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Peer Effects in Science

Evidence from the Dismissal of Scientists in Nazi Germany

Fabian Waldinger (University of Warwick)∗

July 5, 2011

Abstract

This paper analyzes peer effects among university scientists. Specifically, it investi-

gates whether the quality and the number of peers affect the productivity of researchers in

physics, chemistry, and mathematics. The usual endogeneity problems related to estimat-

ing peer effects are addressed by using the dismissal of scientists by the Nazi government

in 1933 as a source of exogenous variation in the peer group of scientists staying in Ger-

many. To investigate localized peer effectes, I construct a new panel dataset covering the

universe of scientists at the German universities from 1925 to 1938 from historical sources.

I find no evidence for peer effects at the local level. Even very high quality scientists do

not affect the productivity of their local peers.

1 Introduction

It is widely believed that localized peer effects are important among academic researchers.

Individual researchers do not necessarily take these effects into account when they decide where

to locate. This may result in misallocation of talent and underinvestment in academic research.

Having a good understanding of peer effects is therefore crucial for researchers and policy

makers alike. In this paper I analyse localized peer effects among scientists whose research is

often believed to be an important driver of technological progress. Understanding these effects

may therefore be particularly important for science policy-makers in a knowledge based society.
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Bocconi, Bonn, Cambridge, Essex, Helsinki, INSEAD, LSE, Munich, QMUL, Toronto, Uppsala, Utrecht, War-
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Despite the widespread belief in the presence of peer effects in academia, there is very little

empirical evidence for these effects. Obtaining causal estimates of peer effects is challenging

because of a number of problems. An important issue complicating the estimation of peer effects

is the sorting of individuals. Highly productive scientists often choose to locate in the same

universities. Sorting may therefore introduce a positive correlation of scientists’productivities

within universities which has not been caused by peer effects. Another problem complicating

the estimation of peer effects is the presence of unobservable factors which affect a researcher’s

productivity but also the productivity of his peers. Measurement problems further increase the

diffi culty of obtaining unbiased estimates for peer effects. A promising empirical strategy would

therefore be a setup where a scientist’s peer group changes due to reasons which are unrelated

to his own productivity.

In this paper I propose the dismissal of scientists by the Nazi government in 1933 as an

exogenous change in the peer group of researchers in Germany. Only 66 days after Hitler’s

National Socialist party secured power the Nazi government dismissed all Jewish and so called

“politically unreliable” scholars from German universities. Around 13 to 18 percent of uni-

versity scientists were dismissed between 1933 and 1934 (13.6 percent of physicists, 13.1 of

chemists, and 18.3 percent of mathematicians). Many of the dismissed scholars were outstand-

ing members of their profession, among them the famous physicist and Nobel Laureate Albert

Einstein, the chemist Georg von Hevesy who received the Nobel Prize in 1943, and the Hun-

garian mathematician Johann von Neumann. Scientists in affected departments were therefore

exposed to a dramatic change in their peer group. Researchers in departments which had

not employed Jewish or “politically unreliable”scholars did not experience any dismissals and

therefore no changes to their peer groups.

I use a large number of historical sources to construct the dataset for my analysis. From

historical university calendars I assemble a panel of the universe of physicists, chemists, and

mathematicians working at German universities between 1925 and 1938. I combine this data

with a complete list of all dismissals and with publication data to measure productivity.

This allows me to obtain the first clean estimate of localized peer effects among scientists

using exogenous variation in the quality and quantity of peers in a researcher’s department.

Contrary to conventional wisdom, I do not find any evidence for peer effects within a scientist’s

department. This finding is robust to narrowing the peer group to peers from the same special-

ization only; i.e. by considering only theoretical physicists when constructing the peer group

for theoretical physicists. Recent work on life scientists suggests that “star scientists”have a

particularly large effect on their colleagues’productivity (Azoulay, Zivin, and Wang, 2010 and

Oettl 2009). As the dismissals include some of the most prominent scientists of their time, I

can investigate how the loss of top quality peers affects the productivity of scientists staying

in Germany. The results indicate that even the loss of very high quality peers does not have a

negative impact on the productivity of stayers.

One may be concerned that the dismissals affected the productivity of stayers through other

channels than peer effects. Most of these expected biases, such as an increased teaching load or
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an increase in administrative duties, would lead me to overestimate the effect of peers. There

are, however, other potential biases that could lead to an underestimation of peer effects. I

discuss these threats to the identification strategy below and show evidence that the dismissals

are uncorrelated with changing incentives, changes is funding, and the number of ardent Nazi

supporters in the affected departments. Furthermore, I show that different productivity trends

in affected and unaffected departments cannot explain my findings.

Few papers have empirically analysed localized spillovers among university scientists. One

example is Weinberg (2007) who analyses peer effects among Nobel Prize winners in physics.

He finds that physicists arriving in a city where other Nobel Laureates are working are more

likely to start Nobel Prize winning work. It is, however, not clear how much of this effect is

driven by sorting of scientists. Dubois, Rochet, and Schlenker (2010) investigate externalities

among mathematicians in the United States. Similarly to the findings in this paper they do

not find evidence for peer effects at the local level. While they have an extensive dataset of

mathematicians all over the world, they cannot rely on exogenous variation to identify peer

effects. Similarly, Kim, Morse, and Zingales (2009) investigate peer effects in economics and

finance and find evidence for positive peer effects in the 1970s and 1980s, but negative peer

effects in the 1990s. While they consider selection of researchers into particular universities in

other specifications, they do not address the selection of researchers in the specification that

directly tests localized peer effects.1

Recently a number of studies have suggested that falling communication costs reduced the

importance of location in academic research (Kim, Morse, and Zingales, 2009, Adams et al.

2005, Agrawal and Goldfarb 2008, Rosenblat and Mobius, 2004). The findings of this paper,

however, suggest that location was already “history” in the 1920s and 1930s - at least in

Germany.2

The remainder of the paper is organized as follows: the next section gives a brief description

of historical details. Section 3 describes the construction of the dataset. Section 4 outlines the

identification strategy. The effect of the dismissals on the productivity of scientists remaining

in Germany is analysed in section 5. I then use the dismissals as an exogenous source to identify

localized peer effects in section 6. Section 7 discusses the findings and concludes.

2 The Expulsion of Jewish and ‘Politically Unreliable’

Scholars from German Universities

Just over two months after the National Socialist Party seized power in 1933 the Nazi govern-

ment passed the "Law for the Restoration of the Professional Civil Service" on the 7th of April,
1In addition to papers analysing peer effects among university researchers there is a growing literature

examining peer effects in other, mostly low skill, work environments (e.g. Mas and Moretti, 2008 and Bandiera,
Barankay, and Rasul, 2010).

