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Correlation Misperception in Choice†

By Andrew Ellis and Michele Piccione*

We present a decision-theoretic analysis of an agent’s understanding 
of the interdependencies in her choices. We provide the foundations 
for a simple and flexible model that allows the misperception of cor-
related risks. We introduce a framework in which the decision maker 
chooses a portfolio of assets among which she may misperceive the 
joint returns, and present simple axioms equivalent to a representa-
tion in which she attaches a probability to each possible joint distri-
bution over returns and then maximizes subjective expected utility 
using her (  possibly misspecified) beliefs. (JEL D11, D81, D83, G11)

The debt collectors at Deutschebank sensed the bond traders at Morgan 
Stanley misunderstood their own trade. They weren’t lying; they genuinely 
failed to understand the nature of the subprime CDO. The correlation 
among triple-B-rated subprime bonds was not 30 percent; it was 100 per-
cent. When one collapsed, they all collapsed, because they were all driven 
by the same broader economic forces.

–Michael Lewis, The Big Short

Many risky decisions, such as constructing a portfolio of securities, involve the 
interaction of many distinct variables, the correlation among which may be missed 
or misunderstood. The issue of misperception of correlated risks has recently 
acquired a renewed prominence, as authors such as Brunnermeier (2009); Coval, 
Jurek, and Stafford (2009); Hellwig (2009); and, more informally, Lewis (2010), 
have examined the significance of the inadequate understanding of correlations and 
the resulting mispricing of assets for the events surrounding the financial crisis in 
2008. We present a decision-theoretic analysis of a decision maker’s understanding 
of the interdependencies in her choices. Our aim is to provide the foundations of a 
simple and flexible model that represents misperception of correlated outcomes in 
an intuitive manner.1

1 Throughout, we use the more colloquial term correlation interchangeably with the more accurate joint distri-
bution of returns or outcomes. 
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Our analysis departs from the standard device of modeling the decision maker 
(DM) as choosing among individual, mutually exclusive alternatives. Instead, we 
propose a framework that explicitly considers her preferences over portfolios of 
assets, or more generally, profiles of actions. The DM’s comparisons of portfolios 
allow us to define misperception of an uncertain environment in a very simple and 
straightforward way: misperception occurs when she is not indifferent between two 
different portfolios that objectively always result in the same outcomes. Unlike the 
standard model, our framework allows the DM to express a strict preference between 
owning a portfolio of the 500 underlying stocks of the S&P 500 (in the right propor-
tions) and owning an S&P 500 index-tracking fund even with no transaction costs. 
We identify the DM’s misperception of the correlation among the stocks of the S&P 
500 when indifference between the portfolio and the tracking fund fails.2

We propose a model of decisions that maintains the classic assumptions of sub-
jective expected utility but for those that conflict with the DM’s possibly incor-
rect perception of correlation. Our main result describes the behavioral regularities 
necessary and sufficient for representing a DM who assigns probabilistic beliefs 
to correlations and maximizes expected utility. The next section provides a simple 
illustration of our setting as well as the new assumptions, and then describes our 
main conclusions.

A. Illustration and Overview

The basic primitives of our model, formally described in Section I, are a set of 
states, a set of assets, and a preference relation  ≿  over portfolios of assets. Each asset  
a  returns a real number  a(ω)  in state  ω . A portfolio is a finite collection of assets, 
denoted by  〈  a  1  ,  a  2  , … ,  a  n   〉 , that yields a payoff equal to the sum of the returns 
of all the underlying assets. The total return of a portfolio  〈  a  1  ,  a  2  , … ,  a  n   〉  in state 
 ω  is   ∑ i=1  n     a  i   (ω)  . The set of states thus describes the objective or correct structure of 
joint returns, i.e., the objectively possible returns of every profile. If a DM under-
stands that returns have this structure, then her beliefs over the set of states fully 
describe her beliefs over portfolio returns.

The DM’s preference over portfolios reveals when she does not understand the 
structure of returns; for instance, if she strictly prefers the index fund to its underly-
ing stocks. More concretely, fix any two assets  b  and  c  and consider a third asset  a  
satisfying  a(ω) = b(ω) + c(ω)  for every state  ω . The profiles  〈b, c〉  and  〈a〉  give the 
same return in every state, so one expects that a DM who understands the objective 
structure of returns would be indifferent between  〈b, c〉  and  〈a〉 . In the language of 
decision theory, such indifference is implied by the standard Monotonicity axiom: 
state-by-state dominance by one portfolio implies a preference for it. However, if 
she misperceives the correlation between  b  and  c , then she may have a strict pref-
erence for one or the other, e.g.,  〈b, c〉 ≻ 〈a〉 . To formalize our opening quote, if  
〈a〉  is one triple-B-rated subprime bond and  〈b, c〉  is a portfolio with two halves 
of similar bonds in a synthetic collateralized debt obligation (CDO), then a DM 

2 We thank a referee for suggesting this example and another referee for pointing out related interpretive issues 
that we discuss in Section III. 
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may strictly prefer  〈b, c〉  to  〈a〉 , believing it to be significantly less risky despite the 
default of these bonds being “driven by the same broader economic forces.”

As a DM may violate monotonicity for a number of reasons, we propose a novel 
Weak Monotonicity axiom that limits her violations to those directly attributable to 
misperception of correlation. Deferring a formal statement to Section II, it roughly 
requires that whenever one portfolio always yields a better outcome than a sec-
ond for every conceivable correlation between their returns, she prefers the first to 
the second. In the context of comparing  〈b, c〉  with  〈a〉 , it requires that  〈b, c〉 ≿ 〈a〉  
whenever

   min  ω  
 
   b(ω) +  min  ω  

 
   c(ω) ≥  max  ω  

    a(ω). 

Thus, we can attribute a given violation of Monotonicity to the DM believing that a 
particular joint realization of returns, possibly inconsistent with the objective struc-
ture of returns, is sufficiently likely.

We show that a DM whose behavior satisfies weak Monotonicity as well as the 
other axioms of expected utility acts as if she forms beliefs about the correlation 
between assets and then maximizes expected utility. We represent her choices by 
specifying beliefs on an enlarged state space, rich enough to express any perceived 
correlation between assets. For instance, our model explains the agent’s preference 
for the synthetic CDO  〈b, c〉  over the bond  〈a〉  by assigning positive probability to  b  
and  c  being less than perfectly correlated.

Our DM can also be represented as if she ranks portfolios according to a seem-
ingly ad hoc yet intuitive procedure, which we call a probabilistic correlation rep-
resentation (PCR). First, the assets are divided into understanding classes. The DM 
chooses as if she correctly understands the structure of returns for the assets within 
an understanding class. For instance, with assets  a ,  b , and  c  as above, she is indiffer-
ent between  〈b, c〉  and  〈a〉  when all are in the same class, whereas a strict preference 
indicates that at least one of the assets belongs to a different class than the others. 
Second, she forms beliefs about the correlation between classes of assets. Formally, 
beliefs are defined on a multidimensional state space where each dimension corre-
sponds to a class—if two assets belong to the same understanding class, then they 
depend on the same coordinate. Finally, the DM maximizes subjective expected util-
ity with these beliefs. In addition to providing a parsimonious and intuitive model 
of decisions, the PCR permits a tight connection between parameters and behavior. 
With enough diversity in each class, we show the existence of a unique collection of 
understanding classes corresponding tightly to the DM’s accuracy of perception of 
joint occurrences and, for generic risk preferences, uniqueness of beliefs.

A brief discussion of some simple yet significant implications of our model for 
asset pricing and, in particular, for the evaluation of complex securities with tranch-
ing such as CDO’s concludes our analysis.

B. Related Literature

Misperception of correlations is a broad concept that has been studied in vari-
ous guises, ranging from the limited understanding of patterns, as in Piccione and 
Rubinstein (2003); Eyster and Piccione (2013); and Levy and Razin (2015a), to the 
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inability to derive some logical implications (Lipman 1999). Evidence of misper-
ception of correlations has been found in several experimental studies such as Eyster 
and Weizsäcker (2010); Enke and Zimmerman (2013); and Rubinstein and Salant 
(2016). In particular contexts, misperception of correlation has been shown to lead 
to a range of behaviors, including social influence (DeMarzo, Vayanos, and Zwiebel 
2003), overconfidence (Ortoleva and Snowberg 2015), and polarization (Levy and 
Razin 2015b). When applied to incomplete information games, our framework 
nests the behavior in solution concepts such as Cursed Equilibrium (Eyster and 
Rabin 2005) and Analogy Based Expectations Equilibrium (Jehiel 2005, Jehiel and 
Koessler 2008). A key feature of our approach is that, being based on preferences, it 
is neutral with respect to the psychological biases and limitations that cause agents 
to perceive correlations incorrectly.

Framing can also be viewed as a proximate reason for misperception: differ-
ent framings of the same action can make understanding correlations harder: see 
Example 1. More fittingly, different portfolios that yield the same outcomes can be 
viewed as different framings that affect the DM’s choices. Choice-theoretic works 
that highlight other aspects of framing include Salant and Rubinstein (2008), who 
study the conditions under which choice data can be rationalized as resulting from 
choice from a menu under different frames, and Ahn and Ergin (2010), who axiom-
atize a formal model where the framing of an act affects the probabilities used by 
the DM.

Our results also relate to a body of literature on boundedly rational choice the-
ory. Lipman (1999) introduces a decision-theoretic model for relating an agent’s 
logic to preferences. Al-Najjar, Casadesus-Masanell, and Ozdenoren (2003) explic-
itly model the effects of complex environments on decision making as a preference 
for flexibility. Kochov (2015) develops a model of a DM with imperfect foresight, 
which can be interpreted as misperception of the autocorrelation between actions, 
where failure of Monotonicity also plays a role. Lastly, our representation can 
admit an interpretation in which different, endogenous sources of uncertainty (the 
understanding classes) determine beliefs, as in Chew and Sagi (2008) or Gul and 
Pesendorfer (2015).

Esponda (2008), Spiegler (2016), and Levy and Razin (2016) have developed 
approaches to misperception that are motivated by similar behavioral insights, but 
that do not in general admit PCR representations. In the first two, the DM forms 
her perception as a fixed point, permitting the marginal distribution of a fixed pay-
off-relevant variable (such as the other player’s strategy) to be affected by her own 
choice. In the last, the DM has ambiguity about the correlations and thus violates 
our Independence axiom.

I. Primitives

There is a set    of actions, with typical elements  a,  a  i   , b,  b  i   .3 Each action results 
in an outcome or consequence in  X = ℝ , with typical elements  x, y, z . This outcome 

3 While we focus on the interpretation of actions as an active choice by the DM, actions can more generally be 
interpreted as different dimensions of an alternative affecting its outcome. 
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is determined by a state of the world drawn from the finite set  Ω .4 We interpret the 
state space  Ω  as a description of the objectively possible joint realizations of the 
outcomes of any set of actions, against which the DM’s subjective perceptions of 
joint realizations are evaluated.

