Cross-cultural management education rebooted: creating positive value through scientific mindfulness

Article (Accepted version) (Refereed)

Original citation:

DOI: 10.1108/CCSM-01-2016-0010

© 2017 Emerald Group Publishing Limited

This version available at: http://eprints.lse.ac.uk/68282/

Available in LSE Research Online: May 2017

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.

This document is the author’s final accepted version of the journal article. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.
CROSS-CULTURAL MANAGEMENT EDUCATION REBOOTED: CREATING POSITIVE VALUE THROUGH SCIENTIFIC MINDFULNESS

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Cross Cultural & Strategic Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>CCSM-01-2016-0010.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Perspective</td>
</tr>
<tr>
<td>Keywords:</td>
<td>cross-cultural management education, scientific mindfulness, stakeholder involvement, International Management, Management education, Positive Organizational Scholarship</td>
</tr>
</tbody>
</table>
CROSS-CULTURAL MANAGEMENT EDUCATION REBOOTED: CREATING POSITIVE VALUE THROUGH SCIENTIFIC MINDFULNESS

ABSTRACT

Graduates of cross-cultural management (CCM) courses should be capable of both tackling international and cross-cultural situations and creating positive value from the diversity inherent in these situations. Such value creation is challenging because these situations are typically complex due to differences in cultural values, traditions, social practices and institutions, such as legal rules, coupled with variation in, for example, wealth and civil rights among stakeholders. We argue that a scientific mindfulness approach to teaching CCM can help students identify and leverage positive aspects of differences and thereby contribute to positive change in cross-cultural situations. This new approach combines mindfulness and scientific thinking with the explicit goal to drive positive change in the world. We explain how the action principles of scientific mindfulness enable learners to build positive value from cultural diversity. We then describe the enactment of these principles in the context of CCM education.

KEY WORDS: cross-cultural management education, POS, international management, scientific mindfulness, management education, mindfulness, scientific methods.
CROSS-CULTURAL MANAGEMENT EDUCATION REBOOTED: CREATING POSITIVE VALUE THROUGH SCIENTIFIC MINDFULNESS

In today’s complex, globalized world, international managers often face situations for which their business education may not have fully prepared them. To illustrate this complexity, we consider the following three scenarios, each of which is true.

Levi Strauss Bangladesh and child labor: After running an ethical audit, Levi Strauss Bangladesh discovered that some contractors employed children who were less than 14 years of age. This practice was allowed under local law but violated International Labor Organization standards and company values. However, were Levi Strauss to disallow their contractors’ child labor, the children would be forced to look for other jobs, most likely worse ones, even as prostitutes. Most of these child workers were the main providers for their families and sometimes the family’s only breadwinners (Pless & Maak, 2011; Stahl, Pless, & Maak, 2012). Levi Strauss Bangladesh had to decide what the company ought to do in Bangladesh, and we discuss their approach ahead.

IKEA’s womenless catalogue: IKEA found itself in the media spotlight when IKEA Saudi Arabia decided to remove all the female figures from the catalogue, allegedly following the local cultural tradition of not publicly showing female figures. The company in Saudi Arabia seemingly wanted to respect the local cultural tradition to avoid upsetting Saudi authority. However, many saw IKEA’s decision to follow local country norms rather than those of the head office as contradicting IKEA’s core values of promoting social welfare and equality. In response to the global attention to their decision, IKEA publicly apologized and reassured the public that they stood by their core company values (“Ikea regrets”, 2012). This incident made IKEA understand their true responsibilities as a global firm (Miska & Pleskova, 2016).
Aracruz Celulose and Brazilian land reform: Aracruz Celulose, the world’s leading Brazilian-based producer of bleached pulp, was drawn into a land rights dispute with landless indigenous people and their local and international supporters. The Norwegian founder ensured the company purchased the land legally, followed all formal legal procedures, and maintained high environmental standards for their operations. Other stakeholders with different ideological stances argued, however, that Aracruz Celulose’s ownership and exclusive use of the land were nonetheless immoral (Osland, Osland, Tanure, & Gabrish, 2009; Reade, Todd, Osland, & Osland, 2008).

Introduction

As these three situations illustrate, global firms can expect to contend with cultural differences intertwined with other complex issues in areas such as local politics, poverty, inequality, and weak legal institutions in the countries where they operate. Cross-cultural management (CCM) education, with its traditional organizational behavior focus on topics such as cross-cultural conflicts, communication, and values (Bird & Mendenhall, 2015), helps managers address cultural differences, and it provides the background necessary to address the more complex global issues. However, addressing these global issues from the perspective of CCM alone is inadequate. When individuals complete CCM courses, they need to be able to address these complex global problems that affect organizations, as well. We argue that this objective demands an enhanced and expanded version of CCM education, towards including more macro-level perspectives and an explicit recognition of the potential of cross-cultural dilemmas to create positive value across stakeholders.

Stated differently, managers can choose to be largely indifferent observers to the social, economic, political, and environmental problems of the local environment and instead focus only
on preventing harm to their firms. Or, they can choose to become partners in the local
environment and contribute to creating positive value for the firm and other stakeholders. As an
example, in the opening scenario, Levi Strauss could have followed a harm-prevention approach
by reducing the problem to the cultural and legal distance between Bangladesh and the United
States. Then, they would decide whether following Bangladeshi or U.S. law would be less
problematic for the company. Alternatively, they could have looked for ways to benefit both the
company and its stakeholder communities. In fact, Levi Strauss Bangladesh proposed that the
factories should continue to pay the children’s salaries while Levi Strauss covered their
education costs until they reached working age (Pless & Maak, 2011; Stahl, Pless, & Maak,
2012). Implementing this resolution, Levi Strauss developed a community of increasingly
educated employees and other stakeholders who were committed to the company’s success, an
outcome that benefitted both the company and the community.

In the case of IKEA in Saudi Arabia, rather than acting as an indifferent observer who
focused on not upsetting the Saudi authorities, they could have approached this dilemma from a
long-term perspective that would adhere to the company’s core values and might also contribute
to improving the status of women over time. In the Aracruz Celulose case, the Brazilian court
ultimately ruled in favor of the indigenous and landless peoples. The company had to give up the
disputed land that they had purchased legally (Osland & Osland, 2007). This case of a highly
political environment characterized by poverty and less predictable government institutions
illustrates why international managers have to go beyond typical cross-cultural practices to
engage in a high degree of boundary spanning and stakeholder dialogue in order to create long-
term partnerships.
In order to arrive at a response to the question of whether today’s CCM courses prepare graduates to resolve the types of challenges revealed in the Levi Strauss, IKEA, and Aracruz Celulose scenarios, we reviewed course descriptions on the websites of the top 30 U.S. business schools (Forbes, 2015) and the top 30 European business schools (Financial Times, 2015) to benchmark our assessment of CCM education against industry leaders. The listed courses fit into one of three types: (1) teaching about a single culture or country (e.g., Doing Business in China); (2) delivering cultural knowledge typically around differences and similarities on dimensions of national culture; and (3) conveying cultural process models that provide culture-general and procedural knowledge aiming at corporate success and individual career success or well-being as a global business person. Each course type attempts to prepare students to work as international managers, but we did not find evidence that these CCM courses explicitly promoted the objective of creating positive value through global interactions. Our argument is that without this explicit educational objective, CCM courses are limited in the extent to which they can help students develop the skills necessary to find and implement positive solutions to complex cross-cultural dilemmas.

