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Abstract 
 

Abstract. The paper proposes a simple test for the hypothesis of strong cycles and 
as a by-product a test for weak dependence for linear processes. We show that the 
limit distribution of the test is the maximum of a (semi)Gaussian process    (τ), τ ∈ [0; 
1]. Because the covariance structure of    (τ) is a complicated function of τ and model 
dependent, to obtain the critical values (if possible) of maxτ∈[0;1]     (τ) may be difficult. 
For this reason we propose a bootstrap scheme in the frequency domain to 
circumvent the problem of obtaining (asymptotically) valid critical values. The 
proposed bootstrap can be regarded as an alternative procedure to existing 
bootstrap methods in the time domain such as the residual-based bootstrap. Finally, 
we illustrate the performance of the bootstrap test by a small Monte Carlo 
experiment and an empirical example. 
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2 VIOLETTA DALLA AND JAVIER HIDALGO

1. INTRODUCTION

During the last decade or so, we have seen an increasing interest in the so-called
�strong dependent� data. The main motivation for this interest comes from the
apparent observation that in many areas, such as hydrology or macroeconomic time
series, the data appear to have a cyclic component, although they are not periodic.
This is manifested in a number of series whose spectral density estimates peaked
sharply around some frequency, indicating a cyclical component, or at say seasonal
frequencies. However, when �rst (seasonal, say) di¤erences are taken, the spectrum
tends to exhibit a trough, indicating that the data has been overdi¤erenced.
One model capable of generating strong dependence in the data is the Gegen-

bauer model, proposed by Andel (1986) and explored in Gray et al. (1989), which
was de�ned as �

1� ei�
0

L
�d0 �

1� e�i�
0

L
�d0

xt = "t, (1)

where L is the backshift operator, �1=2 < d0 < 1=2 if �0 6= 0; � and �1=4 <
d0 < 1=4 if �0 = f0; �g. The model (1) was extended by Gray et al. (1989) to
the GARMA model where the sequence f"tgt2Z follows an Autoregressive Moving
Average (ARMA) model. More generally, model (1) can be extended to allow
f"tgt2Z to follow a stationary MA (1) so that fxtgt2Z will be characterized by
having a spectral density function de�ned as

f (�) =
�20
2�

���1� ei(���0)����2d0 ���1� ei(�+�0))����2d0 h (�) � � < � � �, (2)

where �20 > 0 is the variance of the innovations of the sequence f"tgt2Z and h (�) is
an even, continuous and bounded away from zero function such that �20h (�) = (2�)
is the spectral density function of f"tgt2Z. When �

0 = 0 and f"tgt2Z follows an
ARMA (p; q) process, (1) becomes the more familiar FARIMA(p; 2d0; q) model,
originated by Adenstedt (1974) and further explored and examined by Granger and
Joyeux (1980) and Hosking (1981). The coe¢ cient d0 is the fractional di¤erencing
coe¢ cient. One can also sometimes �nd reference to the coe¢ cient �0, de�ned as
�0 = 2d0, which we shall refer to as the memory parameter. One feature of models
such as that given in (2) is that f (�) possesses a pole at �0, that is

f (�) � C
���� �0����0 as �! �0, (3)

where C 2 (0;1), 0 � �0 < 1 and ���means that the ratio of the left- and right-
hand sides tends to 1. The value �0 given in (3) can be regarded as determining
the (local) shape of the spectral density function around �0, which can discriminate
among di¤erent time series. In addition, �0 gives an indication and summarizes
the dependence structure of fxtgt2Z in the long run.
A feature of model (2) is that it possesses a stronger and more persistent cyclical

pattern than ARMA models, e.g. the AR (2) process�
1� a1L� a2L2

�
xt = "t (4)

when the roots of the polynomial
�
1� a1L� a2L2

�
are complex, with �0 identi�ed

as the arc cos
�

a1
2
p
�a2

�
.

So, models (2) = (3) and (4) may have some features similar to those observed
with real data. However, the latter two models constitute di¤erent descriptions
of cyclic behaviour within the stationary class. Therefore, when the practitioner
is faced with the problem of choosing between models like (2) and (4), it would
be useful to have a testing procedure to discriminate between the aforementioned
di¤erent cyclical behaviours.
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The main objective of the paper is thus to test whether or not the data exhibits
strong cyclical components and also to describe a bootstrap method in the frequency
domain as an alternative to those based on the time domain. To that end, we
describe and examine two di¤erent tests. The �rst one is a Wald (W ) type test,
whereas the second one is based on the Lagrange Multiplier (LM) principle, which
may be computationally more attractive than the former. The tests are based on
whether the supremum of a sequence of random variables is signi�cantly greater
than zero. In particular, see Section 2, the W and the LM types of tests are based
on the supremum of a sequence of estimators of the memory parameter �0 and the
score function respectively when it is believed that the pole of the spectrum is at
some particular frequency �0 2 [0; �]. One feature of the hypothesis testing is that
the null lies at the boundary of the parameter space.
Our tests, as mentioned above, are based on the supremum of a sequence of

random variables. It is well known that the rate of convergence of the �nite sample
distribution to the asymptotic one is very slow, see Hall (1979) for a related statistic.
In particular, Hall showed that the rate is logarithmic. In addition, as we show in
Theorem 2.1 below, the asymptotic distribution of our tests is nonstandard, so that
bootstrap algorithms will allow us to make valid inferences. This motivates us to
employ a bootstrap approach to our hypothesis testing. (See also the comments at
the end of Section 2 for other motivations to perform a bootstrap algorithm in our
context.)
It should be noticed that, as a by-product, our tests provide a way to test

for weak dependence against strong dependence in the class of linear models.
The concept of strong dependence, sometimes known as long range or long mem-
ory dependence, refers to time series data that have an autocovariance function,
cov (xt; xt+j) = 
 (j), which is not absolutely summable. However, it should be
mentioned that strong dependence refers not only to second moments, although for
Gaussian processes is synonymous. This type of processes makes the probabilistic
properties of the data and the asymptotic distribution of some relevant statis-
tics/estimates (possibly implicit ones) very di¤erent from those of usual �weakly
dependent�/mixing processes such as ARMA models, or their properties need to
be examined on a case by case basis. The concept of weak dependence draws simi-
larities with that in Doukhan (1994), see also Nze et al. (2002). They de�ne weak
dependence as a measure between the covariance between functions of the past
and the future. An earlier and similar concept was introduced by McLeish (1975),
known as Mixingale (or general near epoch), which measures how fast conditional
moments converge to unconditional ones. From a statistical point of view, to know
if the data is near epoch dependent with size greater than 1=2 (see, McLeish, 1975)
can be important as many statistical results rely heavily on the latter type of depen-
dence. The latter concept of dependence has been argued to be what is really needed
for examining the properties of, say, estimates, instead of stronger concepts such
as strong-mixing (see Rosenblatt, 1956) or �-mixing (see, Volkonskii and Rozanov,
1956), which are based on the variation norm between the joint probability function
and the product of their marginals.
Two points have to be raised concerning our tests. The �rst one is that the tests

are of parametric nature, as it is evident from Condition C1 of Section 2. Our tests
di¤er from that of Lobato and Robinson (1998) in two respects. First, contrary to
them, we allow �0 to be unknown. Secondly, our tests are parametric, so that they
are more e¢ cient than the one explored by the former authors, especially when
dealing with small or moderate sample sizes. On the other hand, the Lobato and
Robinson�s (1998) LM test only requires a local knowledge of f(�) around �0, so
that in this sense, their test can be more attractive than ours since less assumptions
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are imposed on the shape of the spectral density. However, in this paper we are
taking the view that the practitioner is con�dent about a correct parameterization
of f(�). That is, the data follows a GARMA process, where the order of the
ARMA polynomial can be chosen by a criterion function such as the AIC or BIC,
see Beran et al. (1998) for their justi�cation in our context. In addition, we should
mention that the identi�cation of �0 is not always possible, like in the case of a
business cycle, and therefore our tests are in that sense more general. Finally, we
can cite the test given in Robinson (1994), although his null hypothesis is that
d0 = 1, whereas in our case is d0 = 0, apart from the fact that as in Lobato and
Robinson�s test, it is assumed that �0 is known a priori.
The second point is that we restrict our analysis to linear processes. One of the

motivations to constrain to linear models is because conditions under which the
data satisfy the di¤erent concepts of dependence/mixing are quite well understood,
depending basically on how fast the coe¢ cients of the MA representation of the
fxtgt2Z converge to zero. See for instance Gorodetskii (1977), or Pham and Tran
(1985) among others. Nevertheless, we are aware that existing results are available
for nonlinear (Markovian) models such as nonlinear AR (p), bilinear or ARCH
models, see Doukhan (1994) for a review. In particular, given that fxtgt2Z follows
a linear model as that in Condition C5 of Section 2, under some smoothness con-
ditions on the probability density function of the innovations f"tgt2Z, Gorodetskii
(1977) and Pham and Tran (1985) gave conditions on the rate of convergence of bj
to zero which are not satis�ed for strong dependent processes, suggesting that these
processes are neither strong mixing nor �-mixing. Nevertheless, we can see that,
they are mixingale, also weak dependent in the sense of Doukhan, although with a
size smaller than 1=2, which is a minimum requirement to guarantee the standard
statistical results.
Another motivation to focus on linear models is because they still represent a

fairly broad class of models very much employed by practitioners and because the
relationship between the rate of decay to zero of bk and the smoothness of the
spectral density function is well established. For instance, for Gaussian processes
(see, Ibragimov 1965; 1970), to be strong-mixing it is required that

lim
�!�0

log f (�)

log
���� �0�� = 0, (5)

which rules out a spectral density function satisfying (3).
The remainder of the paper is as follows. In the next section, we describe the

hypothesis testing and introduce aW and LM type of tests for the null hypothesis of
�0 = 0 for all �

