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Abstract

Volatility, represented in the form of conditional heteroscedasticity, plays an impor-

tant role in controlling and forecasting risks in various financial operations including

asset pricing, portfolio allocation, and hedging futures. However, modeling and fore-

casting multi-dimensional conditional heteroscedasticity are technically challenging. As

the volatilities of many financial assets are often driven by a few common and latent

factors, we propose in this paper a dimension reduction method to model a multivariate

volatility process and to estimate a lower-dimensional space, to be called the volatility

space, within which the dynamics of the multivariate volatility process is confined. The

new method is simple to use, as technically it boils down to an eigenanalysis for a non-

negative definite matrix. Hence it is applicable to the cases when the number of assets
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concerned is in the order of thousands (using an ordinary PC/laptop). On the other

hand, the model has the capability to cater for complex conditional heteroscedastic-

ity behavior for multi-dimensional processes. Some asymptotic properties for the new

method are established. We further illustrate the new method using both simulated

and real data examples.

Keywords: Eigenanalysis, Latent factors, Multi-dimensional volatility process, Volatility

space.
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1 Introduction

Volatility is a measure for the uncertainty and the risk of asset returns. It is usually defined

as the conditional standard deviation of an asset return given all the available information

up to the present time. The importance of correctly specifying and forecasting volatilities is

reflected in almost every facet of finance. It is related to option pricing (e.g. Black-Scholes

formula), risk measures (e.g. value-at-risk), risk-adjusted return (e.g. Sharpe ratio), securi-

ties regulations (e.g. capital requirement under Basel III), portfolio allocation and hedging.

While a large number of statistical models as well as the associated inference methods and

theory have been developed for modelling and forecasting univariate volatilities, almost all

real financial applications require to specify the volatilities for multiple assets jointly. This

calls for the modelling of conditional variance-covariance matrix processes. Though there

is little conceptual difficulty in extending most univariate volatility models to multivariate

cases, the inference and the implementation for those models are challenging. Those models

are typically over-parameterized; leading to flat likelihoods which cause innate difficulties

in inference. Also the high dimensionality of the volatility process (i.e. in the order of N2

for N assets) causes operational difficulties in implementing inference methods. Therefore

some extremely simple models (with a very small number of parameters) are proposed at

the early stage of the development in order to make the inference feasible and the models

interpretable. See the surveys in Wang and Yao (2005), Bauwens, Laurent, and Rom-

bouts (2006), Asai, McAleer and Yu (2006), Silvemmponen and Terasvirta (2008) and the

references within.

The phrase ‘markets move together’ could be taken as a folklore in finance. It partially

reflects the fact that the prices and their volatilities across different assets are often driven

by a few common factors. The celebrated CAPM and Fama-French models are cases in

point. In this paper, we propose a simple method to identify the latent common factors

which drive the volatilities of multiple or even a large number of assets. By assuming that

those latent factors are linear combinations of the observed returns, the task is to estimate

the factor loadings (on the returns). Technically our estimation method boils down to

an eigenanalysis for a non-negative definite matrix. Hence it is applicable for modelling
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volatility processes for thousands of assets using an ordinary PC or laptop. The method

itself is generic in the sense that we do not impose any explicit parametric forms on the

volatility process; see Section 2.1 below.

Our approach can be viewed as a version of volatility factor model. However it differs

from the factor model of Engle and Kroner (1995) which assumes that the factors are

known and observable. See also Tao et al (2011) which deals factor volatility models with

some initial estimators obtained from using high-frequency data. The latent factors in our

approach can also be viewed as a generalized version of principal volatility components

(PVC) of Hu and Tsay (2014), although our version is only characterized by the second

moments properties instead of (truncated) fourth moments adopted in Hu and Tsay (2014).

Unlike Hu and Tsay (2014), we do not assume that the underlying volatility process is a

vector ARCH(∞) process. Though our approach is based on the same idea as Pan et al.

(2010), our implementation is radically different. While the innovation expansion method

proposed in Pan et al. (2010) requires to solve a sequence of complex nonlinear optimization

problems, our method boils down to a single eigenanalysis for a non-negative definite matrix,

and therefore is applicable when the dimension of time series is large or much larger.