2Similarly, Dubois, Rochet, and Schlenker (2010) who analyse mathematicians do not find evidence that the
importance of location decreased between 1984 and 2006.
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1933. The law served as the legal basis to expel all Jewish and “politically unreliable”persons

from the German civil service.3 The relevant paragraphs read:

Paragraph 3: Civil servants who are not of Aryan descent are to be placed in

retirement... (this) does not apply to offi cials who had already been in the service

since the 1st of August, 1914, or who had fought in the World War at the front for

the German Reich or for its allies, or whose fathers or sons had been casualties in

the World War.

Paragraph 4: Civil servants who, based on their previous political activities,

cannot guarantee that they have always unreservedly supported the national state,

can be dismissed from service.

["Law for the Restoration of the Professional Civil Service", quoted after Hentschel

(1996)]

In a further implementation decree, “Aryan descent” was specified as follows: “Anyone

descended from Non-Aryan, and in particular Jewish, parents or grandparents, is considered

non-Aryan. It is suffi cient that one parent or one grandparent be non-Aryan.”Christian sci-

entists were therefore dismissed if they had a least one Jewish grandparent. In many cases,

scientists would not have known that their colleague had Jewish grandparents. It is therefore

unlikely that the majority of the dismissed had been treated differently by their colleagues

before the rise of the Nazi party. The decree also specified that all members of the Communist

Party were to be expelled under paragraph 4. The law was immediately implemented and re-

sulted in a wave of dismissals and early retirements from German universities. More than 1,000

academics were dismissed between 1933 and 1934 (Hartshorne, 1937). This amounts to about

15 percent of all 7,266 university researchers. Most dismissals occurred in 1933 immediately

after the law was implemented.

The law allowed exceptions for scholars of Jewish origin who had been in offi ce since 1914, or

who had lost a close family member in the First World War. Nonetheless, many of these scholars

decided to leave voluntarily; for example the Nobel Laureate James Franck, who resigned from

his professorship at the physics department in Göttingen, and Fritz Haber, a Nobel Laureate in

chemistry who resigned from the University of Berlin. These resignations merely anticipated a

later dismissal, as the Reich citizenship laws (Reichsbürgergesetz) of 1935 revoked all exception

clauses.

The vast majority of dismissed scientists emigrated and most of them obtained positions in

foreign universities. The most important emigration destinations were the United States, the

United Kingdom, Switzerland, Turkey, and the British Mandate of Palestine (later Israel). For

the purposes of this paper it is important to note that most emigrations took place immediately

after the researchers were dismissed from their university positions. Further collaborations with

3Most German university professors at the time were civil servants. Therefore the law was directly applicable
to them. Via additional ordinances the law was also applied to other university researchers who were not civil
servants.
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researchers staying in Germany were therefore extremely diffi cult. A very small minority of the

dismissed did not leave Germany. Most of them died in concentration camps or committed

suicide. Extremely few managed to stay in Germany and survive the Nazi regime. Even

scientists staying in Germany were no longer allowed to use university laboratories and other

resources. The possibility of ongoing collaboration of the dismissed with scientists staying in

Germany was therefore extremely limited.

According to my calculations, 13.6 percent of physicists, 13.1 of chemists, and 18.3 percent

of mathematicians were dismissed between 1933 and 1934 (Table 1).4 The vast majority of

dismissals occurred between 1933 and 1934. Later dismissals affected researchers who could

initially stay under the exception clause or if political reasons for a dismissal were discovered

later on. In order to have a sharp dismissal measure I therefore focus on the dismissals in 1933

and 1934.

My data does not allow me to identify whether the researchers were dismissed because they

were Jewish or for political reasons. Previous historical work indicates that the vast majority

of the dismissed were either Jewish or of Jewish descent. Deichmann (2001), for example, finds

that about 87 percent of dismissed chemists were of Jewish origin. Siegmund-Schultze (1998)

estimates that about 79 percent of dismissed mathematicians were of Jewish descent.

The aggregate number of dismissals hides the fact that German science departments were

affected very differently. Some departments lost more than half of their personnel while oth-

ers did not experience any dismissals. Even within a university there was a lot of variation

across different departments (Table 2). Whilst 40 percent of physicists and almost 60 percent

of mathematicians were dismissed from the renowned University of Göttingen there were no

dismissals in chemistry.

The top panel of Table 3 gives a more detailed picture of the quantitative and qualitative

loss in the three subjects. As has already been documented (Fischer, 1991) dismissed physicists

were younger than the average age but made above average scientific contributions, received

more Nobel Prizes (either before or after 1933), published more papers in top journals, and

received more citations.5 In chemistry, the dismissed were also of higher than average quality

but the difference to the stayers was less pronounced. In mathematics many of the dismissed

were truly outstanding members of their profession and of much higher quality than the average

mathematician.

Table 3 also reports collaboration patterns before and after the dismissals. In physics, about

32 percent of the publications in top journals were coauthored. About 11 percent of all publica-

tions were coauthored with another scientist holding a faculty position at a German university.

This percentage is lower than the overall level of coauthoring because physicists coauthored ex-

tensively with assistants, Ph.D. students, and senior colleagues at research institutes or foreign

4These numbers are consistent with the numbers obtained by historians who have studied the dismissal of
scientists in Nazi Germany. Fischer (1991) reports that 15.5 percent of physicists were dismissed between 1933
and 1940. Deichmann (2001) calculates a loss of about 24 percent of chemists between 1933 and 1939. Her
figure is higher than mine because she considers all dismissals between 1933 and 1939 (while I focus on the 1933
to 1934 dismissals) and because my sample includes 5 additional universities with below average dismissals.

5For a more detailed description of the publications data see the data section.
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universities. The table also shows a low level of cooperation within departments; only 4 percent

of all publications were coauthored with faculty from the same university. In chemistry, 75 per-

cent of papers were coauthored, 12 percent were coauthored with a colleague holding a faculty

position, and only 4 percent were coauthored with a faculty member from the same department.

In mathematics these numbers were 17 percent, 10 percent, and 3 percent, respectively.

The table also shows that before 1933, the fraction of stayers’publications that were coau-

thored with scientists who were later dismissed was always higher than the fraction of the

dismissed in the population. While 13.6 percent of physicists were dismissed, 19 percent (=

(2.0/10.3)*100) of stayers’coauthoring activity could be accounted by collaboration with scien-

tists who were later dismissed. In chemistry, 15 percent of stayers’coauthoring activity involved

chemists who were later dismissed, and in mathematics 39 percent of stayers’coauthoring ac-

tivity involved mathematicians who were later dismissed.

The bottom part of table 3 shows publication and collaboration patterns for the post dis-

missal period. It shows that the productivity of the dismissed dropped substantially because

they were first relocating and then restarting their career abroad. The panel also shows that

collaborations of stayers with dismissed scientists became very rare. Only 0.6 percent of papers

published by staying physicists were coauthored with the dismissed scientists. For chemistry

(0.4 percent) and mathematics (0 percent) these numbers were even lower. Figure A1 in the

online appendix shows collaboration patterns between stayers and dismissed scientists by year.

