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Recursive Inspection Games

Bernhard von Stengel∗

February 7, 2016

Abstract

We consider a sequential inspection game where an inspector uses a limited num-
ber of inspections over a larger number of time periods to detect a violation (an illegal
act) of an inspectee. Compared with earlier models, we allow varying rewards to the
inspectee for successful violations. As one possible example, the most valuable re-
ward may be the completion of a sequence of thefts of nuclear material needed to
build a nuclear bomb. The inspectee can observe the inspector, but the inspector
can only determine if a violation happens during a stage where he inspects, which
terminates the game; otherwise the game continues.

Under reasonable assumptions for the payoffs, the inspector’s strategy is inde-
pendent of the number of successful violations. This allows to apply a recursive
description of the game, even though this normally assumes fully informed players
after each stage. The resulting recursive equation in three variables for the equilib-
rium payoff of the game, which generalizes several other known equations of this
kind, is solved explicitly in terms of sums of binomial coefficients.

We also extend this approach to non-zero-sum games and, similar to Maschler
(1966), “inspector leadership” where the inspector commits to (the same) random-
ized inspection schedule, but the inspectee acts legally (rather than mixes as in the
simultaneous game) as long as inspections remain.
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1 Introduction

Inspection games model situations where an inspector with limited resources verifies by
means of inspections that an inspectee adheres to legal obligations, which the inspectee
has an incentive to violate. Inspection games have been applied to arms control and
disarmament, tax auditing, fare evasion, environmental pollution, and homeland security;
for a survey see Avenhaus, von Stengel, and Zamir [5], Avenhaus and Canty [2], and other
recent works such as [9] or [8].

This paper presents a generalization of a classical sequential inspection game by Dresher
[10]. In Dresher’s game, the inspector has to distribute a given number of inspections
over a larger number of inspection periods to detect a violation that the inspectee, who
can count the inspector’s visits, performs in at most one of these periods. In our extension
of this game, the inspectee may violate more than once, and collect a possibly different
reward for each successful violation; for example, a violation may be the diversion of
a certain amount of nuclear material in a time period, with the highest reward to the
inspectee once he has diverted enough material to build a nuclear bomb. As in Dresher’s
game, the game ends if a violation is discovered by the inspector who inspects at the
same time. This is in line with an application to arms control, and may also apply in
other contexts where an identified violator of legal rules becomes subject to much tighter
surveillance.

A central aspect of our model and its analysis, and the reason for its choice of parame-
ters, is that the inspector’s mixed strategy in equilibrium does not depend on whether a
successful violation took place during a time period without an inspection, about which
the inspector is normally not informed. As we will explain in §3, the game can therefore,
despite this lack of information, be described recursively by a sequence of 2× 2 games
for each stage. As long as there are remaining inspections (but fewer than the number
of remaining time periods) and intended violations, the inspector and inspectee random-
ize at each stage whether to inspect and to violate. For the payoffs and mixed strategy
probabilities in equilibrium we give explicit solutions in terms of the game parameters.

Our analysis starts with a zero-sum game, which is then extended to non-zero-sum pay-
offs. Furthermore, if, as in Maschler [19], the inspector can commit to his mixed equilib-
rium strategy, the inspectee will act legally as long as inspections remain. This commit-
ment power, known as “inspector leadership”, increases the inspector’s payoff.

The main precursor to this work is [26], which, however, only considers the extra parame-
ter of a varying number of intended violations, not different rewards for them. Inspection
games with two parameters (time periods and inspections) were considered by Dresher
[10], Thomas and Nisgav [24], and Baston and Bostock [6]. Maschler [19] introduced
non-zero-sum games and inspector leadership. Höpfinger [16] and Avenhaus and von
Stengel [4] extended Dresher’s model to non-zero-sum payoffs. Rinderle [21] studied
the case that inspections may have probabilities of false alarms and non-detection of a
violation. Avenhaus and Canty [1] considered sequential inspections where timeliness of
detection matters. Games with a third parameter of intended violations were considered
by Kuhn [18], Sakaguchi [22, 23], and Ferguson and Melolidakis [13]. In these models,
the game continues even after a detected violation, unlike in our model. In addition, the
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inspector is fully informed after each stage whether a violation took place or not even
when he did not inspect. As already noted by Kuhn [18, p. 174], this full information is
implicit in a recursive description.

In §2, we describe the inspection game and its parameters. The recursive equation for
the value of this zero-sum game is solved explicitly. The equilibrium strategy of the in-
spector depends only on the number of remaining time periods and inspections. Section 3
discusses the key property that the strategy of the inspector does not depend on the in-
spectee’s intended violations and their rewards, which allows to apply the solution also
when the inspector has no information about undiscovered violations. We also show that
our model is as general as possible to achieve this property. In §4, we show how to extend
the solution relatively easily to the non-zero-sum game where a detected violation incurs
a negative cost to both players compared to the case of legal action and no inspection.
The “inspector leadership” game is studied in §5. In §6, we discuss possible extensions
of our model, and general aspects of the recursive games we consider, in particular com-
putational advantages compared to games in extensive form.

2 Zero-sum inspection game with multiple violations

We consider a two-player game Γ(n,m,k), were n,m,k are three nonnegative integer pa-
rameters. The game is played over n discrete time periods. The number m is the number
of inspections available to the inspector (the first player). The number k is the maximum
number of intended violations of the inspectee (the second player). In each time period,
the inspector can use one of his inspections (if m> 0) or not, and simultaneously (if k > 0)
the inspectee chooses between legal action and violation. The game has also a real-valued
“penalty” parameter b and nonnegative “reward” parameters rk,rk−1, . . . ,r1 that determine
the payoffs, as follows.

In this section, we assume that the payoffs are zero-sum. Let v(n,m,k) be the value of
the game Γ(n,m,k), as the equilibrium payoff to the inspector. If n = 0, then the game is
over and v(n,m,k) = 0. More generally, if m≥ n, then the inspector can inspect in every
remaining time period, where we assume that the inspectee acts legally throughout, with

v(n,m,k) = 0 if m≥ n. (1)

If n > 0, the game Γ(n,m,k) is described recursively. Suppose first that n > m > 0, so
that the inspector decides whether to use one of his inspections or not, and k > 0, so
the inspectee decides whether to act legally or to violate. The recursive description of
Γ(n,m,k), with value v(n,m,k), is given by the following payoffs to the inspector, which
are the costs to the inspectee, at the first time period.

PPPPPPPPPinspector
inspectee

inspection v(n−1,m−1,k) b · rk

no inspection v(n−1,m,k) v(n−1,m,k−1)− rk

legal action violation

(2)
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Of the four possible combinations of the player’s actions in the first period, one of them
terminates the game, namely when the inspector inspects and the inspectee performs a
violation, which we assume is caught with certainty. In all other cases, the game contin-
ues. If the inspectee acts legally and the inspector inspects, then the game continues as the
game Γ(n− 1,m− 1,k). If the inspectee acts legally and the inspector does not inspect,
then the game continues as the game Γ(n− 1,m,k). If the inspectee violates and the in-
spector did not inspect, then the game continues as the game Γ(n−1,m,k−1), where in
addition the inspectee collects the reward rk which he can keep even if he is caught in a
later time period. The corresponding bottom-right cell in (2) has therefore payoff entry
v(n−1,m,k−1)− rk to the inspector.

If the game terminates because the inspectee is caught, we assume that inspectee has to
pay the penalty b · rk , which is proportional to his reward rk if the violation had been suc-
cessful, multiplied by the penalty factor b. We assume only that b >−1, to allow for the
possibility (in particular when payoffs are no longer zero-sum, discussed in §4) that even a
caught violation is less preferred by the inspector than legal action (with reference payoff
zero). A single successful (uncaught) violation with payoff −rk should however still be
worse for the inspector than a caught violation with payoff b · rk, hence the requirement
that b >−1. This condition holds obviously when b > 0 where a caught violation creates
an actual penalty to the inspectee that is worse than legal action.