0 2 [0; �]. Because the limit distribution of the tests is nonstandard
and model dependent, Section 3 describes and proposes a valid bootstrap scheme
which can be regarded as a frequency domain counterpart to the residual-based
bootstrap. The proposed bootstrap, contrary to the latter, is far easier to compute
in models for which it is di¢ cult to obtain the coe¢ cients of the Moving Average
or Autoregressive representation of fxtgt2Z, as is the case with the Bloom�eld�s
(1973) exponential model. Moreover, our bootstrap algorithm is based on Efron�s
(1979) naive bootstrap. The proofs of the results in Sections 2 and 3 are given
in Section 5, which makes use of a series of Lemmas in Section 6. A small Monte
Carlo experiment to examine the performance of our test in small samples is given in
Section 4, together with an application of our test to the monthly seasonal adjusted
Industrial Production Index for the USA. Finally, Section 7 concludes and gives a
modi�cation of the bootstrap approach described in Section 3.
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2. THE TESTS AND REGULARITY CONDITIONS

Consider fxtgt2Z a covariance stationary linear process having mean that it
is (without loss of generality) zero and absolute continuous spectral distribution
function, so that it has a spectral density function, denoted by f (�), de�ned from
the relation


 (j) = E (x0xj) =

Z �

��
f (�) eij�d�, j = 0;�1;�2; :::. (6)

We shall �rst describe how our hypothesis testing can be written in terms of
some parameters. Suppose that the spectral density f is positive, continuous and
known up to a �nite set of parameters

�
 00; �

2
0

�0
. That is,

f (�) =
�20
2�
h� (�; 0) , (7)

where �20 > 0,  0 2 	, a compact set in Rp+1, and h� (�; 0) is a known even
function. Under the null hypothesis of no strong cycles, we have that f is a positive
and continuous function for all � 2 [0; �]. This means that there exists 0 < K <1
such that

K�1 < h� (�; 0) < K for all � 2 [0; �] .
Hence, our hypothesis of interest can be formulated as

H0 : K
�1 < h� (�; 0) < K for all � 2 [0; �] ; (8)

while the alternative hypothesis becomes
H1 : 9�0 2 [0; �] and 0 < �0 < 1, such that

h� (�; 0) = g
�
�;�0; �

0
�
h (�; �0) , (9)

where  0 =
�
�0; �

0
0

�0
and

K�1 < h (�; �0) < K for all � 2 [0; �]
g�1

�
�;�0; �

0
�
� C

���� �0���0 ! 0 as �! �0,

where h (�; �0) is a continuous function. In what follows K denotes a positive �nite
constant.
Observe that since we have assumed that Ex2t < 1, we have that g

�
�;�0; �

0
�

is an integrable function so that �0 < 1. As we have argued in the introduction,
because h (�; �0) is continuous, the case �0 = 0 will refer to weak dependence,
whereas the case 0 < �0 < 1 to strong dependence.
Before we formally describe the tests, we introduce the following regularity con-

ditions:

C1: The process fxtgt2Z has an absolutely continuous spectral distribution
function, its spectral density, f (�) = �20

2�f
�
�;�0; �0; �

0
�
, being of the form

f
�
�;�; �; �0

�
= g

�
�;�; �0

�
h (�; �) , � 2 (��; �] , (10)

with

g
�
�;�; �0

�
=

����4 sin��+ �02

�
sin

�
�� �0

2

������� , (11)

where � 2 �, a compact set in Rp, � 2 [0; 1) if �0 2 (0; �) and � 2
[0; 1=2) if �0 = f0; �g. For �� < � � �, h (�; �) is even in � and bounded
away from zero, and the derivatives r�h (�; �) ; r�h (�; �) ; r�r�h (�; �)
and r�r0�h (�; �) are continuous.

Henceforth,  =
�
�; �0

�0
and �2 denote any admissible value of  0 =

�
�0; �

0
0

�0
and �20 (the true value of the parameters) respectively.
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C2: For all � 2 �, the function h (�; �) satis�es thatZ �

��
log (h (�; �)) d� = 0. (12)

C3:

inf
(�;�0)02���

Z �

��

f
�
�;�0; �0; �

0
�

f
�
�;�; �; �0

� d� = 1,

where � = [0; 1) when �0 2 (0; �) and � = [0; 1=2) if �0 = f0; �g, and the
set�

� : f
�
�;�0; �0; �

0
�
6= f

�
�;�; �; �0

�	
for

�
�0; �

0
0

�
6=
�
�; �0

�
,

has positive Lebesgue measure. Also, the matrix


 =
1

4�

Z �

��
O log f

�
�;�0; �0; �

0
�
O 0 log f

�
�;�0; �0; �

0
�
d�

is positive de�nite for all �0 2 [0; �].
C4: �0 is an interior point of the compact set � 2 Rp.
C5: fxtgt2Z is a covariance stationary linear process de�ned as

xt =

1X
j=0

bj"t�j ;
1X
j=0

b2j <1, with b0 = 1,

where f"tgt2Z is an ergodic process that satis�es (a) E ("t jFt�1 ) = 0 a.s.,
(b) E

�
"2t jFt�1

�
= E

�
"2t
�
= �20 a.s., (c) E

�
j"tj` jFt�1

�
= �` < 1 for

` = 3; :::; 8, a.s., where Ft is the �-algebra of events generated by f"s; s � tg
and (d)

cum ("t1 ; "t2 ; "t3 ; "t4) =

�
�, t1 = t2 = t3 = t4,
0, otherwise.

We now comment on our conditions. Condition C1 covers a wide range of models,
including invertible ARMA and Bloom�eld (1973) ones, although it allows for mod-
els in h, whose autocorrelation coe¢ cients decay to zero much slower than the pre-
vious two models. Of course under H0, f

�
�;�0; �0; �

0
�
= h (�; �0). Condition C2 is

standard and not very strong. In fact, because
R �
�� log

��2 sin ���� �0� =2��� d� = 0,
condition (12) implies that �20 is the one-step mean square linear prediction error,
see Hannan (1970, p.121-123). The �rst part of Condition C3 is employed to prove
the (strong) consistency of the Whittle estimator de�ned in (13) below. See for
instance Hannan (1973) or Brockwell and Davis (1991; Ch.10). The second part
of Condition C3 is an identi�cation condition. In Condition C5 the normalization
b0 = 1 is consistent with (12) and it is similar to others used elsewhere, see Hannan
(1973). The �nite eighth moments assumed in C5 are needed to show the tight-
ness condition of some process indexed by � 2 [0; 1], required to show Theorem 2.1
below. Finally, we should notice that, as in Giraitis et al. (2001), we could have
changed Condition C1 to

C1�: fxtgt2Z has a spectral density function given by f (�) =
�20
2�f

�
�;�0; �0; �

0
�
,

where

f
�
�;�; �; �0

�
=

( ���� �0���� h1 ��;�; �; �0� 0 � � � ����+ �0���� h1 ��;�; �; �0� � � � � � 0

such that for �� < � � �, � 2 �, � 2 [0; 1), h1
�
�;�; �; �0

�
is even in � and

bounded and bounded away from zero, the derivatives O h1
�
�;�; �; �0

�
,

O2 h1
�
�;�; �; �0

�
are continuous and bounded, h1

�
�;�; �; �0

�
and
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O(�;�0)h1
�
�;�; �; �0

�
satisfy uniform Lipschitz conditions in �0 of order

greater than 1=2, while, for 0 < j�j < �, �0 2 [0; �], r�h1
�
�;�; �; �0

�
and

r�O(�;�0)h1
�
�;�; �; �0

�
are bounded.

For a motivation and comparison with C1 we refer to Giraitis et al. (2001).
Next, we describe the main ideas of the tests. As mentioned in the introduction,

the �rst one is a W type test whereas the second is a LM test. In what follows, we
shall abbreviate � (�j ; �) by �j (�) for a generic function �, with �j = (2�j) =n for
integer j and n denoting the sample size.

2.1. Wald test for H0.
Assuming that f (�) follows model (10) � (11), suppose that for a given �0 we

have an estimator of
�
�0; �

0
0

�0
and denote by �s the closest Fourier frequency to �

0.
For example, given a stretch of data (x1; :::; xn), we can use the Whittle estimator
de�ned as �b�s;b�0�0 = argmin

(�;�0)02���
Q (�; �; s) ; b�2 = Q

�b�s;b�; s� (13)

and

Q (�; �; s) =
2�

~n

~nX
j=1

Ij
gj (�; �s)hj (�)

, (14)

where, henceforth ~n = [n=2] with [z] denoting the integer part of z, and

Ij =
1

2�n

�����
nX
t=1

xte
it�j

�����
2

is the periodogram of fxtgt2Z.
Next, suppose that b�s is computed for s = 0; 1; :::; ~n. Because under H0 and

suitable regularity conditions, the Whittle estimator is consistent, we expect thatb�s � 0 for all s = 0; 1; :::; ~n, whereas under H1, there exists an s such that b�s > 0.
So, a test for the hypothesis testing in (8) � (9) can be based on whether b�s is
signi�cantly greater than zero for some s = 0; 1; :::; ~n. More precisely, the test
statistic for the hypothesis testing for (8)� (9) is given by

TW = sup
s=0;:::;~n

b�s, (15)

rejecting H0 if TW is greater than some critical value.

2.2. Lagrange Multiplier test.
The statistic described in (15) involves the estimation of �0 (�s) (and any other

parameter of the model), for s = 0; :::; ~n, which can be highly computing intensive
as nonlinear optimization algorithms are required. Herewith �0 (�s) = �0 if s is
such that

���s � �0�� � ���j � �0�� for any j and �0 (�s) = 0, otherwise. Moreover,
as the asymptotic distribution of TW is not standard, see Theorem 2.1 below, to
obtain (asymptotic) valid critical values it will be required to employ Monte-Carlo
simulation algorithms such as Bootstrap schemes. Because of that, see Section 3
for another motivation of the bootstrap, the implementation of the test can be a
prohibited task in computing time. Thus, we shall introduce a LM type of test
which will not require the estimation of �s := �0 (�s), but only the model under
the null. This is computationally simpler and bootstrap algorithms will be easier
and more feasible to implement.
To that end, consider the Whittle estimator of �0 under H0, that is

e� = argmin
�2�

1

~n

~nX
j=1

Ij
hj (�)

; e�2 = 2�

~n

~nX
j=1

Ij

hj

�e�� . (16)
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Next, for all s, consider the �rst derivative of (14) with respect to
�
�; �0

�0
, and

denote

q (�; �; s) =
1e�2~n

~nX
j=1

qj (�; �; s)
Ij

hj (�)
; qj (�; �; s) = �

@ log (gj (�; �s)hj (�))

@
�
�; �0

�0
(17)

and

V (�; �; s) =
1

~n

~nX
j=1

qj (�; �; s) q
0
j (�; �; s) .