The importance of providing explicit guiding principles and values has been stressed by previous scholars in the field. As noted in the special issue of *Academy of Management Learning and Education* on CCM education (Eisenberg, Härtel, & Stahl, 2013), traditional CCM education risks contributing to a moral vacuum when explicit guiding principles are absent. In a moral vacuum, the question of whether cross-cultural competence serves self-interest, corporate interest, or common well-being remains open (Eisenberg, Lee, Brück, Brenner, Claes, Mironski, & Bell, 2013). International tobacco companies provided an example of serving corporate interests at the expense of common well-being, when they used their knowledge about
Indonesian smoking customs and values to target and hook children and teenagers (Euromonitor International, 2014).

We would like to add that a negativity bias which emphasizes the difficulties and costs of cross-cultural encounters can further amplify the negative effects of a moral vacuum. Such a bias invites the reduction of problems to simple differences in morally equivalent values. Hence, as cynical as it is, a company could frame generating profit from the consumption of cigarettes by Indonesian children and teenagers as simply catering to a local custom. Recent research in cross-cultural management, international business, and management (Phillips & Sackmann, 2015; Roberts, 2006; Stahl & Tung, 2015) lends credence to our claim that simplifying cross-cultural issues to differences in values often results in unintended negative biases. These fields have disproportionately favored negative outcomes of cross-cultural situations (Roberts, 2006; see Adler 1986, 2008, for exceptions). Stahl and Tung (2015) found that hypotheses about outcomes of cross-cultural situations were far more negative than were the actual results. An example of negativity bias in cross-cultural scholarship is the concept of the “liability” of foreignness (Edman, 2016). Liability assumes that foreignness is a disadvantage, something that the holder of it has to overcome in order to succeed.

Yet, a priori, there is no reason to presume that foreignness is a liability or, more broadly speaking, that cultural differences predominantly produce negative outcomes. In this vein, Stahl and Tung (2015) called for a more positive, value-creation approach in scholarship on CCM. Echoing their call, we argue that the teaching and learning of CCM would benefit significantly by recognizing the upside of cross-cultural situations, including the positive value inherent in cultural differences. CCM courses that equip graduates with an orientation and methods to derive positive value from cultural diversity prepare their students to resolve situations similar to the
ones presented at the beginning of this paper. How to achieve this change of focus in CCM courses is our next concern. In particular, we advocate a scientific mindfulness approach. This approach, as we explain below, makes explicit the intent to use cultural knowledge to create positive value across stakeholders in cross-cultural situations.

Scientific mindfulness is a holistic, cross-disciplinary, contextual, and reflexive approach to research, teaching, and practice using multiple perspectives, with the intent to contribute to the betterment of society (Dietz & Jonsen, 2014; Jonsen et al., 2010). Scientific mindfulness is a dual approach that combines mindfulness with scientific thinking towards an explicit goal that stresses creating positive value across stakeholders. Mindfulness refers to non-judgmental, purposeful attention to the present (Glomb, Duffy, Bono, & Yang, 2011; Kabat-Zinn, 2005). Scientific thinking is understanding and decision-making that results from reflecting about causation through counterfactuals, making assumptions explicit, and using the best available systematic information (Dietz et al., 2014). CCM taught with a scientific mindfulness approach enables students to see both the bright and the dark side of cross-cultural differences and provides principles for resolving cross-cultural dilemmas for common well-being. Modern CCM education has an opportunity to move beyond reducing cross-cultural challenges to problems stemming from differences and towards driving positive change in light of complex global challenges, including sustainability, discrimination, poverty, and unequal distribution of wealth.

In the remainder of this paper, we explain why scientific mindfulness can improve individuals’ responses to cross-cultural situations and introduce the two components of the construct (mindfulness and scientific thinking), along with their action principles. A discussion on how instructors might benefit from scientific mindfulness in designing both methods and
content of a new type of CCM course follows, whereby the explicit purpose is to turn cultural
diversity into positive value.

The Scientific Mindfulness Approach to Cross-Cultural Management

In this section, we first introduce mindfulness and scientific thinking as the key
components of scientific mindfulness. Then we explain how they operate in tandem and can help
students derive value from cultural diversity to make positive changes in the world.

Mindfulness

Definitions of mindfulness have typically referred to it as a psychological or social
process, whereby a particular state of consciousness is a common denominator across definitions
(for recent reviews, see Chaskalson & Hadley, 2015; Good et al., 2016; Sutcliffe, Vogus, &
Dane, 2016). Viewing mindfulness through the lens of intrapsychic processes such as self-
awareness, Langer (1989; 2014) emphasizes creativity and sensitivity to context and perspectives
(see also Kudesia, 2015). At this individual level, mindfulness denotes non-judgmental,
purposeful attention to the present (e.g., Kabat-Zinn, 2005). Collective mindfulness processes
involve a detailed comprehension and appreciation of context and potential interference factors,
as well as learning from feedback and failure, sensitivity to the environment and new
information, and commitment to resilience (Karelaia & Reb, 2015; Sutcliffe et al., 2016; Vogus
& Sutcliffe, 2012; Weick & Sutcliffe, 2001). At this collective level, mindfulness refers to
processes that broaden attention, raise alertness, reduce distractions, forestall misleading
simplifications, and facilitate learning (Weick & Sutcliffe, 2007). Leaders and their organizations
can consider both individual and collective forms of mindfulness as intervention targets and take
note of the range of possible interventions that elicit mindfulness, including training, staffing,
and behaviors (Sutcliffe et al., 2016).
Mindfulness is a basic human capacity (Kabat-Zinn, 2005) that can be cultivated and trained (Chaskalson & Hadley, 2015; Hunter, 2015; Shapiro, Wang, & Peltason, 2015). Its assessment is possible both at the state and trait levels (Dane, 2011; Sutcliffe et al., 2016). Mindfulness impacts human functioning cognitively, emotionally, behaviorally, and psychologically, and it potentially leads to favorable workplace outcomes such as higher performance, better relationships, and improved well-being (e.g., Brown, Ryan, & Creswell, 2007; Dane, 2011; Good et al., 2016). Mindfulness drives these outcomes through the interplay among perception, interpretation, and conversations (Sutcliffe et al., 2016). Thus, mindful individuals work with awareness and maintain a sense of being while doing (Kluckhohn & Strodtbeck, 1960).

In particular, mindfulness helps an individual shift perspective through re-perception and compassion. Re-perceiving is associated with “(a) compassion and interbeing (which translates into emotional belonging and empathetic concern for others), (b) cognitive flexibility and insight, and (c) integrated functioning (which is essential to translate [a] and [b] into action)” (Eisenbeiss, Maak, & Pless, 2014, p. 194). Compassion in the context of organizations creates “critical resources that are useful for creating and sustaining system-level relational capacities” (Dutton, Lilius, & Kanov, 2007, p. 111), whereas cognitive flexibility is the ability to respond to phenomena without relying on habitual activities (Moore & Malinowski, 2009).

