Christian A. L. Hilber

Housing & economy: property price dynamics

Conference Item
Unpublished

Original citation: Originally presented at: MacroHist Summer School Workshop, 15 September 2016, Humboldt University, Berlin.

This version available at: http://eprints.lse.ac.uk68083/

Available in LSE Research Online: October 2016

© 2016 The Author

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.
Housing & Economy:

Property Price Dynamics
— Lecture 1

Christian Hilber
London School of Economics

15 September 2016
1. Real estate cycles: some stylized facts
2. Exogenous cycles
 - Theoretical considerations
 - Long-term supply constraints and price dynamics: the case of England
 - Preliminary conclusions
3. Some further stylized facts and puzzles
4. Endogenous cycles and behavioural explanations: theories and evidence
5. Conclusions and policy implications
Overview

1. Real estate cycles: some stylized facts
2. Exogenous cycles
 - Theoretical considerations
 - Long-term supply constraints and price dynamics: the case of England
 - Preliminary conclusions
3. Some further stylized facts and puzzles
4. Endogenous cycles and behavioural explanations: theories and evidence
5. Conclusions and policy implications
Stylized Fact 1

Real estate has ‘always’ been subject to strong price volatility.
Historical real house price indices in Amsterdam, Norway and the U.S.

Volatility has increased in recent decades (…at least in UK)

Real land and house price indices (1931=100)

Note: House and land price data for war years are interpolated

Source: Cheshire (2009) and own calculations for 2008 onwards / Land Registry & Nationwide
House prices in London increase more strongly and are more volatile (1973q4-2016q2)

Intro – stylized facts

– exogenous cycles

Further puzzles

Endogenous cycles

Conclusions
Stylized Fact 2
Various key measures of residential and commercial property markets behave cyclically.

(i.e., measures are serially correlated and mean-reverting)
Example: Deviation of house prices from long-run trend in LA (1980q1-2016q2)

Los Angeles

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Example: Deviation of office prices from long-run trend in City of London (1960-2006)

Source: CBRE & Own Calculations, Hilber (2006)
Example: London office vacancy rates and effective rents

Source: Hendershott *et al.* (1999)
The volatility and duration of property cycles varies substantially across markets and property types.
Example: Housing market of SF (CA) – Deviation from 50q moving trend price

San Francisco

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Example: Housing market of Columbus (OH) – Deviation from 50q moving trend price

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Housing transaction prices in 17 MSAs

Example: **Cycle duration**

- Duration of full house price cycle based on most recent full and clearly defined cycle

<table>
<thead>
<tr>
<th>MSA</th>
<th>Start Date of 1st Boom/Bust Cycle</th>
<th>Start Date of 2nd Boom/Bust Cycle</th>
<th>Duration in Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoenix</td>
<td>1980</td>
<td>1998</td>
<td>18</td>
</tr>
<tr>
<td>Fort Worth</td>
<td>1982</td>
<td>1999</td>
<td>17</td>
</tr>
<tr>
<td>Dallas</td>
<td>1982</td>
<td>1999</td>
<td>17</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>San Diego</td>
<td>1988</td>
<td>2000</td>
<td>12</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>1988</td>
<td>1999</td>
<td>11</td>
</tr>
</tbody>
</table>

Source: Hilber (2003), own calculations based on OFHEO data, N = 39

- Cycle duration (in q.) across 19 OECD countries (Bracke 2013)

<table>
<thead>
<tr>
<th></th>
<th>Pct10</th>
<th>Pct25</th>
<th>Median</th>
<th>Pct75</th>
<th>Pct90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed upturns</td>
<td>8</td>
<td>12</td>
<td>21</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>Completed downturns</td>
<td>7</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>
Residential vs. office market in London

Intro – stylized facts
Exogenous cycles – theory/evidence
Further puzzles
Endogenous cycles
Conclusions
Housing cycles are local in nature