Note that under standard suitable conditions, V (�; �; s) =
�
2�2
�
is an estimate of

the asymptotic covariance matrix of ~n1=2q (�; �; s). Next, suppose that we �x a
frequency �s for some s = 1; :::; ~n, say �s� . Then the LM test for eH0 : �0 (�s�) =
�s� = 0, becomes whether eqs� is not signi�cantly di¤erent than zero, where

eqs� = �V 11 �0;e�; s���1=2 ~n1=2q(1) �0;e�; s�� (18)

and e� is given in (16), q(1) (�) denotes the �rst component of the vector q (�) and
V 11 (�) is the element (1; 1) of V �1 (�).
Because under Conditions C1 � C5, the Whittle estimator is consistent, then

under H0, we should expect that eqs � 0 for all s = 0; 1; :::; ~n. Now, our hypothesis
testing is one sided. So, in the same way that for the W test we have rejected
the null if b�s > 0 for some s = 1; :::; ~n, we need to �nd the direction of departure
from the null hypothesis, that is the sign that eqs will take under the alternative
hypothesis. It is clear that the sign will be that of

1

~n

~nX
j=1

q
(1)
j

�
0;e�; s� Ij

hj

�e�� ,
where q(1)j (�) is the �rst element of the vector qj (�). Notice that because Condition
C5 implies that fxtgt2Z is ergodic, see Stout (1974) Theorem 3.5.8, e�2 p! �2 > 0

(�20 under the null hypothesis). Because we are under the alternative, there exists
an s for which �0 (�s) := �0 > 0. Suppose for simplicity that s = 0 and that
h (�; �0) = 1. Then, we have that the last displayed expression becomes

� 1
~n

~nX
j=1

@ log gj (0; 0)

@�
Ij

= � �20
2�~n

~nX
j=1

@ log gj (0; 0)

@�
gj (�0; 0)�

1

~n

~nX
j=1

@ log gj (0; 0)

@�
gj (�0; 0)

�
Ij

gj (�0; 0)
� �20
2�

�
.

Now Lemma 6.1 implies that the second term on the right of the last displayed
equation is

1

~n

~nX
j=1

@ log gj (0; 0)

@�
gj (�0; 0)

�
I";j �

�20
2�

�
+ op

�
n�1=2

�
,

where I";j = (2�n)
�1 ��Pn

t=1 "te
�it�j

��2 is the periodogram of f"tgt2Z. However,
by standard results on I";j , the last expression is Op

�
n�1=2

�
. On the other hand,

under C1, g (�;�0; 0) = j2 sin (�=2)j��0 , we have from the mean value theorem that
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the �rst term on the right of the last displayed equation is

�20
2�~n

~nX
j=1

����2 sin��j2
�������0 log ����2 sin��j2

����� =
�20
2�~n

8<:
~nX
j=1

log

����2 sin��j2
�����

��0
~nX
j=1

����2 sin��j2
������e�0 log2 ����2 sin��j2

�����
9=; ,

where e�0 is an intermediate point between 0 and �0. Next, by an obvious extension
of Robinson�s (1995b) Lemma 2 and that it is well-known that

R �
0
log j2 sin (�=2)j d� =

0, the �rst term on the right of the last displayed equality is O
�
~n�1 log ~n

�
, whereas

the second term is strictly negative since �0 > 0 and
~n�1

P~n
j=1 j2 sin (�j=2)j

�e�0 log2 j2 sin (�j=2)j is bounded away from zero. So, we

conclude that q(1) (�) p! c < 0 and therefore ~n1=2q(1) (�) p! �1. Hence the test for
(8) will be based on

TLM = sup
s=0;1;:::;~n

�eqs, (19)

rejecting H0 if TLM is greater than some critical value.

2.3. Statistical properties of TW and TLM .
Denote

A (�) : =

�
A11 (�) A12 (�)
A21 (�) A22 (�)

�
=

 R 1
0
@ logjg(�x;0;��)j

@�
@ logjg(�x;0;��)j

@� dx
R 1
0
@ logjg(�x;0;��)j

@�
@ log h(�x;�0)

@�0 dxR 1
0
@ log h(�x;�0)

@�
@ logjg(�x;0;��)j

@� dx
R 1
0
@ log h(�x;�0)

@�
@ log h(�x;�0)

@�0 dx

!
,

where ��1 limn!1 �s = � 2 [0; 1], and let

A�1 (�) :=

�
A11 (�) A12 (�)
A21 (�) A22 (�)

�
.

Also, write

C (�1; �2) = A11 (�1)A
11 (�2)K (�1; �2) +A11 (�2)A12 (�1)A21 (�2) (20)

+A11 (�1)A12 (�1)A
21 (�2) +A

12 (�1)A22A
21 (�2) ,

where

K (�1; �2) =
Z 1

0

log jg (�x; 0; ��1)j log jg (�x; 0; ��2)j dx. (21)

We have the following result.

Theorem 2.1. Assuming C1-C5, under H0 given in (8 ), as n!1

(a) ~n1=2TW
d! max
�2[0 ;1 ]

G (�)

(b) ~n1=2TLM
d! max
�2[0 ;1 ]

G (�) ,

where G (�) is a process such that for �xed � , G (�) is distributed as X (�) I (X (�) � 0 ),
where X (�) is a Gaussian process with covariance structure given by C (�1 ; �2 ) in
(20), and I (�) denotes the indicator function.
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Proof. The proof of this result or any other is given in Section 5. �
One basic requirement for any test is its consistency. Also it is useful to learn

about its power function against local alternatives to gain some insight about the
characteristics of the test. To this end, consider

Ha : 9�0 2 [0; �] such that f (�) = �20
2�
g
�
�;� (n) ; �0

�
h (�; �0) ,

where � (n) = �0=~n
1=2 with �0 > 0. Then, we have the following corollary:

Corollary 2.2. Assuming C1-C5, under Ha , we have that as n!1

(a) ~n1=2TW
d! max
�2[0 ;1 ]

�
G (�)+C (� ; �)�1=2 �0 (�)

�
(b) ~n1=2TLM

d! max
�2[0 ;1 ]

�
G (�)+C (� ; �)�1=2 �0 (�)

�
,

where �0 (�)= �0I
�
� = �0=�

�
.

From the results of Corollary 2.2, it is straightforward to observe that the tests
will be consistent. This is the case because for �xed alternatives, that is, � (n) =
�0 > 0, TW

p! C (� ; �)�1=2 �0 > 0. So we have that for any z > 0,

lim
n!1

Pr
n
~n1=2TW> z

o
= 1 .

Similarly, we have that for any z > 0,

lim
n!1

Pr
n
~n1=2TLM> z

o
= 1 .

Results of Theorem 2.1 give the (asymptotic) justi�cation of the tests. On the
other hand, following ideas in Steck (1971) and Noé (1972), the rate of convergence
of the �nite sample distribution to the asymptotic one seems to be slow, see also
Hall (1979) for the rate of convergence of statistics based on the suprema. So,
critical values relying on the asymptotic distribution can be a poor approximation
to those of the �nite sample distribution. One solution could be to employ Edge-
worth expansions. However, Hall (1990) has shown that they do not perform well,
compared to bootstrap schemes, at the tails of the distribution, which is precisely
the most important region when testing. On the other hand, when exploring the
properties of the bootstrap for the maximum of the kernel density estimator, Hall
(1991) has shown that the bootstrap performs better than Edgeworth expansions
in terms of their accuracy to the �nite sample distribution of the suprema. In addi-
tion, because the asymptotic distribution of ~n1=2TW and ~n1=2TLM are nonstandard,
it seems necessary to rely on Monte-Carlo algorithms to compute asymptotically
valid critical values for the test. For all these reasons, in the next section we propose
to use a bootstrap scheme.

3. BOOTSTRAP TESTS FOR H0

Bootstrap methods, introduced by Efron (1979), have become a routine method
for approximating the distribution of a statistical quantity, partly due to the increas-
ing computation power. At a theoretical level, Bootstrap algorithms have attracted
considerable e¤ort to their development, as they are capable of approximating the
�nite sample distribution of statistics more e¤ectively than those based on their
asymptotic counterparts, and also because they allow for the computation of valid
asymptotic quantiles of the limiting distribution in nonstandard situations. In par-
ticular, when the limiting distribution is unknown or if known, the practitioner is
unable to compute its quantiles. It is precisely the latter situation that we en-
counter the limiting process max�2[0;1] G (�) is nonstandard and model dependent.
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The basic idea of the bootstrap is, given a stretch of data Zn = fzt; t = 1; :::; ng say,
to treat the data as if it were the true population, and to carry out Monte-Carlo
experiments in which pseudo-data is drawn from Zn. Based on the underlying
distributional properties of Zn, di¤erent schemes have been adopted and proposed.
In our context, the resampling method must be such that the conditional distri-

bution, given x
�
= (x1; :::; xn)

0, of the bootstrap statistic, say n1=2T �W the bootstrap

analogue of n1=2TW , consistently estimates the distribution ofmax�2[0;1] G (�) under
H0 and the local alternatives Ha. That is, ~n1=2T �W

d�! max�2[0;1] G (�) in probability
under H0 [Ha, where �

d�!�denotes

Pr
h
~n1=2T �W � z

��� x
�

i
p! G (z) ,

at each continuity point z of G (z) = Pr
�
max�2[0;1] G (�) � z

�
, as de�ned in Giné

and Zinn (1990). A second requirement is that under H1, ~n1=2T �W must also con-
verge in bootstrap distribution, although possibly to a di¤erent one than under H0.
Likewise for the bootstrap analogue of TLM , denoted by T �LM . To achieve the �rst
requirement, due to the (pseudo)Gaussian behaviour of the limit distribution, one
key condition is that the resampling algorithm should preserve the correlation struc-
ture of the original data x

�
, whereas the second requirement would be guaranteed if

we were capable to bootstrap under the null hypothesis.
To achieve both aims, we propose the following bootstrap algorithm. To that

end, denote the �discrete Fourier transform�(DFT ) of a sequence fatgnt=1 by

wa (�j) =
1

n1=2

nX
t=1

ate
�it�j .