Mindfulness, however, is not an end in itself (Brown & Ryan, 2003; Langer, 1989). Instead, it is a preparatory stage and a state of mind that may lead to choices (Hunter, 2015), intentions, and actions - an “action-guide” (Monteiro, Musten, & Compson, 2015). Through the process of re-perceiving, mindful individuals develop heightened skills at seeing a situation from multiple perspectives, including those of multiple stakeholders, and also seeing both more details...
and a broader context. Based on these mechanisms, a mindful approach is especially useful for focusing on and finding positive solutions to cross-cultural situations because they are more complex than situations within a common culture and exhibit the potential for more conflict.

Scientific Thinking

We view scientific thinking as having three elements: reasoning in counterfactuals to understand cause-effect sequences; making explicit one’s assumptions and hypotheses, and allowing their disconfirmation; and using the best data available in evaluating and making decisions (cf., Dietz et al., 2014). The purpose of scientific thinking lies in building knowledge and its contextualized application (Dietz & Jonsen, 2014). The focus on application requires that scientific thinking is pragmatic and executable, rather than an approach mired in a particular philosophy of science, be it a positivist or constructivist.

Counterfactuals are “what if” statements that involve the exchange of factors in cause-effect sequences to see whether a change in one factor causes a change in another factor (Durand & Vaara, 2009). Stated differently, counterfactual reasoning is equivalent to constructing “counterfactual” scenarios as alternatives to the “factual” scenario. The objective is understanding the consequences of causal events, such as managerial interventions, and the mechanisms behind cause-effect sequences (Collins, Hall, & Paul, 2004). Consider the IKEA example, in which the causal factor “removing all female figures from a catalogue” had the likely effects of appeasing local Saudi authorities while tarnishing the brand’s name in Western countries. The counterfactual would have been “retaining female figures in a catalogue,” and, as IKEA learned in subsequent years, doing so has been acceptable in Saudi Arabia. As such, counterfactual reasoning might have been one way by which IKEA could have understood the overall more positive consequences of not “deleting women.” Broadly speaking, counterfactual
reasoning as the imagination of alternative scenarios can be a helpful tool for stimulating
reflection about the positives in cross-cultural situations, for example, by searching
“counterfactuals” for factors that could turn these situations into positive experiences with positive outcomes.

In addition to counterfactual reasoning, uncovering assumptions and hypotheses, and maintaining a willingness to disconfirm them are additional elements of scientific thinking. Examples include questioning assumptions about transferring practices across cultures (Barmeyer & Davoine, 2011; Yousfi, 2011), testing hypotheses about intercultural interventions (Michailova & Hollinshead, 2011), and evaluating scientific evidence to help design effective intercultural teams (Stahl, Maznevski, Voigt, & Jonsen, 2010). In light of prevailing assumptions that cross-cultural interactions produce predominantly negative outcomes, uncovering these assumptions is particularly important to allow graduates of CCM courses to learn about the positives aspects of cultural differences. The negativity assumption, if not uncovered and questioned, might otherwise result in a self-fulfilling prophecy, in which actors inadvertently create the negative outcomes that they seek to avoid. Contrasting the negativity assumption with a positivity assumption, however, can spur action that disconfirms the negativity assumption and allows learning that positive value can result from differences. Another assumption that is relevant to learning about the upside of cross-cultural situations concerns the time frames for the outcomes actors evaluate. Depending on the situation, positive or negative outcomes might dominate at different times. For example, in cross-cultural interactions, a short-term time frame might lead to emphasizing the affective discomfort from meeting a seemingly unpredictable other, whereas a long-term time frame might aid in recognizing the broadening horizon that often comes with cross-cultural experiences.
A third aspect of scientific thinking is making decisions on the basis of the best available data. This aspect is akin to evidence-based management (Rousseau, 2012). The best available data might include but should not be limited to one’s own experiences and should draw on additional sources including academic research. For many CCM topics, sound data are available to inform international managers and other stakeholders. Seeking these data rather than relying on hunches and personal experience improves the quality of decision making (cf., Pfeffer & Sutton, 2006). Importantly, these data include Stahl and Tung’s (2015) earlier mentioned finding that the data from cross-cultural studies are typically more positive than the hypotheses tested with these data. In general, international managers who use a scientifically mindful approach take advantage of scientific methods and of knowledge revealed through scientific thinking to verify and put into action knowledge unearthed with heightened mindfulness.

The Interplay of Mindfulness and Scientific Thinking

It is important to understand that we view mindfulness and scientific thinking as complementary, even synergistic approaches. Mindfulness aids in seeing cues that can explain behavior in cross-cultural situations and point to positive consequences, whereas scientific thinking permits the conduct of thought experiments through counterfactual reasoning on these cues and helps uncover previously hidden assumptions and biases that might otherwise undermine mindfulness. However, despite their synergistic nature, we do not suggest that actors constantly practice both mindfulness and scientific thinking. Attempting to do so might undermine their synergistic benefits. To be in a mindful state of heightened alert to contextual factors and simultaneously ponder different counterfactual scenarios would be very difficult if not impossible. Instead, we envision scientific mindfulness to result from iterations of the two approaches, episodes of mindfulness and episodes of scientific thinking.
Moreover, mindfulness and scientific thinking complement each other in different ways at different stages of cross-cultural challenges. Mindfulness is particularly useful in the early stages of a cross-cultural challenge, when actors have to identify and define the challenge and develop approaches for addressing it. For example, Levi Strauss required highly mindful managers to see alternative courses of action to resolve their child labor dilemma. Noticeably, in mindless counterfactual thinking, the counterfactual would have been “end child labor,” with the negative consequence of possibly driving children towards work as prostitutes. In contrast, mindful counterfactual thinking enabled Levi Strauss to discover more complex alternatives, which led to actions with more positive consequences, including their decision to continue paying the children while also supporting their education.

Subsequent stages of a cross-cultural challenge involve testing and evaluating alternative courses of actions or solutions. At this point in the process, scientific thinking is helpful to distinguish which solution generates which value for which stakeholder. Even in these stages, scientific thinking and mindfulness go hand in hand: scientific thinking emphasizes tapping into multiple data sources and consciously making and testing assumptions, thereby reducing the likelihood of self-confirmatory biases. Mindfulness helps in retaining a positive and holistic approach toward evidence and sensitizes managers to make an effort to interpret evidence from the perspectives of a wide array of stakeholders.

Enacting Scientific Mindfulness

Individuals can learn to enact scientific mindfulness by using two action principles: *perspective taking* and *reflexivity*, both supported by scientific thinking, as described in Table 1. Perspective taking is the cognitive capacity and flexibility to consider the world from other viewpoints (Davis, 1983), whereas reflexivity means understanding one’s own values,
assumptions, and biases as well as having a conscious awareness of the impact of one’s actions on others (Cunliffe, 2009).

INSERT TABLE 1 ABOUT HERE

Individuals take perspective when they examine multicultural situations from viewpoints beyond their own. We now look more closely at four kinds of perspective taking that are especially helpful for positively resolving cross-cultural challenges: stakeholder involvement, holism, contextualization, and both cross- and multidisciplinarity.