The nonnegative rewards to the inspectee rk,rk−1, . . . ,r1 are numbered in that order to
identify them from the game parameter k in Γ(n,m,k) as the game progresses. That is,
rk is the reward for the first successful violation, rk−1 for the second, and so on until the
reward r1 for the kth and last violation if the game has not ended earlier. The inspectee
can perform at most one violation per time period. Hence, if there are no inspections left
(m = 0), then the inspectee can violate in each of the remaining n time periods up to k
times in total, that is,

v(n,0,k) =−
min{k,n}

∑
i=1

rk+1−i . (3)

We allow some rewards to be zero. If all remaining rewards are zero, then this gives the
same payoffs as when the inspectee only acts legally from now on, so this may instead be
represented by a smaller k. However, the term v(n,0,k) in (3) may be zero even if some
remaining rewards are nonzero. This case may arise in the course of the game after some
time periods without violations so that n < k, for example when n = 1, k = 2, r2 = 0,
r1 = 1, so we allow for this possibility.

The game Γ(n,m,k) is completely described by the “base cases” (1) and (3) (both of
which imply v(0,m,k) = 0) and the recursive description (2). This description of the
game assumes that both players are fully informed about the other player’s action after
each time period, and thus know in which of the four cells in (2) the game continues. We
call this the game with full information and will weaken this assumption in §3.

The following main theorem gives an explicit formula for the game value v(n,m,k) and
the optimal inspection strategy. A large part of the proof is to show that (2) has a circular
preference structure and hence a mixed equilibrium. The most important, but very direct
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part of the proof (from (28) onwards) is that the explicit representation (6) holds. We
discuss a possible derivation of the term t(n,m,k) in §5 after Theorem 5.

Theorem 1 Let n,m,k be nonnegative integers, b >−1, and rk,rk−1, · · · ,r1 ≥ 0. Define

s(n,m) =
m

∑
i=0

(
n
i

)
bm−i (4)

and

t(n,m,k) =
k

∑
i=1

rk+1−i

(
n− i

m

)
. (5)

Then the zero-sum game Γ(n,m,k) defined by (2) for n > m > 0 and k > 0 and by (1) and
(3) otherwise has value

v(n,m,k) =
−t(n,m,k)

s(n,m)
. (6)

For n > m > 0 and k > 0 , the game (2) has a completely mixed equilibrium where the
inspector inspects with probability p and the inspectee violates with probability q, where

p =
s(n−1,m−1)

s(n,m)
, 1− p =

s(n−1,m)

s(n,m)
, (7)

and

q =
v(n−1,m,k)− v(n−1,m−1,k)

v(n−1,m,k)− v(n−1,m−1,k)+b · rk− v(n−1,m,k−1)+ rk
. (8)

This equilibrium is unique, unless rk+1−i = 0 for 1≤ i≤min{k,n−m}, in which case all
entries in (2) are zero and the players can play arbitrarily.

Proof. Proof. We first consider some properties of s(n,m) as defined in (4). Clearly,

s(n,0) = 1, s(n,n) = (1+b)n (9)

and

b · s(n−1,m−1) =
m−1

∑
i=0

(
n−1

i

)
bm−i = s(n−1,m)−

(
n−1

m

)
. (10)

Furthermore,

s(n,m) = s(n−1,m−1)+ s(n−1,m) (0 < m < n) (11)

which holds because

s(n,m) =
m

∑
i=0

(
n
i

)
bm−i =

(
n
0

)
bm +

m

∑
i=1

((n−1
i

)
+

(
n−1
i−1

))
bm−i

=

(
n−1

0

)
bm +

m

∑
i=1

(
n−1

i

)
bm−i +

m−1

∑
i=0

(
n−1

i

)
bm−1−i

= s(n−1,m)+ s(n−1,m−1) .

(12)

5



This means s(n,m) is uniquely defined inductively by (9) and (11). Recall that
(x

0

)
= 1

for any x [12, p. 50]. The following alternative representation

s(n,m) =
m

∑
i=0

(
n−1− i

m− i

)
(1+b)i (13)

holds because it also fulfills (9) and (11), which is shown similarly to (12). Because
b >−1, we have s(n,m)> 0 for 0≤ m≤ n by (13) (or by (9) and (11)).

The main assertion to prove is the explicit representation (6) for v(n,m,k). Clearly,
v(n,m,0) = 0, and (3) and (1) hold because in (5),

(n−i
m

)
= 0 if i > n−m. Hence, we

can assume that n > m > 0 and k > 0 where the recursive description (2) applies. By
induction on n, we can assume as inductive hypothesis that

A = v(n−1,m−1,k), C = v(n−1,m,k), D = v(n−1,m,k−1)− rk (14)

are given using (6). These numbers and B = b · rk define the game (2) as

1−q q

p A B

1− p C D

(15)

which also shows the probabilities p, 1− p and 1−q, q of playing the rows and columns.
To complete the induction, we will show that this game has value v(n,m,k) as in (6).

If rk+1−i = 0 for 1 ≤ i ≤ min{k,n−m}, then by (5) and (6) A = B = C = D = 0, so
this is the all-zero game with value zero in agreement with (6), and arbitrary equilibrium
strategies of the players. So assume that this is not the case, so that

t(n−1,m−1,k)> 0 (16)

and hence A < 0.

Intuitively, (2) has a mixed equilibrium because the inspector prefers not to inspect if the
inspectee acts legally and to inspect if he violates, and the inspectee prefers to act legally
if inspected and to violate otherwise. In (15), this holds if

A <C, B > D, A < B, C > D . (17)

It is easy to see (and well known) that then with

p =
C−D

B−A+C−D
, 1− p =

B−A
B−A+C−D

, (18)

1−q =
B−D

C−A+B−D
, q =

C−A
C−A+B−D

, (19)

the game has value v(n,m,k), where

v(n,m,k) = p ·A+(1− p) ·C = p ·B+(1− p) ·D , (20)
v(n,m,k) = (1−q) ·A+q ·B = (1−q) ·C+q ·D , (21)
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where p in (18) is uniquely determined by (20) and q in (19) is uniquely determined by
(21), and p, 1− p, q, and 1−q are all positive by (17).

For (17), we first show A <C. By (6), this is equivalent to

−t(n−1,m−1,k)
s(n−1,m−1)

<
−t(n−1,m,k)

s(n−1,m)

or, by (16), to

s(n−1,m)

s(n−1,m−1)
>

t(n−1,m,k)
t(n−1,m−1,k)

=
rk
(n−2

m

)
+ rk−1

(n−3
m

)
+ · · ·+ r1

(n−1−k
m

)
rk
(n−2

m−1

)
+ rk−1

(n−3
m−1

)
+ · · ·+ r1

(n−1−k
m−1

) . (22)

Assume that k ≤ n−m, otherwise replace k by n−m because
(n−1−i

m−1

)
=
(n−1−i

m

)
= 0

for i > n−m. We show that the right expression in (22) is largest when rk > 0 and
rk−1 = · · · = r1 = 0. Namely, for general nonnegative ρ1, . . . ,ρk, not all zero, positive
h1, . . . ,hk, and any g1, . . . ,gk so that

g1

h1
≥ g2

h2
≥ ·· · ≥ gk

hk
, (23)

we have
g1

h1
≥ ρ1g1 + · · ·+ρkgk

ρ1h1 + · · ·+ρkhk
(24)

which is seen by induction as follows. By omitting the terms where ρi = 0, we can assume
ρi > 0 for all i. For k = 1, (24) is true. For k > 1, let G= ρ1g1+ρ2g2 and H = ρ1h1+ρ2h2.
Then

g1

h1
≥ G

H
=

ρ1g1 +ρ2g2

ρ1h1 +ρ2h2
≥ g2

h2
(25)

because the left inequality in (25) is equivalent to g1(ρ1h1 + ρ2h2) ≥ h1(ρ1g1 + ρ2g2)
and thus to g1ρ2h2 ≥ h1ρ2g2 which holds by (23); the right inequality in (25) is shown
similarly. This shows (24) for k = 2, and for k > 2 using the inductive hypothesis

G
H
≥ g3

h3
≥ ·· · ≥ gk

hk
⇒ G

H
≥ G+ρ3g3 + · · ·+ρkgk

H +ρ3h3 + · · ·+ρkhk
.