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Overview

1. Real estate cycles: some stylized facts

2. Exogenous cycles
 - Theoretical considerations
 - Long-term supply constraints and price dynamics: the case of England

3. Some further stylized facts and puzzles

4. Endogenous cycles and behavioural explanations: theories and evidence

5. Conclusions and policy implications
Consider a metro area with a large number of small local jurisdictions $j=1,\ldots,J$

- All jurisdictions are perfect substitutes (same amenities, same LPGs and taxes)
- Households have identical preferences (same WTP)
- Households relocate without cost (no attachment)

Question: Should the availability of land in jurisdiction j matter for capitalization of demand shocks? *(DISCUSS)*
Under these assumptions: demand is perfectly elastic!

- If jurisdiction j receives a grant of 1000£ per household ⇒ Households from other jurisdictions will want to move to j until house values in j increase by exactly 1000£

⇒ Slope of supply curve should not matter for price capitalization under these assumptions (only quantity adjustment affected)…
The case of perfectly elastic demand

Unconstrained location
(small town A)

Constrained location
(neighboring small town B)

- **Slope of supply curve** does not affect extent of price capitalization *(always 100%)* but matters greatly for new construction!

- **Hedonic model** assumes perfectly elastic demand!

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
“There are so many close substitutes for most towns [in Greater Boston] that we would not expect restricting of housing supply in one town to raise prices in that town relative to another town with similar demographics and density levels. Restrictions on building in one suburban community should not raise prices in that community relative to another town with equivalent amenities, any more than restrictions on the production of Saudi Arabian crude will raise the price of Saudi Arabian crude relative to Venezuelan crude. Of course, Saudi Arabia’s quantity restrictions will still raise the global price of oil, but this cannot be seen by comparisons of prices across oil producers.”
How realistic is this case?

- **Two neighboring small towns**
 - Often *close substitutes* but not always (school quality often very different; each town has *some* unique features)

- **City centre vs. small town at edge**
 - *Poor substitutes*: very different amenities, local public services, commuting times

- **Two metro areas in same country**
 - *Very poor substitutes*: NYC very different from Columbus (Ohio)
How realistic is this case? (Cont.)

- In world with imperfect substitutability of land
 - Relocation costs matter
 - Preferences (tastes) matter (e.g. attachment to place of birth; love for mountains/solitude)

- Why?
 - Take grant example: If relocation costs are > 1000£, no household will move, unless HHs experience ‘mobility shock’!
 - More generally: heterogeneous preferences & imperfect substitutability make local demand curves downward sloping (because each HH has different WTP for attributes of location!)
The role of supply constraints

- Consider labour demand shock in two locations that are not perfect substitutes & HH differ in tastes for amenities and local public services...

Unconstrained location
(Phoenix, LV)

Constrained location
(SF, LA, London)
Look at

- city that has very little undeveloped land & is tightly regulated and compare with

- city with plenty of open land in the surrounding area & few land use restrictions
A prime example of a city with inelastic land supply

San Francisco (CA)

Little undeveloped land + geographical constraints + tight land use control
A prime example of a city with plenty of open land

Columbus (OH)

Plenty of open land surrounding city + no geographical constraints + lax land use controls
San Francisco (CA) vs. Columbus (OH)

Deviation of house price index from long-run trend (1982q1-2016q2)

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
San Francisco (CA) vs. Columbus (OH)

Deviation of house price index from moving average (last 50 quarters, until 2016q2)

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Excursus: The housing supply curve is ‘kinked downwards’

- **Unconstrained location**
 - (Phoenix, LV)

- **Constrained location**
 - (SF, LA, London)

⇒ Housing stock is durable!
Other examples...

Los Angeles

Chattanooga, TN-GA

Exogenous cycles – theory/evidence

Further puzzles

Endogenous cycles

Conclusions
What types of constraints make supply inelastic?