The rest of the paper is organized as follows. In Section 2, we introduce our setting and

the eigenanalysis-based estimation method. The asymptotic properties of the proposed

method is presented in Section 3. We illustrate the proposed method by simulation in

Section 4 which also contains some numerical comparisons with the PVC method of Hu

and Tsay (2014). Further illustration using two real data sets is presented in Section 5.

2 Methodology

2.1 Basic setting

Let yt = (y1t, y2t, . . . , yNt)
′ be an N -dimensional strictly stationary time series with finite

first two moments. Let Ft = σ(yt, yt−1, . . . , ) denote the σ-algebra generated by yt, yt−1, ...

(i.e., the information available up to the time t). For expositional simplicity, we assume
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E(yt|Ft−1) = 0. Our objective is to model the conditional variance and covariance process

Σy(t) = var(yt|Ft−1) = E(yty
′
t|Ft−1), t = 0,±1,±2, · · · .

To simplify the matter concerned, we assume that var(yt) = IN , where IN is the N × N

identity matrix. In practice, this amounts to replacing yt by S−1/2yt, where S is the sample

covariance matrix of yt, and is assumed to be invertible.

Let

M0 = { a ∈ RN
∣∣ var(a′yt|Ft−1) 6= var(a′yt) }.

Then M0 consists of all the directions in which yt exhibits conditional heteroscedasticity.

Let M1 be the linear space spanned by M0, which is called the volatility space of yt. We

assume that the dimension of M1 is an positive integer r smaller than N . Let A be an

N × r matrix whose columns form an orthonormal basis of M1. Then such an A always

exists but not uniquely. Furthermore, let B be an N × (N − r) matrix such that (A,B)

forms an N ×N orthogonal matrix. Now yt can be formally written as

yt = (AA′ +BB′)yt = Axt + εt, (2.1)

where xt = A′yt can be viewed as an r-variate latent factor process which drives the con-

ditional heteroscedasticity of yt, and εt = BB′yt exhibits no conditional heteroscedasticity

as var(εt|Ft−1) ≡ var(εt). It follows from (2.1) and Lemma 1 below that

Σy(t) = AΣx(t)A
′ +Σε, (2.2)

where Σx(t) = var(xt|Ft−1) and Σε = var(εt). This is the standard form of volatility factor

models; see, e.g. Engle and Kroner (1995), though the factor process xt is unobservable

now.

When r > 0 but small, the conditional heteroscedasticity of yt is confined to an r-

dimensional volatility space M1. While M1 is uniquely defined by yt, (A, xt) in (2.1) and

(2.2) are not. In fact they can be replaced by (AH,H ′xt) for any r × r orthogonal matrix
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H.

Lemma 1 Under the assumption var(yt) = IN , cov(xt, εt|Ft−1) = 0.

Proof. Let V = IN −Σy(t). As c′V c = var(c′yt)− var(c′yt|Ft−1) ≥ 0 for any c ∈ RN , V is

a non-negative definite matrix. By the definition of εt, B
′V B = 0. Therefore V 1/2B = 0,

and consequently

0 = V B = {IN − Σy(t)}B. (2.3)

Now

cov(xt, εt|Ft−1) = A′Σy(t)BB′ = A′INBB′ = A′BB′ = 0.

2.2 Estimation

Since the factor loading matrix A in (2.1) is not unique, any A can be used as long as the

linear space spanned by its columns is equal to the volatility space M1. Note that M1 is

also uniquely determined by B characterized in equation (2.3). By Theorem 7.1.1 of Chow

and Teicher (1997), (2.3) is equivalent to

E{(yty′t − IN )I(W )}B = 0 for all W ∈ Bt, (2.4)

where Bt is any π-class such that the σ-algebra generated by Bt is Ft−1, and I(·) is the

indicator function. Also note that (2.4) can be equivalently expressed as MB = 0, where

M =
∑

W∈Bt

[
E{(yty′t − IN )I(W )}

]2
.

In practice we replace M by

M1 =
m∑

k=1

∑

W∈B
w(W )

[
E{(yty′t − IN )I(yt−k ∈ W )}

]2
, (2.5)

where m is a prescribed positive integer, w(·) is a weight function, and

B =
{
(u ∈ RN : ‖u‖ ≤ ‖yt‖), t = 1, 2, 3...T

}
. (2.6)
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See also Fan, Wang and Yao (2008). Note that M1 is a non-negative definite matrix, and

M1B = 0 implies that the columns of B are the eigenvectors of M1 corresponding to the

eigenvalue 0. Therefore the columns of A are the eigenvectors of M1 corresponding to non-

zero eigenvalues. Furthermore the rank of matrix M1 is the number of latent factors r.