A map  ρ :  × Ω → X  describes the relationship between actions, states, and 
outcomes, with the action  a  yielding the outcome  ρ(a, ω)  in state  ω . Slightly abus-
ing notation, we write  a(ω)  for  ρ(a, ω) . Note that we allow for distinct actions  a  
and  b  with  a(ω )  = b(ω)  for any  ω ∈ Ω . Thus, each action implicitly includes 
a description that can affect how its relationship with other actions is understood; 
for instance,  a  and  b  could yield outcomes that depend on temperature, where  a  is 
described in Fahrenheit (F) and  b  in Celsius (C), as in Example 1 below. We assume 
that    includes every constant action, i.e., for any  x ∈ X  there is an action, also 
denoted by  x , yielding the outcome  x  for every state in  Ω . We write  σ(a)  ( σ(a, b) ) for 
the coarsest  σ -algebra by which  a  is (both  a  and  b  are) measurable.

From the set of actions, we derive a set    of action profiles (or profiles). Each 
element of  is a finite vector of actions for which the order does not matter—i.e., 
a multiset of actions. This allows the agent to take the same action multiple times, 
such as buying many shares of the same security while making irrelevant where an 
asset is listed in the description of a portfolio. A profile that consists of taking the  
n  actions   a  1  , … ,  a  n    is denoted  〈  a  1  , … ,  a  n   〉  or  〈  a  i    〉  i=1  n   . To save notation, we do not 
write out the index when the number of actions is unimportant, i.e., we write  〈  a  i   〉  
instead of  〈  a  i    〉  i=1  n   . An agent who chooses the profile  〈  a  i    〉  i=1  n    receives the outcomes 
of all  n  actions   a  1  , … ,  a  n   , that is, she receives   ∑ i=1  n     a  i   (ω)   in state  ω . We emphasize 
one key difference in interpretation from the menu-choice literature (Kreps 1979; 
Dekel, Lipman, and Rustichini 2001; Gul and Pesendorfer 2001): the agent receives 
all of the actions in her chosen profile and does not make a second choice from the 
profile at a later point in time.

Our goal is to provide a simple and intuitive model of decisions among action 
profiles, starting from axioms on preferences. To this end, we adopt the widely used 
approach popularized by Anscombe and Aumann (1963) of expanding the set of 
alternatives to incorporate lotteries with objective probabilities. Specifically, the 
DM chooses among probability distributions over  having finite support, the set of 
which we denote by  Δ , rather than among profiles in . A typical element of  Δ  
is  p =  ( p  1  , 〈  a  i  1  〉;  .  .  . ;  p  n  , 〈  a  i  n  〉)  , interpreted as the lottery where profile  〈  a  i  m  〉  occurs 
with probability   p  m   , and we write  p(〈  a  i   〉) > 0  for a profile  〈  a  i   〉  in the support of  p .  
We discuss the reasons for including lotteries in our setup in Remark 1 and their 
role in the proofs in Remark 3, which can be skipped without any loss of continuity.

The DM chooses by maximizing a preference relation  ≿  over  Δ , with the 
symbol  ∼  denoting indifference and  ≻  strict preference. Naturally, the profile 
 〈  a  i    〉  i=1  n    in    corresponds to the lottery in  Δ  in which  〈  a  i    〉  i=1  n    has probability equal 
to 1, and lotteries over  X  to lotteries over profiles containing a single, constant action. 
In this manner,  Δ  contains both all profiles and all lotteries over  X .

4 We assume that  X = ℝ  and that  Ω  is finite for ease of exposition. With minor adjustments, our results remain 
true for any  Ω  and many other outcome spaces on which we can define an appropriate addition operation, including  
ℕ ,   ℝ +   , and   ℝ   n  : see Ellis and Piccione (2016). 
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Remark 1: As first shown by Anscombe and Aumann (1963), lotteries with objec-
tive probabilities facilitate the elicitation of subjective beliefs and utility by convexi-
fying the choice domain, that is, by turning it into a mixture space. The most widely 
used procedure for generating a mixture space, introduced by Fishburn (1970), 
places additional structure on the outcome space to which actions map, usually lot-
teries over the original outcome space  X : that is, horse race-roulette actions in which 
the roulette wheel is spun after the race ends. Thus, a mixture of actions becomes 
equivalent to an action that mixes among outcomes. In our paper, we adopt instead 
the reverse order while maintaining the original outcome space: the wheel is spun 
before running the race. As pointed out by Kreps (1988) and shown by Battigalli et 
al. (forthcoming) in a setting with actions (but not profiles), the latter approach is 
equivalent to the former one when it includes an appropriate, yet less elegant, mono-
tonicity axiom that explicitly rather than implicitly incorporates reduction of com-
pound uncertainty.5 In our setting, spinning the wheel first provides a natural way 
of mixing profiles that avoids thorny issues of interpretation. In particular, as the 
identities of the actions in a mixture are central to our model, establishing an exoge-
nous equivalence between a mixture and another action imposes ad hoc restrictions 
on how the joint realizations of the actions involved are understood.

II. Foundations

We first introduce some standard assumptions. We then move to the key axioms 
of our approach.

A. Standard Assumptions

Given two lotteries  p, q ∈ Δ , a mixture  αp + (1 − α ) q ,  α ∈ [0, 1] , is the lot-
tery in  Δ  in which the probability of each profile in the support of  p  and  q  is deter-
mined by compounding the probabilities in the obvious way.

AxIOM 1 (Weak Order): The preference relation  ≿  is complete and transitive.

AxIOM 2 (Continuity): The sets  {α ∈ [0, 1 ]  : αp + (1 − α ) q ≿ r}  and 
 {α ∈ [0, 1 ]  : r ≿ αp + (1 − α ) q}  are closed for all  p, q, r ∈ Δ .

AxIOM 3 (Independence): For any  p, q, r ∈ Δ  and any  α ∈ (0, 1] ,  p ≿ q   
if and only if

  αp + (1 − α) r ≿ αq + (1 − α ) r. 

These are classic axioms and their interpretation is standard. While one may plau-
sibly argue that the DM’s misperception does or should cause violations of some of 
them, we show that a meaningful and rich model of decisions can be constructed 

5 We note that recent work incorporating ex ante (as well as ex post) lotteries and studying a DM who fails 
to reduce uncertainty has yielded interesting behavior in contexts such as uncertainty (e.g., Seo 2009) and social 
preference (e.g., Saito 2013). 
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when they hold. In fact, most commonly used models featuring misperception do 
not violate any of them.

B. Weak Monotonicity

In the standard approach, a profile  〈  a  i    〉  i=1  n    corresponds to an act  f : Ω → X  
yielding the consequence  f  (ω )  =  ∑ i=1  n     a  i   (ω)   in state  ω . Whenever the DM reduces 
action profiles to acts, the map  f  is a sufficient description of the profile. In par-
ticular, if  〈  a  i    〉  i=1  n    and  〈  b  i    〉  i=1  m    correspond to the same act, then  〈  a  i    〉  i=1  n   ∼ 〈  b  i    〉  i=1  m   . 
Within the expected utility framework, reduction to acts is implied by Monotonicity: 
if for any  ω ∈ Ω 

    ∑ 
i=1

  
n

     a  i   (ω)  ≿    ∑ 
i=1

  
m

     b  i   (ω) , 

then  〈  a  i    〉  i=1  n    ≿  〈  b  i    〉  i=1  m   . We return to Monotonicity in Section IVA. The following 
example illustrates the type of violations this paper is concerned with.

Example 1: A DM must choose between bets that depend on  τ , tomorrow’s high 
temperature. The DM can have either  $100  or the sum of the outcomes of bets  
  b  C    and   b  F   , where   b  C    pays  $100  if  τ  is less than 30°C ( $0  otherwise) and   b  F    pays  $100  
if  τ  is at least 86°F ( $0  otherwise). As 30°C equals 86°F, a DM who knows this and 
easily converts Fahrenheit to Celsius expresses indifference between the sum of  
  b  C    and   b  F    and  $100  for sure. However, a DM who does not know how to convert 
from one unit to the other may not exhibit such indifference and reasonably prefer  
$100  for sure to holding both   b  C    and   b  F    or vice versa.

A DM who expresses the preference  〈100〉 ≻ 〈  b  C   ,  b  F   〉  contradicts Monotoni-
city: both  〈  b  C   ,  b  F   〉  and  〈100〉  yield  100  in every state. Our novel axiom, Weak 
Monotonicity, relaxes this property by considering objectively impossible joint 
realizations of outcomes that would be possible with alternative joint distribu-
tions. To motivate it, consider why a DM might prefer  〈100〉  to  〈  b  C   ,  b  F   〉 . She can 
plausibly conceive four possible joint realizations of  〈  b  C   ,  b  F   〉 :  (100, 0) ,  (0, 100) ,  
 (0, 0) ,  (100, 100) . If the DM prefers  100  to  〈  b  C   ,  b  F   〉 , then she must think it is suffi-
ciently likely that both bets return  0 . Weak Monotonicity subsumes such consider-
ations by strengthening the conditions under which a lottery dominates another. In 
particular, it requires that if the lottery over the outcomes generated by  p  is preferred 
to that generated by  q  for every plausibly conceived joint realizations of the out-
comes of the actions in the supports, then  p  ≿  q .

Formally, for any finite subset of actions  {  c  1  , … ,  c  n   } = C ⊂  , the set of all 
plausible realizations of  C  equals

  range( c  1   ) × range( c  2   ) × ⋯ × range( c  n   ). 

Thus, each plausible realization   x ⃗   = ( x    c  1   ,  x    c  2   , … ,  x    c  n    )  is a vector of outcomes 
indexed by  C  such that each action   c  i    could, in isolation, result in   x    c  i    : for every 
  c  i   ∈ C , there exists  ω ∈ Ω  so that   x    c  i    =  c  i   (ω) . In Example 1, the plausible 
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 realizations of  {  b  C   ,  b  F   }  are  (100, 0) ,  (0, 100) ,  (100, 100) , and  (0, 0) , which we inter-
pret below as  〈  b  C   ,  b  F   〉  yielding four possible aggregate outcomes, namely,  100 ,  100 ,  
 200 , or  0 . Similarly, the profile  〈  b  C   ,  b  F   , 100〉  could yield the aggregate outcomes  
 200 ,  200 ,  300 , or  100 . Naturally, the outcomes of  〈  b  C   ,  b  F   , 100〉  dominate the out-
comes of  〈  b  C   ,  b  F   〉  regardless of any uncertainty about the conversion of tempera-
ture, and thus Weak Monotonicity will require that  〈  b  C   ,  b  F   , 100〉  ≿  〈  b  C   ,  b  F   〉 .

