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Abstract. A pipeline network can potentially be attacked at any point
and at any time, but such an attack takes a known length of time. To
counter this, a Patroller moves around the network at unit speed, hoping
to intercept the attack while it is being carried out. This is a zero sum
game between the mobile Patroller and the Attacker, which we analyze
and solve in certain cases.
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1 Introduction

A game theoretic model of patrolling a graph was recently introduced in [1], in
which an Attacker chooses a node of a graph to attack at a particular time and
a Patroller chooses a walk on the nodes of the graph. The game takes place in
discrete time and the attack lasts a fixed number of time units. For given mixed
strategies of the players, the payoff of the game is the probability that the attack
is intercepted by the Patroller: that is, the probability that the Patroller visits
the node the Attacker has chosen during the period in which the attack takes
place. The Patroller seeks to maximize the payoff and the Attacker to minimize
it, so the game is zero-sum.

In [1], several general results of the game are presented along with solutions
of the game for some particular graphs. This work is extended in [5], in which
line graphs are considered. The game is surprisingly difficult to solve on the line
graph, and the optimal policy for the Patroller is not always, as one might ex-
pect, the strategy that oscillates to and fro between the terminal nodes. Rather,
depending on the length of time required for the attack to take place, it may
be optimal for the Patroller to stay around the two ends of the line with some
positive probability.

In this paper we present a new continuous game theoretic model of patrolling,
in a similar spirit to [1], but on a continuous network, so that the attack may
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take place at any point of the network (not just at nodes). We also model time
as being continuous, rather than discrete. This is a better model for a situation
in which a pipeline may be disrupted at any point.

At first glance, this might appear to be a more complicated game to analyze.
However, it turns out that continuity simplifies matters, and we are able to solve
the game for Eulerian networks (Section 3) and for line networks (Section 4).
The solution of the game on the line network is considerably easier to derive than
for the discrete analogue, and we also show that the value oOf the latter game
converges to that of the former as the number of nodes of the graph approaches
infinity.

A game theoretical approach to patrolling problems has been successful in
real life settings, for example in [6] and [7]. Other work on game theoretic models
of patrolling a network include [2] and [4].

2 Definition of the game

We start by defining a continuous time patrolling game, where the Patroller
moves at unit speed along a network Q with given arc lengths, and the Attacker
can attack at any point of the network (not just at nodes). In this section we
define the game formally and describe each of the players’ strategy spaces.

The network Q can be viewed as a metric space, with d(x, y) denoting the
arc length distance, so we can talk about ‘the midpoint of an arc’ and other
metric notions. We assume that the game has an infinite time horizon and that a
Patroller pure strategy is a unit speed (Lipshitz continuous) path w : [0,∞)→ Q,
in particular, one satisfying

d (w (t) , w (t′)) ≤ |t− t′|, for all t, t′ ≥ 0.

For the Attacker, a pure strategy is a pair [x, I] , where x ∈ Q and I ⊂ [0,∞)
is an interval of length r. It is sometimes useful to identify I with its midpoint
y, where I = Iy = [y − r/2, y + r/2] . Thus y ∈ [r/2,∞).

The payoff function, taking the Patroller as the maximizer, is given by

P (w, {x, y}) =

{
1 if w (t) = x for some t ∈ Iy,
0 otherwise.

(1)

Hence the value, if it exists, is the probability that the attack is intercepted.
Note that in this scenario the pure strategies available to both players are un-
countably infinite, so the von Neuman minimax theorem no longer applies. Fur-
thermore, the payoff function is not continuous (in either variable), so minimax
theorems using that property also don’t apply. For example, if w is the constant
function x, then P (w, [x, I]) = 1, however an arbitrarily small perturbation of
w or x can have P (w′, [x′, I]) = 0. However, in the examples we study in this
paper we show that the value exists by explicitly giving optimal strategies for
the players.



Patrolling a Pipeline 3

3 General results

We start by giving upper and lower bounds for the value of the game for general
networks. First, we define the uniform attack strategy.