Thus we can directly estimate A.

The matrix M1 facilitates a natural estimator

M̂1 =
m∑

k=1

∑

W∈B
w(W )

[ 1

T − k

T∑

t=k+1

{(yty′t − IN )I(yt−k ∈ W )}
]2
. (2.7)

Perform the eigenanalysis for M̂1, and let λ̂1 ≥ · · · ≥ λ̂N be its eigenvalues, and γ̂1, · · · , γ̂N
be the corresponding eigenvectors. Then Â = (γ̂1, · · · , γ̂r) is an estimated factor loading

matrix. Denoted by M̂1 the linear space spanned by the columns of Â. Then M̂1 is an

estimator for the volatility space M1. Furthermore x̂t = Â′yt is an estimated factor process.

In principle one might like to use a large m in (2.7). However in practice a small m

is often sufficient, as the information carried in the first a few lags is enough to determine

the volatility space. Furthermore our method is not so sensitive to the choice of m, as all

the terms on the RHS of (2.7) are non-negative definite matrices. There is no information

cancellation among different lags.

In practice we also need to estimate the number of factors r. We adopt the ratio

estimator

r̂ = max
1≤j≤N−1

λ̂j

/
λ̂j+1. (2.8)

See Lam and Yao (2012) for this method in the context of the factor modelling for means.

3 Asymptotic properties

We provide some asymptotic results when T → ∞ and N fixed. Some regularity conditions

are now in order.

1. The process {yt} is strictly stationary.

2. {yt} is a β-mixing process with the β mixing coefficients satisfying β(τ) = O(τ−s) for
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some s > p, where p > 2 is a constant defined in condition 3 below.

3. E‖yt‖2p < ∞ for some p > 2 and s > p/(p − 2), where ‖ · ‖ denotes the Euclidean

norm.

Since both A and Â are half orthogonal matrices, i.e. A′A = Â′Â = Ir, we measure the

distance between M1 and its estimator M̂1 by the measure

d(M̂1,M1) =

√

1− trace(ÂÂ′AA′)

r
(3.1)

Then d(M̂1,M1) ∈ [0, 1], it is equal to 1 if and only if the two spaces are orthogonal with

each other, and 0 if and only if the two spaces are identical.

Theorem 1 Under conditions 1 – 3 above, it holds that

1. ‖M̂1 −M1‖2 = Op(T
−1/2),

2. d(M̂1,M1) = Op(T
−1/4).

Proof. We introduce some notation. Let

CT,k(W ) =
1

T − k

T∑

t=k+1

(yty
′
t − IN )I(yt−k ∈ W )

Ck(W ) = E
[
(yty

′
t − IN )I(yt−k ∈ W )

]
.

Then we can write M1 and M̂1 as

M̂1 =

m∑

k=1

∑

W∈B
w(W )C2

T,k(W ),

M1 =
m∑

k=1

∑

W∈B
w(W )C2

k(W ).

Thus,

M̂1 −M1 =
m∑

k=1

∑

W∈B
w(W )

[
C2
T,k(W )− C2

k(W )
]
. (3.2)

Under the conditions 1-3 given above, Theorem 1 of Arcones and Yu (1994) implies

that the set of functions {(ytiy′tj − δij)I(yt−k ∈ W ),W ∈ B} is a Donsker class, and hence
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the process {∆T,k(W ),W ∈ B} that is indexed by W ∈ B converges weakly to a Gaussian

process, where ∆T,k(W ) = T 1/2{CT,k(W )− Ck(W )}. It follows from equation (3.2) that:

M̂1 −M1 =
m∑

k=1

∑

W∈B
w(W )

[
C2
T,k(W )− C2

k(W )
]

=
m∑

k=1

∑

W∈B
w(W )

[(
Ck(W ) + T−1/2∆T,k(W )

)2 − C2
k(W )

]

=
m∑

k=1

∑

W∈B
w(W )

[
2Ck(W )T−1/2∆T,k(W ) + T−1∆2

T,k(W )
]

= T−1/2
m∑

k=1

∑

W∈B
w(W )

[
2Ck(W )∆T,k(W ) + T−1/2∆2

T,k(W )
]

= T−1/2Op(1)

⇒ ‖M̂1 −M1‖2 = Op(T
−1/2),

where ‖A‖2 is the Euclidean norm of A.