Not surprisingly, stayers and dismissed still coauthored in 1933 and 1934 (as the dismissals did

not occur until April 1933 and I also consider dismissals in 1934). After that, collaborations

fell sharply and even disappeared completely in many of the later years.

For comparison reasons, I report current collaboration patterns for the top 10 science and

economics departments in Germany and the United States focusing on tenured faculty (Table

A1 in the online appendix). Current collaboration patterns for German and U.S. science de-

partments look relatively similar.6 There is little coauthoring with researchers from the same

department. The big exception is physics with a high level of collaboration within departments.

This is mostly driven, however, by physicists conducting research involving particle accelerators;

a technology that was invented by E. Lawrence in Berkeley in 1930 and became first available

in Germany in 1944, and thus after the time period analysed in this paper. The publications

involving results from particle accelerators usually list hundreds of authors (often more than

500, one article in the Physical Review Letters even has 744 authors). For physicists working

with particle accelerators, coauthoring does therefore not seem a very good measure for close

collaboration. If one excludes these physicists from the analysis (about 15 percent of physicists

overall), current collaboration patterns are more similar to the historical data for physicists as

well.

6See the data appendix for more details on the data of current science and economics departments. As
collaborations are measured with publications in top journals the data on within department level collaborations
is not very informative for current economics departments in Germany because only 33 of the 218 German
economists have published in a top 5 journal since 2000.
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3 Construction of a Panel Dataset of German Scientists

3.1 Data on Dismissed Scholars

I obtain data on dismissals from a number of historical sources. The main source is the List

of Displaced German Scholars (1937) from which I extract all dismissed physicists, chemists,

and mathematicians. The list was compiled by the relief organization “Emergency Alliance of

German Scholars Abroad”, which supported dismissed scholars in finding positions in foreign

universities. It contains about 1650 names of dismissed university researchers from all subjects.

Online appendix 2 shows a sample page from the physics section of the list. The page shows

four physicists who had already received the Nobel Prize or were to receive it in later years

(Figure A6).

For various reasons, for example if the dismissed died before the List of Displaced German

Scholars was compiled, a small number of dismissed researchers did not appear in the list. To get

a more complete measure of all dismissals I complement the data on dismissals with information

from secondary sources (Biographisches Handbuch, 1983, Beyerchen, 1977, Deichmann, 2001,

Siegmund-Schulze, 1998).7 Online appendix 2 contains more detail on data construction and

the secondary sources.

3.2 Data on all Scientists at German Universities between 1925 and

1938

To investigate the impact of the dismissals on scientists who stayed in Germany, I obtain data

on all scientists in German universities from 1925 to 1938. The data originate from historical

University Calendars (see online appendix 2 for details) from which I compile an annual ros-

ter of scientists in all physics, chemistry, and mathematics departments from winter semester

1924/1925 (lasting from November 1924 until April 1925) to winter semester 1937/1938.8 The

data contain all scientists who were at least “Privatdozent”. That is the first university posi-

tion a researcher could obtain after the “venia legendi”and would allow the researcher to give

lectures at German universities.

In some specifications I use the scientists’specialization to identify their relevant peer group.

The data on specialisations come from seven volumes of “Kürschners deutscher Gelehrten-

Kalender”. The books are listings of German researchers compiled at irregular intervals since

1925. The Gelehrtenkalender contains about 90 percent of scientists in my sample. For the

remaining 10 percent I conduct an internet search to find the scientists’specialization. Overall,

I obtain information on the specialization for 98 percent of the scientists.9 Table A2 in online

appendix 1 gives an overview of all specialisations and the fraction of scientists in each of them.
7Slightly less than 20 percent of 1933 to 1934 dismissals only appear in the additional sources but not in the

“List of Displaced German Scholars”.
8Data for the technical universities were only published from winter semester 1927/1928 onwards.
9Some researchers name more than one specialization. Physicists and chemists therefore have up to two

specialisations and mathematicians up to four.
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3.3 Publication Data

To measure the productivity of scientists I construct a dataset containing the publications of

each researcher in the top academic journals of the time. In the period under consideration,

most German scientists published in German journals. German journals were of very high

quality because many of the German physicists, chemists, and mathematicians were among

the leaders in their profession. This is especially true for the time before the dismissals, as is

exemplified by the following quote; “Before the advent of the Nazis the German physics journals

(Zeitschrift für Physik, Annalen der Physik, Physikalische Zeitschrift) had always served as the

central organs of world science in this domain [...] In 1930 approximately 700 scientific papers

were printed in its [the Zeitschrift für Physik’s] seven volumes of which 280 were by foreign

scientists.”(American Association for the Advancement of Science, 1941). Historical research

indicates that the journals considered in the analysis did not change substantially between

1933 and 1938 (Simonsohn, 2007). It is important to note, that the identification strategy

outlined below relies on changes in publications of researchers in German departments that

were differentially affected by the dismissals. A decline in the quality of the considered journals

would therefore not affect my results, as all regressions are estimated including year fixed effects.

The top publications measure is based on articles contained in the online database “ISI Web

of Science”. The database is provided by Thomson Scientific and contains all contributions in

a large number of science journals. In 2004, the database was extended to include articles in

journals published between 1900 and 1945. The journals included in this backward extension

were all journals that had published the most relevant articles in the years 1900 to 1945. The

publication measure used in this paper therefore measures publications in the top journals of

the time.

I extract all German speaking general science, physics, chemistry, and mathematics journals

that are included in the database for the time period 1925 to 1938. Furthermore, I add the

leading general science journals that were not published in Germany, namely Nature, Science,

and the Proceedings of the Royal Society of London. I also include four non-German top

specialized journals that were suggested by historians of science as journals of some importance

for the German scientific community (see online appendix 2 for details). Online appendix Table

A3 lists all journals used in the analysis.

For each researcher I calculate two yearly productivity measures. The first measure is equal

to the sum of publications in top journals in a given year. In order to quantify an article’s

quality I also construct a second measure which accounts for the number of times the article

was cited in any journal included in the Web of Science in the first 50 years after its publication.

This includes citations in journals that are not in my list of journals but that appear in the Web

of Science. As a result, this measure includes citations from the entire international scientific

community. It is therefore less heavily based on German science. I call this measure "citation

weighted publications" and it is defined as the sum of citations to all articles published in a

certain year.

Online appendix Table A4 lists the top 20 researchers for each subject according to the
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citation weighted publications measure. It is reassuring to realize that the vast majority of

these top 20 researchers are very well known in the scientific community. Economists will find

it interesting that Johann von Neumann who emigrated to the Institute of Advanced Studies

in Princeton was the most cited mathematician. The large number of Nobel laureates among

the top 20 researchers indicates that citation weighted publications are a good measure of a

scholar’s productivity.