A vector of outcomes   x ⃗    is a plausible realization of lotteries  p  and  q  if it is a 
plausible realization of the set of all the actions included in profiles that are assigned 
positive probability by either  p  or  q . Fixing any such   x ⃗   , each action  a  is assigned the 
outcome   x   a   and a profile  〈  a  i    〉  i=1  n    in the support of either  p  or  q  is assigned the aggre-
gate outcome   ∑ i=1  n     x    a  i    . Hence, for a plausible realization   x ⃗    of  p  and  q ,  p  induces the 
lottery   p   x ⃗      defined as

    (p(〈  a  i    〉  i=1  n  ), 〈   ∑ 
i=1

  
n

     x    a  i    〉)  
p (〈 a  i  〉) >0

   

in which the constant action yielding the outcome   ∑ i=1  n     x    a  i     has probability 
 p (〈  a  i    〉  i=1  n  )  , i.e., the probability of the profile to which the outcome is assigned. The 
lottery induced by  q , denoted   q   x ⃗     , is defined and interpreted similarly. Note that given 
a plausible realization   x ⃗    of  p  and  q , if an action  a  occurs in both  p  and  q , then its 
outcome is   x   a   in both induced lotteries.

For example, suppose that  p  randomizes equally between  〈  b  C   ,  b  F   〉  and  
〈  b  F   〉  and  q  selects  〈  b  F   〉  with certainty. For the plausible realizations  (100, 0)  and  
 (100, 100) ,  p  induces a lottery that randomizes equally between two outcomes  
( 100  and  0  in the first plausible realization,  200  and  100  in the second) while  q  
induces a lottery that selects the worse of the two outcomes with certainty ( 0  and  
100 , respectively). Simi larly, for the plausible realizations  (0, 100)  and  (0, 0),   p  and  
q  induce identical lotteries that yield with certainty  100  in the first plausible realiza-
tion and  0  in the second.

As each realization corresponds to an outcome of the lottery under some joint 
distribution, these induced lotteries provide a natural way to compare  p  and  q . When 
the lottery induced by  p  is preferred to that induced by  q  for each plausible realiza-
tion, then  p  is better than  q  for any possible joint distribution. Weak Monotonicity 
relates this comparison to preference in the natural way.

AxIOM 4 (Weak Monotonicity): For any  p, q ∈ Δ , if   p   x ⃗      ≿   q   x ⃗      for every plausi-
ble realization   x ⃗    of  p  and  q , then  p  ≿  q .

In words, if the DM prefers the lottery induced by  p  to that induced by  q  for any 
of their plausible realizations, then she prefers  p  to  q . If she prefers larger payoffs, 
then it reduces to the following two implications when comparing  〈a, b〉  with  〈c〉 . 
First,  min a + min b ≥ max c  implies  〈a, b〉  ≿  〈c〉 . Second,  min c ≥ max a + max b  
implies  〈c〉  ≿  〈a, b〉 . Neither implication has bite when comparing  〈  b  C   ,  b  F   〉  with  
〈100〉 , so Weak Monotonicity does not restrict the ranking of these two profiles.

Remark 2: Weak Monotonicity has some formal similarities with the Dominance 
axiom of Seo (2009). Roughly, Seo’s axiom states that for two compound lotteries 
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over acts, if the compound lottery generated by the first is better than the second for 
any subjective probability distribution over states, then the first is preferred to the 
second. As in our axiom, it considers all possible beliefs, though over  Ω  rather than 
over plausible realizations. Seo’s explicitly does not require reduction of compound 
lotteries, while ours explicitly assumes reduction. The Mixed Consequentialism 
axiom in Battigalli et al. (forthcoming) is also related, but only considers the out-
comes that are possible according to  Ω .

C. Understanding and Richness

The axioms above suffice for our representation theorems but not for the iden-
tification of basic parameters of the model such as the DM’s beliefs. To this end, 
our final assumption relies on identifying the DM’s understanding of correlations 
among actions and ensures that there exist sufficiently diverse and understood sets 
of actions.

Our definition of understanding extends the logic of Weak Monotonicity. A DM 
who perceives the correlations within a subset of the actions correctly rules out 
some plausible realizations. Specifically, if she understands the correlations of the 
actions in a set  C , then she should consider irrelevant any plausible realization of  
p  and  q  that fails to synchronize the outcomes for the actions in  C  as for the joint 
occurrences that are determined by  Ω . That is, she should only consider a plau-
sible realization   x ⃗    if there exists  ω ∈ Ω  such that   x   a  = a(ω)  for all  a ∈ C ; we 
call any such plausible realization  C -synchronous. For example, if  C = {a, b} ,  
 p = 〈a, b〉 , and  q = 〈c〉 , then a plausible realization  ( x   a  ,  x   b  ,  x   c  )  of  p  and  q  is  
 C -synchronous if there exists  ω ∈ Ω  so that   x   a  = a(ω)  and   x   b  = b(ω) . We say 
that the DM understands  C  if  C -synchronous plausible realizations suffice to deter-
mine her preference.

DEFINITION 1: The preference  ≿  understands  C ⊆   if for any  p, q ∈ Δ , 
 p ≿ q  whenever   p   x ⃗     ≿  q   x ⃗      for all  C -synchronous plausible realizations   x ⃗    of  
 p  and  q .

In order to identify the main parameters of our representations, we assume that 
each action belongs to a suitably diverse, understood set of actions. A sufficient 
condition is that this understood set is rich, defined as follows.

DEFINITION 2: A set  B ⊂   is rich if, for any  a, b ∈ B  and any 
 σ(a, b) -measurable function  f : Ω → X , there exists  c ∈ B  with  c(ω) = f (ω)  for 
all  ω .

Thus, a rich set containing bets on the events  E  and  F  contains all possible bets on  
E ,  F ,  E  ∪        F  and  E  ∩       F . For two polar examples, a set containing an action for every 
possible mapping between states and outcomes is rich, but a singleton set is never 
rich. We can now state our assumption.

ASSUMPTION 1 (Non-Singularity): Each  a ∈   belongs to a rich, understood 
subset of actions.
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Non-Singularity is in the spirit of the Savage (1954) assumption that the domain 
of preference contains all possible acts. It is a joint assumption on both the prefer-
ence  ≿  and the set .

III. Representation

A DM who violates Monotonicity acts as if she perceives uncertainty that is not 
entirely captured by the state space  Ω . Under our axioms, we derive a state space 
sufficiently rich to express any additional uncertainty resulting from the mispercep-
tion of the joint realizations of outcomes, and show that the DM acts as if maximiz-
ing expected utility on this enriched state space. While one can plausibly increase 
the dimensionality of uncertainty in many ways, we do so by considering multiple 
copies of the state space.

A. Basic Correlation Representation

Our first result shows that, under Axioms 1–  4, one can obtain a basic representa-
tion in which each action is assigned its own copy. This representation is sufficiently 
flexible to encompass a wide variety of subjective perceptions of correlation. In 
particular, it can explain choices such as  100 ≻ 〈  b  C   ,  b  F   〉  in Example 1 by assigning 
positive probability to   b  C    and   b  F    simultaneously returning  0 .

To state our first representation formally, we introduce some notation. 
Let   Ω     =  ∏ a∈     Ω  be the Cartesian product where one copy of  Ω  is assigned 
to each action in   ,   Σ    =  ⊗ a∈   σ (a)   be the product  σ -algebra for   Ω     ,   Ω   a   be 
the copy of  Ω  assigned to  a ∈  , and for any   ω ⃗   ∈  Ω     ,   ω   a   be the component of  
  ω ⃗    in   Ω   a  .

DEFINITION 3: The preference relation  ≿  has a basic correlation representation 
if there exist a utility index  u : X → ℝ  and a probability measure  π  over   Σ     such 
that  p ≿ q  if and only if  U( p) ≥ U(q)  where

  U( p) =   ∑ 
p(〈 a  i  〉)>0

    p(〈 a  i    〉  i=1  n  ) V(〈  a  i    〉  i=1  n   ) 

and

  V(〈 a  i    〉  i=1  n  ) =  ∫ 
 Ω    

  
 
    u (  ∑ 

i=1
  

n

     a  i   (  ω    a  i    ))  dπ( ω ⃗  ). 

By increasing the dimension of uncertainty, the DM acts as if she is an expected 
utility maximizer on the larger state space   Ω     . Every   ω ⃗   ∈  Ω      determines a joint 
realization of the outcomes of the corresponding actions, so all additional uncer-
tainty corresponds to the perception of correlations. In Example 1, the objective 
state space is the temperature  τ , regardless of whether it is expressed in Celsius or 
Fahrenheit, but in a basic correlation representation, the DM’s state space is instead 
a vector of temperatures, one for each action. The action   b  C    is assigned to one copy 
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of the set of temperatures, and   b  F    to another. Then, the utility of the profile  〈  b  C   ,  b  F   〉  
is, setting  u (0)  = 0 ,

 u (200)  π ( τ      b  C    < 30,  τ      b  F    ≥ 86)  + u (100)  π ( τ      b  C    < 30,  τ      b  F    < 86 or   τ      b  C    ≥ 30,  τ      b  F    ≥ 86) , 

which can, of course, be different from  u (100)  . In particular, this representation 
allows the DM to attach positive probability to events such as “  b  C    yields  0  and   b  F    
yields  0 ” that cannot occur if all uncertainty is captured by  Ω .

The next theorem shows that, under our axioms, such representation always 
exists.

THEOREM 1: The preference  ≿  satisfies Weak Order, Continuity, Independence, 
and Weak Monotonicity if and only if  ≿  has a basic correlation representation. When 
there exist  p, q ∈ Δ  with  p ≻ q ,  u  is unique up to a positive affine transformation.

We now outline the proof. Observe that our axioms imply the standard expected 
utility axioms when restricted to lotteries over outcomes, so, for standard lotteries, 
the preference  ≿  has an expected utility representation with utility index  u . Recall 
that a state   ω ⃗   ∈  Ω      assigns to each action  a  its own state   ω   a  ∈ Ω  and outcome  
a(  ω   a  ) . In the key step, we map each lottery  p  over profiles to a vector   f  p    where for 
each   ω ⃗   ∈  Ω     ,   f  p   ( ω ⃗  )  equals the expected utility of lottery  p  according to  u  when 
action  a  returns the outcome  a(  ω   a  ) . We use Weak Monotonicity to show that   f  p    is 
sufficient for the ranking of  p :   f  p   ≥  f  q    implies  p  ≿ q . Intuitively, if   f  p   ≥  f  q   , then for 
each plausible realization the expected utility of  p  is as large as the expected utility 
of  q , and thus  p ≿ q . This allows us to define a function  F  on these vectors such that  
F(  f  p   )  ≥ F(  f  q   )  if and only if  p ≿ q  by setting  F(  f  p   )  to be the utility of a lottery over  
X  that exhibits indifference with  p . Independence then yields that  F  is linear, so stan-
dard results ensure that  F  can be written as an integral with respect to a probability 
measure.