For the proof of the second part of Theorem 1, we need to use Theorem 8.1.10 in Golub

& Van Loan (1996), which is stated explicitly in Lemma 2 below. See also Johnstone & Lu

(2009), Lam, Yao & Bathia (2011).

Lemma 2 Suppose M and M + E are T × T symmetric matrices and that Q = [A,B],

where A has size T × r and B has size T × (T − r), is an orthogonal matrix such that

span(A) is an invariant subspace for M ; that is, M × span(A) ⊂ A. Partition the matrices

Q′MQ and Q′EQ as follows:

Q′MQ =




D1 0

0 D2


 ,

Q′EQ =




E11 E′
21

E21 E22


 .

If sep(D1, D2)
def
= minλ∈λ(D1),µ∈λ(D2) |λ− µ| > 0, where λ(M) denotes the set of eigen-

values of the matrix M , and ‖E‖2 ≤ sep(D1, D2)/5, where ‖ · ‖2 is the Euclidean norm of
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·, then there exists a matrix P ∈ R
(T−r)×rwith

‖P‖2 ≤
4

sep(D1, D2)
‖E21‖2

such that the columns of Ā = (A + BP )(I + P ′P )−1/2 define an orthonormal basis for a

subspace that is invariant for M + E.

In our setting, D1 = A′M1A = O(1) and D2 = B′M1B = 0. Thus sep(D1, D2) =

λmin(D1) = O(1), while ‖E‖2 = ‖M̂1 −M1‖2 = Op(T
−1/2). Hence, for sufficient large T ,

we have ‖E‖2 ≤ sep(D1, D2)/5. This allows us to apply Lemma 1 to conclude that there

exists a matrix P ∈ R
(T−r)×r such that

‖P‖2 ≤
4

sep(D1, D2)
‖E21‖2 ≤

4

sep(D1, D2)
‖E‖2,

and Ā = (A + BP )(I + P ′P )−1/2 is an orthonormal basis for a subspace that is invariant

for M̂1 = M1 + E. Then we have

‖Ā−A‖2 = ‖[A{I − (I + P ′P )1/2}+BP ](I + P ′P )−1/2‖2

≤ ‖I − (I + P ′P )1/2‖2 + ‖P‖2

≤ 2‖P‖2 ≤
8

sep(D1, D2)
‖E‖2 = Op(T

−1/2)

The difference between Ā and A is defines as ∆ = Ā−A and ‖∆‖2 = Op(T
−1/2).

For any estimator Â for A, which is not necessary equal to Ā, there exist a r × r

orthogonal matrix H such that Â = ĀH. Both of Â and Ā are orthonormal basis for
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subspaces that are invariant for M̂1 = M1 + E. Thus,

d(M̂1,M1) =

√
1− trace(ĀHH ′Ā′AA′)

r

=

√
1− trace(ĀĀ′AA′)

r

=

√
1− trace((A+∆)(A+∆)′AA′)

r

=

√
1− trace(AA′AA′) + trace(∆A′AA′ +A∆′AA′ +∆∆′AA′)

r

=

√
−trace(∆A′AA′ +A∆′AA′ +∆∆′AA′)

r

=
√
Op(T−1/2) = Op(T

−1/4).

This completes the proof of Theorem 1.

4 Monte Carlo Simulation

In this section, we conduct simulation to examine the finite sample performance of the

proposed method. We also compare it with the PVC method by Hu and Tsay (2014). For

each setting, we replicate the simulation 2000 times in Examples 1 –3, and 1000 times in

Example 4. We always set the weight function w(W ) = 1/T in (2.7) in this section and

also Section 5.

Example 1. Let yt be a 4× 1 process defined as

yt = Axt + εt, (4.1)

xt = σtet, σ2
t = 1 + 0.9x2t−1,

where A = (0.1, 0.7,−0.1,−0.7)′, εt = (ε1t, · · · , ε4t)′, and εit and et are independent and

N(0, 1) random variables.