With ρi = rk+1−i , gi =
(n−1−i

m

)
, hi =

(n−1−i
m−1

)
for 1 ≤ i ≤ k we have gi

hi
= n−i−m

m and thus
(23) and (24), so (22) holds if

s(n−1,m)

s(n−1,m−1)
>

(n−2
m

)(n−2
m−1

) = n−1−m
m

(26)

which we now show. By (13), the following are equivalent:

s(n−1,m) >
n−1−m

m
· s(n−1,m−1) ,

m

∑
i=0

(
n−1− i

m− i

)
(1+b)i >

n−1−m
m

·
m−1

∑
i=0

(
n−1− i
m−1− i

)
(1+b)i ,

(1+b)m +
m−1

∑
i=0

(
n−1− i
m−1− i

)
n−m
m− i

(1+b)i >
m−1

∑
i=0

(
n−1− i
m−1− i

)
n−1−m

m
(1+b)i ,
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which is true because 0 < m < n and thus n−m
m−i >

n−1−m
m for 0 ≤ i < m. This shows (26)

and thus A <C.

The remaining inequalities in (17) are seen as follows. Because b > −1 and rk ≥ 0, we
have B = b · rk ≥ 0− rk ≥ v(n− 1,m,k− 1)− rk = D, with inequality possible only if
rk = 0 and t(n−1,m,k−1) = 0, which because

t(n−1,m,k−1) = rk−1

(
n−2

m

)
+ rk−2

(
n−3

m

)
+ · · ·+ r1

(
n− k

m

)
(27)

means rk+1−i = 0 for 1≤ i≤min{k,n−m} which we have excluded. So B > D. Suppose
p given by (7) fulfills (20), which implies (18). By (11), the real number p defined in
(7) is indeed a probability. Also, p > 0 and 1− p > 0, so that by (18) either C < D
and B < A or C > D and B > A. The former can be excluded because it would imply
B < A <C < D < B. This proves (17).

So it remains to show (20), that is,

v(n,m,k) = p · v(n−1,m−1,k)+(1− p) · v(n−1,m,k) , (28)
v(n,m,k) = p ·b · rk +(1− p) · (v(n−1,m,k−1)− rk) . (29)

After multiplication with s(n,m), (28) and (29) are by (6) and (7) equivalent to

− t(n,m,k) = − t(n−1,m−1,k) − t(n−1,m,k) , (30)
− t(n,m,k) = s(n−1,m−1) ·b · rk + (− t(n−1,m,k−1)− s(n−1,m) · rk) . (31)

Equation (30) holds because, by (5),

t(n−1,m−1,k)+ t(n−1,m,k) =
k

∑
i=1

rk+1−i

(
n−1− i

m−1

)
+

k

∑
i=1

rk+1−i

(
n−1− i

m

)
=

k

∑
i=1

rk+1−i

(
n− i

m

)
= t(n,m,k) . (32)

Equation (31) holds because, by (10) and (27),

s(n−1,m−1) ·b · rk + (− t(n−1,m,k−1)− s(n−1,m) · rk)

= (s(n−1,m)−
(n−1

m

)
) · rk + (− t(n−1,m,k−1)− s(n−1,m) · rk)

= −
(n−1

m

)
· rk − t(n−1,m,k−1)

= − t(n,m,k) .

(33)

This shows (28) and (29), which completes the induction on n.

The inspectee’s violation probability q in (8) is just given by (19).

By Theorem 1, the game in (2) has a unique mixed equilibrium (unless all payoffs are
zero). This uniqueness applies recursively to all stages of Γ(n,m,k) if the players use be-
havior strategies. The same probabilities for their actions could result from mixed strate-
gies that correlate these actions, which we do not consider because behavior strategies
suffice [17].
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A special case of Theorem 1 has been shown in [26], namely when ri = 1 for k ≥ i ≥ 1.
In that case, t(n,m,k) in (5) can be written as

t(n,m,k) =
k

∑
i=1

(
n− i

m

)
=

(
n

m+1

)
−
(

n− k
m+1

)
(34)

(see Feller [12, p. 63, equation (12.6)]).

Dresher [10] actually considered two special cases of this game for b = 1, namely k = 1
and k = n−m, where (34) simplifies to

t(n,m,1) =
(

n−1
m

)
and t(n,m,n−m) =

(
n

m+1

)
. (35)

The corresponding expressions (6) were stated and proved by Dresher [10], and, appar-
ently independently, by Sakaguchi [23].

3 Discussion of the model and interpretation of the main
theorem

In this section, we discuss the main Theorem 1, in particular the fact that the inspector’s
equilibrium strategy depends only on the number of time periods and inspections. Con-
sequently, the same strategy also applies to a new game Γ ′(n,m,k) where the inspector is
not informed about violations at previous time periods when he did not inspect, which we
call the game without full information. In a basic form, this assumption is implicit in the
models by Dresher [10].

The recursive definition of Γ(n,m,k) as in (2) allows to compute the game value even
without an explicit formula as stated in (6). If a game as in (15) fulfills the inequalities
(17) so that the game has a mixed equilibrium, then the equilibrium probabilities (18)
and (19) give the value of the game as BC−AD

B−A+C−D . Sakaguchi [23] recursively computes
the game value v(n,m,k) in this way for different entries in (2).

As mentioned, the recursive description (2) assumes that, in particular, the inspector
knows whether the inspectee chose legal action or violation even after a time period where
the inspector did not inspect. In practice, it may be rather questionable how the inspector
would obtain this knowledge.

In the games studied by Dresher [10], it actually does not matter whether the inspector has
this knowledge or not. In Dresher’s first game, the inspectee has only a single intended
violation, corresponding to k = 1 in our model (and, throughout, ri = 1 for all i ). Then the
lower-right entry in (2) given by v(n− 1,m,0)− r1 is equal to −1. In that case, because
the inspectee has successfully violated once and will not violate further, the game is effec-
tively over because the inspectee acts legally from then on and will not be caught. Then
any action of the inspector is optimal, and so the inspector can act as if the violation is still
to take place. That is, if the inspector does know whether he is in the game Γ(n−1,m,1)
or Γ(n− 1,m,0) (the latter with added payoff −1 due to the uncaught violation), then
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he can always act as if he is in the game Γ(n− 1,m,1) because that is the only situation
where his strategy matters. Therefore, the recursive description is justified.

In the second game described by Dresher [10], the inspectee tries to violate as often as
possible. This corresponds to our game Γ(n,m,n−m) because the inspectee can only
violate once per time period and will therefore not violate more than n−m times because
otherwise he would be caught with certainty. Then the bottom-left and bottom-right en-
tries in (2) are v(n− 1,m,n−m) and v(n− 1,m,n−m− 1)− 1, respectively. However,
the lower-left game Γ(n− 1,m,n−m) (where the inspectee has “missed out” to violate
during an uninspected time period) is equivalent to the game Γ(n−1,m,n−m−1), that
is, again a game with a maximal number of intended violations. The bottom-right game
is the same, except for the added −1 to the inspector’s payoff, so again it does not matter
whether the inspector knows if the inspectee violated or not.

Dresher [10] gave explicit values for these two games as in (35). However, Dresher did
not compute the optimal inspection probabilities, because he would otherwise most likely
have noted that they are the same in the two games Γ(n,m,1) and Γ(n,m,n−m). These
inspection probabilities are given by (7). A key aspect of our model is that they hold,
independently of k, in the game Γ(n,m,k) with the number k of intended violations as a
new parameter.

Because of this independence of k, the equilibrium strategy of the inspector, and the game
value v(n,m,k), apply also to the game Γ ′(n,m,k) without full information where the
inspector does not know if a violation occurred or not in an uninspected time period.
Namely, by induction the inspection strategy is the same in the two games Γ ′(n−1,m,k)
and Γ ′(n−1,m,k−1) which correspond to the two bottom cells in (2), the latter with an
additional loss of −rk to the inspector, as long as the inspectee has still an incentive to
violate; if that is not the case, as in the game Γ ′(n−1,m,0) which has value zero, then any
inspection strategy is optimal and so the inspector should act as if there are still violations
to take place because only then his action matters, as in Dresher’s first game.

Formally, the game Γ ′(n,m,k) without full information is not described recursively. How-
ever, it can be modelled as an extensive form game with information sets [17] that repre-
sent the inspector’s lack of information. If we then change the game to the game with full
information, then these information sets are “cut”, which transforms Γ ′(n,m,k) into the
recursively described game Γ(n,m,k) in (2). Because the inspector’s behavior strategy in
Γ(n,m,k) is the same at all information sets obtained from “cutting” an information set h,
say, in the original game Γ ′(n,m,k), it can also be defined uniquely as the behavior at h
and thus defines a behavior strategy for Γ ′(n,m,k). In particular, the value of Γ ′(n,m,k)
stays the same at v(n,m,k). This (straightforward) manipulation of information sets is
described in detail in [26]. In summary:

Corollary 1 The equilibrium payoff and the equilibrium strategies for the inspection
game with full information described in Theorem 1 also apply in the game Γ ′(n,m,k)
without full information where the inspector is not informed about the action of the in-
spectee after a time period without inspection.