4 Identification

4.1 Estimating Peer Effects

Using this panel dataset I estimate peer effects among scientists. The collaboration of re-

searchers can take different levels of intensity. A very direct way of peer interaction is the

collaboration on joint research projects involving joint publication of results. In many cases,

however, peer interactions are more subtle. Scientists discuss research ideas and comment

on each other’s work without copublishing. Yet another way in which peers may affect a re-

searcher’s productivity is through peer pressure. Furthermore, peers may attract more research

funding to the department, or have better contacts to influential members of the profession. In

this paper I estimate the sum of all aforementioned peer effects.

The standard approach when estimating peer effects consists of regressing an individual’s

productivity on the average productivity of his peers. The productivity of academic researchers,

however, is not only affected by the average quality of peers but also by the number of peers

they can interact with.

As university departments differ substantially in quality and size, it is important to distin-

guish these two dimensions of peer effects among scientists. I therefore propose the following

regression which will be estimated for all scientists staying in Germany (in the following I will

refer to as "stayers"):

(1) # Publicationsiut = β1 + β2(Peer Quality)ut + β3(# of Peers)ut

+ β4Age Dummiesiut + β5YearFEt + β6IndividualFEi + εiut

I regress the number of publications of scientist i in university u and year t on measures

of his peer group and other controls. The regressions are estimated separately for physics,

chemistry, and mathematics because the subjects under consideration have different publication

and collaboration patterns. Peer quality is calculated as the mean of the average productivity of

a researcher’s peers.10 Over time changes in average peer quality only occur if the composition

of the department changes. Yearly fluctuations in publications of the same set of peers do

10To measure average peer quality I use the department mean of individual productivities calculated between
1925 and 1938. An alternative way of measuring average peer quality uses only pre-dismissal years. This
measure, however, is not defined for researchers coming into the sample after 1933. I therefore present results
using the first measure. Using the alternative measure does not affect my findings.
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therefore not affect peer quality. The underlying assumption is that Albert Einstein always

had the same effect on his peers independently of how much he published in a given year.

It is likely that the effect of peers is only measurable after a certain time lag. Peers influence

the creation of new ideas and papers before the actual date of publication. Another delay is

caused by publication lags. Science research is published much faster than research in other

subjects like economics. Anecdotal evidence suggests that the effect of peers should be measured

with a lag of about one year. Coauthoring of scientists staying in Germany with colleagues

who were dismissed in 1933 and 1934 allow the investigation of likely lags of peer interactions.

Figure A1 in online appendix 1 reports the fraction of papers that stayers coauthored with

dismissed scientists. As chemists not only copublished a larger amount of their papers but also

published more papers on average, the data for chemistry is the least noisy. The number of

stayers’publications with the dismissed scientists plummeted in 1935, exactly the year after the

dismissals considered in this paper. I therefore use a one year lag for the peer group variables

when estimating equation (1). Using different lags does not affect the results.

The regression also includes a full set of 5-year age-group dummies to control for life-cycle

changes in productivity. Year fixed effects control for yearly fluctuations in publications which

affect all researchers in the same way. To control for differences in a researcher’s talent I add

individual fixed effects to all specifications. In some robustness checks I also add university

fixed effects to control for university specific factors affecting a researcher’s productivity. These

can be separately identified because some scientists change universities.

4.2 Using the Dismissals as Instruments for the Number and Qual-

ity of Peers

Estimating equation (1) using OLS would lead to biased estimates of β2 and β3. An important

problem is caused by selection. Selection not only occurs because scientists self-select into

departments with peers of similar quality but also because departments appoint professors

of similar productivity. Omitted variables, such as the (unobserved) construction of a new

laboratory, may further complicate the estimation of peer effects. Furthermore, measuring peer

quality with error could bias the regression estimates.11

To address these problems I propose the dismissal of scientists by the Nazi government as

an instrument for the peer group of scientists. Figure 1 shows the effect of the dismissal on the

peer group of physicists.

11Even good measures of peer quality, such as the average number of citation weighted publications, are by
no means perfect measures of peer influence.
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Figure 1: Effect of Dismissals on Department Size and Peer Quality

Note: The left hand panel reports average department size in departments with (dashed line) and without (solid line)

dismissals respectively. The right hand panel reports average department quality in the two sets of departments. De-

partment quality is measured by the department mean of average citation weighted publications in top journals between

1925-1938. See section 4.1. for details.

The left-hand panel shows average department size for two groups of physicists: physicists in

departments with dismissals in 1933 or 1934 and physicists in departments without dismissals.

The figure shows that affected departments were of above average size and that the dismissals led

to a strong and permanent reduction in department size. The dismissed were not immediately

replaced because of a lack of suitable researchers without a position and slow appointment

procedures.12 The right-hand panel of Figure 1 shows the evolution of average peer quality in

departments with dismissals and in departments without dismissals. The dismissed were on

average more productive than physicists who were not dismissed. As a result, average peer

quality in affected departments fell after 1933. The graph only shows averages for the two

groups of departments and therefore understates the variation I am using in the regression

analysis. As can be seen from Table 2, some departments with dismissals also lost below

average quality peers. Average department quality increased in those departments. Overall,

however, the dismissal reduced average department quality in physics. Online appendix figures

A2 and A3 show the evolution of department size and quality for chemistry and mathematics.

In chemistry, affected departments were of above-average quality but the difference was less

pronounced than in physics. Despite the fact that the dismissals did not have a large effect on

peer quality for the average across all departments it strongly affected average quality in many

12Successors for dismissed chaired professors of Jewish origin, for example, could only be appointed if the
dismissed scholars ceded all pension rights because they were originally placed into early retirement. The
employers did not want to pay the salary for the replacement and the pension for the dismissed professor at
the same time. It thus took years to fill open positions in most cases. Highlighting this problem, Max Wien a
physicist in Jena, wrote a letter to Bernhard Rust the Minister of Education in late November 1934. Describing
the situation for chaired professorships at the German universities he wrote that “out of the 100 existing [chaired
professor] teaching positions, 17 are not filled at present, while under natural retirements maybe two or three
would be vacant. This state of affairs gives cause for the gravest concern...”(cited after Hentschel, 1996).
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departments as can be seen from Table 2. The effects in departments with reductions in average

peer quality and in departments with improvements in peer quality, however, almost cancel out

in the aggregate. In mathematics, departments with dismissals were on average larger and of

higher quality. After 1933, department size and peer quality fell sharply in affected departments.