Definition 1. The uniform attack strategy chooses to attack in the time
interval [0, r] at a uniformly random point on Q. More precisely, the probability
the attack takes place in a region A of the network is proportional to the total
length of A.

We use the uniform attack strategy to deduce a simple lower bound on the value
of the game. We denote the total length of Q by µ.

Lemma 1. The uniform attack strategy guarantees that the probability P of
interception is no more than r/µ.

We also define a natural strategy for the Patroller. Recall that a Chinese
Postman Tour (CPT) of the network Q is a minimum length tour that contains
every point of Q. We denote the length of a CPT by µ̄. It is well known [3] that
there are polynomial time algorithms (polynomial in the number of nodes of the
network) that calculate µ̄. It is easy to see that µ̄ ≤ 2µ, since doubling each arc
of the network results in a new network whose nodes all have even degree and
therefore contains an Eulerian tour.

Definition 2. Fix a CPT, w : [0,∞) → Q that repeats with period µ̄. The
uniform CPT strategy w̄ : [0,∞)→ Q for the Patroller is defined by

w̄(t) = w(t+ T ),

where T is chosen uniformly at random from the interval [0, µ̄]. In other words,
the Patroller chooses to start the CPT at a random point along it.

This strategy gives an upper bound on the value of the game.

Lemma 2. The uniform CPT strategy guarantees that the probability P of in-
terception is at least r/µ̄.

Lemmas 1 and 2 give upper and lower bounds on the value of the game. If the
network is Eulerian (that is, the network contains a tour that does not repeat
any arcs) then µ = µ̄ and Lemmas 1 and 2 imply that the value of the game is
r/µ = r/µ̄. We sum this up in the theorem below.

Theorem 1. The value V of the game satisfies

r

µ̄
≤ V ≤ r

µ
.

If the network is Eulerian then both bounds are tight, V = r/µ = r/µ̄, the
uniform attack strategy is optimal for the Attacker and the uniform CPT strategy
is optimal for the Patroller.
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Writing P ∗ for the probability the uniform CPT strategy intercepts the attack,
we note that since it is true for any network that µ̄ ≤ 2µ, we have

V ≤ r

µ
≤ 2

(
r

µ̄

)
= 2P ∗.

This shows that the value of the game is no more than twice the interception
probability guaranteed by the uniform CPT strategy.

4 Solution on the line network

We now give a complete solution to the game on a line of unit length, that is the
closed unit interval [0, 1]. The Attacker picks a point x ∈ [0, 1] and an interval
I ⊂ [0,∞) of length r. The Patroller picks a unit speed walk w on the unit
interval, w : R+ → [0, 1]. The attack is intercepted if w(t) = x, for some t ∈ I.
We assume 0 ≤ r ≤ 2, otherwise the Patroller can always intercept the attacks
by oscillating between the endpoints of the unit interval.

4.1 The Case r > 1

We begin by assuming the attack interval r is relatively large compared to the
size of the line, in particular when r > 1. We shall see that the following strategies
are optimal.

Definition 3. Let the diametrical Attacker strategy be defined as follows: choose
y uniformly in [0, 1] and attack equiprobably at one of the endpoints x = 0 or 1
during the time interval I = [y, y + r].

For the Patroller, the oscillation strategy is defined as the strategy where
the Patroller randomly picks a point x on the unit interval and a random direc-
tion and oscillates from one endpoint to the other.

We note that the oscillation strategy is simply the uniform CPT strategy
as defined in Definition 2, and thus ensures a probability P ≥ r/µ̄ = r/2 of
interception, by Lemma 2.

We can show that the diametrical strategy ensures the attack will not be
intercepted with probability any greater than r/2.

Lemma 3. If r ≥ 1 and the Attacker adopts the diametrical strategy then for
any path w the attack is intercepted with probability P ≤ r/2.

We have the following corollary:

Theorem 2. The diametric Attacker strategy and the oscillation strategy are
optimal strategies and give value V = r/2.