Remark 3: Adaptations of our axioms are necessary, but not sufficient, when we 
define  ≿  over  instead of  Δ . However, Independence, which establishes a linear 
and thus separable representation, is not defined in the absence of lotteries. The 
formulation of alternative axioms needed to restore the lost properties remains an 
open question.

B. Probabilistic Correlation Representation and Uniqueness

Theorem 1 captures the minimal behavioral assumptions needed to represent the 
DM’s perception of correlations. Our next step is to identify the DM’s beliefs about 
the correlation as well as the coarsest space on which these beliefs can be expressed. 
The choice of   Ω      for the basic correlation representation is far from parsimonious. 
To illustrate this point, consider Example 1 with an additional action   b  C  o    that pays  
$100  if  τ  is at least 30°C ( $0  otherwise). Obviously,  〈  b  C   ,  b  C  o   〉  is a constant act that 
pays  $100 , and since both bets use Celsius temperatures, it is  reasonable to presume 
that the DM perceives it so. Nevertheless, in our basic representation, the action   b  C  o    
is also assigned its own copy of the set of temperatures.
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For the remainder of the paper, we consider a probabilistic correlation represen-
tation (PCR) of the preference that is equivalent to the basic representation but has 
a more frugal state space. In addition to being easy to apply and interpret in many 
situations, it allows us to provide a tighter characterization of the parameters of the 
model such as the DM’s beliefs. A PCR envisages the DM as implementing fol-
lowing procedure. She first groups together certain actions, the correlations among 
which she understands as per Definition 1. We call such a set of actions an under-
standing class and the set of all understanding classes a correlation cover. She then 
forms beliefs within and across classes, which we model as a probability measure 
on a product state space indexed by the understanding classes. All the actions in 
the same class are assigned to the same copy of  Ω , so the possible joint realizations 
within a class are identical to the objective ones. Consequently, any profile of the 
actions in the same class reduces to a single action. Of course, this procedure is only 
a representational device. The resulting classes are endogenously revealed from her 
choices; indeed, the DM is not necessarily aware which of the joint realizations are 
understood by her are objective and which are perceived.

Formally, the representation of a PCR is as follows. A correlation cover  is a 
collection of subsets of  such that  covers  and no  C ∈   contains a distinct   
C ′   ∈  . Beliefs are defined on   Ω     =  ∏ C∈     Ω , with the  C -coordinate denoted 
by   Ω   C  , endowed with the product  σ -algebra   Σ    =  ⊗ C∈    Σ C    where for each  C ∈  , 
  Σ C    is the coarsest  σ -algebra by which every  a ∈ C  is measurable. Given a state   
ω ⃗   ∈  Ω     ,   ω   C   denotes the component of   ω ⃗    assigned to  C .

DEFINITION 4: The preference  ≿  has a probabilistic correlation representation  
(, π, u)  for a correlation cover   , a probability measure  π  over   Σ    , and a utility 
index  u : X → ℝ  if it is represented by

  U( p) =   ∑ 
p(〈 a  i  〉)>0

    p(〈  a  i    〉  i=1  n   ) V(〈  a  i    〉  i=1  n   ) 

where

  V(〈  a  i    〉  i=1  n   ) =  ∫ 
 Ω    

  
 
    u (   ∑ 

i=1
  

n

     a  i   (  ω    C  i    ))  dπ( ω ⃗  ) 

for any  〈  a  i    〉  i=1  n    and   C  1  ,  … ,  C  n   ∈   with   a  i   ∈  C  i    for  i = 1, … , n .

While the PCR may seem a rather ad hoc procedure for implementing choice,  
it is easily seen to be equivalent to the basic correlation representation. Since the 
PCR places no restrictions on the understanding classes, any basic representation 
can be rewritten as a PCR, and vice versa.6 To illustrate the PCR using Example 1, 
suppose that   = {  B  C   ,  B  F   } , with   B  C    and   B  F    interpreted as the bets evaluated in 
terms of Celsius and of Fahrenheit, respectively, so   b  C   ,  b  C  o   ∈  B  C    and   b  F   ∈  B  F   . Thus, 
each   τ ⃗   ∈  Ω   { B  C  ,  B  F  }   can be thought of as a pair of temperatures, one in Celsius and the 

6 The basic representation is a PCR where each understanding class is a singleton, and the converse follows from 
extending the probability measure from   Ω      to   Ω     . See online Appendix for details. 
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other in Fahrenheit. As with the basic correlation representation, a DM for whom  
100 ≻ 〈  b  C   ,  b  F   〉  must attach positive probability to   τ      B  C    > 30°C  and   τ      B  F    ≤ 86°F .

The notion of PCR is crucial for the unique identification of beliefs because many 
actions can be allocated to the same dimension. When understanding classes contain 
suitably diverse actions, one can tease out DM’s perception of correlation; this is 
impossible in the basic representation because each action has its own dimension. 
Hence, we restrict attention to rich PCRs:  (, π, u)  is rich if every  C ∈   is a rich 
set. Rich PCRs arise in many natural applications: see Section IIIC.

Rich PCRs also permit the characterization of the correlation covers that are con-
sistent with the DM’s preference. Such a characterization is critical for the study 
of comparative notions of understanding, such as an increase or a decrease in the 
misperception for a DM or heterogeneity in misperception. The basic representation 
provides one extreme in terms of dimensionality: every action has its own under-
standing class. A PCR allows us to determine the other extreme by asking if and 
when a coarsest grouping of actions into understanding classes exists. Such a coars-
est correlation cover pins down rather unequivocally the DM’s misperceptions of 
joint realizations.

DEFINITION 5: A collection    of subsets of    is the coarsest correlation cover 
for the preference  ≿  if there is a rich PCR  (, π, u)  of  ≿ , and for any rich PCR 
 (  ′ , π′, u′ )  of  ≿  and any  B′ ∈  ′ ,  B′ ⊆ B  for some  B ∈  .

For any understanding class in a correlation cover   ′ , there is a larger class in the 
coarsest cover. Therefore, any accurate perception captured by   ′  is also captured by 
the coarsest cover. Obviously, the coarsest correlation cover, should it exist, is unique.

We can now present our main identification result, which relies on the utility 
index  u  being continuous, as implied by a standard axiom (Grandmont 1972) and 
Non-Singularity.

THEOREM 2: The preference  ≿  has a basic correlation representation with con-
tinuous  u  and Non-Singularity holds if and only if it has a rich PCR  (, π, u) . 
Furthermore, there exists a coarsest correlation cover, and  π  is unique if  u  is not a 
polynomial.

PROOF: 
See Appendix A.A2.

Theorem 2 shows that when  u  is continuous, Non-Singularity and Axioms 1–  4 
hold if and only if a rich PCR exists, and that a rich PCR exists if and only if a 
coarsest correlation cover exists. Since the coarsest cover is unique, a minimal state 
space can be meaningfully defined and, unless the utility is polynomial, beliefs on 
this space are uniquely identified. When the utility is polynomial, uniqueness typ-
ically fails: for instance, a risk-neutral DM’s beliefs about the expected return of 
each asset suffice to determine her behavior, so only her marginal beliefs are unique. 
In  general, the curvature of  u  determines precisely which beliefs affect the agent’s 
behavior, and for many standard utilities such as constant absolute risk aversion 
(CARA) or constant relative risk aversion (CRRA), beliefs are unique. In the online 
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Appendix, we give a behavioral characterization of a polynomial utility index and 
identify the set of all beliefs consistent with a given rich PCR.

We note here that a coarsest correlation cover need not be a partition. In fact, a 
coarsest correlation cover is a partition only if it has exactly one understand class 
and the DM understands the relation among all actions. To see why, observe that 
each understanding class can always be enlarged to include all constant actions; 
thus, if the coarsest correlation cover is a partition, it can only have one cell. More 
interestingly, consider once more Example 1. Suppose that the DM knows that  
0°C = 32°F but is unsure about the scaling factor; that is, she understands the con-
nection between any actions that only depend on whether the temperature is below 
freezing. Any such action can belong to both understanding classes, regardless of 
being expressed in Celsius or Fahrenheit.

We close this section by addressing some interpretive issues. Our framework 
implicitly assumes that the description of an asset is included in its formalization. 
In particular, a DM can perceive different framings of the same object as distinct 
assets—say two differently worded insurance contracts that are otherwise identical. 
Nevertheless, the descriptions of the individual assets must be sufficient for her 
perception of the returns of a profile. In a PCR, any additional information the DM 
acquires about the returns of a profile must be consistently incorporated into her 
beliefs about the joint returns of the underlying assets. For instance, let us return 
to a DM who strictly prefers an S&P 500 index-tracking fund to a portfolio of the 
stocks of the S&P 500. If we inform the DM that the portfolio and the index fund 
are actually identical, we would expect her to become indifferent. Our model can 
accommodate such indifference only by adjusting her beliefs about the correlations. 
Of course, this is a demanding requirement in the presence of misperception of the 
correlations among the underlying stocks.

The endogenous association of each action with a class and the unique determi-
nation of a coarsest set of classes are key advantages of our approach. One could, 
of course, begin by specifying a set of classes  and considering all acts on   Ω     . 
However, this would require setting the relevant dimensions of uncertainty and their 
association with alternatives exogenously. Furthermore, it would require that DM 
expresses preferences over some possibly nonsensical acts that are inconsistent with 
the primitive profiles.

C. Applications of the PCR

The following examples illustrates some natural applications of our representation.

Framing.—Each action consists of a (Savage) act  a  and a frame  f ∈ Ϝ , such as 
Celsius or Fahrenheit. The DM understands the connection between any acts framed 
in the same way. We can model this as a PCR where the correlation cover consists 
of the sets   B  f   = {(a, f )  : a ∈  } , where  is the set of all acts.

Imperfect Inference in Incomplete Information Games.—The PCR framework 
can be easily adapted to strategic environments (see Ellis and Piccione 2016). 
Here, each action represents a behavioral strategy of a given player. This allows the 
 formulation of a broad solution concept for players who misperceive the opponent’s 
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strategies in a systematic way and generalizes existing approaches such as Eyster 
and Rabin (2005) or Jehiel and Koessler (2008).

Asset Pricing.—An asset market consists of a set      o   of assets and the derivatives 
thereof. We model a derivative as a pair  (γ,  a   o  ) , where  γ  is a function from  X  to itself 
and   a   o   is an asset in      o  , that yields  γ(x)  when   a   o   yields  x . If the DM understands the 
set of all derivatives that depend on the same underlying asset, then she has a PCR 
when   =  ×     o  , for    equal to all functions from  X  to  X , and the correlation 
cover consists of the sets   B   a   o    = {(γ,  a   o  )  : γ ∈  } .