For the time series generated from (4.1) with length T = 250, 500 or 1000, we apply the

new method proposed in Section 2.2 with m = 5 in (2.7) to estimate A. We also calculate

the estimate for A using Hu and Tsay’s PVC method with c = 2.5 and m = 5 specified by

Hu and Tsay (2014). The means and standard deviations for d(M̂1,M1) defined in (3.1)
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over 2000 replication are reported in Table 1. The boxplots of d(M̂1,M1) are presented

in Figure 1. As A is a vector now, we can also measure the goodness of the estimation

by looking at the sample correlation between Â′yt and A′yt. To this end, we define a

discrepancy measure

d(Â, A) = 1−

[∑
t(yt − ȳ)′ÂA′(yt − ȳ)

]2
[∑

t(yt − ȳ)′ÂÂ′(yt − ȳ)
] [∑

t(yt − ȳ)′AA′(yt − ȳ)
] . (4.2)

The mean and the standard deviation of d(Â, A) are also included in Table 1. As N = 4

and r = 1 now, both the methods perform well for this simple example, although the new

method provides slightly more accurate estimates. Also as expected, the estimation errors

decrease when the sample size T increases.

Table 1: Means and standard deviations (in parentheses) of d(M̂1,M1) defined in (3.1)
and d(Â, A) defined in (4.2) in simulation with 2000 replications in Example 1.

New method PVC method

T = 250 d(M̂1,M1) 0.035294 (0.021559) 0.042552 (0.027078)

d(Â, A) 0.000117 (0.000198) 0.000177 (0.000325)

T = 500 d(M̂1,M1) 0.022892 (0.012991) 0.027038 (0.015871)

d(Â, A) 0.000040 (0.000059) 0.000058 (0.000090)

T = 1000 d(M̂1,M1) 0.015411 (0.008200) 0.018677 (0.010316)

d(Â, A) 0.000016 (0.000022) 0.000024 (0.000033)

For T = 1000, we repeat the simulation also with m = 1 and also m = 10. The results

together with those with m = 5 are reported in Table 2 and Figure 2. Since the results

are almost the same with different values of m, this indicates that the proposed method is

insensitive to the choice of m in (2.7).

Example 2. Now in model (4.1) we let A be the following 4× 2 matrix

A =




0 7/10
√
2/2 −1/10

0 −7/10
√
2/2 1/10



,
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New Method PVC Method

0

0.05

0.1

0.15
T=250

New Method PVC Method

0

0.05

0.1

0.15
T=500

New Method PVC Method

0

0.05

0.1

0.15
T=1000

Figure 1: Boxplots of d(M̂1,M1) with T = 250, 500, 1000 for Example 1.

Table 2: Means and standard deviations (in parentheses) of d(M̂1,M1) defined in (3.1) and
d(Â, A) defined in (4.2) in simulation with 2000 replications in Example 1 when T = 1000
and lag m = 1, 5, 10.

New method PVC method

m = 1 d(M̂1,M1) 0.014209 (0.008165) 0.018012 (0.010125)

d(Â, A) 0.000014 (0.000021) 0.000022 (0.000032)

m = 5 d(M̂1,M1) 0.015411 (0.008200) 0.018677 (0.010316)

d(Â, A) 0.000016 (0.000022) 0.000024 (0.000033)

m = 10 d(M̂1,M1) 0.015672 (0.008650) 0.018993 (0.010148)

d(Â, A) 0.000017 (0.000026) 0.000024 (0.000033)
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New Method PVC Method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
lag m=1

New Method PVC Method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
lag m=5

New Method PVC Method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
lag m=10

Figure 2: Boxplots of d(M̂1,M1) with lag m = 1, 5, 10 for Example 1 when T = 1000.

the factor series be defined as

xt =




x1t

x2t


 =




σ1te1t

σ2te2t


 ,




σ2
1t

σ2
2t


 =




1 + 0.8x21,t−1

2 + 0.9x22,t−1


 ,

and εit, eit be independent and N(0, 1).

We conduct the simulation in the same manner as in Example 1, and the results are

presented in Table 3 and Figure 3, which display the similar patterns observed in Table 1

and Figure 1.

Table 3: Means and standard deviations (in parentheses) of d(M̂1,M1) defined in (3.1) in
simulation with 2000 replications in Example 2.