In the game Γ ′(n,m,k) without full information, the inspectee has typically additional
equilibrium behavior strategies compared to Γ(n,m,k). As an example, let n,m,k = 3,1,2

10



and b = r2 = r1 = 1. Then the bottom cells of (2) both correspond to the game Γ(2,1,1),
with added payoff−1 in the bottom-right cell. In Γ(2,1,1), which is (15) with A,B,C,D=
−1,1,0,1, the optimal strategies are p= q= 1/3, with v(2,1,1)=−1/3. At the first stage
in Γ(3,1,2), they are p = 1/4 and q = 5/12, which also applies to Γ ′(3,1,2). However,
in the game Γ ′(3,1,2), the inspector does not know if the inspectee violated in the first
time period or not, which gives the inspectee additional optimal behavior strategies for
the second time period. For example, the inspectee can violate with probability 4/7 if
he acted legally in the first period and violate with probability zero if he violated in the
first period. Another such coordinated different behavior in the second time period would
be to violate with probability zero following legal action in the first period and to violate
with probability 4/5 following a violation in the first period.

We next discuss the rewards to the inspectee rk, . . . ,r1 for successful violations, and the
corresponding scaled penalty −b · rk to the inspectee in (2). These parameters are new
compared to von Stengel [26], who proved Theorem 1 with ri = 1 for k ≥ i ≥ 1. With
general nonnegative rewards ri, it seems that one can dispense with the parameter k and
simply assume that only the first k rewards ri are nonzero if the inspectee intends only k
violations. In one respect this is a different game than when the inspectee will not carry
out more than k violations, because when all rewards are zero, the inspectee can violate
and be caught without penalty, which just terminates the game; one may argue that this is
an acceptable game outcome that just has to be interpreted appropriately. The main reason
for the parameter k in the recursive description of the game is to identify the next reward
to the inspectee after a successful violation when the game continues in the bottom-right
cell in (2). The number of intended violations serves as a “counter” for the rewards, which
we have therefore numbered in the order rk,rk−1, . . . ,r1. Such a counter is needed for the
recursive description in one way or another.

The payoff b · rk to the inspector for a caught violation may seem strange in the game
Γ ′(n,m,k) where the inspector is not informed about k. However, we think it is justifi-
able to make the “stakes” of a violation proportional to rk even if the inspector does not
know rk, because the inspectee knows what is at stake. We have chosen this payoff as b ·rk
because otherwise the optimal inspection strategy would not be independent of k as it is
according to the solution (7). In fact, the next theorem states that the payoffs in (2) are
as general as possible so that this independence holds. For simplicity, we assume that the
marginal gain r j to the inspectee for the next of j remaining violations is always positive,
and that the game has a circular preference structure.

Theorem 2 Suppose that n,m,k are the number of time periods, inspections, and in-
tended violations in a zero-sum inspection game where the inspectee can violate at most
once per time period, where his overall payoff depends only on (and is strictly increasing
in) the total number of successful violations, and whether he is ever caught (in which
case the game terminates) or not. Consider this game with full information and value
v(n,m,k). Then the most general form of this game fulfills (1) and (3), and for n > m > 0
and k > 0 is the game

p v(n−1,m−1,k) f (k)

1− p v(n−1,m,k) v(n−1,m,k−1)− rk

(36)
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similar to (2), where we assume that (36) has a unique completely mixed equilibrium.
Here f (k) is the marginal penalty and rk is the marginal gain to the inspectee for the first
of k remaining violations, rk > 0 . Then the probability p of inspection is independent of k
(so that it can be applied to the game without full information) if and only if there is some
b >−1 so that f (k) = b · rk for all k, as in (2).

Proof. Proof. Consider the game with full information. At the beginning of the game, we
can assume k ≤ n−m because the inspectee will not perform more than n−m violations
because he would otherwise be caught with certainty. For 1 ≤ i ≤ n, let rk−i+1 be the
marginal gain to the inspectee for the ith successful violation, which by assumption is
strictly positive. Suppose that over the n time periods, the inspectee performs i successful
violations, 0 ≤ i ≤ k, and thus gains rk + rk−1 + · · ·+ rk−i+1 . This is his payoff (and
loss to the inspector), in completely general form, if he is not caught. If the inspectee is
caught when attempting the (i+ 1)st violation, then he pays the penalty f (k− i), which
is subtracted from this sum (this penalty may include, for example, repaying all previous
gains); the inspector’s payoff is then−rk−rk−1−·· ·−rk−i+1+ f (k− i). Then v(n,m,k)=
0 when k = 0 or m≥ n as in (1) (for legal action throughout), and v(n,0,k) given by (3).
For n>m> 0 and k > 0, the game with value v(n,m,k) is given by (36), which is therefore
the general form of an inspection game under the stated assumptions.

If k = 1, there is only one parameter f (1) so that we can set b = f (1)/r1 and the inspec-
tor’s strategy can be applied to the game without full information; this is essentially the
first game by Dresher [10]. Hence, we can assume k ≥ 2.

Let j ≥ 2 and suppose that the inspectee has performed k− j successful violations (and
therefore, so far, gained rk + rk−1 + · · ·+ r j+1), that the inspector has performed m− 1
inspections, and that n− 3 time periods have passed. The successful violations and the
inspections have to take place in different time periods, which is possible because k− j+
m− 1 ≤ n−m− 2+m− 1 = n− 3, and this occurs with positive probability because of
the mixed equilibrium at every stage of the game. Then at this stage there are three time
periods, one inspection, and j intended violations remaining, and the remaining game has
value v(3,1, j) and is of the form

v(2,0, j) f ( j)

v(2,1, j) v(2,1, j−1)− r j

. (37)

In the bottom left cell of (37), v(2,1, j) is the value of

v(1,0, j) f ( j)

v(1,1, j) v(1,1, j−1)− r j

, that is, of
p −r j f ( j)

1− p 0 −r j

. (38)

In the bottom right cell of (37), the inspectee collects a reward of r j, and v(2,1, j−1) is
the value of the game

v(1,0, j−1) f ( j−1)

v(1,1, j−1) v(1,1, j−2)− r j−1

, that is, of
p −r j−1 f ( j−1)

1− p 0 −r j−1

.

(39)
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The two games in (38) and (39) correspond to the two cells in the bottom row of (37) and
both must have the same probability p of inspection if this is to be applied to the game
without full information. That is, according to (18),

1− p
p

=
1
p
−1 =

f ( j)+ r j

r j
=

f ( j)
r j

+1 =
f ( j−1)+ r j−1

r j−1
=

f ( j−1)
r j−1

+1 . (40)

For j = 2, this shows f (2)/r2 = f (1)/r1 =: b, where b > −1 because 1/p− 1 > 0. For
j = 3 it shows f (3)/r3 = f (2)/r2, and so on, so that f ( j)/r j = b for all 1 ≤ j ≤ k, as
claimed.

Another question is if there is an intuitive reason that the inspector’s optimal strategy in
Γ(n,m,k) does not depend on k (for any m, not just for m = 1 as in the proof of Theo-
rem 2). For example, Ferguson and Melolidakis [14] have applied a “game with finite
resources” due to Gale [15] to a different inspection game where the solution also applies
when one of the players lacks information. However, we have not been able to apply the
highly symmetrical strategy in this game to our setting. At present, the very canonical
proof (see equation (28) and onwards) of the explicit representation (7) and (6) seems to
be the best explanation.

To conclude this section, we discuss the solution of the game Γ(n,m,k) for some simple
special cases. If m = 1, then it is easy to see that the inspector uses his single inspection
in the first n− 1 time periods with equal probability, which for the last time period is
multiplied with 1+b, so if b > 0 then higher probability is given to the last period.

