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On the Laplace transforms of the first exit times in

one-dimensional non-affine jump-diffusion models

Pavel V. Gapeev∗ Yavor I. Stoev†

To appear in Statistics and Probability Letters

We compute the Laplace transforms of the first exit times for certain one-dimensional jump-diffusion
processes from two-sided intervals. The method of proof is based on the solutions of the associated integro-
differential boundary value problems for the corresponding value functions. We consider jump-diffusion pro-
cesses solving stochastic differential equations driven by Brownian motions and several independent compound
Poisson processes with multi-exponential jumps. The results are illustrated on the non-affine pure jump ana-
logues of certain mean-reverting or diverting diffusion processes which represent closed-form solutions of the
appropriate stochastic differential equations.

1 Introduction

The aim of this paper is to derive closed-form expressions for the Laplace transform in (2.5) of the first times
at which the (non-affine) jump-diffusion process X defined by (2.1) exits a two-sided interval. It is assumed
that the stochastic differential equation in (2.1) for X is driven by a standard Brownian motion and several
independent compound Poisson processes with exponentially distributed jumps. We consider the case in which
the equation in (2.1) can either be solved explicitly or reduced to the associated ordinary differential equation,
by means of the appropriate integrating factor process. Such solvable stochastic differential equations were
considered in Gard [13, Chapter IV] and Øksendal [22, Chapter V] for continuous diffusion processes, and then
in [9] and [12] for their jump-diffusion analogues. The tractability of the resulting analytic solutions of this type
of stochastic differential equations was shown in İyigünler, Çağlar, and Ünal [14], by analysing the accuracy
of the numerical approximations obtained from the appropriate discretisation schemes. We obtain closed-form
solutions to the integro-differential boundary value problems associated with the values of Laplace transforms
of the first exit times as stopping problems for continuous-time Markov processes, including the (non-affine)
pure-jump analogues of certain mean-reverting and diverting diffusions.

Optimal stopping problems for some mean-reverting and diverting jump-diffusion processes were initiated
by Davis [4], Peskir and Shiryaev [25]-[26], Dayanik and Sezer [5]-[6], and [10]-[11] among others, with the aim
to detect the change points in the associated discontinuous observable processes. Discounted optimal stopping
problems for certain payoff functions depending on the current values of geometric compound Poisson processes
with multi-exponential jumps and their various extensions were considered by Mordecki [20]-[21], Kou [16], and
Kou and Wang [18] among others, with the aim of computing rational values for the perpetual American options.
The analytical tractability of these jump-diffusion models, which are widely applied for the description of the
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dynamics of risky asset prices in financial markets, enabled to reproduce the leptokurtic property of the returns
distributions. The main feature of the resulting optimal stopping problems and their equivalent free boundary
problems was the breakdown of the smooth-fit conditions for the value functions at the optimal boundaries and
their replacement by the continuous-fit conditions. In the context of optimal stopping problems, Asmussen et al.
[2] obtained explicit expressions for the Laplace transforms of the first hitting times of more general phase-type
Lévy processes over constant boundaries by means of the Wiener-Hopf factorization techniques.

Analytic expressions for the Laplace transforms of the first hitting times of compound Poisson processes over
linear boundaries were computed in Zacks et al. [28] in the case of positive jumps and in Perry et al. [23]-[24] in
certain cases of positive and negative jumps. Kou and Wang [17] and Sepp [27] derived closed-form expressions
for the Laplace transforms of the first hitting times over constant boundaries for double-exponential jump-
diffusion processes. Other related stopping problems arising from the computation of the Laplace transforms
of the first-passage times of more complicated spectrally positive and negative Lévy processes over constant
levels were recently considered by Mijatović and Pistorius [19]. Monte Carlo schemes for the computation of
the distribution of the first exit time of jump-diffusion processes from a two-sided interval in the general size
distribution case were developed in Fernandez et al. [8]. In contrast to the results of the most of the papers
mentioned above, in the present paper, we consider the problem of computation of the Laplace transforms of
the first exit times from intervals for jump-diffusion processes with drift coefficients being of general structure
which may lead to the mean-reverting or diverting behaviour of the processes.

The paper is structured as follows. In Section 2, we introduce the setting and notation of the model with a
jump-diffusion process satisfying a solvable stochastic differential equation. We define the Laplace transform of
the first exit time of the process and formulate the associated boundary value problem for an integro-differential
operator. In Section 3, we obtain a closed-form solution to the equivalent ordinary differential boundary value
problem using the assumption that the jump sizes of the driving compound Poisson processes have exponential
distribution. We derive explicit expressions in the cases of several mean-reverting and diverting pure-jump
analogues of certain continuous diffusion processes. In Section 4, we show that the solution to the boundary
value problem provides the original Laplace transform.

2 Preliminaries

In this section, we give a precise probabilistic formulation of the model and the stopping problem as well as its
equivalent boundary-value problem.