Source Preference.—Each action is associated with a source   S  i    from a set   . 
Each   S  i    is a sub- σ -algebra of  Σ  and corresponds to a set of actions   B  i    expressed in 
terms of the source. The correlation cover consists of all sets   B  i   , so the DM reduces 
any profile whose contents depend on the same source to one act but fails to do so 
when it depends on more than one source.

IV. Discussion

We conclude by considering some special cases and by discussing some of the 
implications of our model in the context of portfolio choice.

A. Special Cases

In this subsection, we consider two special cases of particular interest. For sim-
plicity of exposition, we maintain throughout that the  σ -algebra of each understand-
ing class is the power set. It is easy to adapt Theorem 2 to show existence of such 
a representation by strengthening appropriately our definition of a rich set in the 
 Non-Singularity assumption.

Weak Monotonicity may be too permissive in some circumstances. In particular, 
it allows the DM to perceive differently the distribution of two actions with identical 
mappings from  Ω  to  X . This is undesirable if the DM evaluates the distribution of 
individual actions consistently and misperceives only their correlation. For instance, 
a ratings agency may accurately evaluate the chances of any given asset defaulting 
but misjudge the likelihood of joint defaults. The axiom below yields that beliefs 
over the outcomes of individual actions are consistent with the objective state space.

AxIOM 5 (Simple Monotonicity): If  a(ω) = b(ω)  for all  ω ∈ Ω , then  〈a〉 ∼ 〈b〉 .

Simple Monotonicity implies that the DM’s belief about the distribution of  Ω  
does not depend on the action being evaluated. Formally, the preference  ≿  has a 
representation in the following class. Define   π C    as the marginal over the copy of  Ω  
assigned to class  C .

DEFINITION 6: A rich PCR  (, π, u)  has consistent marginal beliefs 
if   π  C  1     (ω) =  π  C  2     (ω)  for all   C  1   ,  C  2   ∈   and all  ω ∈ Ω .

This specification obtains in most cited models of imperfect inference.
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PROPOSITION 1: Let the preference  ≿  have a rich PCR  (, π, u)  with nonconstant  
u . Then,  ≿  satisfies Simple Monotonicity if and only if its PCR has consistent mar-
ginal beliefs.

PROOF:
For sufficiency, suppose ≿   has a rich PCR  (, π, u)  and satisfies Simple 

Monotonicity. Pick  x, y ∈ X  with  u(x) > u(y) . By richness, for any  ω ∈ Ω  
and   C  1   ,  C  2   ∈  , there exists   a  i   ∈  C  i    that yields  x  at state  ω  and  y  otherwise for  
i = 1, 2 . By Simple Monotonicity,  〈  a  1   〉 ∼ 〈  a  2   〉 , so  [u(x )  − u(y ) ]  π  C  1     (ω )  + u(y )  
= [u(x )  − u(y ) ]  π  C  2     (ω )  + u(y)  and thus   π  C  1     (ω )  =  π  C  1     (ω) . Necessity is trivial. ∎

Unsurprisingly, our model collapses to the standard expected utility model if and 
only if the preference ≿ satisfies the typical Monotonicity condition. For complete-
ness, we state and prove this formally.

AxIOM 6 (Monotonicity): For any profiles  〈  a  i    〉  i=1  n    and  〈  b  i    〉  i=1  m   , if   ∑ i=1  n     a  i   (ω) 
≿   ∑ i=1  m     b  i   (ω)   for all  ω ∈ Ω , then  〈  a  i    〉  i=1  n   ≿ 〈  b  i    〉  i=1  m   .

PROPOSITION 2: Suppose ≿ has a rich PCR  (, π, u) . The preference  ≿  satisfies 
Monotonicity if and only if its coarsest correlation cover equals  {} .

PROOF:
Suppose  ≿  has a rich PCR  (, π, u) . Pick any  C ∈   and for any 

profile  〈  a  j    〉  j=1  n    choose  a ∈ C  satisfying  a(ω) =  ∑ j=1  n     a  i   (ω)  for all  ω . Then,  
〈a〉 ∼ 〈  a  j    〉  j=1  n    by Monotonicity, which implies that

  V(〈  a  j    〉  j=1  n   )  =  ∫ 
Ω
  
 
    u (   ∑ 

j=1
  

n

     a  j   (ω))  d  π C   (ω). 

Thus, ≿ has a rich PCR  ( { },  π C   , u) , and  {}  is the coarsest correlation cover. ∎

B. Implications

A DM with a fixed risk attitude simultaneously undervalues certain profiles 
while overvaluing others. For a very simple example, consider a strictly risk-averse 
trader who has a rich PCR with consistent marginal beliefs. Fix assets  a, b, c  so that  
a(ω )  = b(ω )  = − c(ω )  = 1  for all  ω ∈ E ,  a(ω )  = b(ω )  = − c(ω )  = − 1  
for all  ω ∉ E , and suppose that  〈b, c〉 ∼ 0 . This indifference reveals that  b  and  
c  are in the same understanding class. It is easy to see that whenever this trader 
misperceives the joint realizations of  〈a, b〉 , she overvalues  〈a, b〉  and undervalues  
〈a, c〉  relative to a standard trader with the same beliefs: for  〈a, b〉  risk is smoothed 
out since a return equal to 0 is perceived as possible, whereas  〈a, c〉  is not perceived 
as riskless.

Independence requires that the DM is unsophisticated about her misperception. 
To illustrate this, consider the same trader and actions  a, b, c  as above, and sup-
pose again that  b  and  c  are in the same understanding class while  a  is not. Thus, 
she misperceives the relationship between  a  and  b  as well as between  a  and  c . A 
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 sophisticated trader may recognize her own lack of understanding. As in the ambi-
guity aversion literature, she may express the preference

    1 __ 
2
   〈a, b〉 +   1 __ 

2
   〈a, c〉 ≻ 〈a, b〉 ∼ 〈a, c〉 

because    1 _ 2   〈a, b〉 +   1 _ 2   〈a, c〉  is safer than either alternative in that it offers a 50–50 lot-
tery regardless of the correlation across classes; for instance, the DM studied by Levy 
and Razin (2016) would express such a preference. Obviously, the Independence 
axiom fails to hold. A full study of such behavior is left to future work.

A trader in our model typically perceives markets as incomplete, even when 
they are objectively complete. This can lead the agent to exhibit a flight to safety. 
Consider a simple asset market with one trader who divides fixed wealth  w  between 
three assets  {  a  1   ,  a  2   ,  a  S   } , whose returns are governed by two states  S = {  s  1   ,  s  2   }  
according to the return matrix

  R =  [ 
1  0  1  
0
  

1
  

1
 ]  

for columns   a  1   ,  a  2   ,  a  S   , and rows   s  1   ,  s  2   . This maps naturally into our formal setting, 
with a typical action corresponding to buying  x  shares of security   a  i    for  x ∈ ℝ .

The matrix above has full rank, so markets are objectively complete. Indeed, a 
standard trader finds   a  S    to be redundant and perceives no arbitrage if and only if 
the price of   a  S    equals the sum of the prices of   a  1    and   a  2   ; she must express indif-
ference between buying exactly  x  shares of   a  S    and buying  x  shares of   a  1    together 
with  x  shares of   a  2   . Now assume the trader’s preference has a PCR with consistent 
marginal beliefs and two understanding classes, one for buying shares of   a  1    and the 
other for buying shares of   a  2   . The PCR trader perceives the return matrix to be

   R ̃   =  
⎡
 ⎢ 

⎣
 
1

  
0

  
1

  1  1  1  
0
  

0
  

1
  

0

  

1

  

1

 
⎤
 ⎥ 

⎦
  

in states (from top to bottom)  (  s  1   ,  s  1   ) ,  (  s  1   ,  s  2   ) ,  (  s  2   ,  s  1   ) , and  (  s  2   ,  s  2   ) . Our strictly-risk 
trader never purchases strictly positive quantities of both   a  1    and   a  2    if her belief has 
full support and the price of   a  S    equals the sum of the prices of   a  1    and   a  2   .

Finally, we illustrate how incentives interact with correlation misperception by 
considering how tranching alters the perceived expected return of a CDO. If the 
CDO is untranched, then its expected return equals the sum of that of the underlying 
assets. Any two traders who agree on the expected value of each component asset also 
agree on the expected value of the untranched CDO, even if they disagree about the 
correlation between the assets. Their evaluations diverge, however, when a CDO is 
divided into tranches. Suppose, for instance, that returns are allocated to two tranches 
and that the senior tranche has a claim on the first  y  dollars of return while the junior 
receives the return of the CDO in excess of  y . The expected returns of the junior 
and senior tranches are calculated using the utility indexes   u   J  (x) = max  { x − y, 0}  
and   u   S  (x) = min  { x, y} . Since neither is a  polynomial, Theorem 2 implies that all 
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aspects of the joint distribution can in principle affect the valuation of the tranches: 
misperception of correlation can lead to an inaccurate assessment, even when each 
of the underlying assets is evaluated correctly.

To demonstrate interesting additional implications and perform relevant compar-
ative statics, consider a trader with a PCR  ( {  C  i   }  i=1  N   , u,  π   χ  )  where   π   χ   satisfies

   π   χ  (  ω    C  1    , … ,  ω    C  N    )  = χq (   ∩ 
i=1

  
N
    {  ω    C  i    })   + (1 − χ)  ∏ 

i=1
  

N
    q( {  ω    C  i    }) 

for some probability measure  q  over  Ω . Such a probability measure has numerous 
interpretational advantages. For instance, the trader satisfies Monotonicity if and 
only if  χ = 1 , the distance between   π   1   and   π   χ   (as measured by Kullback-Leibler 
divergence of   π   1   relative to   π   χ  ) decreases with  χ , and when actions  a  and  b  are 
perfectly correlated, the trader perceives their correlation coefficient to be  χ . Also, 
this PCR has consistent marginal beliefs and  q  can be interpreted as the objective 
distribution on  Ω .

Suppose the trader is risk-neutral and considers purchasing a CDO. To make the 
example stark, assume that the CDO is a profile  〈  a  1  n  , … ,  a  n  n  〉 , where each   a  i  n   is 
a    1 _ n    share of an asset   a  i   ,   a  i  n  ∈  C  i    for each  i  and  n , and   a  i    is objectively identical to 
  a  j   : each   a  i  n  (ω) =   1 _ n   a(ω) ≥ 0  for all  ω  and some fixed  a ∈  . As noted above, this 
trader correctly evaluates an untranched  〈  a  1  n  , … ,  a  n  n  〉  as exactly   E  q   [a] . However, 
suppose the CDO is split into a senior and a junior tranche with a return of  y  claimed 
by the senior tranche, with returns evaluated using   u   J   and   u   S  . It is easy to show that 
this trader undervalues the junior tranche and overvalues the senior tranche and that 
such misvaluations are monotonic in  n  and  χ . Thus, the senior tranche can be sold at 
a profit, with the junior tranche kept on the books. Furthermore, an investment bank 
could repackage the junior tranche to create a CDO-squared, or a CDO made up 
of CDOs (Coval, Jurek, and Stafford 2009). This trader would again overvalue the 
senior tranche of the synthetic CDO. However, a second trader who understands the 
correlation correctly could make arbitrage profits by shorting the senior tranche and 
going long on the junior (even without repackaging). Indeed, Lewis (2010) reports 
the story of a Morgan Stanley trader adopting the opposite trade strategy and losing 
over $9 billion.