Suppose that we are under the null H0, so that f (�) = �20h (�; �0) = (2�). Then,
using Condition C5, the identity

xt =
1

n1=2

nX
j=1

eit�jwx (�j) (22)

and Bartlett�s approximation of wx (�j), see Brockwell and Davis�s (1991) Theorem
10.3.1, that is wx (�j) � B

�
e�i�j

�
w" (�j) where B (z) =

P1
`=0 b`z

`, we obtain that
xt in (22) can be approximated by

xt � ext =: 1

n1=2

nX
j=1

eit�jB
�
e�i�j

�
w" (�j) , (23)

where ���should be read as �approximately�. Observe that (22) is nothing but
the discrete (inverse) transformation of wx (�j), and that

��B �e�i����2 = h (�; �0).
That ext in (23) will preserve (asymptotically) the covariance structure of xt can

be easily seen by using Brillinger�s (1981) Theorem 4.3.2. Indeed, the latter theorem
and C5 imply that E (w" (�j)w" (��k)) = �20I (j = k), so that

E (extexs) =
�20
n

nX
j=1

ei(t�s)�j
��B �e�i�j���2

� �20
2�

Z �

��
h (�; �0) e

i(t�s)�d� := E (xtxs) ,

because
��B �e�i�j���2 = h (�j ; �0) and under our conditions in Section 2, we have

that n�1
Pn
j=1 h (�j ; �0) e

i`�j !
n!1

(2�)
�1 R 2�

0
h (�; �0) e

i`�d� by Brillinger (1981, p.15).

Thus, if in the right side of (23), B
�
e�i�j

�
was replaced by a consistent estimator,
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say bB �e�i�j�, the problem of obtaining a bootstrap sample x�t , t = 1; :::; n, becomes
one of performing a valid bootstrap algorithm for the DFT 0s w" (�j), j = 1; :::; n.
The previous arguments suggest the following bootstrap algorithm.
STEP 1: Let ex�

�
= (ex�1; ex�2; :::; ex�n)0 be a random sample with replacement

from the empirical distribution of the standardized residuals

�xt = e��1x (xt � x) , e�2x = 1

n

nX
t=1

(xt � x)2 ; x =
1

n

nX
t=1

xt

and obtain the DFT of ex
�
� as

��j =
1

n1=2

nX
t=1

ex�t e�it�j , j = 1; :::; n.

Remark 3.1. In the conclusions we mention another procedure to obtain ��j , j =
1; :::; ~n, based on bootstrapping directly from b"t, t = 1; :::; n, an estimate of the
innovations f"tgt2Z of the process fxtgt2Z.

STEP 2: Compute

x�t =
b�
n1=2

nX
j=1

eit�j bB �e�i�j� ��j , t = 1; :::; n,

where bB �e�i�j� = 1 +bb1e�i�j + :::+bbne�in�j ,
with bb` = 1

2�n

~n�1X
j=�~n+1

h1=2
�
�j ;b�� ei`�j , ` = 1; :::; n.

STEP 3: For j = 1; :::; ~n, compute the periodogram of the bootstrap sample
x�t , t = 1; :::; n,

I�j =
1

2�n

�����
nX
t=1

x�t e
it�j

�����
2

and consider the Whittle objective function

Q� (�; �; s) =
2�

~n

~nX
j=1

I�j
gj (�; �s)hj (�)

. (24)

To obtain the bootstrap analogue of TW , consider for all s = 0; :::; ~n�b��s;b���0 = argmin
(�;�0)02���

Q� (�; �; s) and b��2 = Q�
�b��s;b��; s� , (25)

whereas to obtain the corresponding bootstrap for TLM , let

e�� = argmin
�2�

1

~n

~nX
j=1

I�j
hj (�)

; e��2 = 2�

~n

~nX
j=1

I�j

hj

�e��� .
Then, for all s, consider the �rst derivative of (24) with respect to

�
�; �0

�0
,

and denote

q� (�; �; s) =
1e��2~n

~nX
j=1

qj (�; �; s)
I�j

hj (�)
,

where qj (�; �; s) is given in (17). From here, for all s = 0; :::; ~n, compute

eq�s = �V 11 �0;e��; s��1=2 ~n1=2q(1)� �0;e��; s� , (26)
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where q(1)�
�
0;e��; s� is the �rst element of the vector q� �0;e��; s� and

V 11 (�) is de�ned in (18).
STEP 4: Compute the bootstrap statistics

T �W = sup
s=0;:::;~n

b��s, (27)

T �LM = sup
s=0;:::;~n

�eq�s . (28)

The bootstrap scheme described in STEPS 1 to 4 above is similar to the residual-
based bootstrap of Franke and Kreiss (1992), but contrary to them, it is performed
in the frequency domain. One particular feature of our bootstrap compared to the
latter is its computational simplicity. This is specially true for models where the
coe¢ cients b` in C5 can be complicated functions, maybe implicit, of the underlying
parameters �0, such as Bloom�eld�s exponential (1973) or ARMA (p; q)models with
fairly large p and q and complex roots on their autoregressive polynomials. However,
if the coe¢ cients b` were easily obtained from the parameters �, say b` (�), then
B
�
e�i�j

�
in STEP 2 could be computed asbB �e�i�j� = 1 + b1 �b�� e�i�j + :::+ bn �b�� e�in�j .

As an example of the latter is when fxtgt2Z follows an AR (1) model.
Finally, we note that the di¤erence between the latter and our bootstrap scheme

parallels to that existing when we are interested to estimate the spectral density
function by (a) approximating the dependence structure of the data by an AR (pn)
model as in Berk (1974) with pn tending to in�nity with n or by (b) the average
periodogram, see Brillinger (1981). Finally, it is worth noting that in STEP 3, we

could have alternatively obtained I�j as I
�
j = hj

�b�� ����j ��2 � ��� bB �e�i�j����2 ����j ��2, see
Hidalgo (2003). However, we prefer our method as we are able to approximate the
transfer function B

�
e�i�j

�
instead of its modulus as the latter would do. A similar

procedure was proposed by Theiler et al. (1992) and Prichard and Theiler (1994).
However, their method amounts to change bB �e�i�j� ��j by its module. Although
this procedure may be valid for our purposes in this paper, it will not be valid in
other simple situations such as bootstrapping the sample mean.

Theorem 3.1. Assuming C1-C5, under H0[H 1 , as n!1,

(a) ~n1=2T �W
d�! max

�2[0 ;1 ]
G (�) in probability,

(b) ~n1=2T �LM
d�! max

�2[0 ;1 ]
G (�) in probability.

Thus, Theorem 3.1 indicates that the bootstrap statistics given in (27) and (28)

are consistent. That is, let cf;Wn;1��
�
cf;LMn;1��

�
and ca1�� be such that

Pr
n
~n1=2TW > cf;Wn;1��

o
= �;

�
Pr
n
~n1=2TLM > cf;LMn;1��

o
= �

�
and

lim
n!1

Pr
n
~n1=2TW > ca1��

o
= �;

�
lim
n!1

Pr
n
~n1=2TLM > ca1��

o
= �

�
,

respectively. Hence, Theorems 2.1 and 3.1 indicate that cf;Wn;1�� ! ca1��

�
cf;LMn;1�� ! ca1��

�
and c�;W1��

P! ca1��

�
c�;LM1��

P! ca1��

�
respectively, where c�;W1��

�
c�;LM1��

�
are de�ned

respectively by

Pr
n
~n1=2T �W > c�;W1��

o
= �;

�
Pr
n
~n1=2T �LM > c�;LM1��

o
= �

�
.
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Typically, the �nite sample distributions of ~n1=2T �W or ~n1=2T �LM are not available,
so that the critical values c�;W1�� and/or c

�;LM
1�� are obtained by standard Monte-Carlo

simulations, which can be approximated as accurately as desired. To that end,

consider the bootstrap samples ex
�
�(`) =

�ex�(`)1 ; :::; ex�(`)n

�0
, ` = 1; :::; B, and compute

T �(`)W and T �(`)LM as in (27) and (28) for each `. Then, c�;W1��
�
c�;LM1��

�
is approximated

by the value c�B;W1��

�
c�B;LM1��

�
satisfying

1

B

BX
`=1

I
�
~n1=2T �(`)W > c�B;W1��

�
= �;

 
1

B

BX
`=1

I
�
~n1=2T �(`)LM > c�B;LM1��

�
= �

!
.