New method PVC method

T = 250 d(M̂1,M1) 0.0356 (0.0196) 0.0489 (0.0470)

T = 500 d(M̂1,M1)) 0.0232 (0.0136) 0.0338 (0.0412)

T = 1000 d(M̂1,M1) 0.0152 (0.0081) 0.0216 (0.0223)

Example 3. We use the same setting as in Example 2, except now εit, eit are independent

and t(5) (instead of N(0, 1)) random variables. The results are reported in Table 4 and

Figure 4. Comparing the results for Example 2, the newly proposed method performs better

for the models with heavy-tailed (i.e. t(5)-distributed) innovations. This may be due to the
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New Method PVC Method

0

0.05

0.1

0.15
T=250

New Method PVC Method

0

0.05

0.1

0.15
T=500

New Method PVC Method

0

0.05

0.1

0.15
T=1000

Figure 3: Boxplots of d(M̂1,M1) with T = 250, 500, 1000 for Example 2.

fact that the sets in B defined in (2.6) are more spread-out with heavier tailed innovations.

In contrast, the performance of the PVC method is slightly worse now as the information

at (heavy) tails is truncated by the definition of the method. See Hu and Tsay (2014).

Table 4: Means and standard deviations (in parentheses) of d(M̂1,M1) defined in (3.1) in
simulation with 2000 replications in Example 3.

New method PVC method

T = 250 d(M̂1,M1) 0.0188 (0.0180) 0.0436 (0.0795)

T = 500 d(M̂1,M1)) 0.0100 (0.0112) 0.0328 (0.0761)

T = 1000 d(M̂1,M1) 0.0057 (0.0057) 0.0266 (0.0763)

Example 4. Let’s consider a high-dimensional case of the simulated model. Now in model

(4.1), we let the loading matrix A be a 100× 1 matrix, where A is normalized as: A = Ā

‖Ā‖
and each element of Ā is randomly and independently drawn from uniform distribution on

interval [-1,1].

The factor series remain the same as in (4.1). Innovations εt are normalized as: εt =

ε̄t√
100

, and ε̄it and et are independent and N(0, 1) random variables. Normalization we made

here ensures that Axt and εt are of the same magnitude.

We conduct the simulation in the same manner as in Example 1. The results are

presented in Table 5 and Figure 5. Similar patterns to those in Example 1 are observed
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Figure 4: Boxplots of d(M̂1,M1) with T = 250, 500, 1000 for Example 3.

here. This example indicates the potential application of the proposed method in high-

dimensional cases.

Table 5: Means and standard deviations (in parentheses) of d(M̂1,M1) defined in (3.1)
and d(Â, A) defined in (4.2) in simulation with 1000 replications in Example 4.

New method PVC method

T = 250 d(M̂1,M1) 0.0424565 (0.0176764) 0.0566304 (0.0236632)

d(Â, A) 0.0000081 (0.0000110) 0.0000149 (0.0000190)

T = 500 d(M̂1,M1) 0.0276088 (0.0101171) 0.0382413 (0.0148118)

d(Â, A) 0.0000024 (0.0000027) 0.0000049 (0.0000052)

T = 1000 d(M̂1,M1) 0.0181864 (0.0056076) 0.0260939 (0.0089832)

d(Â, A) 0.0000008 (0.0000007) 0.0000018 (0.0000016)

5 Illustration with real data

We further illustrate the proposed method with two real data examples. Both data sets

were downloaded from Yahoo!Finance.

Example 5. We consider the daily returns of the six stocks in the period of January 2,

2002 — July 10, 2008. The stocks concerned are Bank of America corporation, Dell Inc.,

JPMorgan Chase&Co., FedEx Corporation, McDonald’s Corp. and American International

Group. For this example, T = 1642 and N = 6. The returns are calculated based on the
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Figure 5: Boxplots of d(M̂1,M1) with T = 250, 500, 1000 for Example 4.

daily closing prices.

We apply the proposed method with m = 5 in (2.7). The ratio estimator (2.8) leads to

r̂ = 1, indicating the volatility space M1 is one-dimensional. In fact the estimation results

are hardly changed for m between 1 and 10. We also apply the PVC method of Hu and Tsay

(2014), obtaining almost identical results for this example. The ratios of the eigenvalues

and the factor loadings (i.e. Â) for the two methods are listed in Tables 6 and 7. In fact

that the sample correlation coefficient between the two loadings in Table 7 is 0.9993.