2.1 Formulation of the problem. Suppose that on a probability space (Ω,F , P ) there exists a standard

Brownian motion W = (Wt)t≥0 , Poisson processes N i = (N i
t )t≥0 and Nm+j = (Nm+j

t )t≥0 of intensities λi and

λm+j , and (Ξik)k∈N and (Ξm+j
l )l∈N are sequences of independent exponentially distributed random variables

with parameters αi > 1, i = 1, . . . ,m , and αm+j > 0, j = 1, . . . , n , for some m,n ∈ N , respectively. Assume

that W , N i , Nm+j , (Ξik)k∈N , and (Ξm+j
l )l∈N , for i = 1, . . . ,m and j = 1, . . . , n , are independent. Let us

consider a process X = (Xt)t≥0 solving the stochastic differential equation

dXt = β(Xt) dt+ σXt dWt +Xt−

∫ (
ev − 1

)
(µ− ν)(dt, dv), (2.1)

where β(x) is a continuously differentiable function of at most linear growth, and σ ≥ 0 is a given constant.
Here µ(dt, dv) is a measure of jumps of the process J = (Jt)t≥0 defined by

µ((0, t]×B) =
∑

0<s≤t
I{∆Js∈B} with Jt =

m∑
i=1

N i
t∑

k=1

Ξik −
n∑
j=1

Nm+j
t∑
l=1

Ξm+j
l , (2.2)
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for any Borel subset B of R \ {0} , and ν(dt, dv) is its compensator measure with

ν(dt, dv) = dt

(
I{v>0}

m∑
i=1

λi αie
−αiv + I{v<0}

n∑
j=1

λm+j αm+je
αm+jv

)
dv, (2.3)

where I{·} denotes the indicator function (see, e.g. [15, Chapter II, Section 1] for the definitions of these notions).
By virtue of the assumptions on the function β(x) and the fact that the jump process J is of finite intensity,
it thus follows from [15, Chapter III, Theorem 2.32] that the stochastic differential equation in (2.1) admits a
(pathwise) unique solution.

Let us denote by DX the state space of the process X and further assume that DX = (d0, d1) for some
0 ≤ d0 < d1 ≤ ∞ . We also define the associated first passage (stopping) times

τa = inf{t ≥ 0 |Xt ≤ a} and ζb = inf{t ≥ 0 |Xt ≥ b}, (2.4)

for some d0 < a < b < d1 fixed. The main purpose of the present paper is to derive closed-form expressions for
the Laplace transform of the random time τa ∧ ζb . We therefore need to compute the value function V∗(x) of
the following stopping problem given by

V∗(x) = Ex
[
e−κ(τa∧ζb) I{τa<ζb}

]
≡ Ex

[
e−κτa I{τa<ζb}

]
, (2.5)

for any x ∈ DX and some κ > 0 fixed. Here Ex denotes the expectation with respect to the probability measure
Px under which the one-dimensional time-homogeneous (strong) Markov process X starts at x ∈ DX ≡ (d0, d1).

2.2 The boundary value problem. By means of standard arguments based on the application of Itô’s
formula for semimartingales from [15, Chapter I, Theorem 4.57], it is shown that the infinitesimal generator L
of the process X acts on a twice continuously differentiable bounded function V (x) on DX ≡ (d0, d1) according
to the rule

(LV )(x) =
σ2x2

2
V ′′(x) +

(
β(x)−

( m∑
i=1

λi
αi − 1

−
n∑
j=1

λm+j

αm+j + 1

)
x

)
V ′(x) (2.6)

+
m∑
i=1

λi

∫ ∞
0

(
V (xey)− V (x)

)
αie
−αiy dy +

n∑
j=1

λm+j

∫ 0

−∞

(
V (xey)− V (x)

)
αm+je

αm+jy dy,

for all d0 < x < d1 . In order to find analytic expressions for the unknown value function V∗(x) in (2.5), let us
build on the results of the general theory of Markov processes (see, e.g. [7, Chapter V]). For this purpose, we
formulate the boundary value problem

(LV )(x) = κ V (x), for a < x < b, (2.7)

V (x) = 1, for x ≤ a, and V (x) = 0, for x ≥ b, (2.8)

V (a+) = 1 and V (b−) = 0, (2.9)

for d0 < a < b < d1 fixed, where the continuity conditions of (2.9) hold in the cases in which the process X
can pass continuously through the boundaries a and b , respectively. On the other hand, when σ = 0 holds, the
stochastic differential equation in (2.1) for X does not contain a diffusion part, so that the function V∗(x) may
be discontinuous at the points a or b , depending on the sign of the local drift rate β(x)− γx with

γ =

m∑
i=1

λi
αi − 1

−
n∑
j=1

λm+j

αm+j + 1
(2.10)
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in the stochastic differential equation of (2.1). This property follows from the fact that X may pass through
either of them only by jumping. Therefore, in order to determine which of the continuity conditions in (2.9)
should hold for V (x), let us assume that one of the following four cases is realised. If either the inequality
β(x) − γx < 0 or β(x) − γx > 0 holds for all a ≤ x ≤ b , then the process X can pass through either a or
b continuously, and thus, we assume that V (x) satisfies either the left-hand or right-hand condition of (2.9),
respectively. Moreover, if there exists some constant a < c < b such that

β(x)− γ x < 0 for x < c, β(x)− γ x > 0 for x > c, and β(c)− γ c = 0 (2.11)

holds, so that the process X diverts from the level c in a continuous way, and thus, we assume that V (x)
satisfies both conditions of (2.9), since the process X can pass through a and b continuously. Finally, if there
exists some constant a < c < b such that

β(x)− γ x > 0 for x < c, β(x)− γ x < 0 for x > c, and β(c)− γ c = 0 (2.12)

holds, then the process X reverts to the level c in a continuous way, and thus, both conditions of (2.9) do not
hold for V (x) at either a or b , since the process X cannot pass through these points continuously.

3 Solutions of the boundary-value problem

In this section, we derive closed-form solutions of the integro-differential boundary value problem formulated
above for various drift rate functions of the considered jump-diffusion process. For this purpose, we reduce the
original integro-differential equation to the equivalent ordinary differential equation of order m+n+2 and solve
the latter by means of the appropriate boundary conditions.