Stakeholder involvement. Because mindfulness is linked to a heightened state of compassion (Langer, 2014; Langer & Moldoveanu, 2000), one way to enact scientific mindfulness during cross-cultural encounters is to involve stakeholders through interactions. Indeed, as Eisenbeiss and colleagues (2014, p. 194) argued, “mindfulness is key to the process of finding a considerate, balanced, stakeholder-inclusive solution to a moral dilemma, such as the child-labor challenge in Levi’s supply chain.” Stakeholders are "any group or individual who can affect or is affected by the achievement of the firm's objectives" (Freeman, 1984, p. 25) and can include citizens, employees, organizations, governments, NGOs, and interest groups, among others. Stakeholder involvement, therefore, refers to the participation of groups or individuals affected by decision-making and strategic planning processes. Seeing a situation through other stakeholders’ perspectives can trigger re-perceiving and reduce prejudging, ultimately facilitating work towards a positive solution for all parties. Stakeholder involvement means acknowledging and appreciating stakeholders’ perspectives, enhancing the quality of both problem definitions and problem solutions, because stakeholders are key actors and also experts on their own
situations (see Mohrman & Lawler, 2011). When setting up a new subsidiary in a foreign country, for example, managers often seek the input of local stakeholder groups such as employees or government officers.

Holism, in the cross-cultural context, is an analytical process that recognizes a complex range of cultural and non-cultural factors by considering cause-effect relationships in both detail and distance. Holistic approaches, which are rooted in Eastern philosophy, offer an alternative to reductionism (c.f., Hanson, 1995; the Santa Fe Institute, 2009; Senge, 1990). For example, in a culturally reductionist approach, a focus on national culture and differences in etic value dimensions often does little to explain behaviors and attitudes (Kirkman, Lowe, & Gibson, 2006). The classic comparative management approach with a focus on national culture fails to capture the complexity and often paradoxical nature of culture (Phillips & Sackmann, 2015, Primecz, Romani, & Sackmann, 2011). In contrast, a holistic lens entails the consideration of a wide range of factors in addition to cultural values, from macro-level forces (e.g., economic, political, historical) to micro-level factors (e.g., individual’s work experience, personality, gender, communication style). A holistic lens emphasizes the implications of a cause-effect relationship within a larger system that includes many dynamic interdependencies.

Contextualization is the adaptation of a conceptual framework to the local environment (Levy, Beechler, Taylor, & Boyacigiller, 2007). For example, understanding a local phenomenon is more complete when it includes emic or indigenous aspects of culture, such as guanxi, wasa, jeitinho, ubuntu, and simpatía (Jackson, 2004; Smith, 2008; Tung & Aycan, 2008). Given that some aspects of culture are indigenous and do not generalize to other cultures, the mechanism of

1 The authors would like to thank one of the anonymous reviewers of this paper for providing the definition of holism.
contextualization suggests that cross-cultural challenges are better understood if they are seen and appreciated within their contexts. Contextualization allows individuals to perceive how contexts might influence focal actors (Johns, 2006).

Acknowledging the need to contextualize solutions to fit local situations prevents costly mistakes. For example, to fully understand the complexity of the previous scenario of marketing and selling cigarettes to children in Indonesia, one would have to augment a cultural explanation with contextual knowledge. This would include information about the history of smoking, public health conditions and beliefs, anti-smoking organizations, tobacco’s role in the economy, and the roles of government and politics in Indonesia. Other context-specific aspects would be the views and influence of tobacco growers, their employees, national companies, and global tobacco firms, all possible beneficiaries of the current situation. As such, contextualization helps international managers understand how to draw on resources of the local environment to create positive outcomes, both locally and internationally.

Cross- and multidisciplinarity are approaches that involve the consideration of other disciplines. Multidisciplinarity is an approach to studying a phenomenon by considering it through different disciplinary lenses (Tress, Tress, & Fry, 2005). For example, scientifically mindful managers could examine sustainability issues from the lenses of environmental sciences, social sciences, political sciences, industrial engineering, and management science (cf., Ostrom, 2009). Crossdisciplinarity (also referred to as transdisciplinarity) is an approach to studying a phenomenon through the joint work of experts representing different disciplines or different stakeholders. Crossdisciplinarity provides answers about a phenomenon from diverse scholars or stakeholders (e.g., governments, NGOs, scientists) who study it jointly (Brandt et al., 2013; Tress et al., 2005). Cross- and multidisciplinarity enrich the practice of CCM in two ways. First,
different disciplines might explain the same phenomenon in different ways, and these explanations may well complement each other. Second, another discipline might study a phenomenon that is similar to a cross-cultural phenomenon, and, hence, it can serve as a metaphor and help build an understanding of the cross-cultural phenomenon. For example, Osland (1995) applied the hero journey metaphor developed by Joseph Campbell, a religious scholar and mythologist, to help explain the process of expatriate transformation.

Together, stakeholder involvement, holism, contextualization, and cross- and multidisciplinarity facilitate the scientific mindfulness action principle of perspective taking. Such mindful perspective taking helps individuals develop counterfactuals, by varying factors like the actors, targets, or legal and economic environments. In turn, counterfactual reasoning can enhance the learning from perspective taking by motivating reflection about the mechanisms by which different stakeholders or contexts produce different outcomes. Perspective taking is even more powerful when combined with reflexivity, the other scientific mindfulness action principle, because it helps individuals understand their positions within these wider perspectives.

Reflexivity refers to understanding one’s own values, assumptions, and biases as well as having a conscious awareness of the impact of one’s actions on others (Cunliffe, 2009). When people reflect on their actions, they are more likely to recognize that they shape and are shaped by their experience. Reflexivity yields an awareness of fundamental assumptions, values, and ways of interacting. For example, managers need to be aware of the often hidden assumptions and biases that, in part, their organizations may have instilled into them (Brown et al., 2007). A key reflexive question is why international managers engage in efforts to create positive value: do they do so for extrinsic (e.g., to enhance their career opportunities) or intrinsic reasons (e.g., because they internalized the value of diversity)?
Fundamental assumptions, values, and habits do not only affect perceptions about oneself, but also influence perceptions of and responses to others (Cunliffe, 2009). Hence, understanding oneself and understanding the perspectives of stakeholders are interdependent and complementary elements (cf., Easterby-Smith & Malina, 1999; Geertz, 1973). By being reflexive and taking different perspectives, individuals can unearth assumptions, become aware of hidden biases, gain a sense of compassion, appreciate the wider context in which individuals, managers, and organizations operate, and act upon this context during cross-cultural encounters (see also Levinthal & Rerup, 2006). In the enactment of the scientific mindfulness principles, being mindful and scientific thinking, coupled with the goal of creating positive value, have cross-fertilizing effects and help in making decisions among competing values or priorities.

In sum, scientific mindfulness provides a comprehensive, integrative, and positive approach to CCM. However, discussing these principles in abstract terms is easier than implementing them in practice. Building on feedback from scientific mindfulness workshops that we conducted at the Academy of Management conference and the congress of the International Association for Cross-Cultural Psychology, we illustrate below how to use the scientific mindfulness approach in teaching.

Designing a Scientifically Mindful CCM Course

A scientifically mindful CCM course involves thoughtful instructional design, including objectives, methods, content, and evaluation. As illustrated in the example of a stakeholder class activity based on one of our opening scenarios (Aracruz cellulose), experiential learning theory can provide the pedagogical underpinnings of a scientifically mindful CCM course (Kolb & Kolb, 2009). After reviewing all of these instructional decisions, we address challenges in teaching a scientifically mindful CCM course.
Experiential Learning Theory as a Pedagogical Foundation

Experiential learning theory (ELT) “places conscious intentional action based on subjective experience at the center of the learning process” (Kolb & Kolb, 2009, pp. 297-298). This theory considers learning as a process, not a series of outcomes. In this process, learning requires the resolution of conflicts between dialectically opposed modes of adaptation to the world. It is a holistic way of adjusting to the environment that results from synergetic transactions between the person and the context. The process consists of four modes of learning: concrete experience, abstract conceptualization (feeling versus thinking), reflective observation, and active experimentation. In the ideal learning cycle or spiral, learners employ all modes in a recursive process to take full advantage of a learning opportunity. Ideally, educators systematically incorporate all four learning modes in each session, module, and course, a process referred to as “teaching around the learning cycle” (Kolb, Kolb, Passarelli, & Sharma, 2014).