The fact that most of the dismissals occurred in bigger and better departments does not

invalidate the identification strategy as level effects will be taken out by including individual

fixed effects. The crucial assumption for the difference-in-differences type strategy is that trends

in affected versus unaffected departments were the same prior to the dismissal. Below, I show

in various ways that this was indeed the case.13

I use the dismissals to instrument for average peer quality and the number of peers. The

two first stage regressions are:

(2) Avg. Peer Qualityut = γ1 + γ2(Dismissal induced Fall in Peer Quality)ut + γ3(# Dismissed)ut

+ γ4Age Dummiesiut + γ5YearFEt + γ6IndividualFEi + εiut

(3) # of Peersut = δ1 + δ2(Dismissal induced Fall in Peer Quality)ut + δ3(# Dismissed)ut

+ δ4Age Dummiesiut + δ5YearFEt + δ6IndividualFEi + εiut

Equation (2) is the first stage regression for average peer quality. The crucial instrument for

average peer quality is called “dismissal induced fall in average peer quality”. It measures how

much peer quality fell because of the dismissals. The variable is 0 until 1933 in all departments.

After 1933 it is defined as follows:

Dismissal induced Fall in Peer Quality = (Avg. Peer Quality before 1933) —(Avg. Peer Quality before 1933|Stayer)

After 1933, “dismissal induced fall in peer quality”is positive for scientists in departments

with dismissals of above average department quality. The variable remains 0 for researchers

in departments without dismissals or for scientists who lost peers whose quality was below

the department average.14 The instrument is based on changes in peer quality measured by

1925-1932 productivity measures. Using quality measures after 1933 in the construction of the

instrumental variable would be problematic because post 1933 productivity may be affected by

the dismissals.

The second instrument is the number of dismissals in a given department. The variable is 0

until 1933 and equal to the number of dismissals thereafter.15

13The fact that mostly bigger and better departments were affected by the dismissals affects the interpretation
of the IV estimates. According to the LATE interpretation of IV (Imbens and Angrist, 1994), IV estimates
the effect of changes in size and quality for large and high quality departments. As nowadays most science
departments are bigger than in the average in the early 20th century this LATE effect is potentially more
interesting than the corresponding ATE.
14The implicit assumption is that below average dismissals did not affect the productivity of scientists. An

alternative way of defining “dismissal induced fall in peer quality”would be to allow the dismissal of below
average peers to have a positive impact on the productivity of scientists. In specifications not reported in this
paper I have explored this. The results do not change.
15The variable is 0 until 1933 for all departments (as I use a one year lag in the peer group variables it is

0 for 1933 inclusive). In 1934 it is equal to the number of researchers who were dismissed in 1933 in a given

12



The dismissals may have caused some scientists to change university after 1933. The change

is likely to be endogenous and thus have a direct effect on researchers’productivity. I therefore

assign each scientist the dismissal variables for the department he attended at the beginning of

1933. As the dismissal effect is likely to be correlated for all stayers in a department I cluster

standard errors at the university level.

5 The Effect of Dismissals on Scientists who remained

in Germany

As a starting point of the empirical analysis I show how the dismissals affected the productivity

of scientists who stayed at the German universities. Figure 2 plots yearly publications of stayers

in physics departments with and without dismissals. While yearly fluctuations in top journal

publications are relatively large, the dismissal does not seem to have an obvious effect on

publications of stayers. Equivalent figures for chemistry and mathematics show similar patterns

(Figures A4 and A5 in the online appendix).
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Figure 2: Effect of Dismissals on Stayers

Note: The Figure reports average yearly publications in top journals of stayers in affected (dashed line) and unaffected

(solid line) departments respectively.

To obtain a quantitative estimate of the dismissal I estimate the reduced form equation.

(4) # Publicationsiut = θ1 + θ2(Dismissal induced Fall in Peer Quality)ut + θ3(# Dismissed)ut

department. From 1935 onwards it is equal to the number of dismissals in 1933 and 1934. I use the example
of Göttingen to illustrate the definition of the IV. Göttingen experienced 10 dismissals in mathematics in 1933
and one dismissal in 1934. The # dismissed variable for mathematicians in Göttingen is therefore 0 until 1933.
It is equal to 10 in 1934 and equal to 11 from 1935 onwards. Dismissal induced reduction in peer quality is
defined accordingly.
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+ θ4Age Dummiesiut + θ5YearFEt + θ6IndividualFEi + εiut

I regress a researcher’s (citation-weighted) publications in each year on the instruments

proposed above. This regression is essentially a difference-in-differences estimate of the dis-

missal effect. It compares changes in publications from the pre to the post-dismissal period

for researchers in affected departments to the change between the two periods for unaffected

researchers. If the dismissals had a negative effect on the productivity of stayers, one would

expect negative coeffi cients on the dismissal variables.

Estimated coeffi cients are all very close to 0 and only one coeffi cient on the number of dis-

missals is significantly negative (Table 4). Coeffi cients are larger for regressions using citation-

weighted publications as dependent variable because the mean of citation weighted publications

is much larger. Most of the coeffi cients on the dismissal induced fall in peer quality have a pos-

itive sign. This is particularly surprising as peer quality is usually believed to be the main

driver of peer effects.

It is interesting to investigate which effect sizes can be ruled out given the 95 percent con-

fidence intervals of my results. For the number of dismissals one can rule out a reduction in

publications of more than 0.06 after losing one peer in physics (the mean of publications in the

pre-dismissal period is 0.47). For chemistry and mathematics one can rule out effects larger (in

absolute magnitude) than 0.036 (mean of publications is 1.69) and 0.050 (mean of publications

is 0.33).

To evaluate which effect size can be ruled out at 95 percent confidence for the reduction

in peer quality, I use the following thought experiment: Suppose a department of average

quality and average size loses one Nobel Laureate (of average Nobel Laureate quality) due to

the dismissal. How much of a drop in stayers’publications can I rule out with 95 percent

confidence? This is an appealing question as this may be related to a top department today

that loses a Nobel Laureate to another university. The results indicate that the effect of losing

a Nobel Laureate would reduce yearly publications of stayers in physics by at most 0.0019

publications (the mean of publications is 0.47).16 In chemistry the quality loss associated

with losing a Nobel Laureate would not reduce publications by more than 0.031 (the mean of

publications is 1.69). In mathematics one can rule out a fall in publications of 0.048 for losing

a top 20 mathematician, as there is no Nobel prize in mathematics (the mean of publications

is 0.33.

Publications and citation weighted publications are count data with a relatively large pro-

portion of zeros and can never be negative. Instead of OLS one may therefore prefer to estimate

the reduced form using a model that specifically addresses the nature of the data. Table A5

in the online appendix reports Poisson regressions of the reduced form. The results are very

similar.17

16This is calculated as follows. Average department quality in 1933 was 5.35. Average department size in
1933 was 13.18. The average Nobel Laureate’s quality was 17.22. Department quality after the dismissal falls
by 0.97 to 4.38. The estimated reduced form coeffi cient is 0.03 with a 95 percent confidence interval of [-0.0020
0.061]. The reduction in peer quality therefore has at most an effect of -0.0020*0.97 = 0.0019.
17As Santos Silva and Tenreyro (2010) describe, including a fixed effect for a scientist who never publishes
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An important assumption for using the dismissals to identify peer effects is that publication

trends of stayers in affected and unaffected departments would have followed the same trend in

the absence of the dismissals. To investigate this identification assumption I therefore estimate

a placebo experiment using the pre-dismissal period, only, and moving the dismissal from 1933

to 1930. The results reported in online appendix Table A6 indicate that stayers in departments

with dismissals did not follow different productivity trends before 1933.