The case b = 0, where a caught violation terminates the game but no further penalty
applies, has also some easily described properties. Then s(n,m) =

(n
m

)
and thus p = m/n

in (7), which means that all m-sets of the n time periods are equally likely to be inspected.
Moreover, if ri = 1 for k ≥ i ≥ 1, then t(n,m,k) = ∑

k
i=1
(n−k

m

)
by (5), and −v(n,m,k) =

t(n,m,k)/s(n,m) can be interpreted as the expected number of successful violations, as
follows: The inspectee is indifferent between all possible time periods for choosing his k
violations, and thus gets payoff −v(n,m,k) if he violates in the first k time periods. Then,
if the m-set of inspections does not include period 1 (with

(n−1
m

)
out of

(n
m

)
choices),

the first violation succeeds. If this set also does not include period 2 (with further
(n−2

m

)
choices), then the first and second violation succeed, and so on.

The probability q of violation in the first period depends on k, and for b = 0 and ri = 1
for k ≥ i ≥ 1 has the following form. If k = 1, then q = 1/n, independently of m. If
k = n−m (where the inspectee violates as often as possible), then q = 1/(m+ 1), inde-
pendently of n. Unfortunately, there is no straightforward simple extension of these values
for intermediate values of k. In general, we have only found complicated expressions for
the inspectee’s strategy, which is why we have left it in the form (8) derived from the
well-known representation (19) in terms of the game payoffs.

4 Non-zero-sum payoffs

In this section, we extend the zero-sum-game Γ(n,m,k) to a non-zero-sum game Γ̂(n,m,k).
The reason to consider non-zero-payoffs is that a caught violation as the outcome of the
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game is typically less preferred by both inspector and inspectee than legal action, be-
cause for the inspector it means the failure of the inspection regime. This is a standard
assumption in inspection games, first proposed by Maschler [19].

We denote the equilibrium payoffs in Γ̂(n,m,k) by v(n,m,k) for the inspector and by
w(n,m,k) for the inspectee (which are unique as shown in Theorem 4 below). The ref-
erence payoff for legal action throughout is zero for both players. As before, we assume
that the inspectee acts legally if the inspector can inspect in every remaining period, that
is,

v(n,m,k) = w(n,m,k) = 0 if m≥ n. (41)

Also as before, if the inspector has run out of inspections, then the inspectee collects a
nonnegative reward rk,rk−1, . . . which is a cost to the inspector for each remaining period
up to the maximum number k of intended violations, that is,

− v(n,0,k) = w(n,0,k) =
min{k,n}

∑
i=1

rk+1−i . (42)

For the case that a violation is caught we introduce two parameters a and b as costs to
inspector and inspectee (scaled by the reward rk for a successful violation), where

0 < a < 1, b≥ 0, (43)

so that for n > m > 0 and k > 0 the game Γ̂(n,m,k) (with full information) has the fol-
lowing recursive description:

PPPPPPPPPinspector
inspectee

inspection
w(n−1,m−1,k)

v(n−1,m−1,k)

no inspection
w(n−1,m,k)

v(n−1,m,k)

w(n−1,m,k−1)+ rk

v(n−1,m,k−1)− rk

−b · rk

−a · rk

legal action violation

↓ ↑

←

→

(44)

In (44), the arrows represent the circular preferences of the players, which have been
proved for Γ(n,m,k) as (17). In particular, if k = 1, then the bottom-right cell in (44)
for an uncaught violation has payoff −rk to the inspector, whereas the top-right cell has
payoff −a · rk. Because a < 1, the inspector therefore prefers a caught violation to an
uncaught one, as it should be the case.

Due to (43), the game Γ̂(n,m,k) does not include the zero-sum game Γ(n,m,k) as a special
case. However, the more general conditions a < 1 and b >−1 do include it when a =−b.
The following theorem is essentially a corollary to Theorem 1.

14



Theorem 3 Let n,m,k be nonnegative integers, let the reals a and b be as in (43), and let
rk,rk−1, · · · ,r1 ≥ 0. Define s(n,m,k) as in (4), t(n,m,k) as in (5), and ŝ(n,m) by

ŝ(n,m) =
m

∑
i=0

(
n
i

)
(−a)m−i . (45)

Then the non-zero-sum game Γ̂(n,m,k) defined by (44) for n > m > 0 and k > 0 and by
(41) and (42) otherwise has equilibrium payoffs to inspector and inspectee

v(n,m,k) =
−t(n,m,k)

ŝ(n,m)
, w(n,m,k) =

t(n,m,k)
s(n,m)

. (46)

For n > m > 0 and k > 0, the game (44) has a completely mixed equilibrium where the
inspector inspects with probability p according to (7), and the inspectee violates with
probability q according to (8). This is the unique subgame perfect Nash equilibrium
(SPNE) of the game, unless rk+1−i = 0 for 1 ≤ i ≤ min{k,n−m}, in which case all
entries in (44) are zero and the players can play arbitrarily. Each player’s strategy is the
min-max strategy for the payoffs of his opponent.

Proof. Proof. If we modify the game Γ̂(n,m,k) to a zero-sum game with the payoffs
v(n,m,k) to the inspector (and thus −v(n,m,k) to the inspectee), then it fulfills the as-
sumptions of Theorem 1 with b = −a > −1. In this game, the inspector prefers not to
inspect when the inspectee acts legally and to inspect when the inspectee violates, as
shown with the vertical arrows in (44). The inspectee’s strategy is as in (8) and is a min-
max strategy for the inspector’s payoff. It makes the inspector indifferent between his two
actions, with the inspector’s payoff v(n,m,k) as in (46). Note that in (45), ŝ(n,m)> 0 for
0≤ m≤ n due to the alternative representation (13) where 1+b = 1−a > 0.

Similarly, if we modify the game Γ̂(n,m,k) to a zero-sum game based on the payoffs
w(n,m,k) to the inspectee (and thus −w(n,m,k) to the inspector), then it fulfills also
the assumptions of Theorem 1 with b ≥ 0 >−1. Then the inspectee prefer to act legally
when he is inspected and to violate otherwise, as shown with the horizontal arrows in (44).
In this game, the inspector’s strategy is given by (7), and is a min-max strategy for the
inspectee’s payoff. It makes the inspectee indifferent between his two actions in (44),
with the inspectee’s payoff w(u,m,k) as in (46).

So the game in (44) has a circular preference structure and a unique mixed equilibrium as
described (except when rk+1−i = 0 for 1≤ i≤min{k,n−m}), which by induction defines
the unique SPNE of Γ̂(n,m,k).

In Theorem 3, the inspector’s strategy in Γ̂(n,m,k) does not depend on k. As argued in §3,
this strategy can therefore also be applied to the game Γ̂ ′(n,m,k) without full information.
That is, we obtain the analogous statement to Corollary 1.

Corollary 2 The equilibrium payoff and the equilibrium strategies for the non-zero-sum
inspection game described in Theorem 3 with full information also apply in the game
Γ̂ ′(n,m,k) without full information.
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As mentioned after Corollary 1, the game Γ ′(n,m,k) without full information may have
additional equilibrium strategies for the inspectee, which applies in the same way to the
game Γ̂ ′(n,m,k).

Because the games Γ̂(n,m,k) and Γ̂ ′(n,m,k) are not zero-sum, the question arises if they
have other Nash equilibrium payoffs. The following theorem asserts that this is not the
case.

Theorem 4 All Nash equilibria of the non-zero-sum inspection game Γ̂(n,m,k) and the
game Γ̂ ′(n,m,k) without full information have the payoffs described in Theorem 3.

Proof. Proof. Consider first the game Γ̂(n,m,k) with full information. Let the game
be represented as an extensive game. Call a stage of the game a particular time period
together with the history of past actions. At each stage, we let, as in [26], the inspector
move first and the inspectee second, where the decision nodes of the inspectee belong
to a two-node information set so that the inspectee is not informed about the action of
the inspector at the current stage, but knows everything else. The information set of the
inspector is a singleton (this is different in the game Γ̂ ′(n,m,k) that we consider later).