ELT aligns well with scientific mindfulness, as, for example, shown by the positive relationship between mindfulness and the concrete experience mode in Kolb’s Learning Style Inventory (Yeganeh & Kolb, 2009). Understanding the perspectives of others, taking a holistic view, and reflexivity all relate to the reflective observation learning mode. Cross- and multidisciplinarity, counterfactual reasoning, and the application of different disciplines or conceptual models one at a time to a question exemplify the abstract conceptualization mode. More broadly speaking, scientific thinking relates to the entire learning cycle when learners begin with a real problem that evolves into a research question and data gathering (concrete experience). As researchers would do, learners consider their findings and other relevant data (reflective observation), create a mental model (abstract conceptualization), and test the model by implementing a solution using scientific methods (active experimentation), which results in...
the creation of new knowledge. Moreover, scientific thinking instils a critical attitude towards
one’s own decisions, making managers aware of biases, like confirmation biases that can distort
their decisions (Dietz et al., 2014). With this pedagogical foundation, we now turn to the
objectives of a scientifically mindful course on CCM. Building on ELT as a pedagogical
foundation, we suggest learning objectives for a scientifically mindful CCM course. In turn,
these objectives will help instructors decide how to design instructional methods, content, and
assessment techniques.

Designing Learning Objectives

The objectives of a scientifically mindful course on CCM stress the need to build positive
value, the necessity of understanding the complexity of cross-cultural situations, and training on
cross-cultural skills and skills for enacting scientific mindfulness principles. As such, the
following should be considered when constructing the learning objectives:

1. Creating positive value as a purpose: The basis of a redesigned CCM course is understanding
that corporations are not only economic, but also political and social actors. This objective
can be assessed in terms of the long-term creation of positive value with respect to economic,
social, and environmental goals.

2. Understanding the complex nature of culture and the global context: Course design and
delivery help learners develop a critical and reflexive understanding of the complexities and
interconnectedness of the global and cultural context. Course design and delivery also
address opportunities and threats to positive value that arise from cross-cultural diversity.

3. Global management competencies/skills: Course design and delivery foster scientific
mindfulness competencies, including the ability to enact scientific mindfulness action
principles when presented with real-world scenarios.
Traditional CCM courses generally focus on the second objective (without the critical and
reflective component) and, to varying degrees, on cross-cultural skills. Scientific mindfulness
expands the learning domain by adding the first learning objective, thereby shifting the
objectives towards the explicit purpose of creating positive value. Now, equipped with a
pedagogical foundation and course objectives, we discuss the instructional method, opening with
a description of the Aracruz Celulose stakeholder activity.

Methods of Instruction

A face-to-face simulation activity on Aracruz Celulose has students assume the role of a
stakeholder group involved in a land-use conflict in Brazil (Reade et al., 2008). The five
stakeholder groups are the company (Aracruz Celulose), the local community, indigenous and
landless people who claim company land, international and local NGOs protesting against the
company, and a government agency responsible for the welfare of indigenous people. These
groups then follow a structured stakeholder dialogue process to find a win-win solution to the
debate about historical and current rights to land use.

The Aracruz simulation is an example of experiential learning, as students act as
stakeholders and negotiate with one another from their assigned perspectives while learning
about and from the other stakeholders’ perspectives. As such, perspective taking occurs in a
context, and aligning different perspectives also necessitates a holistic approach. That is, in
arriving at a resolution, students do not only have to tune into the interests of each stakeholder,
but also take a big-picture perspective that considers the broader historical, economic, and legal
context. Moreover, before the stakeholders negotiate, each stakeholder group presents its values,
goals, and strategies, an activity that enables perspective taking. Furthermore, instructors can
elicit perspectives by asking questions about, for example, historical factors and sub-cultural
factors behind each stakeholder’s position, or questions that draw attention to perspectives on poverty alleviation or ethical stances. Instructors can also challenge students to develop positive-value-creating solutions and motivate scientific thinking by posing questions about alternative (counterfactual) courses of action, a potential negativity bias, and data that help participants arrive at a sound decision.

Both being mindful and thinking scientifically help in executing the Aracruz Celulose activity. For example, both help learners uncover and evaluate evidence on best practices for stakeholder management, optimal approaches to cross-cultural negotiations, and how similar situations were resolved elsewhere. The Aracruz Celulose activity can expose students to the four modes of learning in ELT: concrete experience of a stakeholder challenge, abstract conceptualization (feeling versus thinking) in placing stakeholders’ positions into context, reflective observation about one’s own behavior and that of other stakeholders, and active experimentation in trying out different approaches towards creating positive value.

More generally speaking, activities in a scientifically mindful CCM course consistently let students experience the multiple modes of learning. Such activities include simulation exercises, such as Aracruz Celulose, Bafa Bafa, or Ecotonos, service learning projects, immersion exercises, and role plays, all of which create experiences for students that invite critical reflection upon completion of active experimentation (Sackmann & Friesl, 2007). As another example, service learning projects (e.g., Pless, Maak, & Stahl, 2012) in unfamiliar subcultures or international service learning experiences are powerful instructional methods in line with the scientifically mindful approach. These experiences put students directly in touch with stakeholders in real-world projects that aim to create positive value for all parties involved. For example, students work on improving the health and hygiene conditions or access to education in
poverty-stricken areas. Service learning projects help learners reflect on the roles of privileged
service providers and less privileged service recipients. The learners must execute the experience
such that it enables service recipients to cope on their own with future challenges (i.e., creates
positive value for providers and recipients) rather than inadvertently reproducing and reinforcing
power differentials (Kenworthy-U'Ren, 2008). Above and beyond the involvement of other
stakeholders and the importance of taking into account the local context, these experiences
provide an opportunity to acquire and practice enhanced cross-cultural skills, as students face
economic, social, ecological, and ethical issues similar to those they will encounter in global
work (Maak & Pless, 2009; Mirvis, 2008). These experiences also address the cross-cultural
dimensions of conflictual situations and hence provide students with opportunities to acquire
cultural knowledge, develop a global mind-set, and use their cross-cultural skills to create
positive and sustainable value.

As a substitute for experiences created during the course, students might also draw on
earlier experiences. In a personal application assignment (Osland, Turner, Kolb, & Rubin, 2007),
for instance, students write about a personal cross-cultural experience, reflect on it by analyzing
the behavior of everyone involved and the consequences, apply course theory to better
understand the experience, summarize lessons learned, and then devise action steps to create
positive value if they find themselves in a similar situation in the future. This assignment, which
takes students around Kolb’s learning cycle (1984) by addressing all four learning modes, is an
attempt to maximize student learning in reflexivity as well as to bridge the knowing-doing gap.
Having discussed instructional methods, we now turn to the content of instructional materials.
Content of Instructional Materials

In the Aracruz Celulose activity, students find themselves in a concrete, yet complex situation. As stakeholders, they must negotiate agreements within a context of poverty, cross-cultural dynamics, and unequal power relationships that have emerged out of a long history among the stakeholders. Furthermore, the Brazilian legal system, a populist political environment, the historical practice of squatting in Latin America, and different philosophies on sustainable agriculture influence the situation. The activity requires and, thus, promotes scientific mindfulness because it is global and cross-cultural in nature, yet presents an explicit situation where a resolution has the potential to create positive value for multiple stakeholders.