3.1 The equivalent ordinary differential problem. We now use the assumptions that the jump sizes

(Ξik)k∈N and (Ξm+j
l )l∈N are exponentially distributed and reduce the integro-differential boundary value problem

of (2.6)+(2.7)-(2.9) to an ordinary differential one. For this purpose, by applying the conditions of (2.8), we
obtain that the equation in (2.6)+(2.7) takes the form

a2,0(x)V ′′(x) + a1,0(x)V ′(x) + a0,0(x)V (x) + b0(x) (3.1)

+

m∑
i=1

λi x
αi

∫ b

x
V (z)αiz

−αi−1 dz +

n∑
j=1

λm+j x
−αm+j

∫ x

a
V (z)αm+jz

αm+j−1 dz = 0,

for a < x < b , where γ has the form of (2.10) and we set

a2,0(x) = σ2x2/2, a1,0(x) = β(x)− γ x, (3.2)

a0,0(x) = −
m∑
i=1

λi −
n∑
j=1

λm+j − κ, and b0(x) =
n∑
j=1

λm+j

(a
x

)αm+j

, (3.3)

for all x > 0. Let us define the differential operators

Li = −xαi−αi−1+1 d

dx
and Lm+j = xαm+j−1−αm+j+1 d

dx
, (3.4)

and introduce the notation Lk,k′ = Lk ◦ Lk+1 ◦ · · · ◦ Lk′ , with Lk,k′ being equal to the identity operator when
k > k′ . Then, we can observe that the expressions

Gi(x) = (Li+1,i′Gi′)(x), for i′ = i, . . . ,m, (3.5)

Gm+j(x) = (Lm+j+1,m+j′Gm+j′)(x), for j′ = j, . . . , n, Gi(x) = (Li+1,m+jGm+j)(x) (3.6)
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hold, where we set

G0(x) = V (x), Gi(x) =

∫ b

x
Gi−1(z) zαi−1−αi−1 dz, (3.7)

Gm+1(x) =

∫ x

a
Gm(z) zαm+1+αm−1 dz, Gm+j(x) =

∫ x

a
Gm+j−1(z) zαm+j−αm+j−1−1 dz, (3.8)

for all a ≤ x ≤ b and every i = 1, . . . ,m and j = 2, . . . , n , with α0 = 0, so that Gi(b) = 0 and Gm+j(a) = 0
holds, for i = 0, . . . ,m and j = 1, . . . , n . Hence, representing the integro-differential equation from (3.1) in
terms of the functions Gk(x), k = 0, . . . ,m + n , defined in (3.7)-(3.8) with the properties of (3.5)-(3.6) and
integrating by parts the corresponding terms, we obtain that the equation in (3.1) is equivalent to each of the
m + n ordinary integro-differential equations for the functions Gk(x), k = 0, . . . ,m + n , with the boundary
conditions given by

i+2∑
k=0

ak,i(x)G
(k)
i (x) + bi(x) + (−1)i

( m∑
k=1

λk αk x
αk

∫ b

x
Gi(z) z

αi−αk−1 dz
i∏

k′=1

(αk′ − αk) (3.9)

+

n∑
l=1

λm+l αm+l x
−αm+l

∫ x

a
Gi(z) z

αi+αm+l−1 dz

i∏
k′=1

(αk′ + αm+l)

)
= 0, for a < x < b,

(Lk+1,iGi)(b) = 0, for k = 1, . . . , i, (3.10)

for i = 1, . . . ,m , and

m+j+2∑
l=0

al,m+j(x)G
(l)
m+j(x) + bm+j(x) + (−1)m

n∑
l=1

λm+lαm+l x
−αm+l (3.11)

×
∫ x

a
Gm+j(z) z

αm+l−αm+j−1 dz

m∏
k=1

(αk + αm+l)

j∏
l′=1

(αm+l′ − αm+l) = 0, for a < x < b,

(Lm+l+1,m+jGm+j)(a) = 0, l = 1, . . . , j, (Li+1,m+jGm+j)(b) = 0, i = 1, . . . ,m, (3.12)

for j = 1, . . . , n , where the coefficients are given by

ak,i(x) =
i+2∑
k′=k

(k′ − 1)!

(k′ − k)!(k − 1)!

ak′−1,i−1(x)

xαi−1−αi−k+k′−1
(αi − αi−1 + 2− k′ + k)k′−k, (3.13)

a0,i(x) = (−1)i−1 xαi

( n∑
l=1

λm+lαm+l

i−1∏
k=1

(αk + αm+l)−
m∑
k=1

λkαk

i−1∏
k′=1

(αk′ − αk)
)
, (3.14)

bi(x) = (−1)i
n∑
l=1

λm+l

(a
x

)αm+l
(

1 + αm+l

i∑
k=1

aαkGk(a)
k−1∏
k′=1

(αk′ + αm+l)

)
, (3.15)
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for k = 1, . . . , i+ 2 and i = 1, . . . ,m , and

al,m+j(x) =

m+j+2∑
l′=l

(l′ − 1)!