Consider a Nash equilibrium of this game. Suppose that there is a stage of the game
that is reached with positive probability where the players do not behave according to
the SPNE described in Theorem 3, and let there be no later such stage. That is, each of
four cells in (44) at this stage either has the SPNE payoffs as entries or is reached with
probability zero. We claim that the equilibrium property is violated at this stage. If all
cells have positive probability, then at least one player gains because they do not play the
unique equilibrium at this stage. If some cells have probability zero, then one player plays
deterministically. For example, suppose the inspectee acts legally. Then if the inspector
inspects with positive probability, he gets the SPNE payoff v(n− 1,m− 1,k). However,
this is not his best response, because when he does not inspect at this stage, he gets at least
v(n−1,m,k) because that is also his min-max payoff which he can guarantee by playing a
max-min strategy after no inspection at the current stage. Because we are in equilibrium,
the inspector therefore responds with no inspection to the inspectee’s certain legal action
at this stage. However, then the inspectee can improve on his SPNE payoff w(n−1,m,k)
by violating and subsequently playing a max-min strategy, which contradicts the assumed
equilibrium. This reasoning follows from the strictly circular payoff structure in (44) and
holds for any assumed unplayed strategy. Hence, players always mix and the SPNE of the
game Γ̂(n,m,k) is its unique Nash equilibrium (in behavior strategies, as always).

The crucial condition used is that SPNE payoffs are min-max payoffs, and the argument
is similar to an analogous known result on finitely repeated games where all stage equilib-
rium payoffs are min-max payoffs (see Osborne and Rubinstein, [20, Proposition 155.1]).

Before we consider the game Γ̂ ′(n,m,k), we discuss a potential “threat” of the inspectee to
use a violation even in the case m≥ n when the inspector can inspect in every remaining
period. If we assume that in this case the inspector has the choice not to inspect, this
defines a game where legal action gives payoff zero to both players but violation gives
a negative payoff to both players. The min-max payoff to the inspector is then −a · rk
rather than zero, when the inspectee irrationally violates later (which is his “threat”) and
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the inspector inspects. If we use this payoff −a · rk in the bottom-left cell of (44) rather
than the assumed zero SPNE payoff v(n−1,n−1,k), we show that nevertheless−a ·rk >
v(n−1,n−2,k) so that the preceding reasoning still applies, that is, the inspector’s best
response to legal action at the current stage (and violation later) is still no inspection.
Namely, by (46), and (9) and (10) with b =−a and m = n−1,

v(n−1,n−2,k) =
−t(n−1,n−2,k)

ŝ(n−1,n−2)
=

−rk
(n−2

n−2

)
((1−a)n−1−

(n−1
n−1

)
)/(−a)

=
−a · rk

1− (1−a)n−1

and thus −a · rk > v(n− 1,n− 2,k) as claimed because 0 < a < 1 by (43). That is, the
inspector still prefers not to inspect in response to legal action and a later “threatened”
violation that will be caught. Hence there is no “threat” of the inspectee that could induce
a Nash equilibrium other than the SPNE.

Consider now a Nash equilibrium in behavior strategies of the game Γ̂ ′(n,m,k) without
full information. The inspector’s lack of information is represented by information sets
of the inspector that comprise multiple decision nodes with the same history of the in-
spector’s own past actions, but different past actions of the inspectee at the stages where
the inspector did not inspect. Consider such an information set h of the inspector that is
reached with positive probability where the inspector does not use the min-max strategy
against the inspectee in Theorem 3, and assume that there is no later information set of
this kind. Then at this stage, that is, for all information sets of the inspectee that immedi-
ately follow this move of the inspector at h, the inspectee will have the same action (legal
action or violation) as a best response, which he therefore chooses with certainty because
we are in equilibrium. However, in response the inspector would have to make a move
at h against which the moves of the inspectee are not optimal. This contradicts the equi-
librium property. Hence, the inspector has to choose the min-max strategy throughout, so
that the inspectee’s payoff is as in Theorem 3.

Now suppose that the inspector’s payoff is different from his min-max payoff. This has
to be a larger payoff because the inspector can guarantee his min-max payoff by playing
a max-min strategy. Then at some information set h of the inspector that is reached with
positive probability, again looking at the latest such set, the inspectee does at this stage
not play a min-max strategy against the inspector, that is, a strategy that does not equalize
the inspector’s payoffs. To this the inspector plays a unique pure best response at h. This
response is different from the inspector’s strategy in Theorem 3, but we have just shown
that this cannot be the case.

Hence, the players’ payoffs are uniquely given according to Theorem 3, as claimed.

5 Inspector leadership

The game by Dresher [10] with a single intended violation has been studied by Maschler
[19] in a leadership variant where the inspector can announce and commit to his mixed
strategy. We extend these considerations to our game with k intended violations, and
simplify some of Maschler’s arguments.
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A two-player game in strategic form is changed to a leadership game by declaring one
player as leader and the other as follower. The leader chooses and commits to a strategy
about which the follower is fully informed and chooses, as in a subgame perfect equi-
librium, a best response to every commitment of the leader. Both players receive the
payoffs of the original game. A leadership game is often called a “Stackelberg game”,
following von Stackelberg [25] who modified in this manner the simultaneous model of
quantity competition by Cournot [7] to a sequential game. We consider the leadership
game for the mixed extension of a finite two-player where the leader can commit to a
mixed strategy, as analyzed in full generality by von Stengel and Zamir [28].

Inspection games model situations where an inspectee is obliged to act legally and hence
cannot openly declare that he will violate. However, the inspector can become a leader
and commit to a mixed strategy, using a “roulette wheel” or other randomization device
that decides with a verifiable probability in each time period (simultaneously to the choice
of the inspectee) whether to inspect or not. Maschler [19] observed that in a non-zero-
sum recursive game, similar to (44) for k = 1, the inspector can commit to essentially the
same mixed strategy as before, but that the inspectee acts legally with certainty as long as
inspections remain. We first consider a general 2×2 game as it arises in our context.

p

1− p

1−q q

A B

a b

C D

c d
↓ ↑

←

→

A

B

D

C

b

c

ad

p

10

p

N

L

p*

Figure 1 Left: 2×2 game with probability p for playing the top row and q for playing
the right column. Right: Payoffs to column and row player if (47) and (49)
hold in the leadership game where the row player commits to p.

Proposition 1 Consider the 2×2 game on the left in Fig. 1 where the payoffs A,B,C,D
to the row player and a,b,c,d to the column player fulfill

A <C, B > D, a > b, c < d . (47)

Let
p∗ =

d− c
a−b+d− c

(48)

18



and assume that
p∗A+(1− p∗)C > p∗B+(1− p∗)D . (49)

Then the game has a unique mixed equilibrium where p∗ is the equilibrium probability
that the row player plays the top row, with Nash payoff N = BC−AD

B−D+C−A to the row player.
In the leadership game where the row player is the leader and can commit to a mixed
strategy p, the unique subgame perfect equilibrium is that the row player commits to p∗

and the column player responds with q = 1 if p < p∗ and q = 0 if p ≥ p∗, in particular
with q= 0 on the equilibrium path where p= p∗. In the leadership game, the payoff to the
leader is L = p∗A+(1− p∗)C, and L > N. The payoff to the follower is p∗a+(1− p∗)c,
the same as in the simultaneous game.

Proof. Proof. By (47), the game has a unique mixed equilibrium where the row player
plays p∗ and the column player plays q∗ = C−A

B−D+C−A , and the row player gets payoff N
and the column player gets p∗a+(1− p∗)c.

The claims about the leadership game can be seen from the right picture in Figure 1,
which shows the players’ payoffs as a function of p. For illustration, the column player’s
payoffs are assumed to be positive (as it typically holds in our inspection games, with the
exception of the payoff b) and those of the column player as negative, here for the case
that B > A (so that (49) can only hold if C > D).

For p < p∗ the follower’s best response is the right column (q = 1), with expected payoff
pb+(1− p)d to the follower and pB+(1− p)D to the leader. For p > p∗ the follower’s
best response is the left column (q= 0), with expected payoff pa+(1− p)c to the follower
and pA+(1− p)C to the leader. For the commitment to p = p∗ the follower is indifferent
and in principle could reply with any q in [0,1]. The payoff to the leader as a function of p
is shown as the bold line in the figure, including the vertical part for p = p∗ for q ∈ [0,1].
By (47), this leader payoff is increasing in p for p < p∗ and decreasing in p for p > p∗,
so it has its maximum L if p = p∗ and, by (49), if the follower’s response is q = 0, shown
by a full dot in the picture. This reaction of the follower defines in fact the unique SPNE
in the leadership game, because for p = p∗ the follower, even though indifferent, has to
choose the response, here q = 0, that maximizes the leader’s payoff, because otherwise
the leader could induce this behavior by changing his commitment to p∗+ ε for some
arbitrarily small positive ε , which contradicts the SPNE condition.