Appendix: Additional Proofs

The following notation is used throughout. We denote the complement of a set  E  
by    

_
 E   . We sometimes denote an element of    by  F .

A. Proof of Theorem 1

Necessity is trivial.
Assume for the remainder that  ≿  satisfies Weak Order, Continuity, Independence, 

and Weak Monotonicity. Herstein and Milnor (1953) implies that when restricted to 
the set of finite lotteries over  X ,  ≿  has an expected utility representation with utility 
index  u  normalized such that  u(0) = 0 . The key step is to show that we can map 
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each lottery over action profiles into a (utility valued) act on the state space   Ω     . For 
any  p ∈ Δ , define the mapping   f  p    :  Ω     → ℝ  by

   f  p   ( ω ⃗  )  =   ∑ 
p(〈 a  i   〉  i=1  n  )>0

    p(〈  a  i    〉  i=1  n  ) u  (  ∑ 
i=1

  
n

     a  i   (  ω    a  i    ))  

for every   ω ⃗   ∈  Ω     , where   ω    a  i     is the component of   ω ⃗    corresponding to action   a  i   .

LEMMA 1: If   f  p   ≥  f  q   , then  p  ≿ q .

PROOF:
Fix an arbitrary plausible realization   (  x   a  ) a∈B    of  B =  ( p)   ∪         (q)  , where ( p) is 

the set of distinct actions included in profiles assigned positive probability by p. By 
definition, there exists   ω   a  ∈  Ω   a   such that   x   a  = a(  ω   a  ) . Then note that

   (p(〈  a  i    〉  i=1  n  ), 〈   ∑ 
i=1

  
n

     x    a  i    〉)  ≿  (q(〈  b  i    〉  i=1  m  ), 〈   ∑ 
i=1

  
m

     x    b  i    〉)  

if and only if

   (p(〈  a  i    〉  i=1  n  ), 〈   ∑ 
i=1

  
n

     a  i   ( ω    a  i    )〉)  ≿  (q(〈  b  i    〉  i=1  m  ), 〈   ∑ 
i=1

  
m

     b  i   ( ω    b  i    )〉)  

if and only if

    ∑ 
p(〈 a  i  〉)>0

    p(〈  a  i   〉) u (   ∑ 
i=1

  
n

     a  i   (  ω    a  i    ))  ≥   ∑ 
q(〈 b  i  〉)>0

    q(〈  b  i   〉)u (   ∑ 
i=1

  
m

     b  i   (  ω    b  i    ))  

by the above. By   f  p   ≥  f  q   , the last inequality is true. Since  ( x   a  )  was chosen arbi-
trarily,  p  plausibly dominates  q . By Weak Monotonicity,  p ≿  q . ∎

Define  W = {  f  p    :  p ∈ Δ } , noting that  W  is convex. For  ϕ  in  W , define  
I(ϕ) =  ∫        u(x) dr  for some  p ∈ Δ  such that   f  p   = ϕ  and a lottery  r  over  X   
satisfying  r ∼ p . Such an  r  exists for every  p  by Weak Monotonicity, Completeness, 
and Continuity, so  I  is well defined. Moreover, Independence and Weak Monotonicity 
imply that  I  is a positive linear functional, i.e.,  x ≥ 0 ⇒ I(x) ≥ 0 . Obviously, 
 I (  f  p  )  ≥ I (  f  q  )   if and only if  p ≿ q .

LEMMA 2:  I  has a positive linear extension  F  to the smallest subspace   W   ∗   that 
contains  W .

PROOF:
Define   W   ∗  = {  λ 1    x  1   −  λ 2    x  2   :  x  1   ,  x  2   ∈ W,  λ 1   ,  λ 2   ∈  ℝ +   } . Clearly,   W    ∗   is a 

subspace and contains  W . Let   W ′    be any other subspace containing  W . Pick any 
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 y ∈  W    ∗  . Then  y =  λ 1    x  1   −  λ 2    x  2   , and since   x  1   ,  x  2   ∈ W ⊂  W  ′   ,  y ∈  W  ′   ; 
hence   W    ∗  ⊆  W  ′   . Suppose that   λ 1    x  1   −  λ 2    x  2   = y  and  y ∈ W . Then

     λ 1   _______  
1 +  λ 1   +  λ 2  

    x  1   =    λ 2   _______  
1 +  λ 1   +  λ 2  

    x  2   +   1 _______  
1 +  λ 1   +  λ 2  

   y. 

Since   x  1   ,  x  2   , y, 0 ∈ W , so are the left-hand side and right-hand side above. 
Linearity of  I  on  W  gives that  I(y) =  λ 1   I( x  1   )  −  λ 2   I( x  2   ) . So the function  
F = y ↦  λ 1   I(  x  1   )  −  λ 2   I(  x  2   )  whenever  y =  λ 1    x  1   −  λ 2    x  2    is well-defined and 
extends  I . Linearity of  F  follows from linearity of  I . To see that  F  is a positive linear 
functional, fix  ϕ ∈  W   ∗   with  ϕ ≥ 0 . Then  ϕ =  λ 1    x  1   −  λ 2    x  2   ; if   λ 1   =  λ 2   = 0 ,  ϕ = 0  
so  F(ϕ) = F(0) = 0 . Otherwise,

     λ 1   _____  λ 1   +  λ 2  
    x  1   ≥    λ 2   _____  λ 1   +  λ 2  

    x  2   

and since both the left-hand side and right-hand side are in  U ,  F (    λ 1   ____  λ 1   +  λ 2  
    x  1   )  ≥  

F (   λ 2   ____  λ 1   +  λ 2  
    x  2   )  . The remainder follows from linearity of  F . ∎

For any  J ⊆  , define   Σ J   =  ⊗ a∈J   σ(a) , the product  σ- algebra on   Ω   J   and 
  B  0   (  Σ    )  the set of simple   Σ    -measurable functions. Note that the set   W    ∗   is a vector 
subspace of   B  0   (  Σ    ) .

LEMMA 3: There is a positive linear extension   F ˆ    of  F  to all of   B  0   ( Σ    )  such that

   F ˆ  (ϕ) =  ∫ 
 
      ϕ d  π   o  , 

for a finitely additive probability measure   π   o   on   Σ    .

PROOF:
The function  F  is linear on   W   ∗   and  x ≥ 0  implies  F(x) ≥ 0 . Pick any  

y ∈  B  0   (  Σ    ) . Since  y  is bounded, let  z  be an upper bound for  y . Since  z  is a constant,  
z ∈  W    ∗  . Hence,   W    ∗   majorizes   B  0   (  Σ    ) . By Theorem 8.32 of Aliprantis and Border 
(2006),  F  extends to a positive linear function on   B  0   (  Σ    ) . By Theorem 14.4 of 
Aliprantis and Border (2006), there is a finitely additive signed measure of bounded 
variation,   π   o  :  Σ    → R , such that

   F ˆ  (ϕ) =  ∫ 
 
      ϕ d  π   o  . 

To see   π   o  (  Ω     )  = 1 , let  ϕ  be such that  ϕ( ω ⃗  ) = 1 ,   F ˆ  (ϕ) = 1 =  π   o  (  Ω     ) 1 . To 
see   π   o  (E )  ≥ 0  for any  E ∈  Σ    , consider   χ E    with   χ E   (ω )  = 1  for  ω ∈ E  and  0  
otherwise, and since   χ E   ≥ 0 ,  0 =  F ˆ  (0 )  ≤  F ˆ  (  χ E   )  =  π   o  (E) . Consequently,   π   o   
is a finitely additive probability measure.

To construct a countably additive probability, for every finite  J ⊆   define a set 
function   π J    on  (  Ω   J  ,  Σ J   )  using the formula

   π J   (E ) =  π   o  (E ×  Ω   \ J  ) 
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for every  E ∈  Σ J   . Each   π J    inherits finite additivity from   π   o  ; in fact, since   Σ J    has a 
finite number of members,   π J    is countably additive and so a probability measure. By 
construction the family  {  π J   }  is Kolmogorov consistent. As a finite set, each   Σ J    is a 
compact class, and trivially

   π J   (E )  =  sup  
 
     {  π J   ( E ′   )  : E ⊇  E ′   ∈  Σ J   }. 

By Kolmogorov’s extension theorem (Aliprantis and Border 2006, Theorem 15.26), 
there is a unique, countably additive  π :  Σ    → [0, 1]  that extends each   π J   . For any  
p , there is a finite   J  p   ⊂   such that   f  p    is   Σ  J  p      measurable. Letting    f ̂   p    be the natural 
projection of   f  p    onto   Ω    J p    ,

   ∫ 
 Ω    

  
 
      f  p   d  π   o  =  ∫ 

 Ω     J p   
  

 
       f ̂   p   d  π  J  p     =  ∫ 

 Ω    
  

 
     f  p   dπ. 

Therefore the function  U : Δ → ℝ  defined by

  U( p) =  ∫ 
 
       f  p   dπ 

represents the DM’s preference. To conclude, rewrite  U( p)  as

   ∫ 
 Ω    

  
 
     f  p   dπ =  ∫ 

 Ω    
  

 
      ∑ 

p(〈 a  i  〉)>0
    p(〈  a  i    〉  i=1  n   ) u (   ∑ 

i=1
  

n

     a  i   (  ω    a  i    ))  dπ

 =   ∑ 
p(〈 a  i  〉)>0

    p(〈  a  i    〉  i=1  n   )  ∫ 
 Ω    

  
 
    u (   ∑ 

i=1
  

n

     a  i   (  ω    a  i    ))  dπ, 

the desired representation, which completes the proof. ∎

B. Proof of Theorem 2

We split the proof of Theorem 2 into three propositions. Supposing that  ≿  has a 
basic correlation representation with continuous  u , we apply Propositions 3 and 4 to 
yield that  ≿  has a rich PCR if and only if Non-Singularity holds. The existence of a 
unique coarsest correlation cover follows from Proposition 3. Uniqueness of beliefs 
follows from Proposition 5.

We say that the preference  ≿  has a rich and understood correlation cover if there 
exists a correlation cover    such that every  B  in    is rich and understood.

PROPOSITION 3: The preference  ≿  satisfies Non-Singularity if and only if there 
exists a unique rich and understood correlation cover    such that any rich under-
stood set  C  is contained in a set  B ∈  .