Consider the case of England…

(Based on Hilber & Vermeulen, 2016)
Candidate #1: Regulatory supply constraints

- English planning system widely viewed as inflexible
 - Since 1947: virtually no fiscal incentives at local level to permit development
 - ‘Development control system’ (catering to NIMBYs) particularly near green belts
 - ‘Horizontal’ constraints: Green belts surrounding major cities
 - ‘Vertical’ constraints: height restrictions & protected vistas
 - Other regulations: preservation policies (conservation areas, listed buildings) & codes
An illustration of London’s restrictiveness: 1. London’s green belt

Source: Barney’s blog
(http://barneystringer.wordpress.com/2013/11/21/londons-green-belt)
2. London’s height restrictions, preservation policies & protected vistas

Source: Cheshire and Derricks (2013)
* Protected view from King Henry VIII’s Mound (Richmond Park)

Backdrop:
- Liverpool Street Station area

Distance to…
- Silicon roundabout: 850m
- BoE (City): 600m
- St. Paul’s: 1km

16km
Barker-review (2004, 2006) suggested that regulatory constraints *may be* important *causal* driver of high house prices and volatility

⇒ To be tested…
Candidate #2: Physical supply constraints

- Could also be physical supply constraints

 a) Limited local availability of open developable space (very high opportunity costs)

 b) Steep slopes (difficult + costly to build)

⇒ To be tested…
How to test in practice?

- **Proxy for regulatory constraints**
 - Use direct measure of how restrictive Local Planning Authorities (LPAs) are: **Refusal rate for major residential projects** (1979-2008)

- **Proxies for physical constraints**
 - Use land cover satellite date to calculate **share developable land that is developed** (in 1990)
 - Use raster grid data to derive measure of slope related constraints: **range in elevation** (or alternatively: **standard deviation of slope**)

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Average refusal rate (major residential projects) 1979-2008

Share developable land developed, 1990

Source: Hilber and Vermeulen (2016)
Some circumstantial evidence regulatory constraints may be important...

New builds per 1,000 housing stock, 2012-13

- Less than 2.5
- 2.5-5.0
- 5.0-7.5
- 7.5-10.0
- More than 10.0

Outer limit of London green belt

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Circumstantial evidence... (cont.)

UK real house prices vs. UK permanent dwellings completed
Rebased (1970=100) – Source: ONS, DCLG

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Circumstantial evidence… (cont.)

Real house price growth in UK vs. US & Switzerland
Rebased (1975=100) – Sources: ONS, Nationwide, SNB, St Louis Fed
Planning appears to affect urban form…

- Similar densities
- Less restrictive planning associated with more sprawl...

Source: Echenique (2009)
Restrictiveness strongly correlates with house price cycles—but is this causal?

Source: DCLG (raw data), own computations – Hilber (2014)
How to test rigorously?

Empirical strategy

- Estimating equation:

\[
\log(\text{house price}_{jt}) = \beta_0 + \beta_1 \log(\text{earnings}_{jt}) + \\
\beta_2 \log(\text{earnings}_{jt}) \times \text{refusal rate}_j + \\
\beta_3 \log(\text{earnings}_{jt}) \times \text{%developed}_j + \\
\beta_4 \log(\text{earnings}_{jt}) \times \text{elevation}_j + \text{year-FE} + \text{LPA-FE} + \varepsilon_{j,t}
\]

\(j = 1, \ldots, 353\)

\(t = 1974, \ldots, 2008\)
Empirical strategy (cont.)