This has essentially been observed by Maschler [19], who postulated a “Pareto-optimal”
response of the follower if he is indifferent, and noted that otherwise the leader can get a
payoff arbitrarily close to L with a commitment to p∗+ ε . The SPNE argument has been
made by Avenhaus, Okada, and Zamir [3], and in generality by von Stengel and Zamir
[28] who also give further references.

In addition to the leader payoff L, Fig. 1 shows the Nash payoff N (with a hollow dot)
further below on the vertical line, which is less than L because it is given by N = q∗L+
(1−q∗)M where M = p∗B+(1− p∗)D is the minimum payoff to the leader if the follower
responds to p∗ by choosing the right column q = 1, and L > M by (49). If B > A and thus
C > D, then N is also the max-min payoff to the row player where his expected payoffs
are the same for both columns, when he plays his max-min strategy p̂ = C−D

B−A+C−D , also
shown in the picture.
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We want to apply Proposition 1 to the inspection game (44). Similar to Maschler [19,
p. 18], the leadership game for n time periods, m inspections, and k intended violations is
described as follows:

PPPPPPPPPinspector
inspectee

roulette wheel
calls for

inspection

w(n−1,m−1,k)

u(n−1,m−1,k)

roulette wheel
calls for

no inspection

w(n−1,m,k)

u(n−1,m,k)

w(n−1,m,k−1)+ rk

u(n−1,m,k−1)− rk

−b · rk

−c(k)

legal action violation

(50)

If the assumptions of Proposition 1 are met, then in this leadership game the inspector
chooses the same strategy as in the simultaneous game so that the inspectee is indifferent
between legal action and violation. However, the inspectee acts legally as long as m > 0,
that is, there will never be a caught violation. For that reason, the result will hold for any
negative cost −c(k) to the inspector in that cell of the table.

In the game (50), the inspectee as follower should, by Proposition 1, get the same re-
cursively defined payoff w(n,m,k) as in Theorem 3, but the inspector gets a new payoff
u(n,m,k). The following consideration shows what this payoff should be. First, if m = 0,
then the inspectee can and will safely use his k intended violations, as far as possible, in
each of the remaining n time periods, so that as in (42),

−u(n,0,k) = w(n,0,k) =
min{k,n}

∑
i=1

rk+1−i , (51)

as well as
u(n,m,k) = w(n,m,k) = 0 if m≥ n. (52)

For n > m > 0 and k > 0, the game (50) applies, where the inspectee gets the same payoff
w(n,m,k) for legal action and violation, given by (46). In particular, this is the inspectee’s
payoff if he always acts legally, as we assume he does in the leadership game. Once
the inspector has run out of inspections, the inspectee gets the same payoff w(n,0,k) as in
(42) and (51), which is the negative of the inspector’s payoff. By induction, the inspector’s
payoff should therefore in general simply be u(n,m,k) =−w(n,m,k).

In the following theorem, subgame perfection refers to the leadership game that assumes
best responses of the follower even off the equilibrium path, namely for all other inspec-
tion probabilities that the inspector could commit to. In terms of information about the
history of the game, the probability of the “roulette wheel” at each stage is a function of
n and m but not of k, as before.

Theorem 5 Let n,m,k be nonnegative integers, rk,rk−1, · · · ,r1 ≥ 0, b ≥ 0 and c(k) > 0.
Then in the leadership game defined by (52), (51), and (50) for n > m > 0 and k > 0, the
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unique subgame perfect equilibrium payoff is w(n,m,k) as in (46) to the inspectee, and
u(n,m,k) = −w(n,m,k) to the inspector. The inspector commits to the same inspection
probability p∗= p as in the game with simultaneous actions in each time period according
to (7). For m > 0, the inspectee always acts legally, and for m = 0 he violates in each
remaining time period, up to k times, as in (51). Compared to the simultaneous game in
Theorem 3, the inspector’s cost is smaller by the factor ŝ(n,m)/s(n,m); the inspectee’s
payoff is the same.

Proof. Proof. By induction on n. For m = 0, we have s(n,m) = s(n,0) = 1, so that
w(n,0,k) = t(n,0,k) which fulfills (51) by (5). Similarly, t(n,m,k) = 0 if m ≥ n, which
implies (52). In the same way, (51) holds for the inspector’s payoff u(n,0,k), and so does
(52).

Let n > m > 0 and k > 0. In (50), the probability for inspection p should make the
inspectee indifferent between legal action and violation, so that, as in Theorem 3, the
inspectee gets the payoff w(n,m,k) as claimed, and p is given by (7). If the inspectee
always acts legally, then the inspector’s payoff is recursively defined by

u(n,m,k) = p ·u(n−1,m−1,k)+(1− p) ·u(n−1,m,k) (53)

as in (28), which has been shown to be true in (30) and (32).

It remains to show that (49) in Proposition 1 applies, that is, the inspectee indeed acts
legally because the inspector’s payoff for legal action is higher than for violation. By
(50), using (53), this is equivalent to

u(n,m,k)> p · (−c(k))+(1− p) · (u(n−1,m,k−1)− rk). (54)

Now, because u(n,m,k) = −w(n,m,k), we know that, analogous to (29) which has been
shown with (31) and (33),

u(n,m,k) = p ·b · rk +(1− p) · (u(n−1,m,k−1)− rk) ,

so that (54) is equivalent to b · rk > −c(k), which is true. So the recursive equation for
u(n,m,k) in (53) is indeed justified.

To compare the payoff u(n,m,k) to the inspector in the leadership game with his payoff
v(n,m,k) in the game with simultaneous action in each time period, (46) gives

u(n,m,k) =
−t(n,m,k)

s(n,m)
=

ŝ(n,m)

s(n,m)
· −t(n,m,k)

ŝ(n,m)
=

ŝ(n,m)

s(n,m)
· v(n,m,k) (55)

as claimed, where the factor ŝ(n,m)/s(n,m) is smaller than 1 by (4) and (45), possibly
significantly so, depending on the parameters a and b in (43).

We conclude this section with two further observations. The first is that even if one
does not see that u(n,m,k) is just −w(n,m,k) as described following (50), the recur-
sive equation (53) shows what u(n,m,k) should be, and also why t(n,m,k) should be as
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in (5). Namely, suppose that we do not yet know t(n,m,k) and assume that u(n,m,k) =
−t(n,m,k)/s(n,m). Then, by (7), equation (53) is equivalent to

−t(n,m,k)
s(m,n)

=
s(m−1,n−1)

s(n,m)
· −t(n−1,m−1,k)

s(m−1,n−1)
+

s(m,n−1)
s(m,n)

· −t(n−1,m,k)
s(m,n−1)

which is just (30). So t(n,m,k) fulfills the equation of a “generalized Pascal triangle”

t(n,m,k) = t(n−1,m−1,k)+ t(n−1,m,k) (56)

in n and m (with k as a fixed parameter) and “base cases” (by (51) and because s(n,0) = 1)

t(n,0,k) =
k

∑
i=1

rk+1−i , t(n,n,k) = 0 .

Writing down the numbers t(n,m,k) in a triangle as functions of rk, rk−1, etc., one sees
that the smallest n where rk+1−i appears in t(n,m,k) is for n = i and m = 0. Due to (56),
this becomes the root

(0
0

)
of an ordinary “Pascal triangle” for the coefficient of rk+1−i in

t(n,m,k), which is therefore
(n−i

m

)
, as in (5).

The second observation addresses the question if the inspector always prefers the in-
spectee to act legally in the game (44) where his payoffs are given by v(n,m,k), and not
recursively by u(n,m,k) as in (50). As an application of Proposition 1, this would apply
to a leadership game where the inspector can only commit to the probability of inspecting
in the first time period, but acts without commitment in all subsequent periods. This is
not a very natural game to look at, but the preference of the inspector in the simultane-
ous game is nevertheless of interest. As expected, the inspector indeed prefers that the
inspectee acts legally. We found only a relatively long – but “canonical” – proof, which
we present here for its possible interest concerning the manipulation of sums of binomial
coefficients.

Theorem 6 Consider the game (44) with entries as in Theorem 3 as a 2×2 game on the
left in Fig. 1, and the equilibrium probability p∗ = p as in (7) for the inspector. Then (49)
in Proposition 1 applies, that is, the inspector prefers that in response to p∗ the inspectee
acts legally.