(l′ − l)!(l − 1)!

al′−1,m+j−1(x)

xαm+j−αm+j−1−l+l′−1
(αm+j−1 − αm+j + 2− l′ + l)l′−l, (3.16)

a0,m+j(x) = (−1)mx−αm+j

n∑
l=1

λm+lαm+l

m∏
k=1

(αk + αm+l)

j−1∏
l′=1

(αm+l′ − αm+l), (3.17)

bm+j(x) = bm(x) = (−1)m
n∑
l=1

λm+l

(a
x

)αm+l
(

1 + αm+l

m∑
k=1

aαkGk(a)

k−1∏
k′=1

(αk′ + αm+l)

)
, (3.18)

for l = 1, . . . ,m+ j + 2 and j = 1, . . . , n . Here (x)k denotes the Pochhammer symbol (x)k = x(x+ 1) · · · (x+
k − 1), and (x)0 = 1, for any x ∈ R and k > 0 (see, e.g. [1, Chapter XIII]). We particularly observe that
the equation in (3.11) for j = n is an ordinary differential equation. Thus, taking into account the fact that
V (x) = G0(x) = (L1,m+nGm+n)(x) holds for a ≤ x ≤ b , we see that the integro-differential boundary value
problem of (2.6)+(2.7)-(2.9) for the unknown function V (x) is equivalent to the ordinary differential equation
for the function Gm+n(x) with the boundary conditions

m+n+2∑
k=0

ak,m+n(x)G
(k)
m+n(x) + bm+n(x) = 0, for a < x < b, (3.19)

(Lm+j+1,m+nGm+n)(a) = 0, for j = 1 . . . , n, (3.20)

(Li+1,m+nGm+n)(b) = 0, for i = 1, . . . ,m, (3.21)

(L1,m+nGm+n)(a+) = 1, and (L1,m+nGm+n)(b−) = 0, (3.22)

for the unknown function Gm+n(x). It follows from the results of the general theory of linear ordinary differential
equations that the general solution of the equation in (3.19) has the form

Gm+n(x) = Gm+n(x) +

m+n+2∑
k=1

Ck Uk(x), for a < x < b, (3.23)

where Ck , k = 1, . . . ,m + n + 2, are some arbitrary constants. Here Uk(x), k = 1, . . . ,m + n + 2, constitute
the fundamental system of m+ n+ 2 solutions (i.e. nontrivial linearly independent particular solutions) of the
homogeneous version of the m + n + 2-th order linear ordinary differential equation in (3.19) and Gm+n(x) is
a particular solution of (3.19). Then, applying the boundary conditions from (3.20)-(3.22) to the function in
(3.23), we get that the equalities

(Lm+j+1,m+nGm+n)(a) +

m+n+2∑
k=1

Ck (Lm+j+1,m+nUk)(a) = 0, for j = 1, . . . , n, (3.24)

(Li+1,m+nGm+n)(b) +

m+n+2∑
k=1

Ck (Li+1,m+nUk)(b) = 0, for i = 1, . . . ,m, (3.25)

(L1,m+nGm+n)(a+) +

m+n+2∑
k=1

Ck (L1,m+nUk)(a+) = 1, (3.26)

(L1,m+nGm+n)(b−) +
m+n+2∑
k=1

Ck (L1,m+nUk)(b−) = 0 (3.27)
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hold, where the conditions in (3.26)-(3.27) are satisfied whenever σ 6= 0 in (2.1). Hence, the candidate solution
for the system in (2.7)-(2.9) admits the representation

V (x; a, b) = (L1,m+nGm+n)(x) +
m+n+2∑
k=1

Ck(a, b) (L1,m+nUk)(x), for a < x < b, (3.28)

where the constants Ck(a, b), k = 1, . . . ,m+ n+ 2, are uniquely determined by the linear system of equations
(3.24)-(3.27), due to the linear independence of the fundamental solutions Uk(x), k = 1, . . . ,m+ n+ 2, of the
equation in (3.19).

On the other hand, if σ = 0 holds, the corresponding integro-differential equation in (2.6)+(3.1) admits the
solution V (x; a, b) of the form of (3.28), with Cm+n+2(a, b) = 0. In order to specify the remaining constants
Ck(a, b), k = 1, . . . ,m + n + 1, let us study the cases depending on the sign of the drift rate β(x)− γx of the
process X from (2.1). More precisely, if either β(x)−γx < 0 or β(x)−γx > 0 holds for all a ≤ x ≤ b , then the
constants Ck(a, b), k = 1, . . . ,m+ n+ 1, are uniquely determined by the linear system of equations in (3.24)-
(3.25), with either (3.26) or (3.27), respectively. Moreover, if there exists some constant a < c < b such that
the properties in (2.11) hold, then c is a singularity point of the integro-differential equation (2.6)+(3.1) when
σ = 0. Hence, we obtain that the candidate solution for the system in (2.7)-(2.9) admits the representation

V −(x; a, c) = (L1,m+nGm+n)(x) +
m+n+1∑
k=1

C−k (a, c) (L1,m+nUk)(x), for a < x < c, (3.29)

V +(x; c, b) = (L1,m+nGm+n)(x) +
m+n+1∑
k=1

C+
k (c, b) (L1,m+nUk)(x), for c < x < b, (3.30)

where the constants C−k (a, c) and C+
k (c, b), k = 1, . . . ,m+n+1, are uniquely determined by the linear systems

in (3.24)-(3.25), with either (3.26) or (3.27), respectively.

Finally, if there exists some constant a < c < b such that the properties in (2.12) hold, then the candidate
solution for the system in (2.7)-(2.9) admits the representation of (3.28), where we have |(L1,m+nUm+n+1)(c−)| =
|(L1,m+nUm+n+1)(c+)| =∞ at the corresponding singularity point c of the equation in (2.6)+(2.7) when σ = 0.
In this case, we need to put Cm+n+1(a, b) = 0 into (3.28), since otherwise V (x; a, b) → ±∞ as x ↑ c or x ↓ c ,
respectively, which must be excluded by virtue of the obvious fact that the value function V∗(x) in (2.5) is
bounded. Then, the remaining constants Ck(a, b), k = 1, . . . ,m + n , are uniquely determined by the linear
system in (3.24)-(3.25) above with Cm+n+1(a, b) = 0.