Proof. This follows directly from Lemma 2 and Lemma 3.
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4.2 The Case r ≤ 1

Now we consider the case of r ≤ 1. In this case r is small compared to 1 (the size
of the unit interval), thus the Patroller stays at the end with some probability
and oscillates between the endpoints of the unit interval with the remaining
probability.

Let q be the quotient and ρ the remainder when r divides 1. Thus 1 = rq+ρ,
where q is an integer and 0 ≤ ρ < r. Let k = r + ρ. We first define the Attacker
strategies.

Definition 4. Consider the following Attacker strategy, which we call r-attack
strategy, that is performed at a random point in time, here we start it at time
0:

1. Attack at points E = {0, r, 2r, . . . , (q − 1)r, 1}, starting attacks equiproba-
bly between times [0, r], each with total probability r

1+r . We call these the
external attacks.

2. Attack at the midpoint of (q − 1)r and 1, which is the point 1 − r+ρ
2 =

1 − r
2 , starting the attack equiprobably between times

[
r−ρ
2 , r+ρ2

]
with total

probability ρ
1+r . We call this the internal attack.

The attacks are shown in Figure 1. The horizontal axis is time and the vertical
axis is the unit interval.

Fig. 1. The r-attack strategy is shown. The starting points of the attacks are shown
in red.

Let f(t) be the probability of interception at an external attack point if the
Patroller is present there at time t. Let g(t) be this probability for the internal
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Fig. 2. The probability of interception at each point in time t is shown both for external
attacks, f(t), and for internal attacks, g(t), for the r-attack strategy.

attack point. These probability functions for the r-attack strategy are shown in
Figure 2.

The functions f and g are as follows:

f(t) =


t

1+r , t ∈ [0, r]
2r−t
1+r , t ∈ [r, 2r]

0, t ∈ [2r,∞)

(2)

g(t) =



0, t ∈
[
0, r−ρ2

]
t− r−ρ2

1+r , t ∈
[
r−ρ
2 , r+ρ2

]
ρ

1+r , t ∈
[
r+ρ
2 , 2r − r+ρ

2

]
2r− r−ρ2 −t

1+r , t ∈
[
2r − r+ρ

2 , 2r − r−ρ
2

]
0, t ∈

[
2r − r−ρ

2 ,∞
)

(3)

We now define some Patroller strategies.

Definition 5. Consider the Patroller strategies where the Patroller plays a mix-
ture of oscillations of the interval [0, 1] (the big oscillations) with probability
1

1+r , and oscillations of the intervals
[
0, r2
]

and
[
1− r

2 , 1
]

(the small oscil-
lations) with probability of r

2(1+r) on each. We call this mixed-oscillation
strategy.

The mixed oscillation strategy is shown in Figure 3. Note that the small
oscillations have period r and thus intercept all attacks in the respective intervals.
By attacking at 0 or 1 the Attacker secures r

2(1+r) + r
2 ×

1
1+r = r

1+r , since the big

oscillation intercepts attacks at the endpoints with probability r
2 . Any attacks in

the open intervals
(
0, r2
)

and
(
1− r

2 , 1
)
, are dominated by attacks at endpoints.
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Attacking in
[
r
2 , 1−

r
2

]
secures an interception probability of 2r

2 ×
1

1+r = r
1+r ,

since at points in
[
r
2 , 1−

r
2

]
, the big oscillation in each of its period time intervals

of length 2, it intercepts attacks that start at two time intervals each of length
r. Hence, V ≥ r

1+r .

Fig. 3. The mixed oscillation strategy, where the horizontal axis is time and the vertical
axis is the unit interval.

Theorem 3. If r ≤ 1, then the r-attack strategy and the mixed-oscillation strat-
egy are optimal and the value of the game is V = r

1+r .

4.3 Relation to Discrete Patrolling Game

The discrete analogue of our game, introduced in [1] was solved for line graphs in
[5]. It is interesting (and reassuring) to find that the value of the discrete game
converges to the value of the continuous game as the number of nodes tends to
infinity.