In addition, the Aracruz Celulose activity is an example of pedagogical material that lets students see the multidimensionality of cross-cultural conflicts and the utility of cross-cultural competencies in creating positive value on multiple dimensions such as: (1) diversity (the need to consider the legitimate, and often conflicting, claims and interests of a diverse group of stakeholders), (2) ethics (the need to ensure principle-driven, legally sound, and ethically acceptable behavior both at home and abroad), (3) concern for the environment (the need to contribute in active ways to solving the global environmental crisis), and (4) citizenship (the need to understand and, if necessary, engage in human rights issues) (Maak & Pless, 2008; Stahl et al., 2012).

In summary, material for a scientifically mindful CCM course facilitates learning about traditional CCM topics (e.g., resolving cross-cultural conflicts), while it also sensitizes students to the multi-faceted context and complexity of these topics. To accomplish both simultaneously, materials must surface real-world complexity instead of hiding it. Based on our experience in developing and teaching scientifically mindful CCM courses, we present a compilation of
effective instructional materials for such a course in the web appendix to this article.

Instructional materials for a scientifically mindful CCM course would not depict cultural
differences as if they occur without a context. The reductionist explanation of behavior as
resulting primarily from differences in country-level cultural values, for example, could promote
this type of decontextualized thinking (Stahl & Tung, 2015).

Moreover, not only the material for each class but the portfolio of teaching materials has
to be broad in its themes and content to help students enact the action principles of perspective
taking, notably stakeholder involvement, holism, contextualization, and cross- or
multidisciplinarity. In addition, such material illustrates that the creation of positive value is
possible even in high-conflict situations and on numerous dimensions, such as diversity, ethics,
environmental sustainability, and citizenship.

Assessment of Learning

In addition to choosing instructional materials, we need to think carefully about the
assessment of student learning. In the Aracruz Celulose simulation, assessment focuses on
behaviors in the stakeholder dialogue. Videotaping this dialogue is helpful for enhancing the
developmental purpose of the performance assessment, as it informs both self- and other-
evaluations, such as those by peers and instructors. The videotaping also helps retrospective
identification of points in the stakeholder dialogue that allowed for creating positive value as
well as points where students enacted or could have enacted scientific mindfulness principles.

In general, to enhance the rigor of student learning assessment and its developmental
value, a pre-post assessment design is instrumental. Ideally, assessment instruments include both
self-reports that stimulate reflexivity and 360-degree feedback that provides different
perspectives. As an example of a comprehensive self-evaluation, cognitive behavior therapy
suggests a multi-step approach that places the accountability on the learner (Mendenhall, Arnardottir, Oddou, & Burke, 2013; Mendenhall, Burke, Arnardottir, Oddou, & Osland, in press). After choosing learning objectives (e.g., development of perspective taking competencies), students might write an action plan for the duration of the course, provide weekly progress reports to their instructors, and write a final report on their overall progress and lessons learned. In terms of assessment criteria, behavioral criteria can capture the action orientation that is inherent to scientific mindfulness more effectively than attitudinal criteria. For example, items to assess perspective taking might include: prefers own perspective without considering others’ (poor); includes elementary synthesis of other perspectives (average); takes seriously the perspectives of diverse others and incorporates their views (excellent).

In summary, experiential teaching methods, in combination with sufficiently complex learning materials and learning-oriented assessment approaches, promote the development of scientifically mindful actions, thus, helping students acquire skills for creating positive value. Teaching CCM in this way requires instructors to manage pedagogical challenges that emerge from the scientifically mindful approach.

Teaching Challenges: Skills versus Knowledge and the Multiple Levels of Culture

Instructors who adopt this approach may find it challenging to trade-off between conveying skills for managing concrete phenomena versus building general knowledge for abstract analysis. They may also find it difficult to attend to multiple levels of culture.

Balancing abstract cultural analysis with the management of concrete cross-cultural phenomena. CCM education involves resolving several tensions: (1) determining the relative importance of emic approaches, such as “doing business in…” course material, versus culture-general etic approaches, such as enhancing cultural intelligence (Zhu & Bargiela-Chiappini,
2013); (2) balancing theoretical approaches with real-world application (MacNab, 2012; Rosenblatt, Worthley, & MacNab, 2013); and (3) deciding how much effort and time students should invest in learning abstract knowledge versus acquiring practical skills (Pless, Maak, & Stahl, 2011; Szkudlarek, McNett, Romani, & Lane, 2013). In large part, these trade-offs reflect the concrete-abstract and reflection-action dialectics in ELT (Kolb, 1984). Hence, scientifically mindful courses balance these trade-offs and allow learning about both sides.

The inclusion of creating positive value as a purpose adds a layer of complexity but also guides decisions about how to resolve the above-mentioned trade-offs by prioritizing resolutions that are most likely to benefit all stakeholders. Further, this objective provides a benchmark for assessing the usefulness of developing skills based on learning from doing or sound theoretical analysis. Lastly, the objective of creating positive value guides the evaluation of economic needs, political pressures, and stakeholder expectations, which often demand that companies respond to global and local issues simultaneously (Husted & Allen, 2006; Logsdon & Wood, 2005). Despite the emphasis on creating positive value, however, a scientifically mindful CCM course also requires stimulating balanced reflection about the pros and cons (the positive value and the negative value) of cross-cultural situations and behaviors.

Levels of culture. A second challenge teaching CCM is the treatment of different levels of culture. CCM courses tend to emphasize national-level culture. Yet, multiple cultures (Sackmann & Phillips, 2004) and significant between- and within-country cultural variations (Lenartowicz, Peterson, & Dheer, 2012) characterize the new global world. Furthermore, students are increasingly bi- or multi-cultural individuals (Fitzsimmons, 2013). Smaller cultural units, such as corporate, professional, or communal cultures, are more relevant in some situations (Boyacigiller, Kleinberg, Phillips, & Sackmann, 2003; Levy, Taylor, & Boyacigiller, 2010). To
analyze and meet stakeholder needs, a scientifically mindful CCM course considers the multifaceted cultural context including multiple levels (e.g., national, regional, industry, and organizational cultures; professional, ethnic, religious, and gender) as well as cultural dynamics (Phillips & Sackmann, 2015).

Demands on Instructors, Academic Programs, and Universities

Instructors. A scientifically mindful CCM course requires a scientifically mindful instructor. For example, instructors have to pose the self-critical question about whether the pedagogical methods used in the course actually facilitate student learning towards creating positive value through enactment of the scientific mindfulness action principles. In addition, scientific mindfulness demands a redesign of CCM courses and a different effort from instructors. Budget and time constraints, culturally homogeneous classes, or learners with different levels of motivation and cross-cultural competency influence this redesign towards creating positive value through scientific mindfulness. As an author team, we admit that we have not always incorporated all principles in our own teaching; our intent here is to push ourselves and others to recognize and enact the scientifically mindful teaching of CCM for creating positive value. So far, our students have responded favorably to the changes we have made towards a scientifically mindful approach in teaching CCM.