4. MONTE-CARLO EXPERIMENT AND AN EMPIRICAL
EXAMPLE

4.1. Monte Carlo Experiment.
In order to investigate how well the bootstrap tests T �W = sups=0;:::;~n b��s and

T �LM = sups=0;:::;~n�eq�s perform in �nite samples, a small Monte Carlo experiment
was conducted. All throughout our Monte Carlo experiment we have employed
2000 replications with samples sizes n = 64 and 128. To calculate the bootstrap
statistics, for all the models and sample sizes considered, 1000 bootstrap samples
were employed, that is we have chosen B = 1000. To assess the empirical size and
power of T �W , due to the computationally time consuming of the test, we have only
considered the model

(1� L)d0 xt = ut, (t = 0;�1; :::) (29)

where futgt2Z is a zero mean and unit variance sequence of iid Gaussian random
variables. In (29) we have chosen d0 = 0:0; 0:1; 0:2; 0:3 and 0:4. When d0 = 0,
fxtgt2Z is an iid Gaussian process and will evaluate the performance of the test in
terms of its size, whereas for d0 > 0, we have the well-known ARFIMA (0; d0; 0)
model and will examine the power of our test.
On the other hand, when exploring the performance of the bootstrap test T �LM ,

we have also considered, apart from the same set of models considered for the T �W ,
the situation where futgt2Z in (29) follows an AR (1) or an MA (1) model with
parameter �0 = 0:5 and !0 = 0:5 respectively. That is,

ut = 0:5ut�1 + "t, (t = 0;�1; :::)
ut = "t + 0:5"t�1,

where f"tgt2Z is a zero mean and unit variance sequence of iid Gaussian random
variables. Also, to address the power of the test relative to the location of the
pole, that is �0, we have considered the GARMA (0; d0; 0), GARMA (1; d0; 0) and
GARMA (0; d0; 1) models with �

0 = �=2. Under the null hypothesis the residuals,
say et, of both AR and MA models are easily obtained. Hence we have also
investigated the �nite sample performance using the residual-based bootstrap as
in Franke and Kreiss (1992) when generating the bootstrap samples and the test.
Recall that as we mentioned in Section 3, our bootstrap algorithm can be regarded
as an alternative or rival scheme to the latter bootstrap. To that end, and noting
that under the null hypothesis xt = ut, we have followed the following 3 STEPS
(only the situation for the AR model is described, for theMA model the algorithm
is similarly done, and so it is omitted).
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STEP 1�: Let et = xt � b�xt�1, for t = 2; :::; n, and e1 =
�
1� b�2�1=2 x1,

where b� is the least squares estimator of the parameter �0 in the model
xt = �0xt�1 + "t.

Compute the standardized residuals

�et = e��1" (et � e) , e�2" = 1

n

nX
t=1

(et � e)2 and e =
1

n

nX
t=1

et.

Let ee�
�
= (ee�1; ee�2; :::; ee�n)0 be a random sample with replacement from the

empirical distribution of (�et)
n
t=1 and obtain the bootstrap observations x

�
t ,

t = 1; :::; n, as

x�t = b�x�t�1 + ee�t t = 2; :::; n

x�1 =
�
1� b�2��1=2 ee�1.

STEP 2�: Exactly as STEP 3 in Section 3, but with x�t as generated in STEP
1� instead of STEP 2, and then, for all s = 0; :::; ~n, compute

eq�s = �V 11 �0;e��; s��1=2 ~n1=2q(1)� �0;e��; s� .
Note that in this model �0 = �0.

STEP 3�: Compute the bootstrap statistic

T �LM = sup
s=0;:::;~n

�eq�s . (30)

The results of our experiments are given in TABLES 4.1 to 4.3 below, where the
two schemes to bootstrap the LM test will be denoted in the tables as METHOD 2
for that given in (30), whereas the bootstrap based on (28) is denoted as METHOD
1.

TABLES 4:1 TO 4:3 ABOUT HERE

TABLE 4.1 illustrates the size of TW and TLM , whereas TABLE 4.2 illustrate
the power of the Wald test and TABLE 4.3 the power for the LM test for all
the di¤erent models described above. As TABLE 4.1 illustrates, in terms of the
empirical size, the LM test tends to perform better than the W type test. This
is particularly true for small sample sizes, e.g. n = 64. When we compare the
performance of the test based on (30) and (28), our proposed method appears to
behave similarly to the residual-based bootstrap even in a model for which the
latter may be preferable due to the simplicity to obtain the residuals et under the
null hypothesis. This is particularly the situation when n = 64, which is the typical
size of many macroeconomic data. Regarding the power of the tests, TLM performs
much better than TW uniformly for both d0 and n. However, for all the tests,
the power increases with the sample size n and with d0. The latter is expected
as the �distance�between the null and alternative becomes greater as d0 becomes
bigger. On the other hand, when we compare the power performance of the two rival
METHODS for the LM test, we observe that once again, our proposed bootstrap
tends to perform as good as METHOD 2 for both sample sizes considered. When
we compared the power performance of the TLM test relative to the short-memory
and the location of the pole considered we observe the following. First, the power
is smaller when the short memory component follows an AR model than when it
is a MA model. This is consistent with the empirical observation of the di¢ culty
to discriminate between an AR model with a high value of �0 and an ARFIMA
model with positive d0. This is also the conclusion obtained from the Monte Carlo
experiment considered by Lobato and Robinson (1998). However, for MA models
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the power is quite high. Second, as the pole moves away from the zero frequency, we
see that in that case the in�uence of the short memory AR and/or MA component
seems to be negligible. This may by somehow expected, among other things, as
the location of the maximum of the spectral density function for AR model with
positive �0 and our GARMA models are very di¤erent. Overall, the size and power,
for all sample sizes considered in the experiment, are very satisfactory and the
frequency-based bootstrap described in Section 3 appears to be a good competitor
to the time-domain bootstrap described above, even in situations where the latter
is easy to obtain as is the case with an AR (1) model, where the residual-based
bootstrap might be preferable or employed a priori. We shall also mention that we
have performed the bootstrap test as suggested in the concluding section. However,
we did not �nd any signi�cant di¤erence with the method proposed in Section 3,
neither when the distribution of the innovations f"tgt2Z were a �21 nor a �28.

4.2. Empirical Example.
A small application of our test has been examined for possible strong cycles to

some real data set. We have employed the rate of growth of monthly seasonal ad-
justed USA Industrial Production Index, IPI data, say xt. The data was obtained
from the IFS database of the IMF and expands from February 1957 to October
2003. That is the sample size is n = 561. Looking at the graph of the series, see
graphs 1 and 2, there is clearly a change of pattern around December 1989/January
1990. Because of that we have implemented our tests for both subsamples. More-
over, graphs 3 and 4 suggests that the serial dependence for the �rst and second
subsample is di¤erent. Also, the latter �gures suggests for the possibility of a pole
away from zero for the �rst subsample, whereas the second subsample appears to
have a clear pole at the zero frequency.
For the �rst subsample, that is when xt expands from February 1957 to December

1989, we have used two di¤erent speci�cations for our short memory component.
More speci�cally, the models chosen were�

1� 2
�
cos�0

�
L+ L2

�d0
xt = (1 + �1L)

�
1 + �12L

12 + �24L
24
�
"t (31)�

1� �12L12 � �24L24
� �
1� 2

�
cos�0

�
L+ L2

�d0
xt = (1 + �1L) "t. (32)

Also, the previous models were estimated using an MA (2) model instead of the
MA (1), say�

1� 2
�
cos�0

�
L+ L2

�d0
xt = (1 + �1L+ �2L)

�
1 + �12L

12 + �24L
24
�
"t.

However, the parameter �2 was statistically insigni�cant, so we employed the afore-
mentioned models (31) and (32). We have performed the LM test in both speci�ca-
tions. The results for model (31) were that the null of no strong cycles, e.g. d0 = 0,
was rejected at the 1% signi�cant level. When the model (31) was estimated, leaving
the location of the pole unknown, we found a strong cycle component at � = 0:14,
which corresponds to a cycle of 45 months. Proceeding as with the model given in
(31), when we considered the model given in (32), we rejected the null hypothesis
at the 1% level. When the model (32) was estimated, the estimate of the pole �0

was also at the frequency 0:14.
The same analysis was carried out using the second subsample from January

1990 to October 2003. Now, the �tted models were�
1� 2

�
cos�0

�
L+ L2

�d0
xt = (1 + �1L) "t (33)

(1� �1L)
�
1� 2

�
cos�0

�
L+ L2

�d0
xt = "t.

We obtained that the null hypothesis was rejected at 1% signi�cant level using the
LM test. However, for both models the estimated value of the pole was now at the
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zero frequency. The latter suggests that a change of the cyclical component of the
data may have occurred around January 1990. Also, when an MA (2) model or an
AR (2) were estimated, they did not provide a better �t when compared to the last
displayed two models.
We now comment on the procedure followed to identify the models employed in

the empirical example. In a �rst step, using Brockwell and Davis�s ITSM pack-
age, an ARMA (4; 13) and ARMA (1; 1) model, for the �rst and second subsam-
ples respectively, were identi�ed. This package chooses the best model among the
class of ARMA (27; 27) models following the AIC criterium. After removing the
highly insigni�cant parameters, the models were estimated and their spectral den-
sity functions were then compared with the periodogram of the series in each of the
subsamples. We observed a big discrepancy between them. In particular, for the
�rst subsample, the estimated spectral density function was unable to capture nei-
ther the observed peak nor the behaviour at high frequencies of the periodogram.
Although a formal test comparing the periodogram and estimated spectral den-
sity function is available, see Delgado, Hidalgo and Velasco (2004), we have just
used this �eyeball� test in our empirical example. Hence, we looked further for
other models. Using the AIC criterion, we chose an ARMA(0; 25). After removing
highly insigni�cant parameters, we compared again the estimated spectral density
function with the periodogram. The new model appears to capture very well the
behaviour of the series for high frequencies, but it was still not able to capture the
observed peak suggested by the periodogram. All this suggests that a GARMA
component maybe adequate to explain the movement of the data. Furthermore, the
MA coe¢ cients corresponding to the lags 12; 13; 24 and 25 were highly signi�cant.
This gave us the indication to use the short memory component given in (31) or
(32). On the other hand, following the same procedure for the second subsample,
the estimated spectral density was able to �t well the high frequencies, but not the
observed peak at zero of the periodogram. Given that the AR(1) component is the
one that tries to capture the peak, we chose to use also a MA(1) model for the
short memory component for the second subsample. Finally, we �tted both models
(31) = (32) and (33) using the Whittle estimator in Giraitis, Hidalgo and Robinson
(2001). When we �tted those restricted models, we noticed that their correspond-
ing spectral density functions captured well both the peak and the behaviour at the
high frequencies of the periodogram in each of the subsamples. Overall, there were
not discrepancies between them, and therefore, the eyeball test suggests that the
estimated models were able to capture the behaviour of the data very well, at least
their most relevant features. Nevertheless, as mentioned in the previous paragraph,
the test strongly rejects the null of no strong cycles and the long memory parameter
was highly signi�cant. So, to conclude, we have found signi�cant evidence of strong
cycles. Hence, the data should be �tted using a GARMA rather than an ARMA
model, which gives a poorer �t than the former GARMA models.