3.2 The case of a single driving compound Poisson process. Let us now find the solution of the
boundary value problem of (2.6)-(2.9) in the setting with a single driving compound Poisson process with
positive exponential jumps. Specifically, we put m = 1, n = 0, and σ = 0, so that the compensator measure
ν(dt, dv) from (2.3) has the form ν(dt, dv) = λ1dtI{v>0}α1e

−α1vdv , for some λ1 > 0 and α1 > 1. Then, the
system in (3.19)-(3.22) can be represented as(

β(x)− γ x
)
xG′′1(x)− λ1α1G1(x) (3.31)

+
(

(α1 + 1)
(
β(x)− γ x

)
− (λ1 + κ)x

)
G′1(x) = 0, for a < x < b,

G1(b) = 0, G′1(a+) = −a−α1−1, and G′1(b−) = 0, (3.32)

so that the general solution from (3.23) takes the form

G1(x) = C1 U1(x) + C2 U2(x), for a < x < b, (3.33)
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and the system in (3.24)-(3.27) is given by

C1 U1(b) + C2 U2(b) = 0, (3.34)

C1 U
′
1(a+) + C2 U

′
2(a+) = −a−α1−1, and C1 U

′
1(b−) + C2 U

′
2(b−) = 0, (3.35)

where Ck , k = 1, 2, are some arbitrary constants, and Uk(x), k = 1, 2, constitute the fundamental system of
solutions of the ordinary differential equation in (3.31) for a < x < b . Hence, we obtain that the candidate
solution for the system in (2.7)-(2.9) admits the representation

V (x; a, b) = −xα1+1
(
C1(a, b)U ′1(x) + C2(a, b)U ′2(x)

)
, for a < x < b, (3.36)

where the constants Ck(a, b), k = 1, 2, are uniquely determined by (3.34) and either the left-hand or right-hand
equation in (3.35), when either the inequality β(x) − γx < 0 or β(x) − γx > 0 holds for all a ≤ x ≤ b ,
respectively. On the other hand, when the condition of (2.11) holds, the candidate solution is of the form

V −(x; a, c) = −xα1+1
(
C−1 (a, c)U ′1(x) + C−2 (a, c)U ′2(x)

)
, for a < x < c, (3.37)

V +(x; c, b) = −xα1+1
(
C+

1 (c, b)U ′1(x) + C+
2 (c, b)U ′2(x)

)
, for c < x < b, (3.38)

where the constants C−k (a, c) and C+
k (c, b), k = 1, 2, are uniquely determined by the equation in (3.34) and

either of the equations in (3.35), respectively. Finally, when the condition of (2.12) holds, the candidate solution
is of the form

V (x; a, b) = −xα1+1C1(a, b)U ′1(x), for a < x < b, (3.39)

where the constant C1(a, b) is uniquely determined by (3.34).

Let us finally derive explicit expressions for the fundamental system of solutions Uk(x), k = 1, 2, and thus,
for the candidate value functions V (x; a, b) from (3.36)+(3.39), or V −(x; a, c) and V +(x; c, b) from (3.37)-
(3.38), for several drift rates β(x) in the stochastic differential equation of (2.1), under the assumptions of this
subsection.

Example 3.1. (A pure jump analogue of the Ornstein-Uhlenbeck model.) Let the drift coefficient β(x) of the
process X from (2.1) be given as β(x) = β0(1 + x) for some constant β0 and all x ∈ DX = (0,∞), and set
β1 = β0 − γ . When β1 6= 0 holds, we see from (3.31) that G1(x) satisfies the ordinary differential equation(β0

β1
+ x
)
xG′′1(x) +

((
α1 + 1− λ1 + κ

β1

)
x+

β0(α1 + 1)

β1

)
G′1(x)− λ1α1

β1
G1(x) = 0, (3.40)

for a < x < b . When neither of the conditions (2.11)-(2.12) is satisfied, the equation in (3.40) does not have
singular points for a < x < b . Hence, it follows from [29, Formulas 2.1.2.172 and 2.1.2.171] that the candidate
solution for the system in (2.7)-(2.9) is of the form (3.36), where

U1(x) = F (η1, η2; ζ;H(x)), (3.41)

U2(x) = H(x)1−ζ F (η1 − ζ + 1, η2 − ζ + 1; 2− ζ;H(x)), (3.42)

in the case when ζ , ζ − η1 − η2 , and η1 − η2 are not integers (for the other cases see [1, Chapter XV, Section
5] and [3, Chapter II, Sections 2 and 3]). Here F (η, ζ; ρ; z) denotes the Gauss’ hypergeometric function, which
admits the integral representation

F (η, ζ; ρ; z) ≡ 2F1(η, ζ; ρ; z) =
Γ(ρ)

Γ(ζ)Γ(ρ− ζ)

∫ 1

0
vζ−1(1− v)ρ−ζ−1(1− vz)−η dv (3.43)
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for 0 < ζ < ρ , and the series expansion

F (η, ζ; ρ; z) ≡ 2F1(η, ζ; ρ; z) = 1 +
∞∑
k=1

(η)k(ζ)k
(ρ)k

zk

k!
(3.44)

for ρ 6= 0,−1,−2, . . . , where the series converges under all |z| < 1 (see [1, Chapter XV]), and we set

η1,2 =
α1β1 − (λ1 + κ)±

√
(λ1 + κ − α1β1)2 + 4λ1α1β1

2β1
, ζ = α1 + 1, and H(x) = −β1

β0
x. (3.45)