PROOF OF PROPOSITION 3:
Necessity is obvious. For sufficiency, let    be the set of all  ⊆ -maximal, rich, 

and understood subsets. We show this is non-empty via Zorn’s lemma. Fix any 
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chain   {  B  t   } t∈T    of rich understood subsets of   . We claim that   B   ∗  =  ∪ t∈T      B  t    is rich 
and understood and thus an upper bound by set inclusion. The set   B   ∗   is understood 
because for any  p, q ∈ Δ , the set of actions included both in   B   ∗   and in some 
profile in their support is finite. Thus, it is also contained in some understood   B  t    and 
therefore considering only   B   ∗  -synchronous plausible realizations suffice for prefer-
ence between arbitrary  p  and  q . Richness follows since, if  a, b  in   B   ∗  ,  a, b ∈  B  t    for 
some  t  so for any  f : Ω → X  that is  σ(a, b) -measurable, there exists  c ∈  B  t   ⊆  B   ∗   
with  c(ω) = f (ω)  for any  ω ∈ Ω . By Zorn’s lemma, there exists at least one max-
imal element. By Non-Singularity, each  a  belongs to at least one set  B ∈  . The 
claim then follows from  ⊆ -maximality. ∎

PROPOSITION 4: The preference  ≿  has a basic representation with continuous  
u  and a rich and understood correlation cover    if and only if it has a rich PCR  
(, π, u)  with continuous  u .

PROOF OF PROPOSITION 4:
Necessity is straightforward. For sufficiency, let    be a rich and understood cor-

relation cover. Suppose that the preference relation  ≿  has a basic representation  
(  {a} a∈   ,  π 0   , u)  with continuous  u . We normalize so  u(0) = 0 . We show there exists  
π  so that  ≿  has rich PCR  (, π, u) ; the claim is trivial if  u  is constant, so that case 
is ignored.

Suppose first that  u  is linear. Then with no loss of generality,

  V(〈  a  i    〉  i=1  n   ) =   ∑ 
i=1

  
n

     ∫ 
 Ω    

  
 
     a  i   (ω) d  π   i  =   ∑ 

i=1
  

n

    V( a  i   )  ,

where   π   i   is the marginal probability on   Ω    a i     corresponding to action   a  i    under   π 0   . 
Using standard arguments, it is easy to verify that  ≿  restricted to any  B ∈   has an 
affine representation   V  B    where   V  B   ( a  i   ) =  ∫         a  i   d  π   B   for some probability measure   π   B  .  
It also clearly has an affine representation  V( a  i   ) . By uniqueness of affine representa-
tions,   V  B   ( a  i   ) = V( a  i   ) . Picking any   C  1   , … ,  C  n   ∈   such that   a  i   ∈  C  i   ,

  V(〈  a  i    〉  i=1  n   )  =   ∑ 
B∈{ C  1  , … ,  C  n  }

     ∫ 
 
      (  ∑ 

 C  i  =B
     a  i  )  d  π   B  . 

Defining cross-class beliefs arbitrarily, for instance independently, delivers the 
result.

Suppose now that  u  is not linear, so there exist  x, y ∈ X  such that

  u(x + y )  ≠ u(x )  + u(y ) . 

The proof proceeds as follows. First, we prove Lemma 4 showing that   π 0    assigns 
zero probability to any collection of small-stakes bets in the same understanding 
class yielding misaligned outcomes. Second, for any profile, we construct a profile 
of such bets indifferent to it. Finally, we use these bet profiles to apply the arguments 
of Theorem 1 with   Ω      replacing   Ω     .
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Throughout this case, we write  Na  for  N  copies of the action  a , where  N  is a posi-
tive integer. For each  B ∈  , let   {  E  B  k   }  k=1  

 K  B      be the finest partition of  Ω  for which every 
action in  B  is measurable, and for  x ∈ X  choose an action   β   x  B, k  ∈ B  so that   β   x  B, k  (ω)  
equals  x  if  ω ∈  E   k   and  0  otherwise and define the corresponding event

      B, k, x  =  { ω ⃗   ∈  Ω     :  ω     β  x  B, k   ∈  E  B  k   } . 

Note such actions exist because  B  is rich. Let   Θ ε    be an open interval of size  ε  around  
0  that excludes  0 . We first prove two preliminary lemmata.

LEMMA 4: If there exist  x, y ∈ X  such that  u(x + y )  ≠ u(x )  + u(y) , then there 
exists  ε > 0  such that for every  B ∈  ,

(A1)  π(     B, i,  x ′    ∩     B, j,  y ′    )  = 0,

(A2)   π 0   (    B, i,  x ′     ∩        B, i,  y ′   )  =  π 0   (    B, i,  y ′   )  =  π 0   (     B, i,  x ′    ),

and 

(A3)    ∑ 
k=1

  
 K  B  

     π 0   (    B, k,  x  k   )  = 1 

for distinct  i, j ∈ {1, … ,  K  B   }  and   x ′  ,  y ′  ,  x  1   , … ,  x   K  B     ∈  Θ ε   .

In words, equation (A1) implies that the DM believes it impossible that bets on 
distinct   E  i    and   E  j    in the same class pay off jointly; equation (A2) implies that if one 
bet on   E  i    pays off, then all bets on   E  i    in the same class pay off; and equation (A3) 
implies that from a set of bets on all events in a partition and contained in the same 
class, at least one bet pays off. In sum, within the same understanding class, all the 
bets on one and only one of the elements of its finest partition pay off jointly.

PROOF OF LEMMA 4:
Pick   x ′  ,  y ′   ∈ X  and fix  B ∈  . To save notation, we omit the dependence on  B ,  

i.e., we write   β  x  k   instead of   β  x  B, k  , throughout the proof of this lemma. Since  B  is 
understood,

    1 __ 
2
   〈N  β     x ′    i   ,  z  0   〉 +   1 __ 

2
   〈M  β     y ′    

j   ,  z  0   〉 ∼   1 __ 
2
   〈N  β     x ′    i   , M  β     y ′    

j   ,  z  0   〉 +   1 __ 
2
    z  0   

for any positive integers  N, M , and   z  0   ∈ X . Then, setting   =     i,  x ′      ∩             j,  y ′    , we have

   π 0   (    i,  x ′    ) [u(N x ′   +  z  0   )  − u( z  0   )]  +  π 0   (     j,  y ′    ) [u(M y ′   +  z  0   )  − u(  z  0   )  ]  + u(  z  0   )

  =  [  π 0   (      i,  x ′    )  −  π 0   ( ) ]  [u(N x ′   +  z  0   )  − u(  z  0   ) ]  

 + [  π 0   (      j,  y ′    )  −  π 0   () ]  [ u(M y ′   +  z  0   )  − u(  z  0   ) ]

  +   π 0   () [u(N x ′   + M y ′   +  z  0   )  − u(  z  0   )  ]  + u(  z  0   ) 
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and thus

(A4)   π 0   ()[ u(N x ′   + M y ′   +  z  0   )  + u(  z  0   )  − u(N x ′   +  z  0   )  − u(M y ′   +  z  0   )  ]  = 0. 

If we can find non negative integers  N, M ∈ ℕ  and   z  0   ∈ X  such that the term in 
brackets is not zero, then (A1) must hold.

Without loss of generality, either  x, y > 0 ,  x, y < 0 , or  x > 0 > y  and either   
x ′  ,  y ′   > 0 ,   x ′  ,  y ′   < 0 , or   x ′   > 0 >  y ′   . We have four cases:

 (i) If   x ′  ,  y ′   > 0  and  x, y > 0 ; or   x ′  ,  y ′   < 0  and  x, y < 0 ; or  x > 0 > y  and   
x ′   > 0 >  y ′   , then choose   z  0   = 0 .

 (ii) If   x ′  ,  y ′   > 0  and  x, y < 0 ; or   x ′  ,  y ′   > 0  and  x, y < 0 , then choose   z  0   = x + y .

 (iii) If   x ′  ,  y ′   > 0  and  x > 0 > y ; or  x, y > 0  and   x ′   > 0 >  y ′   , then 
choose   z  0   = y .

 (iv) If   x ′  ,  y ′   < 0  and  x > 0 > y ; or  x, y < 0  and   x ′   > 0 >  y ′   , then 
choose   z  0   = x .

Since  u  is continuous, it is easy to verify by applying the appropriate case for   z  0    
that there exist  ε > 0  such that   x ′  ,  y ′   ∈  Θ ε    implies that the absolute value of the 
term in brackets in (A4) is sufficiently close to  | u(x + y )  − u(x )  − u(y )  |  > 0  for 
some positive integers  N  and  M . Conclude (A1) holds.

To see (A2), fix nonzero   x ′  ,  y ′   ∈  Θ ε   . Let  b ∈ B  be a bet yielding   x ′    on   
_

  E  i      and  0  
otherwise and define

      b  = { ω ⃗   ∈  Ω     :  ω   b  ∈  
_

  E   i   }. 

By arguments analogous to the above,

   π 0   (    i,  x ′     ∩        b )  =  π 0   (    i,  y ′     ∩      b )  = 0. 

Since

   (   1 __ 
2
   , 〈N  β   x ′    i   , z〉;   1 __ 

2
   , 〈Nb, z〉)  ∼  (   1 __ 

2
   , 〈N x ′  , z〉;   1 __ 

2
   , 〈z〉)  ,

by picking  N  such that  u(z + N x ′  )  ≠ u(z)  for some  z ∈ ℝ , we have

   [ π 0   (     i,  x ′    )  +  π 0   (     b  )]  (u (N x ′   + z)  − u (z) )   = u (N x ′   + z)  − u (z)  

and thus

   π 0   (     i,  x′   ) +   π 0   (     b   ) = 1.



1288 THE AMERICAN ECONOMIC REVIEW ApRIl 2017

Such  N  and  z  must exist by continuity as long as  u  is not constant by choosing a pos-
sibly smaller value for  ε  in   Θ ε   . Plugging these into the inclusion-exclusion formula 
gives that

  1 ≥  π 0   (    i, x′   ∪     i, y′  ∪   b  )  = 1 +  π 0   (     i, y′  )  −  π 0   (    i, x′  ∩     i, y′  )  

and thus   π 0   (    i, y′  )  =  π 0   (    i, x′  ∩     i, y′ )  . A symmetric argument with   b ′    defined using   
y ′    instead of   x ′    yields (A2).

Consider any   x  1  , … ,  x  K   ∈  Θ ε   , and choose  y ∈  Θ ε    and positive integer  N  so that  
u(Ny )  ≠ 0 . Since  B  is understood we have that

    (  1 __ 
K   , 〈N  β  y  k  〉)   

k=1
  

K
   ∼  (  1 __ 

K   , 〈Ny〉;   K − 1 ____ 
K   , 0) . 