5. PROOFS OF THE MAIN RESULTS

5.1. Proof of Theorem 2.1. We shall begin showing part (a) �rst. The proof
for the TLM is similar and we shall only sketch its di¤erence compared to that for
the TW . For given �s, that is the closest Fourier frequency to �0, under C1� C5,
Hosoya (1997) or Fox and Taqqu (1987) and Giraitis and Surgailis (1990), among
others, have shown that �b�s;�b� � �0�0�0 P! 0.
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Next, denote `j;n (�; �; s) = g�1j (�; �s)h
�1
j (�) Ij with

gj (�; �s) =

����4 sin��j + �s2

�
sin

�
�j � �s
2

������� .
Then, proceeding as in Hosoya (1997), see also Giraitis et al. (2001), we have that

~nX
j=1

`j;n (�; �; s) =
~nX
j=1

`j;n (0; �0; s) +
~nX
j=1

(D`j;n (0; �0; s))
0 �
�s; (� � �0)0

�0
+
1

2

�
�s; (� � �0)0

� ~nX
j=1

D2`j;n (0; �0; s)
�
�s; (� � �0)0

�0
+Rn (�; �; s) , (34)

where for all s = 0; :::; ~n,

sup
fn1=2j�j��;n1=2k���0k<�g

jRn (�; �; s)j = op (1)

and where D and/or D2 denote the �rst and second generalized derivatives respec-
tively, see Andrews (2001) for a de�nition. On the other hand, Lemma 6.1 implies
that

sup
s=0;1;:::;~n

������ 1~n1=2
~nX
j=1

(D log gj (0; �s) ; D log hj (�0))
0
�

Ij
hj (�0)

� I";j
������� = op (1)

sup
s=0;1;:::;~n

������ 1~n1=2
~nX
j=1

�
jD log gj (0; �s)j2 + kD log hj (�0)k2

�� Ij
hj (�0)

� I";j
������� = op (1) ,

since jD log gj (0; �s)j2 and kD log hj (�0)k2 satisfy the same conditions of � (�; s)
in Lemma 6.1. So, to show that0@ 1

~n1=2

~nX
j=1

(D`j;n (0; �0; [~n� ]))
0
;
1

~n

~nX
j=1

D2`j;n (0; �0; [~n� ])

1A) (X (�) ; A (�)) , (� 2 [0; 1])

(35)
it su¢ ces to do so for

Xn (�) =
1

~n1=2

~nX
j=1

�
D log gj

�
0; �[~n� ]

�
D log hj (�0)

��
I";j �

�20
2�

�
(36)

An (�) =
1

~n

~nX
j=1

�
D log gj

�
0; �[~n� ]

�
D log hj (�0)

��
D log gj

�
0; �[~n� ]

�
; D log hj (�0)

�
I";j .

To that end, we need to show: (i) That for any �nite collection � `1 ; :::; � `p ,�
Xn (� `1) ; :::; Xn

�
� `p
��0 d!

�
X (� `1) ; :::; X

�
� `p
��0
,

where
�
X (� `1) ; :::; X

�
� `p
��0 ' N (0; A) and where the (� `1 ; � `2) th element of A is

lim
n!1

1

~n

~nX
j=1

 
D log

���gj �0; �[��`1 ]����
D log hj (�0)

! 
D log

���gj �0; �[��`2 ]����
D log hj (�0)

!0

=

Z 1

0

�
D log jg (�x; 0; �� `1)j
D log h (�x; �0)

��
D log jg (�x; 0; �� `2)j
D log h (�x; �0)

�0
dx.

(ii) The process Xn (�) is tight in the space D [0; 1] with the Skorohod�s metric
and (iii) that An (�) converges to A (�). Note that as An (�) will converge to a
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nonstochastic matrix, it su¢ ces to examine the behaviour of Xn (�) and An (�)
separately.
First (i) holds true using standard results, see Hosoya (1997) or Giraitis et al.

(2001). So, we only need to examine part (ii) to complete the proof of the weak
convergence of Xn (�) to X (�). To prove the tightness of the process Xn (�), and
since the second component of Xn (�) does not depend on � , it su¢ ces to show the
tightness of

Xn1 (�) =
1

~n1=2

~nX
j=1

D log gj
�
0; �[~n� ]

��
I";j �

�20
2�

�
.

Because the limit process has continuous paths, see the proof of (41) given in (42)
and comments that follow, Billingsley�s (1968) Theorems 15.4 and 15.6 imply that
it is su¢ cient to check the Kolmogorov-Chentsov�s moment condition

E
h
jXn1 (�)�Xn1 (�1)j2 jXn1 (�2)�Xn1 (�)j2

i
� K (F (�2)� F (�1))1+� (37)

for some � > 0 where 0 � �1 < � < �2 � 1 and F (�) is a nondecreasing and
continuous function.
First, we observe that we can focus in the case ~n�1 � �2� �1. If �2� �1 < ~n�1,

then either �1 and � lie in the same subinterval [(p� 1) =~n; p=~n), with p = 1; :::; ~n,
or else � and �2 do; in either of these cases the left side of (37) vanishes. Because
the Schwarz inequality implies that the left side of (37) is bounded by�

E jXn1 (�)�Xn1 (�1)j4
�1=2 �

E jXn1 (�2)�Xn1 (�)j4
�1=2

,

and (F (�)� F (�1)) (F (�2)� F (�)) � (F (�2)� F (�1))2, and hence to show the
tightness condition (37), it su¢ ces to show that

E jXn1 (�2)�Xn1 (�1)j4 � K (F (�2)� F (�1))1+� , � > 0. (38)

Choose F (�) = � and denote �j = I";j � (2�)�1 �20, then

E jXn1 (�2)�Xn1 (�1)j4 =
1

~n2

~nX
j1;:::;j4=1

4Y
`=1

 
log

��gj �0; �j` � �[~n�1]�����gj �0; �j` � �[~n�2]���
!
E

(
4Y
`=1

�j`

)

=
3

~n2

~nX
j1;:::;j4=1

4Y
`=1

 
log

��gj �0; �j` � �[~n�1]�����gj �0; �j` � �[~n�2]���
!
E
�
�j1�j2

	
E
�
�j3�j4

	

+
1

n2

~nX
j1;:::;j4=1

4Y
`=1

 
log

��gj �0; �j` � �[~n�1]�����gj �0; �j` � �[~n�2]���
!
Cum

�
�j1 ; �j2 ; �j3 ; �j4

�
. (39)

By Brillinger�s (1981) Theorems 2.3.1 and 4.3.2, and in particular the equation
(4.3.15), and the integrability of logq jxj, q = 1; :::; 4, we have that the second term
on the right of (39) is bounded in absolute value by

K~n�2 log4 ~n � K (�2 � �1)1+� � K (�2 � �1)1+� ,

for any 1
2 < � < 1, since ~n�1 < �2 � �1. So, to complete the proof we need to

examine the �rst term on the right of (39) which is

3�20

24 1
~n

~nX
j=1

 
log

��g �0; �j � �[~n�1]�����g �0; �j � �[~n�2]���
!2352 .
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(Recall that � j = lim
n!1

sj=~n, for j = 1; 2.) Now, by the Cauchy-Schwarz inequality

and the de�nition of gj
�
0; �j � �[~n�1]

�
, the last displayed expression is bounded by

12�2

264 1
~n

~nX
j=1

0@log
���sin��j��[~n�1]2

�������sin��j��[~n�2]2

����
1A2
375
2

+12�2

264 1
~n

~nX
j=1

0@log
���sin��j+�[~n�1]2

�������sin��j+�[~n�2]2

����
1A2
375
2

.

We shall examine the �rst term, being the second identically handled. This term,
except constants, is

1

~n

[~n�1]X
j=1

0@log
���sin��[~n�1]��j2

�������sin��[~n�2]��j2

����
1A2

+
1

~n

~nX
j=[~n�2]+1

0@log
���sin��j��[~n�1]2

�������sin��j��[~n�2]2

����
1A2

+
2

~n

[~n�2]�1X
j=[~n�1]+1

log2

���sin��j��[~n�1]2

�������sin��[~n�2]��j2

���� .
Because an obvious extension of Robinson�s (1995b) Lemma 2 implies that the
di¤erence between the Riemann sum and the integral is bounded in absolute value
by

K~n�1 log2 n � K (�2 � �1)(1+�)=2 ,
for any 1

2 < � < 1, the proof is completed if we show thatZ �1

0

 
log

��sin ���1��u2

�����sin ���2��u2

���
!2

du+

Z 1=2

�2

 
log

��sin ��u���12

�����sin ��u���22

���
!2

du

+

Z �2

�1

log2
��sin ��u���12

�����sin ��u���22

���du (40)

is bounded by K (�2 � �1)(1+�)=2. Recall that we have chosen F (�) = � .
The proof proceeds similarly as that given in Lemma 6.1, cf. (58). First, observ-

ing that in the interval (0; �1), we have that�
log

����sin���1 � �u2

������ log ����sin���2 � �u2

������2
� log2

����sin���1 � �u2

������ log2 ����sin���2 � �u2

����� ,
then the �rst term of (40) is bounded by

K

�Z �1

0

log2
����sin���1 � �u2

����� du� Z �1

0

log2
����sin���2 � �u2

����� du�
= K (H (�1)�H (�2) +H (�2 � �1))
� 2KH (�2 � �1) ,

whereH (�) =
R �
0
log2

��sin ��u2 ��� du and because log2 ��sin ���1��u2

����log2 ��sin ���2��u2

��� >
0 implies that H (�2)�H (�1) < H (�2 � �1). But H (�) � � (1+�)=2 for 0 � � � 1,
so we conclude that the �rst term of (40) is bounded by

K (�2 � �1)(1+�)=2 .
Next, we examine the second term of (40). Using that in the interval (�2; 1=2),�
log

����sin��u� ��12

������ log��u� ��22

��2
� log2

�����u� ��22

�����log2 ����sin��u� ��12

����� ,
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we then have that the second term of (40) is bounded by

0 <

Z 1=2

�2

log2
����sin���2 � �u2

����� du� Z 1=2

�2

log2
����sin���1 � �u2

����� du
= H

�
1

2
� �2

�
�H

�
1

2
� �1

�
+H (�2 � �1)

� 2H (�2 � �1)

because H
�
1
2 � �1

�
�H

�
1
2 � �2

�
� H (�2 � �1). So, the second term of (40) is also

bounded by K (�2 � �1)(1+�)=2. Finally, by a change of variables, the third term of
(40) is Z �2��1

0

log2
���sin��u

2

���� du = H (�2 � �1) � K (�2 � �1)(1+�)=2 .