6 Using the Dismissals to Identify Localized Peer Effects

in Science

6.1 Department Level Peer Effects

In this section, I use the dismissals to provide exogenous variation in an empirical model that

explicitly estimates localized peer effects. I first estimate the two first stage equations; one for

average peer quality and the other one for the number of peers.

“Dismissal induced fall in peer quality”has a very strong and significant effect on average

peer quality in all three subjects (Table 5, columns 1, 3, and 5). The number of dismissals

does not significantly affect average peer quality in physics and chemistry but is significant for

mathematics.

First stage regressions for the number of peers are reported in columns 2, 4, and 6 of Table 5.

“Dismissal induced fall in peer quality”does not affect the number of peers, but the number of

dismissals has a strong and significant effect on the number of peers. This pattern is reassuring

as it indicates that the dismissals indeed provide two orthogonal instruments: one for average

peer quality and one for department size.18

Table 6 reports results from estimating the peer effects model according to equation 1. The

OLS results are not very informative due to the problems illustrated in the identification section.

I therefore turn immediately to discussing IV results where I use the dismissals to instrument

for the peer group variables. While columns 2, 6, and 10 report results for publications as

dependent variable, columns 4, 8 and 12 report results for citation weighted publications.

Coeffi cients on the peer group variables are very small and none is significantly different from

0. The coeffi cient on average peer quality even has a negative sign in most specifications. The

results indicate that the number, and in particular the quality of peers is unlikely to affect

leads to convergence problems as the (pseudo) maximum likelihood does not exist in this case. Standard
regression packages do not address this problem and will therefore lead to non-convergence of the estimator. I
therefore use the ppml command as suggested by Santos Silva and Tenreyro (2011).
18The model is just identified as the number of instruments is equal to the number of endogenous variables.

Therefore one has to worry less about bias due to weak instruments. Stock and Jogo (2005) characterize
instruments to be weak not only if they lead to biased IV results but also if hypothesis tests of IV parameters
suffer from severe size distortions. They propose values of the Cragg-Donald (1993) minimum eigenvalue statistic
for which a Wald test at the 5 percent level will have an actual rejection rate of no more than 10 percent. For two
endogenous regressors and two instruments the critical value is 7.03 and thus always below the Cragg-Donald
EV statistics reported in Table 5.
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the productivity of scientists. The result holds for the two different productivity measures.

This indicates that differences in citations for articles from scientists in departments with or

without dismissals cannot explain the findings. Furthermore, the result is robust across the

three different subjects.

6.2 Robustness of Department Level IV Results

Surprisingly, I do not find evidence for peer effects at the local level. I therefore estimate a

number of robustness checks to analyse the sensitivity of this result. All regressions results

discussed in this section are reported in the online appendix. To investigate whether the results

are driven by disruption affecting the whole academic system during the early dismissal years I

estimate the IV results dropping 1933 and 1934 from the regression. Omitting those turbulent

years does not affect my findings (Table A7, column 1).

Peer effects may be especially important in either the early or the later stages of a scientist’s

career. I investigate this hypothesis by splitting the sample into two groups: scientists younger

that fifty years of age and scientists fifty or older. There is no indication that peer effects are

especially important for certain age groups as none of the coeffi cients is significantly different

from 0 (columns 2 and 3).

I furthermore investigate the importance of peer effects in large versus small departments

(columns 4 and 5) and high quality versus low quality departments (columns 6 and 7). Cutting

the sample along these potentially important dimensions for peer effects gives very similar

results.

The regressions reported above include year fixed effects and individual effects. As scientists

move universities one can separately identify individual and university fixed effects. Column 8

reports results from specifications that include university fixed effects in addition to individual

fixed effects. The results are very similar and in fact all results reported in this paper are almost

identical when I include university and individual fixed effects at the same time.

To rule out differential productivity trends in affected departments I include university spe-

cific time trends in the regressions. The inclusion of university specific time trends hardly

affects the results (column 9). This provides further reassurance that differential time trends

cannot explain the absence of peer effects.

A further worry is that stayers may have taken over laboratories or experiments from the

dismissed in affected departments. This may have had a positive effect on their productivity

counteracting any possible negative effects from the loss of peers. The mathematics results

should not be contaminated by such behaviour and are indeed very similar to the results for

the other two subjects. An additional way of exploring whether taking over laboratories may be

driving the results is to estimate the regression for theoretical physicists only. Even though the

results are less precisely estimated, the findings show no evidence for peer effects in theoretical

physics (column 10).

Using the dismissals as instrumental variables relies on the assumption that the dismissals

16



only affected scientists’productivity through its effect on the researchers’peer groups. It is

important to note that any factor affecting all researchers in Germany in a similar way, such as a

possible decline of journal quality, will be captured by the year fixed effects and would thus not

invalidate the identification strategy. Because unaffected departments act as a control group,

only factors changing at the same time as the dismissal and exclusively affecting departments

with dismissals (or only those without dismissals) may be potential threats to the identification

strategy. Most of the potentially worrying biases, such as disruption effects or increased teaching

loads, would bias the IV estimates in favour of finding peer effects. As I do not find evidence for

localized peer effects, one has to worry less about these biases. Some violations of the exclusion

restriction, however, would lead me to underestimate peer effects. In results discussed in more

detail in the online appendix (Appendix 1 and Table A8) I show that the dismissals were

unrelated to changes in promotion incentives. Furthermore, the dismissals were not related to

the probability that stayers left the sample for retirement or other reasons. I also show that

the number of ardent Nazi supporters, who could have benefited from preferential treatment by

the Nazi government, was not related to the dismissals. Finally, I show that changes in funding

are unlikely to drive my results.

6.3 Specialization Level Peer Effects

The definition of the peer group in the previous regressions was based on all peers in a scientist’s

department. It is, however, possible that the productivity of scientists is only affected by peers

who work in very similar fields. To investigate this hypothesis I use the scientists specialization

to define their peer group. According to this definition of the peer group, the relevant peers of

an experimental physicist are only the other experimentalists in his department, not theoretical

physicists, technical physicists or astrophysicists.

Similarly to the department level results, the coeffi cients on the peer group variables are

very small and none of them is significantly different from 0 (Table 7).19 Furthermore, the

coeffi cients on peer quality mostly have the wrong sign if one were expecting positive peer

effects. The results for mathematics are less precisely estimated because most mathematicians

did not confine their research to only one or two specialisations. Many of them were working on

very different topics that even today cannot be precisely assigned to particular specialisations.