- Three potential endogeneity concerns:
 - **Refusal rate**: Refusal rate may be endogenous to demand conditions & developers may not apply if likely rejected
 - **Share developed**: Contemporaneous D & S factors (incl. regulation) may affect share developed
 - **Earnings**: Local earnings can be influenced by house prices (via sorting) and therefore may reflect housing supply as well as housing demand

⇒ Problem: Estimates of ordinary regressions are likely biased
⇒ Luckily, instrumental variables (IV) approach (2SLS) allows us to address this problem & identify unbiased causal effects…
Basic idea of IV (2SLS) approach

- Find ‘instrumental variables’
 - Ideally strongly correlated with endogenous RHVs (here: refusal rate, share developed & earnings), conditional on other covariates
 - But do not directly impact the LHV (here house prices) (uncorrelated with error term)

- Use exogenous variation from instruments to predict endogenous RHVs (refusal rate, share developed & earnings) in 1st stage

- Then use predicted RHVs in 2nd stage to identify the causal and unbiased effect of these RHVs on the LHV (house prices)
Excursus:
IVs to identify causal effect of refusal rate

Two instruments:

1. **Change in delay rate** (pre-/post-policy reform in 2002) [IV#1]
 - Labour government introduced delay rate targets in 2002, but no refusal rate targets!
 - Restrictive LPAs had strong incentive to substitute delays with refusals
 - Most restrictive LPAs will be ones with greatest decrease of delay rate post-reform
 - **Identifying assumption:** Conditional on location FEs, change in delay rate affects impact of earnings on house prices only through planning restrictiveness
2. Local vote share [IV#2]

- Middle income Labour voters have traditionally cared more about housing affordability and less about protecting house values (fewer own homes!)

- **Identifying assumption**: Conditional on location FEs, local vote share affects impact of earnings on house prices only through planning restrictiveness
IV to identify causal effect of land scarcity

- Instrumental variable: **Historical density from 1911** [IV#3]
 - Instrument pre-dates ‘birth’ of modern British planning system (TCPA of 1947) by several decades

- **Identifying assumption:**
 - Density almost 100 years ago will be indicative of early forms of agglomeration & local amenities, so should be strongly correlated with share of developed land today
 - But, controlling for LPA FE, historic density should not directly explain changes in contemporaneous HPs
IV to identify causal effect of earnings

- Instrumental variable: ‘Labour demand shock’ measure (Bartik 1991) [IV#4]
 - Use local industry composition in 1971 and national employment growth in the industries to predict local employment growth (shift-share approach)
 - Local industry composition in 1971 pre-dates our regression sample
 - Ideally: would instrument earnings but leads to weak identification
 - Replace earnings with plausibly exogenous demand shock measure (can no longer interpret coefficients as price-earnings elasticity)
Empirical strategies

- **Strategy 1**: Use TSLS and instruments #1 to #3 to identify causal effects of supply constraints measures / ignore concern that local earnings might be endogenous.

- **Strategy 2**: Replicate this specification but replace earnings with instrument #4
 - Can no longer interpret coefficient as price earnings elasticity
 - But yields plausibly unbiased estimates.
Excursus: Data

- **House price index**
 - Index adjusts for mix of housing types

- **Real weekly earnings** of FT working men
 - ASHE / NES

+ Regulatory data (DCLG), satellite data (various sources), historic data (Census)

⇒ All geographically matched to 2001 LPA boundaries (353)
Results: naïve OLS

<table>
<thead>
<tr>
<th>LHV: Log(real house price index)</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(earnings)</td>
<td>0.32***</td>
</tr>
<tr>
<td>Log(earnings) x average refusal rate</td>
<td>0.067***</td>
</tr>
<tr>
<td>Log(earnings) x share developed</td>
<td>0.094**</td>
</tr>
<tr>
<td>Log(earnings) x elevation range</td>
<td>-0.00047</td>
</tr>
<tr>
<td>Year-FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>LPA-FEs & constant</td>
<td>Yes</td>
</tr>
</tbody>
</table>

House price-earnings elasticity of LPA with average constraints

Refusal rate +1 std. dev. (+8.7%) \rightarrow price-earn. elasticity increases by +0.067 (~+21%)

Endogenous!
Results of IV: 1st stage (validity of instruments)

- All three ‘instruments’ (#1 - #3) have the predicted sign and are highly statistically significant (at 1%-level).