So (38) holds true with F (�) = � .
To complete the proof that (35) holds true, we need to show Pr fX (1�) 6= X (1)g =

0 or alternatively that for every positive & > 0,

lim
�!1

Pr fjX (1)�X (�)j > &g = 0. (41)

But this is the case as we now show. In fact, we shall show that for every positive
& > 0

lim
�!0

sup
0���1��

��1 Pr fjX (� + �)�X (�)j > &g = 0. (42)

The latter condition will imply that the process X (�) belongs to the space C [0; 1]
by Problem 15.3 in Billingsley (1968, p. 136). To that end, because Theorem 5.3
in Billingsley (1968) implies that

E jX (� + �)�X (�)j4 � lim inf
n!1

E jXn1 (� + �)�Xn1 (�)j4 ,

we have that Markov�s inequality implies that (42) holds true if the right side of
the last displayed inequality satis�es that

lim
�!0

sup
0���1��

��1lim inf
n!1

E jXn1 (� + �)�Xn1 (�)j4 = 0.

But, this is the case because (38) implies that

lim inf
n!1

��1E jXn1 (� + �)�Xn1 (�)j4 � K��,

with � > 0. In fact, the continuity is not more than a consequence of Kolmogorov-
Chentsov criteria for tightness, which says that a stochastic process has a version
with continuous paths if the previous inequality holds true.
To complete the proof of part (a), we need to examine (iii), that is

1

~n

~nX
j=1

�
D log gj

�
0; �[~n� ]

��2
I";j (43)

=
�20
2�~n

~nX
j=1

�
D log gj

�
0; �[~n� ]

��2 � 1

~n

~nX
j=1

�
D log gj

�
0; �[~n� ]

��2�
I";j �

�20
2�

�
converges to A (�). The second term on the right of (43) is, proceeding as above,
easily shown to be such that

sup
s=0;:::;~n

������ 1~n
~nX
j=1

(D log gj (0; �s))
2

�
I";j �

�20
2�

������� = op (1)
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since we have already shown that ~n�1=2
P~n
j=1D log gj

�
0; �[~n� ]

� �
I";j � �20

2�

�
con-

verges to a Gaussian process, whereas the �rst term on the right of (43) satis�es
that

sup
s=0;:::;~n

������ 1~n
~nX
j=1

(D log gj (0; �s))
2 � 1

�

Z �

0

(D log g (�; 0; �s))
2
d�

������ = o (1)

by a straightforward extension of Lemma 2 of Robinson (1995b).
The conclusion of part (a) follows immediately by the continuous mapping the-

orem as max is a continuous functional in the space C [0; 1] and proceeding as in
Andrews (2001), the �nite limit distributions are those from the minimization of

(c�X (�))0 C�1 (� ; �) (c�X (�))
with the constraint that c � 0.
Part (b). Here we shall show the properties of the LM test. Arguing as in (a),

it will su¢ ce to show that

1

~n1=2

~nX
j=1

 
@ log gj

�
0; �[~n� ]

�
@�

!
Ij

hj

�b�� ) eX (�) , (44)

where b� is the restricted Whittle estimator of �0 given in (16). Now, Taylor�s
expansion implies that the left side of (44) is

1

~n1=2

~nX
j=1

 
@ log gj

�
0; �[~n� ]

�
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!
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� �b� � �0� .

On the other hand, by de�nition of b�,
0 =

1

~n1=2

~nX
j=1

0@@ log hj
�b��
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1A Ij

hj

�b��
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!2
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hj
�
�
� �b� � �0� , (45)

where � is an intermediate point between b� and �0. Now
sup
�2�

������ 1~n
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@ log hj (�)
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(46)
as we now show. By the triangle inequality, the left side of (46) is bounded by

�20
2�
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�2�
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That the �rst term of (47) converges to zero follows by Brillinger (1981, p.15) since

H (�; �) =
�
@ log h(�;�)

@�

�2
h(�;�0)
h(�;�) is a continuous di¤erentiable function by C1. On

the other hand, the second term of (47) converges to zero in probability because
the �nite dimensional distributions of

1

~n1=2

~nX
j=1

�
@ log hj (�)

@�

�2
hj (�0)

hj (�)

�
Ij

hj (�0)
� �20
2�

�
converges to a Normal random variable by standard arguments, whereas that
H (�; �) is a continuous di¤erentiable function will imply that the Kolmogorov-
Chentsov�s tightness condition will trivially hold true. From here it is standard to
show that the second term of (47) is op (1).

Next, because �
p! �0, it implies that in equation (45), after solving for

�b� � �0�,
the left side of (44) is equivalent to0B@1; 1
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So, to prove (44) will be equivalent to show the weak convergence of

1

~n1=2

~nX
j=1

�
@ log gj (0; �)

@�

�
Ij

hj (�0)
,

whose proof proceeds exactly as that given in part (a) and so it is omitted. �

5.2. Proof of Corollary 2.2. The proof is immediate after one notice that when
examining the �nite dimensional distributions of Xn (�), b�s = b�s�� (n)+� (n) and
n1=2� (n) = �. Then proceed as in the proof of theorem 2.1 but with b�s replaced
by b�s � � (n). �

5.3. Proof of Theorem 3.1. We will only examine part (a), since in view of the
proof of Theorem 2.1 part (b) that follows almost immediately from part (a). First,
by Lemma 6.2, we have that �b��s;�b�� � b��0�0 P�

! 0.

On the other hand, proceeding as in Hidalgo and Kreiss (2003), we have that

~n1=2
�b��s;�b�� � b��0�0 = Op� (1) and that we further obtain that a similar expansion

to that given in (34) holds. That is, writing `�j;n (�; �; s) = g�1j (�; �s)h
�1
j (�) I�j ,
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where for all s = 0; :::; ~n; sup
f~n1=2j�j��;n1=2k��b�k<�g jR

�
n (�; �; s)j = op� (1).
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Proceeding as with the proof of Theorem 2.1, and following its arguments, it
su¢ ces to show that

X�
n (�) =

1

~n1=2

~nX
j=1

D log gj
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�0@ I�j
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converge in bootstrap sense to the same processes as

Xn (�) =
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and An (�)

respectively.
We begin with the proof that X�

n (�) converges to the same process as Xn (�).
To that end, we split the proof into three propositions. Proposition 5.1 shows that
X�
n;` (�) has a covariance structure, conditional on x�

, that converges in probability

toK (�1; �2) given in (21). Proposition 5.2 shows that the �nite dimensional limiting
distribution of X�

n (�) is Gaussian centered at zero. Finally, Proposition 5.3 shows

tightness of X�
n (�). Thus, combining Propositions 5.1 to 5.3, X

�
n (�)

weakly
=) X (�)

in D [0; 1] in probability, as de�ned by Giné and Zinn (1990).
In what follows for a random variable z, E� (z) = E

�
zj x
�

�
, that is the bootstrap

expectation of the random variable z.

Proposition 5.1. Assuming C1-C5,

E� (X �
n (�1 ) X

�
n (�2 ))

P!K (�1 ; �2 ) . (48)

Proof. Let us abbreviate @
@� log gj (0;�s) by  j (s). First, note that
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�it�j = bB �e�i�j� nX
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because by de�nition of x�t and that
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p=1 e

ip�j = nI (j = 0; 2n; :::), the left side
of (49) is

b�2
n

nX
t=1

 
nX
`=1

eit�` bB �e�i�j� nX
p=1

ex�pe�ip�j
!
e�it�j = b�2 nX
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Now using (49), E� (X�

n (�1) X
�
n (�2)) is
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Because ex�t is an iid (0; 1) sequence of random variables, then the second term of
(50) is

1
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which is equal to zero because
nX
q=1

bbqe�iq�j = 1

n

nX
q=1
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ei`�jh1=2
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e�i�` ;b�� e�iq�j
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e�i�` ;b�� 1
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q=1

eiq�`�j (51)

= h1=2
�
e�i�j ;b�� .

Hence, to conclude the proof, we need to show that the �rst term of (50) con-
verges in probability to K (�1; �2). But because ex�t is an iid (0; 1) sequence, by
Brockwell and Davis�s (1991) Proposition 10.3.2, this term is

1

n

~nX
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 j (��1) j (��2) +
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j1;j2=1

 j1 (��1) j2 (��2) ,

by a straightforward modi�cation of Lemma 2 of Robinson (1995b). However,
because by a well known argument (see Stout�s 1974, Theorem 3.5.8) C1 implies
that xt is ergodic, we have that

b�4 = 1

n

nX
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x4t � 3
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x2t

!2
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From here, the conclusion follows because
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by a straightforward modi�cation of Lemma 2 of Robinson (1995b) and then that
condition (12) implies that
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2

��� d� = 0 for all � . �

Proposition 5.2. Under the same conditions of Proposition 5.1, the �nite dimen-
sional distributions of R�n converge in bootstrap law to those of a centered Gaussian
process.

Proof. Fix �1; :::; � q and constants a1; :::; aq. By Cramér-Rao device, it su¢ ces to
examine the limit distribution of
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By Proposition 5.1, the (bootstrap) second moment of (52) converges in proba-
bility to

qX
p1;p2=1

ap1ap2K (�p1 ; �p2) .