When the condition in (2.11) is satisfied, the equation in (3.40) has a singular point at x = −β0/β1 for a < x < b .
However, it does not have a singular point for a < x < −β0/β1 and −β0/β1 < x < b , and the candidate solution
for the system in (2.7)-(2.9) is of the form (3.37)-(3.38) where the functions Uk(x), k = 1, 2, are given by
(3.41)-(3.42). Finally, notice that when the condition in (2.12) is satisfied, we have that a < −β0/β1 < b ,
β1 < 0 < β0 < γ , and the equation in (3.40) has a singular point at x = −β0/β1 , for a < x < b . It follows from
[29, Formula 2.1.2.172] and [1, Chapter XV, Section 5] that the general solution of the second-order ordinary
differential equation in (3.40) is of the form (3.33), where

U1(x) = F (η1, η2; η1 + η2 + 1− ζ; 1−H(x)), (3.46)

U2(x) = (1−H(x))ζ−η1−η2 F (ζ − η2, ζ − η1; ζ − η1 − η2 + 1; 1−H(x)). (3.47)

Hence, the properties that the equalities F (η, ζ; ρ; 0) = 1 and ∂zF (η, ζ; ρ; z) = (ηζ/ρ)F (η+ 1, ζ+ 1; ρ+ 1; z) are
satisfied yield the fact that |U ′2(−β0/β1±)| =∞ holds and the candidate solution for the system in (2.7)-(2.9)
is of the form (3.39).

On the other hand, when we assume that β1 = 0 holds, it follows from (3.31) that G1(x) satisfies the
ordinary differential equation

β0 xG
′′
1(x) +

(
β0(α1 + 1)− (λ1 + κ)x

)
G′1(x)− λ1α1G1(x) = 0, (3.48)

for a < x < b , and none of the conditions in (2.11)-(2.12) are satisfied. It follows from [29, Formu-
las 2.1.2.108 and 2.1.2.70] that the candidate solution for the system in (2.7)-(2.9) is of the form (3.36), where

U1(x) = eρx Φ(η, ζ;H(x)), U2(x) = eρx Ψ(η, ζ;H(x)), (3.49)

and we set η = (α1κ/(λ1 + κ)) + 1, ζ = α1 + 1, ρ = (λ1 + κ)/β0 , and H(x) = −(λ1 + κ)x/β0 . Here, the
functions Φ(η, ζ; z) and Ψ(η, ζ; z) are the Kummer’s and Tricomi’s confluent hypergeometric functions (see, e.g.
[1, Chapter XIII]), respectively, which admit the integral representations

Φ(η, ζ; z) =
Γ(ζ)

Γ(η)Γ(ζ − η)

∫ 1

0
ezv vη−1(1− v)ζ−η−1 dv, (3.50)

for 0 < η < ζ , and all z ∈ R , and

Ψ(η, ζ; z) =
1

Γ(ζ)

∫ ∞
0

e−zv vη−1(1 + v)ζ−η−1 dv, (3.51)

for ζ > 0 and all z > 0. Here Φ(η, ζ; z) also has the series expansion

Φ(η, ζ; z) = 1 +

∞∑
k=1

(η)k
(ζ)k

zk

k!
(3.52)

for ζ 6= 0,−1,−2, . . . , where the series converges under all z > 0 (see [1, Chapter XIII]), and Γ(z) denotes the
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Euler’s gamma function.

Example 3.2. (A pure jump analogue of the Cox-Ingersoll-Ross model I.) Let the drift coefficient β(x) of the
process X from (2.1) be given as β(x) = β1x lnx for some constant β1 and all x ∈ DX = (1,∞). Then, we
conclude from (3.31) that G1(x) satisfies the ordinary differential equation

(β1 lnx− γ)x2G′′1(x) +
(
(α1 + 1) (β1 lnx− γ)− λ1 − κ

)
xG′1(x)− λ1α1G1(x) = 0, (3.53)

for a < x < b . When we assume that β1 6= 0 holds and the condition in (2.12) is not satisfied, by performing
the change of variable y = lnx , it follows from [29, Formulas 2.1.2.108 and 2.1.2.70] that the candidate solution
for the system in (2.7)-(2.9) is of the form (3.36) or (3.37)-(3.38), where

U1(x) = xρ Φ(η, ζ;H(x)), U2(x) = xρ Ψ(η, ζ;H(x)), (3.54)

for ζ 6= 0,−1,−2, . . . , and

U1(x) = xρH(x)1−ζ Φ(η − ζ + 1, 2− ζ;H(x)), (3.55)

U2(x) = xρH(x)1−ζ Ψ(η − ζ + 1, 2− ζ;H(x)), (3.56)

for ζ = 0,−1,−2, . . . . Here, we set η = (−κI{β1<0} − λ1I{β1>0})/β1 , ζ = −(λ1 + κ)/β1 , ρ = −α1I{β1<0} ,
and H(x) = sgn(β1)α1(γ/β1 − lnx), and the functions Φ(η, ζ; z) and Ψ(η, ζ; z) are defined in (3.50)-(3.51).
When the condition in (2.12) is satisfied, we have that a < eγ/β1 < b , β1 < 0, and the equation in (3.53)
has a singular point at x = eγ/β1 , for a < x < b . Hence, the properties that the equalities Φ(η, ζ; 0) = 1,
∂zΦ(η, ζ; z) = (η/ζ)Φ(η + 1, ζ + 1; z), ∂zΨ(η, ζ; z) = −ηΨ(η + 1, ζ + 1; z), and Ψ(η, ζ; 0+) =∞ , for ζ > 1, are
satisfied yield the fact that |U ′2(eγ/β1±)| = ∞ holds and the candidate solution for the system in (2.7)-(2.9) is
of the form (3.39).