Academic programs and universities. The long-term effects of a CCM course that builds on scientific mindfulness principles also depend on the orientation of the program in which the course is embedded and integrated. The stakeholders of business schools are increasingly aware that the traditional approach of teaching managerial knowledge or skills alone is not enough (Eisenberg et al., 2013). We argue that a scientifically mindful CCM course incorporating global responsibility is in line with this development and consistent with the requirement of the
Association to Advance Collegiate Schools of Business (AACSB) to integrate the teaching of ethics into the business school curriculum (see, Standard 9, AACSB International, 2016). Instead of teaching cross-cultural skills as value-free competencies, CCM skills are central ingredients for understanding and analyzing complex global issues and for creating positive value.

Conclusion

Scientific mindfulness integrates scientific thinking with mindfulness to help students learn to create positive value in light of complex global challenges, including sustainability, discrimination, poverty, and unequal distribution of wealth. In this paper, we introduced action principles related to perspective taking (applied through stakeholder involvement, holism, contextualization, and cross-or multidisciplinarity) and reflexivity, and describe how each is supported by scientific thinking. We described how to design a scientifically mindful CCM course, including learning objectives, instructional methods, content, and assessment. Finally, we suggest that instructors who adopt this approach should anticipate the challenges and demands we describe at the end of the paper.

As illustrated by the following two quotes, there is some understanding that incorporating real-world complexity can improve traditional approaches to CCM education:

“I think the academic curriculum is lagging behind what’s actually happening in the real workplace. The academic world doesn’t reflect the actual workplace as much as it could. I remember components of the class that for me didn’t seem to be applicable in the workplace. An American former CCM course participant in Hong Kong, now an expatriate in Hong Kong.

“I think it is absolutely necessary to enlarge the content of cross-cultural management courses because specifically in a cross-cultural context, many of the challenges facing managers involve aspects of corporate citizenship, social

2 We conducted 11 interviews with five CCM instructors and six former CCM students to gather perspectives on the relevance and contribution of a scientific mindfulness approach to teaching CCM.
responsibility, sustainability, etc., and managers who operate in a global or cross-cultural environment need to consider the interests of various stakeholders, both at the local and global levels, in order to address these challenges. A German CCM professor from a Spanish business school.

Scientific mindfulness action principles are well suited for designing and teaching a new type of CCM course that goes beyond understanding cultural differences and building cross-cultural skills. This new type of CCM course emphasizes the objective of creating positive value, and it requires the careful design and integration of course content, course materials, the assessment of learning, and instructional methods. The resulting expanded CCM course should reflect the complexity of managerial challenges and cross-cultural phenomena by simultaneously practicing mindfulness and scientific thinking. We believe that a CCM course that has its basis in scientific mindfulness can go a long way towards helping international managers to better deal with complex situations and make decisions that create positive value for everyone.
References

Scientific Mindfulness

Sackmann (Eds.), *Cross Cultural Management in Practice: Culture and Negotiated Meanings*. (pp. 101-111). Edward Elgar Publishing.

39

Table 1: Enacting scientific mindfulness through perspective taking, reflexivity and scientific thinking

<table>
<thead>
<tr>
<th>Enacting Scientific Mindfulness</th>
<th>Role of Scientific Thinking</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspective Taking: A cognitive capacity and flexibility to consider the world from other viewpoints (Davis, 1983)</td>
<td>Scientific thinking supports perspective taking through its three elements: reasoning in counterfactuals; making assumptions and hypotheses explicit and allowing their disconfirmation; and using the best data available in evaluating and making decisions (Dietz et al., 2014).</td>
<td>In the early stages of cross-cultural challenges, perspective-taking helps managers identify and define a problem. In subsequent stages, when solutions to a challenge are tested and evaluated, the use of scientific thinking is helpful to distinguish which solution generates value according to each perspective.</td>
</tr>
<tr>
<td>Stakeholder Involvement. The participation of groups or individuals affected by decision-making and strategic planning processes (Freeman, 1984).</td>
<td>The construction of counterfactuals draws on the perspectives of stakeholders and can point to the assumptions that they hold. Stakeholders also provide data that informs decisions in cross-cultural situations.</td>
<td>Instead of merely asking for stakeholders’ opinions on a proposed course of action, ask stakeholders to question the team’s assumptions, identify evidence-based practices, or pilot test a new process.</td>
</tr>
<tr>
<td>Holism. (in the cross-cultural context) An analytical process that recognizes a complex range of cultural and non-cultural factors by considering cause-effect relationships in both detail and distance.</td>
<td>Holistic perspective-taking and scientific thinking are counterforces. Whereas scientific thinking helps in identifying key cause-effect relationships and suggesting ways for their examination, holism invites big-picture systemic reflection.</td>
<td>When offering students a case study, ask students to analyze the situation in light of macro-level forces (e.g., economic, political, historical) and micro-level forces (e.g., individuals’ work experience, personality, gender, communication style), in addition to the cross-cultural analysis. This should produce solutions that are more appropriate than would be the case from a cultural analysis alone.</td>
</tr>
<tr>
<td>Contextualization. The adaptation of a conceptual framework to the local environment (Levy, Beechler, Taylor, & Boyacigililer, 2007)</td>
<td>Thought experiments about cause-effect relationships in different contexts are a common form of counterfactual reasoning. To discover context-specific factors, decision-makers need to gather local</td>
<td>Instead of asking students to apply the managerial frames they learn indiscriminately, insist that they first decide whether the frame is missing factors unique to the local context, such as political</td>
</tr>
</tbody>
</table>
Scientific Mindfulness

<table>
<thead>
<tr>
<th>Crossdisciplinarity</th>
<th>Thoughtful scientific thinking includes understanding the limitations of mono-disciplinary approaches. Different scientific disciplines often suggest different causal structures and processes for understanding the effects of cross-cultural interventions. Contrasting perspectives from disciplines that draw on different conceptions of human kind (e.g., homo economicus versus homo socioloigicus) enable uncovering assumptions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidisciplinarity</td>
<td>Once students have unearthed solutions for a global sustainability problem from the perspectives of business, environmental science, political science, and sociology, they can derive testable hypotheses in the form of if-then propositions, to help them determine the best course of action for the organization. For example, if this problem is driven by our suppliers’ carbon output, then carbon in the area will have increased from previous levels.</td>
</tr>
<tr>
<td>Reflexivity</td>
<td>Scientific thinking can be used as a tool to understand one’s own values, assumptions and biases by examining them from an outside perspective, such as questioning and testing the accuracy of one’s assumptions.</td>
</tr>
<tr>
<td></td>
<td>Confront stereotypical assumptions about other cultures by examining stories counter to those students expect, e.g. successful female entrepreneurs in the Arab world. Use these stories to have students reflect on the accuracy and foundations of their assumptions about other cultures.</td>
</tr>
</tbody>
</table>
Web Appendix to *Preparing International Managers to Create Positive Value through Scientific Mindfulness*