- Test-statistics suggest that instruments may be valid and strongly identify the causal effects of regulatory and scarcity related supply constraints.
Results of IV: 2\(^{nd}\) stage

<table>
<thead>
<tr>
<th>LHV: Log(real house price index)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(earnings)</td>
<td>0.089</td>
</tr>
<tr>
<td>Log(earnings) × average refusal rate</td>
<td>0.29***</td>
</tr>
<tr>
<td>Log(earnings) × share developed</td>
<td>0.30***</td>
</tr>
<tr>
<td>Log(earnings) × elevation range</td>
<td>0.095**</td>
</tr>
<tr>
<td>Year-FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>LPA-FEs & constant</td>
<td>Yes</td>
</tr>
<tr>
<td>Kleibergen Paap F-stat</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Quantitative effects
(based on IV with instruments #1-3)

- If planning system were relaxed in av. LPA:
 - House prices in av. LPA: -35%

- and developable land were abundant:
 - House prices in av. LPA: -45%

- and LPA were completely flat:
 - House prices in av. LPA: -48%

Note: These are likely lower bound estimates for a number of reasons (see paper for details)
What would house prices in average English LPA be if…

- and share developed set to zero
- and elevation range set to zero
- and earnings assumed constant

Predicted real house prices in average English LPA

- and share developed set to zero
- and elevation range set to zero
- and earnings assumed constant

Intro – stylized facts
Exogenous cycles – theory/evidence
Further puzzles
Endogenous cycles
Conclusions
North East vs. South East & 90th vs. 10th percentile

Predicted real house prices in average English LPA
Prediction with refusal rate as in NE / SE
Prediction with refusal rate as 10th/90th percentile

Intro – stylized facts
Exogenous cycles – theory/evidence
Further puzzles
Endogenous cycles
Conclusions
The importance of supply constraints varies across markets: Westminster (London)

The graph shows predicted real house price levels in Westminster from 1974 to 2008. The predictions are made under different conditions:
- Predicted real house price levels in Westminster
- Prediction with refusal rate set to zero and earnings assumed constant
- Prediction with refusal rate set to zero and share developed set to zero
- Prediction with refusal rate set to zero and elevation range set to zero

The source of the data is Hilber and Vermeulen (2016).
House price dynamics in Newcastle

- Predicted real house price levels in Newcastle upon Tyne
- Prediction with refusal rate set to zero
- and share developed set to zero
- and elevation range set to zero
- and earnings assumed constant

Source: Hilber and Vermeulen (2016)
Use labour demand shock instead of earnings (IV 2nd stage)

<table>
<thead>
<tr>
<th>LHV: (\log(\text{real house price index}))</th>
<th>LPA</th>
<th>TTWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(\text{labour demand shock}))</td>
<td>0.31**</td>
<td>0.24**</td>
</tr>
<tr>
<td>(\log(\text{LDS}) \times \text{average refusal rate})</td>
<td>0.66***</td>
<td>0.59***</td>
</tr>
<tr>
<td>(\log(\text{LDS}) \times \text{share developed})</td>
<td>0.92***</td>
<td>0.39***</td>
</tr>
<tr>
<td>(\log(\text{LDS}) \times \text{elevation range})</td>
<td>0.33**</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Year-FEs	Yes	Yes
LPA-FEs & constant	Yes	Yes
Kleibergen Paap F-stat	5.2	65.7

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Excursus: Other results & robustness checks

- Differential impact of supply constraints significantly larger during boom than during bust

- Impact of local land scarcity confined to highly developed locations (GLA)

- Main results hold for alternative definitions of ‘local housing markets’ (TTWAs, urban TTWAs, FUR, Pre-1996 counties)
Robustness checks (Cont.)