We briefly describe the set-up of the discrete game. The game is played on
a line graph with n nodes in a discrete time horizon T = {1, 2, . . . , T}. The
Attacker chooses an attack node at which to attack and a set of m successive
time periods in T , which is when the attack takes place. The Patroller chooses
a walk on the graph. As in the continuous case, the payoff of the game, which
the Attacker seeks to minimize and the Patroller to maximize, is the probability
that the Patroller visits the attack node while the attack is taking place.

The value of the game depends on the relationship between n and m, and
the solution divides into 5 cases (see Theorem 6 of [5]). We are interested in
fixing the ratio r = m/n and letting n tend to infinity, therefore the solution of
two of the cases of the game from [1] are irrelevant: in particular the case when
m = 2, and the case when n = m + 1 or n = m + 2. The case n < (m + 2)/2
(corresponding to the case r ≥ 2 in the continous case) is also uninteresting,
since then the value is 1. Therefore we are left with two cases, whose solutions
we summarize below.



8 Patrolling a Pipeline

Theorem 4 (From Theorem 6 of [5]). The value V of the discrete patrolling
game on the line is

1. V = m/(2n− 2) if (m+ 1)/2 ≤ n ≤ m+ 1, and
2. V = m/(n+m− 1) if n ≥ m+ 3, or n = m+ 2 and m ≥ 3 is odd.

We now consider the behaviour of the value of the discrete game as n→∞,
assuming that the ratio r = m/n is fixed. In the first case of Theorem 4, as
n→∞, the condition (m+ 1)/2 ≤ n ≤ m+ 2 becomes 1 ≤ r ≤ 2 and we have

V =
m

2n− 2
=

r

2− 2/n
→ r

2
,

as n→∞. This corresponds to the solution of the continuous game as given in
Theorem 2.

In the second case of Theorem 4, as n → ∞, the condition on m becomes
r ≤ 1 and we have

V =
m

n+m− 1
=

r

1 + r − 1/n
→ r

1 + r
,

as n → ∞. Again, this corresponds to the solution of the continuous game as
given in Theorem 3.

5 Conclusion

We have introduced a new game theoretic model of patrolling a continuous
network in continuous time, analagous to the discrete patrolling game introduced
in [1]. We have given general bounds on the value of the game and solved it in
the case that the network is Eulerian or if it is a line.

We are optimistic that our results on the line network can be extended to a
larger class of networks, such as stars or trees, and we conjecture that the value
of the game is r/µ̄ for any tree network with diameter D such that D ≤ r ≤ µ̄,
where µ̄ is the length of a CPT of the network.
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Appendix: Omitted proofs

Proof of Lemma 1 The attack must be taking place during the time interval
[0, r]. Let A be the set of points that the Patroller intercepts in this time interval.
Then clearly A must have length no greater than r and so the probability the
attack takes place at a point in A is r/µ. It follows that P ≤ r/µ. ut

Proof of Lemma 2 Suppose the attack starts at time t0 at some point x ∈ Q.
Then the attack is certainly intercepted if w̄ is at x at time t0. Let tx ∈ [0, µ̄] be
such that w(t0 + tx) = x, so that the attack is intercepted by w̄ if T = tx. Let
A be the set of times t ∈ [0, µ̄] such that tx − r ≤ t ≤ tx or t ≥ tx + µ̄ − r, so
if T ∈ A, then the attack is intercepted by w̄. But the measure of A is r, so the
probability that T is in A is r/µ̄ and hence P ≥ r/µ̄. ut

Proof of Lemma 3 Take a Patroller path w. We can assume that w starts at an
endpoint, otherwise it is weakly dominated by a strategy that does. To see this,
suppose the Patroller starts at an interior point before traveling directly to an
endpoint, arriving there at time t < 1. Now consider the Patroller strategy that
is the same but in the time interval [0, t] the Patroller remains at the endpoint.
Then clearly the second strategy intercepts the same set of attacks as the first
one. Without loss of generalization we assume w starts at x = 0.