On the other hand, when we assume that β1 = 0 holds, it follows from (3.53) that G1(x) satisfies the
ordinary differential equation

γ x2G′′1(x) +
(
γ(α1 + 1) + λ1 + κ

)
xG′1(x) + λ1α1G1(x) = 0, (3.57)

for a < x < b , and none of the conditions (2.11)-(2.12) are satisfied. We can conclude from [29, Formula 2.1.123]
that the candidate solution for the system in (2.7)-(2.9) is of the form (3.36), where

U1(x) = x(1−π1+2π3)/2, U2(x) = x(1−π1−2π3)/2, if (1− π1)2 > 4π2, (3.58)

U1(x) = x(1−π1)/2, U2(x) = x(1−π1)/2 lnx, if (1− π1)2 = 4π2, (3.59)

U1(x) = x(1−π1)/2 sin(π3 lnx), U2(x) = x(1−π1)/2 cos(π3 lnx), if (1− π1)2 < 4π2, (3.60)

and we set π1 = α1 + 1 + (λ1 + κ)/γ , π2 = λ1α1 , and π3 =
√
|(1− π1)2 − 4π2|/2.

Example 3.3. (A pure jump analogue of the Cox-Ingersoll-Ross model II.) Let the drift coefficient β(x) of
the process X from (2.1) be given as β(x) = β1x/ lnx for some constant β1 and x ∈ DX = (0, 1). Then, we
conclude from (3.31) that G1(x) satisfies the ordinary differential equation( β1

lnx
− γ
)
x2G′′1(x) +

(
(α1 + 1)

( β1

lnx
− γ
)
− λ1 − κ

)
xG′1(x)− λ1α1G1(x) = 0, (3.61)

for a < x < b . By analogy with Example 3.2, when we assume that β1 6= 0 holds and the condition in
(2.12) is not satisfied, it follows from [29, Formulas 2.1.2.108 and 2.1.2.70] that the candidate solution for the
system in (2.7)-(2.9) is of the form (3.36) or (3.37)-(3.38), where the functions Uk(x), k = 1, 2, are given by
(3.54) for ζ being not a non-positive integer, and (3.55)-(3.56) otherwise, where we set ∆ = (κ − γ)2 + 4κγα1 ,
ρ = −(λ1 + κ +

√
∆)/2γ − α1/2, η = β1(α1 + ρ)ρ/

√
∆, ζ = β1(λ1 + κ)/γ2 , and H(x) =

√
∆(lnx − β1/γ)/γ .
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When the condition in (2.12) is satisfied, we have that a < eβ1/γ < b , β1 > 0, and the equation in (3.53)
has a singular point at x = eβ1/γ for a < x < b . Hence, by analogy with Example 3.2, we can conclude that
|U ′2(eγ/β1±)| =∞ and the candidate solution for the system in (2.7)-(2.9) is of the form (3.39). Finally, when we
assume that β1 = 0 holds, it follows from (3.61) that G1(x) satisfies the ordinary differential equation in (3.57),
for a < x < b , and none of the conditions (2.11)-(2.12) are satisfied. We can conclude from [29, Formula 2.1.123]
that the candidate solution for the system in (2.7)-(2.9) is of the form (3.36), where the functions Uk(x), k = 1, 2,
are given by (3.58)-(3.60).

4 Equivalence of the two problems

We now state and prove the corresponding assertion relating the solution of the boundary value problem to the
original Laplace transform value function.

Theorem 4.1. Suppose that the process X provides a (unique strong) solution of the stochastic differential
equation in (2.1). Then, the Laplace transform V∗(x) from (2.5) of the associated with X random variable
τa ∧ ζb over the event {τa < ζb} from (2.4) admits the representation

V∗(x) = V (x; a, b), for a < x < b, (4.1)

for any fixed a, b ∈ DX such that a < b, where the function V (x; a, b) is specified as follows:

(i) If σ 6= 0 then the function V (x; a, b) admits the representation of (3.28) with the constants Ck(a, b),
k = 1, . . . ,m+ n+ 2, providing a unique solution to the system in (3.24)-(3.27).

(ii) If σ = 0 and either β(x) − γx < 0 or β(x) − γx > 0 holds for all a ≤ x ≤ b, then V (x; a, b) admits
the representation of (3.28) with Cm+n+2(a, b) = 0 and Ck(a, b), k = 1, . . . ,m+ n+ 1, being a unique solution
of the system in (3.24)-(3.25) with either (3.26) or (3.27), respectively. If σ = 0 and the condition of (2.11)
holds, then V (x; a, b) is given by V −(x; a, c) and V +(x; c, b) from (3.29)-(3.30) with the constants C−k (a, c) and
C+
k (c, b), k = 1, . . . ,m + n + 1, being a unique solution of the system (3.24)-(3.25) with either the conditions

of (3.26) or (3.27), respectively. Finally, if σ = 0 and the condition of (2.12) holds, then V (x; a, b) admits the
representation of (3.28) with Cm+n+1(a, b) = Cm+n+2(a, b) = 0 and Ck(a, b), k = 1, . . . ,m+ n, being a unique
solution of the system in (3.24)-(3.25).

Proof. In order to verify the assertion formulated above, we need to show that the function on the right-hand
side of the expression in (4.1) coincides with the value function in (2.5). For this purpose, let us denote by V (x)
the right-hand side of the expression in (4.1).