Nonetheless, there is no evidence for any significant peer effects in mathematics. It may be

possible that localized peer effects occur in even more specialized subfields. As the mean

number of researchers in the specialisations I consider here is about 3.5 these even smaller

subfields would have to be extremely specialized.

19First stage regressions for the specialization level results are reported in Table A9 in the online appendix.
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6.4 Peer Effects from High Quality Peers

Recent research on life scientists in the United States has indicated that star scientists have

a particularly large impact on coauthors (Azoulay, Zivin, and Wang, 2010). In the previous

regressions I have investigated how average peer quality affects productivity. It may well be

the case that only colleagues of very high quality affect the productivity of scientists.

To investigate this hypothesis I start by regressing yearly productivity on the number of

peers (instrumenting with the number of dismissals). I then investigate how the number of

peers of above median quality (now instrumenting with the number of above median quality

colleagues who were dismissed) affect productivity; continuing with the number of peers in the

top quartile, in the top 10 percentile, and the top 5 percentile always instrumenting with the

number of dismissed peers in the relevant quality group. Since many of the dismissed scientists

were of very high quality I have enough variation in peer quality even at very high quality

levels.

First stage regressions are reported in online appendix Table A10 and are highly significant

(with first stage F-statistics between 8.2 and 488.6; only one of the 15 first stage regressions have

a F-statistic below 10 and many have F-statistics above 100). Instrumental variable regressions

are reported in Table 8. Unlike previous tables, Table 8 reports different regressions for 5

different definitions of the relevant peers (number of peers, number of above median quality

peers, number of peers in top quartile, and so on). Strikingly, 28 of the estimated IV coeffi cients

are not significantly different from 0 and many of them even have a negative sign. 2 coeffi cients

are significantly different from 0 at the 5 percent level but have the wrong sign if one expected

that high quality peers have a positive effect on their colleagues’productivity. These results

provide further evidence that peers, even very high quality ones, do not seem to have a positive

effect on the productivity of scientists.

7 Discussion and Conclusion

I have used the dismissal of scientists as exogenous variation in the quality and quantity of

peers and have shown that peers do not seem to affect the productivity of scientists. The

finding is robust to analysing different subjects and across many different specifications. This

is a surprising result given that many researchers believe that local peer effects are important.

While only suggestive, there are a number of possible explanations for the lack of localized

peer effects. First, I do not investigate long-run run effects as my data ends 5 years after the 1933

dismissals. A second explanation may be that I analyse relatively established researchers. It is

quite likely that peer interactions become less important once one has established a scientific

career. In fact, the dismissal of high quality mathematics professors had strong negative effects

on Ph.D. student outcomes (Waldinger, 2010). A further possible explanation for the absence

of localized peer effects is that the scientific community in Germany before the Second World

War was very integrated. Conferences were common and scientists were very mobile within
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Germany. Geographic location of researchers may therefore not have been very important for

more established researchers. A further reason for the absence of localized peer effects may be

that science is much more specialized than other subjects such as economics.

An important question is whether evidence on peer effects in the 1920s and 1930s can help

us understand peer interactions today. A number of reasons suggest that the findings of this

study may be relevant for understanding spillovers among present-day researchers. The three

subjects studied in this paper were already well established at that time, especially in Germany.

In fact, Germany was the leading country for scientific research in the first decades of the 20th

century. If peer effects are an important determinant of scientific productivity they are likely

to be especially important in a flourishing research environment such as Germany in the early

20th century. Scientific research at the time followed practices and conventions which were

very similar to current research methods. Scientists were publishing their results in refereed

academic journals, conferences were common, and researchers were surprisingly mobile within

the German speaking scientific community. Unlike today, they could not communicate via E-

mail. They did, however, vividly discuss their research in very frequent mail correspondence

with their colleagues in other universities.

Recent research on today’s scientists also seems to suggest that localized spillovers are un-

likely to be important. Dubois, Rochet, and Schlenker (2010) show that localized spillovers do

not affect the productivity of mathematicians between 1984 and 2006. Furthermore, Azoulay,

Zivin, and Wang (2010) find that the loss of a local coauthor does not have a larger impact

on the productivity of life scientists than losing a coauthor who was located in a different

university.

The question remains why scientists behave as if local peers are a key input in the ideas

production process. One potential explanation is that being surrounded by esteemed peers

is purely a private benefit, i.e. it enters a scientist’s utility function but does not affect his

productivity. Another explanation could be that localized spillovers are important but they are

extremely localized.
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8 Tables

Table 1: Number of Dismissed Scientists across different Subjects
Physics Chemistry Mathematics

% of all % of all % of all
Number of Physicists Number of Chemists Number of Mathematicians

Year of Dismissal Dismissals in 1933 Dismissals in 1933 Dismissals in 1933

1933 33 11.5 50 10.7 35 15.6
1934 6 2.1 11 2.4 6 2.7
1935 4 1.4 5 1.1 5 2.2
1936 1 0.3 7 1.5 1 0.4
1937 1 0.3 3 0.6 2 0.9
1938 1 0.3 4 0.9 1 0.4
1939 1 0.3 2 0.4 1 0.4
1940 1 0.3 0 0.0 1 0.4

1933 - 1934 39 13.6 61 13.1 41 18.3

Note: The table reports the number of dismissals in the three subjects in each year between 1933 and 1940.
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Table 4: Reduced Form (Department Level Peers)
(1) (2) (3) (4) (5) (6)

Physics Chemistry Mathematics
Cit. weighted Cit. weighted Cit. weighted

Dependent Variable: Publications Publications Publications Publications Publications Publications

Dismissal Induced Fall 0.029 0.312 0.012 0.383 0.022 -0.464
in Peer Quality (0.015) (0.235) (0.015) (0.303) (0.031) (0.337)
Number Dismissed -0.021 -0.017 -0.018 -0.130 -0.018 -0.016

(0.017) (0.302) (0.009)* (0.222) (0.015) (0.167)

Age Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
Individual FE yes yes yes yes yes yes

Observations 2261 2261 3584 3584 1538 1538
# of researchers 258 258 413 413 183 183
R-squared 0.39 0.25 0.67 0.54 0.32 0.20

**significant at 1% level *significant at 5% level (All standard errors clustered at university level)
Note: The dependent variable Publications is the sum of a scientist’s publications in top journals in a given year. The alternative
dependent variable Citation Weighted Publications is the sum of subsequent citations (in the first 50 years after publication) to
articles published in top journals by a scientist in a given year. Explanatory variables are defined as follows. Dismissal induced
Fall in Peer Quality is 0 for all scientists until 1933. In 1934 it is equal to (Avg. quality of peers in department before dismissal)
- (Avg. quality of peers | not dismissed in 1933) if this number > 0. From 1935 onwards it is equal to (Avg. quality of peers in
department before dismissal) - (Avg. quality of peers | not dismissed between 1933 and 1934) if this number is > 0. The variable
remains 0 for all other scientists. For scientists in departments with above average quality dismissals "Dismissal induced Fall in
Peer Quality" is therefore positive after 1933. Number dismissed is equal to 0 for all scientists until 1933. In 1934 it is equal to the
number of dismissals in 1933 in a scientist’s department. From 1935 onwards it is equal to the number of dismissals between 1933
and 1934 in a scientist’s department.