Table 6: Ratios of eigenvalues for Example 5.
New Method PVC method

λ1/λ2 36.90 25.77
λ2/λ3 1.22 1.22
λ3/λ4 1.41 2.18
λ4/λ5 1.52 1.59
λ5/λ6 3.13 1.77

The above analysis indicates that the volatilities (including co-volatilities) of the six

return series are driven by a one-dimensional process. To visualize this extremely low di-

mensional structure, we plot the sample autocorrelation function (ACF) of the transformed

squared return series (γ̂′iyt)
2, i = 1, · · · , 6, where γ̂i is the eigenvector of matrix M̂1, defined

in (2.7), corresponding to the i-th largest eigenvalue. Figure 6 shows significant and persis-
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Table 7: Factor loadings for Example 5.
New Method PVC method

Bank of America corporation 0.3922 0.3663
Dell Inc. 0.3138 0.3037
JPMorgan Chase&Co. 0.6492 0.6690
FedEx Corporation 0.2224 0.2140
McDonald’s Corp. 0.1263 0.1398
American International Group 0.5107 0.5105
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Figure 6: ACF of (γ̂′iyt)
2, i = 1, · · · , 6 for Example 5

tent autocorrelations in the series (γ̂′1yt)
2, and this is not the case for (γ̂′2yt)

2, · · · , (γ̂′6yt)2.

The displays in Figure 6 lend further support to the conclusion that the volatility space for

these 6 return series is one-dimensional.

Example 6. Now we model the daily returns of 196 stocks included in S&P500 in the

period of July 13, 2009 – July 11, 2014. The returns are calculated based on the daily

closing prices. Now the dimension N = 196 and the number of the total observations is

T = 1259.

We use the proposed method with m = 5 in (2.7). The ratio estimator (2.8) again leads

to r̂ = 1, suggesting that the dimension of volatility space M1 is one. The result hardly

changed when we vary m between 1 and 10.

The PVC method of Hu and Tsay (2014) is also applied in this example, indicating
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Figure 7: First 30 ratios of eigenvalues for Example 6: λi/λi+1, i = 1, · · · , 30

almost the same result. For both the methods, the first 30 ratios of the eigenvalues are

plotted in Figure 7. The remaining ratios after i = 30 are at most 1.17 and they are not

included in the figure. The factor loadings (i.e. Â) are presented in Figure 8. Moreover,

the sample correlation coefficient between the two loadings in Figure 8 is 0.936.

Since r̂ = 1, the conditional heteroscedasticity effect of the 196 time series of stock

returns may be regarded as driven by one scalar process. The other 195 orthogonal com-

binations of the 196 returns exhibit little conditional heteroscedasticity effect. Thus this

high-dimensional volatility process is reduced to a one-dimensional process, achieving the

maximum dimension reduction.

To visualize the extremely low-dimension of the conditional heteroscedasticity for this

data set, the sample ACFs of the first 6 transformed squared return series (γ̂′iyt)
2, i =

1, · · · , 6 are plotted in Figure 9, where γ̂i is the eigenvector of matrix M̂1, defined in (2.7),

corresponding to the i-th largest eigenvalue. Figure 9 shows significant and persistent
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Figure 8: Factor loadings for Example 6

autocorrelations in the series (γ̂′1yt)
2. This is not the case for (γ̂′2yt)

2, · · · , (γ̂′6yt)2. Figure 9

provides further evidence to support the claim that the volatility space for these 196 returns

series is one-dimensional.

6 Concluding remarks

For multiple volatility processes with low-dimensional dynamic structures, we propose to

model the conditional variance and covariance by latent common factors. Technically the

method boils down to an eigenanalysis for a non-negative definite matrix. Thus it is ap-

plicable when the dimension the time series is in the order of thousands. The method can

be viewed as a generalized version of the PVC method of Hu and Tsay (2014). In addition

to the computational efficiency, the new method imposes fewer moment conditions, and

is more efficient in dealing with the processes with heavy tailed innovations (as shown in

Example 3). The method also can be applied to high-dimensional cases (see, e.g. Examples

4 and 6), though it remains as an open problem to extend the asymptotic theory with

diverging N in addition to diverging T .
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