Proof. Proof. In the game (44), we have A,C,D as in (14) and B = −a · rk, where −a >
−1 by (43). To show (49) directly we would have to compare terms involving s(n,m),
t(n,m,k), and ŝ(n,m) according to (7), (45) and (46). Instead, we apply Theorem 1 with
b = −a to the zero-sum game (15) with entries A,B,C,D, where the inspector has the
max-min strategy of inspecting with probability

p̂ =
ŝ(n−1,m−1)

ŝ(n,m)
.

Because A < B and C > D as shown in (17), p̂ is also the probability that equalizes the
expected payoffs to the row player for the two columns of the game, p̂ = C−D

B−A+C−D , as
shown on the right in Fig. 1. Then (49) holds if p̂ > p∗, because the expected payoff for
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the left column is pA+(1− p)C =C+ p(A−C) which is strictly decreasing in p, and for
the right column it is pB+(1− p)D = D+ p(B−D) which is strictly increasing in p, so
that p̂ > p∗ implies

p∗A+(1− p∗)C > p̂A+(1− p̂)C = p̂B+(1− p̂)D > p∗B+(1− p∗)D

that is, (49).

To show p̂ > p∗ = p, we define

S(n,m,x) =
m

∑
i=0

(
n
i

)
(x−1) i,

so that by (45) and (7)

ŝ(n,m) = S(n,m,1−a), s(n,m) = S(n,m,1+b).

As in (13) we have

S(n,m,x) =
m

∑
i=0

(
n−1− i

m− i

)
x i. (57)

Then we want to show, for n > m > 0, that

p̂ =
ŝ(n−1,m−1)

ŝ(n,m)
> p =

s(n−1,m−1)
s(n,m)

, (58)

or equivalently, by (11),

1− p̂
p̂

=
ŝ(n−1,m)

ŝ(n−1,m−1)
<

1− p
p

=
s(n−1,m)

s(n−1,m−1)
,

that is,
S(n−1,m,1−a)

S(n−1,m−1,1−a)
<

S(n−1,m,1+b)
S(n−1,m−1,1+b)

,

which clearly holds if S(n−1,m,x)/S(n−1,m−1,x) is strictly increasing in x for x > 0,
which is what we will show. By (10) we have with x = 1+b

S(n−1,m,x) = (x−1) ·S(n−1,m−1,x)+
(

n−1
m

)
so that

S(n−1,m,x)
S(n−1,m−1,x)

= x−1 +

(n−1
m

)
S(n−1,m−1,x)

where we want to show that this term has positive derivative with respect to x, that is,

d
dx

(
S(n−1,m,x)

S(n−1,m−1,x)

)
= 1−

(
n−1

m

) d
dxS(n−1,m−1,x)
S(n−1,m−1,x)2 > 0

or

S(n−1,m−1,x)2 >

(
n−1

m

)
d
dx

S(n−1,m−1,x) .
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To simplify this expression, which we want to show for n > m > 0, we equivalently show
for n > m≥ 0 that

S(n,m,x)2 >

(
n

m+1

)
d
dx

S(n,m,x)

which by (57) says(
m

∑
i=0

(
n−1− i

m− i

)
x i

)2

>

(
n

m+1

) m

∑
i=1

i
(

n−1− i
m− i

)
x i−1 . (59)

In (59), we have x > 0 and (because n−1≥ m) positive coefficients of xm (and of higher
powers of x) on the left hand side, whereas the highest power of x on the right hand side
is xm−1. Hence, it suffices to show that for 0≤ i≤m−1, each coefficient of x i on the left
hand side in (59) is at least as large as the coefficient of x i on the right hand side, that is,

i

∑
k=0

(
n−1− k

m− k

)(
n−1− i+ k

m− i+ k

)
≥
(

n
m+1

)
(i+1)

(
n−2− i
m−1− i

)
. (60)

There are i+1 summands on the left of (60), so it suffices to show that each of them, for
0≤ k ≤ i, fulfills(

n−1− k
m− k

)(
n−1− i+ k

m− i+ k

)
≥
(

n
m+1

)(
n−2− i
m−1− i

)
. (61)

Because (
n

m+1

)
=

(
n−1− k

m− k

) k

∏
j=0

n− k+ j
m+1− k+ j

and (
n−1− i+ k

m− i+ k

)
=

(
n−2− i
m−1− i

) k

∏
j=0

n−1− i+ j
m− i+ j

,

(61) is equivalent to
k

∏
j=0

n−1− i+ j
m− i+ j

≥
k

∏
j=0

n− k+ j
m+1− k+ j

which holds if for 0≤ j ≤ k

n−1− i+ j
m− i+ j

≥ n− k+ j
m+1− k+ j

,

that is,

1 +
n−m−1
m− i+ j

≥ 1 +
n−m−1

m+1− k+ j
. (62)

If n = m+1, then (62) holds as equality. Otherwise, n−m−1 > 0, and (62) is equivalent
to

m− i+ j ≤ m+1− k+ j

or k ≤ i+1 which is true. This proves the claim and thus (58), and the theorem.
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6 Conclusions

We have presented an inspection game that extends existing models of n time periods and
m inspections with a general model of k intended violations. Each violation may have a
different marginal reward to the inspectee (which is therefore completely general) and a
proportional penalty when caught. As shown in Theorem 2, this proportional penalty is
necessary and sufficient for applying the recursively described game with full informa-
tion to the game without full information where the inspector in uninformed about the
inspectee’s past actions in uninspected time periods, which is a realistic condition. We
have studied three variants of this game: A zero-sum game, a non-zero-sum game where
both inspector and inspectee get negative payoffs for a caught violation, and a leadership
game. In the leadership game, the inspector commits to the same mixed strategy but re-
ceives a higher payoff because the inspectee acts legally as long as inspections remain
(which evidently requires commitment power of the inspector who would otherwise not
inspect in response). We were able to give explicit solutions for these games by proving
nontrivial binomial identities and inequalities, as in the proofs of Theorems 1 and 6.

Further extensions of the model could involve inspections with statistical errors of false
alarms and non-detected violations (as studied for a single intended violation in [21], and
in a different model where time to detection matters in [1]). The fixed number n of time
periods could be replaced by a random variable that counts “suspicious events”. Rather
than a fixed number m of inspections, an overall frequency (with a public randomization
device) could part of the treaty for an inspection regime. Also, there could be multiple
inspectees, with different targets for violations.

Such extensions pose without doubt new challenges for analysis. In practice, a new game
of this sort is most likely not solved explicitly, as in this paper, but with the help of
computer algorithms. In fact, variations of the model investigated in [26] led the author
to the study of algorithms for solving extensive games, and the computationally efficient
“sequence form” described in [27].

A recursive game is a much more compact description than an extensive game. The
inspection game Γ(n,m,k) in (2) is defined recursively in terms of the game values for
simpler games. There are on the order of n ·m · k simpler games, a polynomial number
in n,m,k. In contrast, the extensive game has an exponential number of nodes, because
every set of m out of n time periods that the inspector inspects defines a different history of
the game. However, from this history only the number of remaining inspections matters,
which is captured by the recursive description.

Everett [11] defined recursive games as stochastic games where only absorbing states
have nonzero payoffs. The recursive games we consider could be put in this form by
awarding all payoffs (with the gains rk,rk−1, . . . to the inspectee for successful violations)
at the end of the game, which is possible because the number k of remaining violations
is part of the state description as (n,m,k). More importantly, in our games no state is
ever revisited during play because n is decreased each time. The game graph of state
transitions is acyclic, but not a tree.
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Can such recursive games be equipped with nontrivial information structures? By Corol-
lary 2, the inspection game Γ̂ ′(n,m,k) without full information has the same solution as
the recursive game Γ̂(n,m,k) with full information. Here this is possible because the in-
formation that is implicit in the recursive description does not matter, which is due to the
special payoff structure. Otherwise the equilibrium strategy of the inspector depends on k.
In that case, can the equilibrium of the game with full information be used to solve the
game without full information? (This question was posed to the author by the late Michael
Maschler in 1991.) An interesting area of future work could be models of “small” games
like recursive games that allow for lack of information, similar to information sets in
extensive games, and corresponding solution methods.
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