Sample Teaching Resources for each Scientific Mindfulness Action Principle

<table>
<thead>
<tr>
<th>Topics commonly covered in CCM courses</th>
<th>Readings</th>
<th>Cases</th>
<th>Exercises, Videos, Discussion</th>
</tr>
</thead>
</table>
| Context of the international / global manager (political, socio-economic, cultural, globalization) | • Pless, Maak, & Stahl (2011) (C, SI)
• Osland (2003) (H, R, C, M)
• Ghemewat (2001)
• Dietz & Jonsen (2014) | • Pless & Maak (2011) (C)
• Smith (2012) (H, R, SI)
• Quinn (2012) (H, R, C, SI) | • Globalization Debate in which students argue the opposite side of their own beliefs for or against globalization (H, C, SI, M, ST)
• Video: “The dangers of a single story” (TED talks) (H, R, C) |
| Global sustainability | • Donaldson (1996)
• Rischard (2002) | • Butler & de Bettignies (1999) (C)
• Bartlett, Dessain, & Sjoman (2006). | • Guest speakers on their own global sustainability issues, such as global supply chain issues (SI, M)
• Video: “Doing Well by Doing Good: Global Sustainability at Aditya Birla Group” (Society for Human Resource Management Video) (H, R, C, SI)
• Aracruz stakeholder simulation (H, R, C, SI, ST)
• Service learning projects (SI, C, R) |
| Culture | • Osland & Bird (2000) (H, C, M, ST)
• Lane, Maznevski, DiStefano, & Dietz (2009a) (H, C, ST) | • DiStefano, J. (2000). | • Simulations such as BARNGA, Ecotonos, BafaBafa (R)
• Cultural observation assignment: An ethnographic approach. Based on anthropologist Spradley’s (1980) participant observation template, students hone their observation skills, interview cultural informants, and answer integrative questions that include their potential to be an expatriate (H, R, M)
• Cross-cultural experience – Students experience another culture first-hand on their own or with the facilitation of a student from the other culture (R) |
<table>
<thead>
<tr>
<th>Topics commonly covered in CCM courses</th>
<th>Readings</th>
<th>Cases</th>
<th>Exercises, Videos, Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Personal Application Assignment: a reflection assignment that asks students to develop action steps based on lessons learned. (R, SI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Guest speaker from organization that hires expatriates talks about the global competencies and mind-set needed for success in that organization (SI)</td>
</tr>
<tr>
<td>Communication & negotiation</td>
<td>Thomas & Osland (2004) (R, M)</td>
<td></td>
<td>Alpha Beta Negotiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ecotonos: A multicultural problem solving simulation (H, R).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Negotiating about Pandas for San Diego Zoo (Weiss, 2013) (H, R, C, SI)</td>
</tr>
<tr>
<td></td>
<td>Javidan, Dorfman, de Luque, &</td>
<td></td>
<td>• What is your role as a global leader given the UN global compact and Caux Roundtable principles? (H, R, C)</td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/ccsm
<table>
<thead>
<tr>
<th>Topics commonly covered in CCM courses</th>
<th>Readings</th>
<th>Cases</th>
<th>Exercises, Videos, Discussion</th>
</tr>
</thead>
</table>
| **Managing global teams and networks** | House (2006).
- Voegtlin, Patzer, & Scherer (2012).
Dietz, Olivera, & O’Neil (2003). (H, R) | Social Innovation Team Projects: multicultural student teams research a global problem and devise a social innovation to solve it. (H, R, C, SI)
Multicultural team country projects: Students gather and report information on a broad range of country aspects that impact global business while also evaluating their own multicultural team dynamics (H, R, C, M)
Bring to class examples from the press of descriptions of successful and unsuccessful international alliances. |
Brett, Behfar, & Kern (2006).
| **International HRM** | Pless, Maak, & Stahl (2011). (SI, S)
Sani (2006). (H) | Video: Expat Women in Hong Kong (2009), on expat spouses sharing their experiences.
[http://www.youtube.com/watch?v=5Mk6o_QXIOQ | (SI, R) }

http://mc.manuscriptcentral.com/ccsm
<table>
<thead>
<tr>
<th>Topics commonly covered in CCM courses</th>
<th>Readings</th>
<th>Cases</th>
<th>Exercises, Videos, Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Taylor, Egri, & Osland (2012) (C, S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Osland (2012) (H, C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing diversity</td>
<td>• Jonsen, Tatli, Ozbilgin, & Bell (2013) (M, SI, C, H)</td>
<td>• Lane, Ellement, & McNett (2012) (H, C)</td>
<td>• Invite a guest speaker who was responsible for a global sustainability change project to write a one-page description of the problem to distribute in advance. Have students come to class with their own recommendations for the change and then discuss what actually happened. (H, R, C)</td>
</tr>
<tr>
<td></td>
<td>• Bell, (2012). (H, R, C, SI)</td>
<td>• Osland & Adler (2007) (H)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sucher & Beyersdorfer (2011). (H, R)</td>
<td></td>
</tr>
<tr>
<td>Competing with integrity: cross-cultural issues in ethics and CSR</td>
<td>• Donaldson (1996).</td>
<td>• Pless & Maak (2011)</td>
<td>• Diversity icebreaker simulation www.diversityicebreaker.com</td>
</tr>
<tr>
<td></td>
<td>• Bailey & Spicer (2007). (H, C)</td>
<td>• Butler & de Bettignies (1999).</td>
<td>• Interview project: Students interview three people from the same culture, who differ with respect to other characteristics (age, industry, gender, etc.). One purpose is to better understand the extent of variation within cultures. (H, C, ST)</td>
</tr>
<tr>
<td></td>
<td>• Martin, Cullen, Johnson, & Parboteeah (2007). (H,C)</td>
<td>• Dietz & Zhang (2001). (C, SI)</td>
<td>• Universal code of ethics. This is a debate around whether or not such a code can be implemented, and whether there are certain cultural values that we can consider “bad”, not legitimate. Used sometimes in conjunction with Bafa Bafa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lane, Sondergaard, & Wesley (2008). (C, SI)</td>
<td>• Global procurement / logistics / supply chain managers as guest speakers. (SI, M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maak & Pless (2009) (C, SI)</td>
<td></td>
</tr>
</tbody>
</table>
H (Holism): Material reflects holistic emphasis questioning the cause-effect relationship within a larger system. It reminds us the importance of consideration of a whole range of factors in addition to cultural values from macro-level forces (e.g., economic, political, and historical) to micro-level factors (e.g., individuals’ work experience, personality, gender, communication style).

R (Reflexivity): Material stimulates self-awareness and self-understanding as well as conscious awareness of the impact of one’s actions on others.

C (Contextualization): Material reminds us the need to understand cross-cultural challenges within their geographical and historical contexts, and assess them in light of larger global trends (e.g., increasing world population, poverty gaps, climate change).

SI (Stakeholder Involvement): Material presents perspectives of multiple stakeholders, including citizens, employees, organizations, governments, NGOs, interest groups as well as trainers and learners in CCM programs.

M (Multidisciplinarity): Material illustrates the benefits of applying different disciplines.

ST (Scientific Thinking): Material focuses on importance of making decisions involving cross-cultural challenges based on sound scientific data. It also reminds us to test assumptions, avoid the confirmation bias (i.e., only seeking data that confirm one’s assumptions), and engage in counterfactual thinking (thinking about the opposite or an alternative in a situation).
References

http://mc.manuscriptcentral.com/ccsm
Ivey Case No: 903M52-PDF-ENG.

September-October, 48-62.

