θ1, . . . , θN ), (15), we find some strange results for c = 0.9. The

performance of the one-step adaptive estimate (10) is worse than least squares (12), and, moreover

the relative performance of the former falls as we increase sample size. From inspection of additional

results (not presented for the sake of brevity) we found that both estimates improve significantly

with increasing sample size, but least squares sees a far more dramatic gain. On the other hand

the iterative adaptive estimates dominate least squares and we see an improvement in this relative

superiority with increasing sample size. This pattern continues and becomes more evident as we

increase the dimensionN, in Tables 3, 4 and 6, where also non-Gaussian distributions are introduced.

For A1(θ) = Inθ, with increasng N the relative performance of the adaptive estimates increases

across all parameter values, reflecting the ineffi ciency of least squares as we move further from the

Gaussian benchmark. It seems that when there is a high degree of mixing, c = 0.9, in order for

the adaptive estimates to achieve effi ciency improvements over least squares in small samples the

iterative estimator is required.

Irrespective of the sample size and the value of the mixing parameter, c, the relative performance

of the adaptive estimates is poorer for θ0 = 0.9 compared to θ0 = 0.5. Thus it appears that their

relative superiority is mitigated somewhat near the unit root.

The choice of L does not seem to make a large difference in terms of RMSE. For θ0 = 0.5, a larger

L tends to reduce relative performance of the adaptive estimates, whereas for θ0 = 0.9 a larger L

improves it. There does not seem to be a clear pattern in the results for the different forms of φ(s).

The forecast performance of the adaptive estimates looks encouraging. In nearly all situations

they outperform least squares; only in the high dimensional case, N = 56, is the one-step estimate

inferior. The simplest form of estimate, taking L = 1 and φ(s) = s, provides the best results.

It appears that for smaller sample sizes coverage rates are fairly anti-conservative, but as n in-

creases to 100 these rates return fairly closely to the nominal level. For smaller values of L the

coverage tracks the nominal level very closely, but becomes quite anti-conservative as L increases.

Coverage rates are relatively insensitive to the different forms of φ(s) or to the use of one-step and

iterative estimates.

5. FINAL COMMENTS

In a semiparametric model for stationary multiple time series of possibly high dimension, we

have presented adaptive estimates of the parameters, and rules of large sample statistical inference,
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avoiding a curse of dimensionality by modelling the innovations vector as a linear transformation

of independent but possibly non-identically distributed random variables, having nonparametric

distributions. Our setting, which covers vector autoregressive moving average processes, is widely

applicable. In the vector autoregressive case, a Monte Carlo simulation study has found generally

good finite sample performance of our estimates, with respect to accuracy and to their use in

forecasting and interval estimation.
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