We only need to consider the path in the time interval [0, 1 + r], after which
time the attack has been completed with probability 1. Since r < 2 the walk
cannot go between the two ends more than twice, so there are three possibilities.

The first is that w stays at x = 0 for the whole time, in which case the
probability the attack is intercepted is P = 1/2 ≤ r/2.

The second possibility is that w stays at x = 0 for time t1, then goes to
x = 1 and stays there for time t2. We can assume it takes the Patroller time
1 to go between the endpoints since any path taking longer than that would
be dominated, so t1 + t2 = r. The attack is intercepted at x = 0 if it starts
sometime during [0, t1], which has probability (1/2)t1. It is intercepted at x = 1
if it ends sometimes during [1 + r − t2, 1 − r], which has probability (1/2)t2.
Hence P = (1/2)(t1 + t2) = r/2.

The final possibility is that w stays at x = 0 for time t1, then goes directly
to x = 1 for time t2, then goes directly back to x = 0 for time t3, in which case
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we must have t1 + t2 + t3 = r − 1. This time the attack is intercepted at x = 0
in the case of either of the two mutually exclusive events that it starts in [0, t1]
or ends in [1 + r − t3, 1 − r], which have total probability (1/2)(t1 + t3). If the
attack takes place at x = 1, it must be taking place during the whole of the
time interval [1, r]. But w must reach x = 1 sometime during this time interval,
since it must have time to travel from x = 0 to x = 1 and back again, and hence
intercepts the attack with probability 1. So the overall probability the attack is
intercepted is (1/2)(t1 + t3) + 1/2 ≤ (1/2)(t1 + t2 + t3) + 1/2 = r/2. ut

Proof of Theorem 3 We already showed that r/(1 + r) is a lower bound for
the value and now we show that it is also an upper bound. Now, suppose that
the Attacker plays the r-attack strategy. The Patroller could:

1. Stay at any attack point but will not win with probability greater than r
1+r .

2. Travel between consecutive external attacks and if possible try to reach the
internal attack: Suppose the Patroller is at point 0 up to time t: If t ∈ [0, r]
and then leaves for point r, she will reach point r at times in the range [r, 2r].

This gives total interception probability f(t) + f(t+ r) = t
1+r + 2r−(t+r)

1+r =
r

1+r . Note that if the Patroller continues to the next attack along the unit
interval, if it is the internal attack she will reach it at times greater than
r + r+ρ

2 = 2r − r−ρ
2 , when the internal attack has been completed, and if

it is an external attack she will reach it at time greater than 2r, where all
external attacks have been completed. If t ∈ [r, 2r] then all attacks at point
0 have been intercepted but the Patroller arrives at point r after all attacks
have been completed, which gives interception probability of r

1+r .
3. Travel between last two external attacks, crossing internal attack in the

middle (this is the same as doing a roundtrip from one of the last external
attacks to the internal attack and back): Suppose the Patroller leaves point
(q − 1)r at time t, toward the internal attack point and the last external
attack point 1: If t ∈ [0, r − ρ], she will reach the internal attack point at
times

[
r+ρ
2 , r − ρ+ r+ρ

2

]
=
[
r+ρ
2 , 2r − r+ρ

s

]
, and she will reach the external

attack at point 1 at times [r + ρ, 2r]. This sums to a probability of f(t) +

g
(
t+ r+ρ

2

)
+f(t+r+ρ) = t

1+r + ρ
1+r + 2r−(t+r+ρ)

1+r = r
1+r . If t ∈ [r−ρ, r], she

will reach the internal attack point at times
[
2r − r+ρ

2 , 2r − r−ρ
2

]
, and the

external attack point 1 at times greater than 2r. This sums to a probability

of f(t) + g
(
t+ r+ρ

2

)
= t

1+r +
2r− r−ρ2 −(t+ r+ρ

2 )
1+r = r

1+r . Finally, if t ∈ [r, 2r],
the Patroller will intercept all attacks at point (q − 1)r and will not make
it in time for the internal attack nor the attack at point 1, this gives the
desired probability.

ut
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