(i) Let us first consider the case σ 6= 0. Following the idea of the proof in [17, Theorem 3.1], by using
the property that V (x) is bounded, we can introduce a sequence of twice continuously differentiable bounded
functions (Vk(x))k∈N on DX such that |Vk(x) − V (x)| ≤ 1 holds for all x ∈ DX , and Vk(x) = V (x) holds
for x ∈ DX \ ((a − 1/k, a) ∪ (b, b + 1/k)). Note that, by construction of the functions above, we clearly have
Vk(x)→ V (x) for all x ∈ DX as k →∞ . By applying the Itô’s formula to the process e−κtVk(Xt), we get that

e−κ(t∧τa∧ζb) Vk(Xt∧τa∧ζb) = Vk(x) +

∫ t∧τa∧ζb

0
e−κs (LVk − κVk)(Xs) ds+Mk

t∧τa∧ζb (4.2)

holds for all t ≥ 0 and x ∈ DX , where the process Mk = (Mk
t )t≥0 defined by

Mk
t =

∫ t

0
e−κs V ′(Xs)σXs dWs +

∫ t

0

∫
e−κs

(
Vk(Xs−e

y)− Vk(Xs−)
)

(µ− ν)(ds, dy), (4.3)

for any k ∈ N , is a local martingale. It follows from the inequality |Vk(x)− V (x)| ≤ 1 for all x ∈ DX that we
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have

∣∣(LVk − κVk)(x)
∣∣ ≤ λ( m∑

i=1

αi

∫ ln(b+1/k)−lnx

ln b−lnx

∣∣Vk(xey)− V (xey)
∣∣ dy (4.4)

+
n∑
j=1

βj

∫ ln a−lnx

ln(a−1/k)−lnx

∣∣Vk(xey)− V (xey)
∣∣ dy)

≤ λ
(

ln
(b+ 1/k

b

) m∑
i=1

αi + ln
( a

a− 1/k

) n∑
i=1

βi

)
→ 0,

for x ∈ DX uniformly in x as k → ∞ . Hence, we obtain from the expression in (4.2) and the fact that Vk(x)
is bounded that the inequality

|Mk
t | ≤ C + λ

(
ln
(b+ 1/k

b

) m∑
i=1

αi + ln
( a

a− 1/k

) n∑
i=1

βi

)
t (4.5)

holds for some constant C > 0 and all t ≥ 0, so that the process (Mk
t∧τa∧ζb)t≥0 is a martingale. Thus, taking

the expectation with respect to Px in (4.2), we get

Ex

[
e−κ(t∧τa∧ζb) Vk(Xt∧τa∧ζb)−

∫ t∧τa∧ζb

0
e−κs (LVk − κVk)(Xs) ds

]
= Vk(x), (4.6)

for t ≥ 0 and x ∈ DX . Note that, by virtue of the fact that Vk(x) → V (x) holds for all x ∈ DX , we get that
Vk(Xt∧τa∧ζb)→ V (Xt∧τa∧ζb) (Px -a.s.). Therefore, we have by the dominated convergence that

lim
k→∞

Ex
[
e−κ(t∧τa∧ζb) Vk(Xt∧τa∧ζb)

]
= Ex

[
e−κ(t∧τa∧ζb) V (Xt∧τa∧ζb)

]
, (4.7)

and by the uniform convergence in (4.4), we obtain

lim
k→∞

Ex

[ ∫ t∧τa∧ζb

0
e−κs (LVk − κVk)(Xs) ds

]
= 0, (4.8)

for t ≥ 0 and x ∈ DX . Hence, we conclude that

Ex
[
e−κ(t∧τa∧ζb) V (Xt∧τa∧ζb)

]
= lim

k→∞
Vk(x) = V (x) (4.9)

holds for all t ≥ 0 and x ∈ DX . Therefore, letting t go to infinity and using the conditions in (2.8)-(2.9) as
well as the fact that V (Xτa∧ζb) = I{τa<ζb} on the set {τa ∧ ζb < ∞} , we can apply the Lebesgue dominated
convergence theorem for (4.9) to obtain that the equalities

Ex
[
e−κ(τa∧ζb) I{τa<ζb}

]
= Ex

[
e−κ(τa∧ζb) V (Xτa∧ζb) I{τa∧ζb<∞}

]
= V (x) (4.10)

hold for all x ∈ DX , which completes the proof in the case σ 6= 0.

(ii) Assume now that σ = 0 and V (x) satisfies the right-hand condition in (2.9), so that V (b−) = 0
holds, but does not satisfy the left-hand condition there, so that V (a+) 6= 1 holds (the other cases can be
dealt with similarly). This feature corresponds to the case in which the process X can pass through the
boundary a only by jumping, and we particularly have that Px(Xτa = a) = 0 holds for x ∈ DX \ {a} . By
analogy to case (i), we introduce a sequence of continuously differentiable bounded functions (Vk(x))k∈N on
DX such that Vk(a) = V (a+) and |Vk(x) − V (x)| ≤ |Vk(a) − V (a)| holds for all x ∈ DX , and Vk(x) = V (x)
holds for x ∈ DX \ ((a − 1/k, a] ∪ (b, b + 1/k)). Note that, by construction of the functions above, we clearly
have Vk(x) → V (x) for all x ∈ DX \ {a} as k → ∞ and, since Px(Xτa = a) = 0 holds, we have that
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Vk(Xt∧τa∧ζb)→ V (Xt∧τa∧ζb) (Px -a.s.). The rest of the proof follows from the arguments in case (i).
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