By (A2) and the representation,

  u (Ny)  =   ∑ 
k=1

  
K

     π 0   (    k, y )  u (Ny)  =   ∑ 
k=1

  
K

     π 0   (    k,  x  k   )  u (Ny)  

which gives (A3). ∎

Consider a lottery  r . For each profile  F = 〈  a  j    〉  j=1  n    in the support select a vec-
tor   C   F  =  ( C  1  F  ,  … ,  C  n  F )  , which we call a profile allocation, such that   C  j  F  ∈   
and   a  j   ∈  C  j  F  ,  j = 1, … , n . Construct a map    f ̂   r   :  Ω     → ℝ  such that for every   
ω ⃗   ∈  Ω     ,

    f ̂   r   ( ω ⃗  )  =   ∑ 
r (F)>0

    r(F ) u (   ∑ 
j=1

  
n

     a  j    (  ω    C  j  F  ) ) . 

The vector of profile allocations    ( C   F  )  r (F )>0    assigns each action in each profile that 
has a positive probability to an understanding class to which it belongs. Several 
allocations may be associated with the same  r  and thus several    f ̂   r    s are generated 
for it; since the DM is indifferent between  r  and itself, to save notation, we omit 
the dependence on the profile allocations of the    f ̂   r     s generated for the same lottery. 
The remainder of the proof follows from the arguments in Theorem 1 if we show 
that, for any such maps, if for some choice of profile allocations    f ̂   p   ≥   f ̂   q    then 
 p  ≿ q .

LEMMA 5: Given any  ε > 0  and profile  F = 〈  a  i    〉  i=1  n    with allocation   ( C  1  F , … ,  C  n  F )  , 
there exist   β 1  , … ,  β T   ∈  ,   B  1  , … ,  B  T   ∈  , and   N  1  , … ,  N  T   ∈  ℕ +    such that

 (i)  〈  a  i    〉  i=1  n   ∼ 〈  N  j    β j    〉  j=1  T   ;

 (ii) for any   B  j   ,  j = 1, … , T , there exists   C  i  F  =  B  j     for some  i = 1, … , n ;

 (iii) for any  j = 1, … , T ,   β j   =  β  x   B  j  , k  ∈  B  j     for some  k ∈ {1, … ,   K   B  j     }  and  x ∈  Θ ε   ;
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 (iv) for any   C  t  F  ,  t = 1, … , n , and all  ω ∈ Ω ,

    ∑ 
{  j: B  j  = C  t  F }

     N  j    β j   (ω) =   ∑ 
{i: C  i  F = C  t  F }

     a  i   (ω). 

PROOF: 
Statements (ii)–(iv) follow from the richness of each   C  i  F  . To see (i), note that 

because the preference  ≿  understands   C  1  F   and because of statement (ii), DM 
is indifferent between  F  and the profile obtained by replacing the actions in the 
set  {  a  i   :  C  i  F  =  C  1  F  }  with   {  N  j    β j   }   β j  ∈ C  1  F 

   . Statement (i) then follows from successive 

replacements as above and applying Weak Order, since each   C  i  F   is understood. ∎

Thus, the actions assigned to the understanding class   B  i    by the profile allocation 
can be replaced with   N  j    copies of each bet   β j    in   B  i    while maintaining indifference.

Now, fix  ε  as per Lemma 4. Pick arbitrary  p, q  satisfying    f ̂   p   ≥   f ̂   q    for the vec-
tors of profile allocations    ( C   F )  p(F)>0    and   ( C ′        F  ) q(F)>0   . Choose actions   β 1  , … ,  β T   , 
understanding classes   B  1  , … ,  B  T   , and positive integers   N  1  , … ,  N  T    such that for a 
partition   {  J  F   } p(F)>0    of  {1, … , T} ,  {  β i   : i ∈  J  F   } ,  {  B  i   : i ∈  J  F   } , and  {  N  i   : i ∈  J  F   }  
are as in Lemma 5 for  ε ,  F , and   C   F  . Similarly, choose actions   β T+1  , … ,  β  T ′     , under-
standing classes   B  T+1  , … ,  B   T ′     , and positive integers   N  T+1  , … ,  N   T ′      such that for a par-
tition   {  J  F  ′   } q(F)>0    of  {T + 1, … ,  T ′  } ,  {  β i   : i ∈  J  F  ′   } ,  {  B  i   : i ∈  J  F  ′   } , and  {  N  i   : i ∈  J  F  ′   }  
are as in Lemma 5 for  ε ,  F , and   C ′        F  . Replacing each profile in the support of  p  or  q  
with corresponding profile of   N  j    copies of the bets   β j   , yields lotteries   p ′    and   q ′   . Note   
p ′   ∼ p  and   q ′   ∼ q  by Independence and Weak Order, so  p  ≿  q  if and only if   p ′   ≿  q ′   .

Suppose without loss of generality that all the bets   {  β j   }  j=1   T ′      are distinct and let 
   j    be the event      B, k, x   that corresponds to   β j   . The maps   f   p ′      and   f   q ′      constructed in 
Theorem 1 are measurable by cylinders of the form

   =   ∩ 
j=1

  
 T ′  
      L  j   

where each   L   j    is either    j    or   
_

   j     . Fix any such    where   π 0   () > 0  and   ω ⃗   ∈  . The 
difference in expected utility of lottery   p ′    and   q ′    at the state   ω ⃗   ∈   is

  Γ ()  =   ∑ 
p(F)>0

    p(F ) u (   ∑ 
j∈ J  F  

     N  j    β j   ( ω    β j   ) )  −   ∑ 
q(F)>0

    q(F ) u (   ∑ 
j∈ J  F  ′  

     N  j    β j   ( ω    β j   ) ) . 

Since    has positive probability, by Lemma 4 there exists   ω   B  ∈ Ω  such 
that   β j   ( ω   B  ) =  β j   (  ω    β j    )  for all  j  with   B  j   = B . Picking any   τ ⃗   ∈  Ω      such that   τ    B  =  ω   B   
whenever  B =  B  j    for some  j ∈ {1, … ,  T ′   } ,

  Γ() =   f ̂   p   ( τ ⃗  )  −   f ̂   q   ( τ ⃗  )  ≥ 0. 

Since    was arbitrary,  U(  p ′  )  − U( q ′  ) =  ∑        Γ()  π 0   () ≥ 0  and   p ′   ≿  q ′   , which 
in turn implies  p ≿ q . Repeating the remaining steps of Theorem 1 completes the 
sufficiency proof. ∎
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PROPOSITION 5: If  ≿  has rich PCRs  (, π, u)  and  (, μ, u)  where  u  is continuous 
but not a polynomial, then  π = μ .

PROOF:
Suppose that  (, π, u)  and  (, μ, u)  both represent the preference  ≿ , and that  u  

is continuous but not a polynomial. Let   V  π    and   V  μ    be the respective utility indexes. 
Say that an event   ∈  Σ     is a rectangle for  {  C  1  , … ,  C  n   }  if there are   a  i   ∈  C  i    and 
  E  i   ∈ σ ( a  i  )   such that

   ≡   ∩ 
i=1

  
n
    { ω ⃗   :  ω    C  i    ∈  E  i   }. 

The set of all rectangles is a  π -system that generates the domain of  π  and  μ , so if  
π( ) = μ()  whenever    is a rectangle, then  π = μ  by Carathéodory. We show 
this by induction, relying on the following lemma.

LEMMA 6: If    is a rectangle for  {  C  1  , … ,  C  n   } , then

 π (   ∩  
j≤n

     j     ∩  
j≥n+1

    
_

   j    )  =   ∑ 
i=0

  
N−n−1

    (−1)   i  π (   ∩  
j≤n+i

     j     ∩  
j≥n+2+i

    
_

   j    )   +  (−1)   N−n  π ( ∩  
j
      j   ) , 

where    i   = { ω ⃗   :  ω    C  i    ∈  E  i   }  are such that   =  ∩  i=1  n     i   .

PROOF:
The claim follows by recursive substitutions, noting that

  π (   ∩  
j≤n+i

     j     ∩  
j≥n+1+i

    
_

   j    )  

equals

  π (   ∩  
j≤n+i

     j     ∩  
j≥n+2+i

    
_

   j    )   − π (   ∩  
j≤n+1+i

     j     ∩  
j≥n+2+i

    
_

   j    )  

and  π ( ∩ i≤N−1     i    ∩       
_

   N    )   = π(  ∩ i≤N−1     i   )  − π(  ∩ i     i   ) . ∎

We claim that if    is a rectangle for  B , then  π( )  = μ( ) . Proceed by induction 
on  #B . The case of  #B = 1  is standard since both PCRs are rich. Suppose that  
π( ′ ) = μ( ′ )  whenever  ′  is a rectangle for  B  with  #B ≤ N − 1 . Let    be an arbi-
trary rectangle for  {  C  1  , … ,  C  N   } ⊆  , generated by   E  1  , … ,  E  N    where   E  i   ∈ σ(  a  i  ′   )  
for some   a  i  ′   ∈  C  i   .

Define the function

   S  N   (  x  1   ,  x  2  , … ,  x  N   )  =   ∑ 
Q⊆{1,..., N}

     (−1)   [N−#Q]  u (   ∑ 
i∈Q

     x  i  ) . 
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If  u  is continuous, then Fréchet (1909) shows that   S  N   ( x ⃗  )  = 0  for all   x ⃗    if and only if  
u  is a polynomial with degree less than  N ; see Almira and Lopez-Moreno (2007) for 
a proof. Thus, there exists   x  1  , … ,  x  N    such that   S  N   (  x  1   ,  x  2  , … ,  x  N   )  ≠ 0 .

Consider the profile  〈  a  i    〉  i=1  N    where   a  i   ∈  C  i    and   a  i   (ω)  equals   x  i    if  ω ∈  E  i    and 
equals  0  otherwise. Define

    i   = { ω ⃗   :  ω    C  i    ∈  E  i   }. 

Note that

   V  π   (〈  a  i    〉  i=1  N   )  =   ∑ 
Q⊆{1,..., N}

    π (   ∩  
i∈Q

     i     ∩  
j∉Q

    
_

   j    )  u (   ∑ 
i∈Q

     x  i  ) 

  =   ∑ 
Q⊆{1,..., N}

    [(Q, N )  +  (−1)   [N−#Q]  π( )  ] u (   ∑ 
i∈Q

     x  i  ) 

 = K +  S  N   ( x  1  , … ,  x  n  )  π( ) 

where  (Q, N )  and  K  are weighted sums of rectangles for  B ′s with less than  N  
members. Such a decomposition exists by Lemma 6. Since  μ  agrees with  π  on these 
rectangles,

   V  μ   (〈  a  i    〉  i=1  N   )  = K +  S  N   (  x  1  , … ,  x  n   ) μ( ) . 

There exists a lottery  q  such that  q ∼ F . Hence,

   V  μ   (〈  a  i    〉  i=1  N   )  =   ∑ 
q(y)>0

    q(y ) u(y )  =  V  π   (〈  a  i    〉  i=1  N   ), 

and since   S  N   (  x  1  , … ,  x  n   )  ≠ 0 ,  μ(E )  = π(E) . ∎
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