Table 5: First Stages (Department Level Peers)
(1) (2) (3) (4) (5) (6)

Physics Chemistry Mathematics
Peer Department Peer Department Peer Department

Dependent Variable: Quality Size Quality Size Quality Size

Dismissal Induced Fall -0.644** -0.147 -1.114** 0.011 -1.355** -0.228
in Peer Quality (0.099) (0.130) (0.196) (0.110) (0.149) (0.174)
Number Dismissed 0.017 -0.570** -0.047 -0.998** 0.160** -0.470**

(0.098) (0.117) (0.162) (0.091) (0.053) (0.062)

Age Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
Individual FE yes yes yes yes yes yes

Observations 2261 2261 3584 3584 1538 1538
# of researchers 258 258 413 413 183 183
R-squared 0.59 0.90 0.66 0.91 0.70 0.81

F - Test on Instruments 81.9 103.10 18.3 64.3 47.8 66.2
Cragg-Donald EV Statistic 12.8 89.8 46.7

**significant at 1% level *significant at 5% level (All standard errors clustered at the university level)
Note: Odd columns report the first stage regression for peer quality corresponding to equation (2) in the text. Even columns report
the first stage regression for department size corresponding to equation (3) in the text. The dependent variable Peer Quality is
measured as the mean of the average productivity of a scientist’s peers present in the department in a given year. The dependent
variable Department Size measures department size in a given year. Explanatory variables are defined as follows. Dismissal induced
Fall in Peer Quality is 0 for all scientists until 1933. In 1934 it is equal to (Avg. quality of peers in department before dismissal)
- (Avg. quality of peers | not dismissed in 1933) if this number > 0. From 1935 onwards it is equal to (Avg. quality of peers in
department before dismissal) - (Avg. quality of peers | not dismissed between 1933 and 1934) if this number is > 0. The variable
remains 0 for all other scientists. For scientists in departments with above average quality dismissals "Dismissal induced Fall in
Peer Quality" is therefore positive after 1933. Number dismissed is equal to 0 for all scientists until 1933. In 1934 it is equal to the
number of dismissals in 1933 at a scientist’s department. From 1935 onwards it is equal to the number of dismissals between 1933
and 1934 in a scientist’s department.
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Table 7: Instrumental Variables (Specialization Level Peers)
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Physics Chemistry Mathematics
Cit. weighted Cit. weighted Cit. weighted

Dependent Variable: Publications Publications Publications Publications Publications Publications

Specialization Peer Quality -0.021 -0.410 -0.010 -0.029 -0.429 3.822
(0.029) (0.581) (0.009) (0.127) (3.457) (28.153)

# Specialization Peers -0.021 -0.727 0.010 -0.725 0.465 -3.450
(0.029) (0.482) (0.040) (0.881) (3.487) (28.298)

Age Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
Individual FE yes yes yes yes yes yes

Observations 2257 2257 3567 3567 1538 1538
# of researchers 256 256 405 405 183 183
Cragg-Donald EV Stat. 81.80 81.80 73.69 73.69 0.23 0.23

**significant at 1% level *significant at 5% level (All standard errors clustered at the university level)
Note: Each column reports results from a different IV regression. The dependent variable Publications is the sum of a scientist’s
publications in top journals in a given year. The alternative dependent variable Cit. weighted Publications is the sum of subsequent
citations (in the first 50 years after publication) to articles published in top journals by a scientist in a given year. Explanatory
variables are definded as follows. Specialization Peer Quality is measured as the mean of the average productivity of a scientist’s
peers present in the department in his specialization in a given year. # Specialization Peers measures the number of peers in
a scienstist’s specialization in his departmentin a given year. I instrument for specialization peer quality and the number of
specialization peers with the dismissals at the specialization level. Corresponding first stages are reported in Table A9.
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Table 8: Instrumental Variables High Quality Peers
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Physics Chemistry Mathematics
Publi- Cit. weigt. Publi- Cit. weigt. Publi- Cit. weigt.

Dependent Variable: cations Pubs. cations Pubs. cations Pubs.

Number of Peers -0.003 -0.329 0.016 0.041 0.022 0.284
(0.013) (0.198) (0.010) (0.231) (0.017) (0.380)

First Stage F-Statistic 195.5 195.5 126.7 126.7 104.9 104.9

Number of Top 50th Percentile -0.003 -0.221 0.027 0.174 0.019 0.219
Peers (0.009) (0.142) (0.017) (0.364) (0.016) (0.335)
First Stage F-Statistic 241.1 241.1 362.6 362.6 94.4 94.4

Number of Top 25th Percentile -0.015 -0.637* 0.026 0.000 0.001 0.140
Peers (0.016) (0.239) (0.017) (0.419) (0.016) (0.336)
First Stage F-Statistic 423.7 423.7 488.6 488.6 485.8 485.8

Number of Top 10th Percentile -0.011 -0.695 0.076 -0.545 0.004 0.439
Peers (0.032) (0.395) (0.048) (1.011) (0.030) (0.616)
First Stage F-Statistic 29.6 29.6 19.4 19.4 39.6 39.6

Number of Top 5th Percentile -0.031 -1.336* 0.160 0.805 0.026 0.686
Peers (0.043) (0.626) (0.126) (2.516) (0.020) (0.570)
First Stage F-Statistic 201.6 201.6 8.2 8.2 46.0 46.0

Age Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
Individual FE yes yes yes yes yes yes

**significant at 1% level *significant at 5% level (All standard errors clustered at the university level)
Note: Unlike the previous tables each column and each horizontal panel reports results from a different IV regression. The dependent
variable Publications is the sum of a scientist’s publications in top journals in a given year. The alternative dependent variable
Cit. weighted Publications is the sum of subsequent citations (in the first 50 years after publication) to articles published in top
journals by a scientist in a given year. Explanatory variables are definded as follows. Number of Peers measures the number of
peers in a scientists department. Number of Top 50th Percentile Peers measures the number of peers in the top 50th percentile in
a scientist’s departments, and so on. Percentiles are calculated using pre-dismissal productivities. I instrument for the number of
peers (or number of high quality peers) using the number of dismissals of peers in that quality group in a scientist’s department.
Corresponding first stages are reported in Table A10.
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