So, to complete the proof it remains to verify that (52) satis�es the Lindeberg�s
condition, that is 8� > 0,
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or the su¢ cient condition
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�b�� � b�2
1A������

4
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~nX
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But this is the case since proceeding as above, the left side of the last displayed
expression is

~n�1 log4 ~nE�
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ex�t e�it�j � 1
!�����

4 b�2 = Op

 
nX
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ex�pe�ip�j
!

by Brillinger (1981), since ex�t is an iid (0; 1) sequence of random variables and xt is
ergodic in that n�1

Pn
t=1 jxtj

r � E jxtjr = op (1) for r = 1; :::; 8, and b�2 = Op (1).
�

Proposition 5.3. Under the same conditions of Proposition 5.1, conditional on x
�
,

R�n (�) is tight.

Proof. Denote ��j = n�1
Pn
t=1 ex�t e�it�j � 1. Proceeding as with the proof of Theo-

rem 2.1, we only need to check the Kolmogorov-Chentsov�s condition. That is
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for some � > 0 and where Gn (�1; �2) is bounded in probability. Now, by de�nition
of I�j , the left side of (53) is b�2
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We examine only the �rst term on the right, the second being identically handled.
That term is

=
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By Brillinger�s (1981) Theorems 2.3.1 and 4.3.2, and in particular equation (4.3.15),
and the integrability of logq jxj, q = 1; :::; 4, we obtain that the second term on the
right of (54) is bounded in absolute value by

K~n�2 log2 ~n

 b�2
2�

!4
� K

 b�2
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!4
(�2 � �1)1+� � Gn (�1; �2) (�2 � �1)1+� ,
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for any 0 < � < 1. So, to complete the proof we need to examine the �rst term on
the right of (54), which is

3

 b�2
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!4 264 1
~n
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0@log
���sin��j��[��1]2

�������sin��j��[��2]2

����
1A2
375
2
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proceeding as in Theorem 2.1 and that b�2 is bounded in probability.
So, we have completed the proof that X�

n (�) converges in bootstrap to the same
process as that Xn (�). Next, we shall show that A�n (�) converges in bootstrap
to A (�), but the proof is immediate following the ideas in Proposition 5.1 and
those in Theorem 2.1. So, the proof is omitted. From here the conclusion of the
Theorem part (a) follows by continuous mapping theorem and that the �nite limit
distributions are those from the minimization of

(c�X (�))0 C�1 (� ; �) (c�X (�))
with the constraint that c � 0.
The proof under H1 is exactly the same as that of Theorem 3.1 with the only

di¤erence that instead of writing b� � �0 = op (1) we write b� � �1 = op (1) and �1
instead of �0. �

6. TECHNICAL LEMMAS

To simplify the notation, henceforth, we assume without loss of generality that
�20 = 1.

Lemma 6.1. Let Xt be a linear process satisfying C1 ;C2 and C5 , and let
� (s) :[0 ; �]!Rp be a continuous di¤erentiable function for j�� �sj > 0 and as
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is tight. We shall begin with (i). Proceeding as in Robinson (1995b), the second
moment of the last displayed expression is
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Because E jvj j2 = 1,

a1 =
nX
j=1

�2j (s)

�
2
�
E juj j2 � 1

�2
+ 2

�
E juj j2 � 1

�
+
��E �u2j���2 � 2 jE (ujvj)j2

�2 jE (ujvj)� 1j2 � 2 (E (ujvj)� 1)� 2
�
E (ujvj � 1) +

��E �v2j ���2�o
� K

1

~n

nX
j=1

�2j (s) = O (1)

b1 = 2
nXX

1=j<k

�j (s) �k (s)
n�
E juj j2 � 1

��
E jukj2 � 1

�
+ jE (ujuk)j2 + jE (ujuk)j2

� jE (ujvk)j2 � jE (ujvk)j2 � jE (ukvj)j2 � jE (ukvj)j2

+ jE (vjvk)j2 + jE (vjvk)j2
o

� K
1

~n2

nXX
1=j<k

���j (s) �k (s)��
as n ! 1 by Brillinger�s (1981) Theorem 4.3.2. With regard to a2 and b2, pro-
ceeding as in Robinson (1995b, p.1649) but noting that h (�) is continuously di¤er-
entiable, we can conclude that
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so that by Markov�s inequality, the �nite dimensional distributions of (55) converge
to zero in probability. So, we are left to show (ii), that is the tightness condition.
But this follows after observing that after replacing �j (s) by �j (s1) � �j (s2), we
have that
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Now, since we can assume, without loss of generality that ~n�1 � �2 � �1, where
� j = lim
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First, observing that in the interval (0; �s1), we have that�
log

����sin��s1 � �j2

������ log ����sin��s2 � �j2

������2
� log2

����sin��s1 � �j2

������ log2 ����sin��s2 � �j2

����� ,
we obtain that the �rst term of (58) is bounded by

1

~n

s1�1X
j=1

log2
����sin��s1 � �j2

����� du� Z �1

0

log2
����sin��s2 � �j2

�����
= H (s1)�H (s2) +H (s2 � s1)
� 2H (s2 � s1) ,

where H (s) = ~n�1
Ps�1
j=1 log

2 jsin (�j=2)j, and because log2 jsin ((�s1 � �j) =2)j �
log2 jsin ((�s2 � �j) =2)j > 0 implies that H (s2) � H (s1) < H (s2 � s1). But
H (s) � K� (1+�)=2 for 0 � � � 1, so we conclude that the �rst term of (58) is
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which implies that the Kolmogorov-Chentsov�s inequality holds true and hence that
(55) is tight. From here the conclusion of the lemma is standard. �
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Let �1 be the value which minimizesZ �
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f
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�;�0; �0; �

0
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Then, we have that
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Lemma 6.2. Let b� be such that it converges almost surely to �12 � . Then
���b�= op� (1 ) .

Proof. Because by construction, conditional on the sample x
�
, x�t is a zero mean iid

sequence of random variables with unit variance, then it is an ergodic sequence in
a quadratic mean sense. Then, proceeding as in the proof of Lemma 1 of Hannan
(1973), we have that uniformly in � 2 �,
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Now, proceeding as in the proof of Hannan�s (1973) Theorem 1, we conclude that
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which concludes the proof. �

7. CONCLUSIONS

In the paper we have described two tests for the hypothesis of the presence
of strong cycles and as a by-product for weak dependence in linear models. The
�rst one is a Wald type test whereas the second one has similarities to the LM
principle. Because of the nonstandard limiting distribution of our tests, we have
explored a bootstrap scheme in the frequency domain. Our bootstrap algorithm
can be regarded as a frequency domain counterpart to residual-based bootstraps.
We have also described some possible advantages over the latter method in terms
of computation and simplicity. One possible drawback or criticism, when compared
to residual-based bootstraps, is that we do our resampling from the standardized
original data xt and not from the residuals/innovations "t. Because of that, we
envisage that we can modify our algorithm to allow bootstrapping from "t, or b"t
(an estimate of "t), as follows.
For t = 1; :::; n, compute

b"t = 1

n1=2

nX
j=1

eit�j bB �ei�j� ��� bB �e�i�j�����2 wx (�j) ,
and obtain the standardized residuals

e"t = e��1" �b"t � b"� , e�2" = 1

n

nX
t=1

�b"t � b"�2 , b" = 1

n

nX
t=1

b"t.
Then in STEP 1, instead of resampling with replacement from �xt to obtain ex�� =

(ex�1; ex�2; :::; ex�n)0, we shall do the same but with e"t obtaining a bootstrap samplee"�
�
= (e"�1;e"�2; :::;e"�n)0. Then, ��j in STEP 1 is replaced by

��j =
1

n1=2

nX
t=1

e"�t e�it�j , j = 1; :::; n.

Hereafter, proceed as in STEPS 2 to 4. This method to bootstrap the data xt,
t = 1; :::; n, may be preferable over that given in Section 3 as it may capture higher
order moment properties of fxtgt2Z than the bootstrap described in the paper.
Although we have only considered the situation when xt is observed, it appears

that the same results should hold true when fxtgt2Z are the errors of a regression
model. That is, consider the following linear regression model
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yt = �0zt + xt, (t = 1; :::; n)

where fxtgt2Z follows a FARIMA (p; d0; q). When d0 = 0, that is weak depen-
dence, it is well known that under suitable regularity conditions, the GLS estima-
tor of �, say b�, and the Whittle estimator of the parameters of the ARMA (p; q)
process of fxtgt2Z are (asymptotically) independent. More recently, Robinson and
Hidalgo (1997) have shown that the same holds when fxtgt2Z exhibits strong de-
pendence. So, this result leads us to think that the results obtained in the paper
would hold true when bxt = yt � b�0zt is used instead of the unobserved xt.
We �nish this section mentioning two issues. Although we have only considered

stationary alternatives, that is �0 < 1, following results by Velasco and Robinson
(2000), our tests should detect also nonstationary, �0 > 1, alternatives. The reason
comes from the observation that using the taper periodogram we have by Velasco
and Robinson (2000), that n1=2 (b�� �0) converges in distribution to a normal ran-
dom variable. So, this result indicates that the same type of results obtained in
Section 2 will hold under nonstationary alternatives. A second issue is what would
happen with our Wald and LM tests when we allow for asymmetric strong depen-
dence, that is when

f (�) �
(

K1

�
�� �0

���1
�! �0+

K2

�
�0 � �

���2
�! �0 � ,

with �1 possibly di¤erent than �2. Unfortunately, we are unaware of any result
for the Whittle estimator of the parameters for the latter type of dependence.
De�nitely this is an open problem. However, we should observe that under the null
�1 = �2 = 0. So, we may conjecture that our tests may deliver the correct answer
under the null hypothesis. Note that all what we need for the consistency is that,
say, b� converges to a positive quantity under the alternative.
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Graph 1 : IPI series
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Graph 3 : Periodogram of rate of growth of IPI series
      January 1957­December 1989
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Graph 4 : Periodogram of rate of growth of IPI series
      January 1990­October 2003
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