- Results not sensitive to using alternative measures of share developed (excl. semi-developable land; flood risk areas)

- Results not sensitive to using alternative proxies for elevation/ruggedness

- Results hold for alternative IV-strategies and alternative measure for regulatory restrictiveness (shadow price)
1. Real estate markets are ‘cyclical’ and ‘local’ in nature
2. HPs respond much more strongly to repeated local demand shifts (business cycles) in more supply constrained markets
3. Regulatory constraints in conjunction with strong demand in desirable areas (London!) are main causal driver of severe UK housing affordability crisis & volatility
4. Physical constraints matter too but impact is very non-linear
5. All local supply constraints and earnings fluctuations jointly still cannot explain all cyclicality—role for macro-economic factors + supply constraints at aggregate level!
6. Tight regulation reinforces wealth inequality – elderly and wealthy homeowners benefit (and thus support tighter regulation), the younger renters lose out
Housing & Economy:

Property Price Dynamics
—Lecture 2

Christian Hilber
London School of Economics

15 September 2016
Overview

1. Real estate cycles: some stylized facts
2. Exogenous cycles
 - Theoretical considerations
 - Long-term supply constraints and price dynamics: the case of England
 - Preliminary conclusions
3. Some further stylized facts and puzzles
4. Endogenous cycles and behavioural explanations: theories and evidence
5. Conclusions and policy implications
Overview

1. Real estate cycles: some stylized facts
2. Exogenous cycles
 - Theoretical considerations
 - Long-term supply constraints and price dynamics: the case of England
 - Preliminary conclusions
3. Some further stylized facts and puzzles
4. Endogenous cycles and behavioural explanations: theories and evidence
5. Conclusions and policy implications
Lecture 1 in a nutshell…

- Effect of demand volatility on land and house prices…

City with elastic supply

City with inelastic supply
Many puzzles remain!

- Example: Japanese (property) asset bubble

Sources: Nikkei and Japan Real Estate Institute (http://inflationmatters.com/japanese-deflation-myth/)
Some more puzzles...

Las Vegas (supposedly elastic supply)

Phoenix (supposedly elastic supply)

Source: Own calculations based on FHFA all-transactions HP index, Hilber (2016)
Residential vs. office market in London

<table>
<thead>
<tr>
<th>Year and Quarter</th>
<th>Source: Nationwide Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973q4</td>
<td></td>
</tr>
<tr>
<td>1977q4</td>
<td></td>
</tr>
<tr>
<td>1981q4</td>
<td></td>
</tr>
<tr>
<td>1985q4</td>
<td></td>
</tr>
<tr>
<td>1989q4</td>
<td></td>
</tr>
<tr>
<td>1993q4</td>
<td></td>
</tr>
<tr>
<td>1997q4</td>
<td></td>
</tr>
<tr>
<td>2001q4</td>
<td></td>
</tr>
<tr>
<td>2005q4</td>
<td></td>
</tr>
</tbody>
</table>

London House Price Index 1973q4-2006q3

<table>
<thead>
<tr>
<th>Year</th>
<th>Source: CBRE & Own Calculations, Hilber (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>

City of London - Office Market

<table>
<thead>
<tr>
<th>Year</th>
<th>Source: CBRE & Own Calculations, Hilber (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>
How can we explain? Revisit phenomenon of real estate cycles...

- What do **house prices** measure?
 - Forward looking concept
 - If market participants have perfect foresight:

 \[\text{Price} = \text{Sum of discounted future rents (and costs) associated with property/land} \]

- So far assumed cycles are driven by **repeated exogenous demand shifts** (=business cycles)
 - Economic boom \(\Rightarrow \) property price boom
 - Recession \(\Rightarrow \) property price bust
 - Magnitude of ‘**exogenous cycles**’ depends on supply price elasticity
But we ignored existence of...

- **Lags** (planning, development, construction) ⇒ Often lagged adjustment

- Evidence of ‘**disequilibrium**’: ‘overbuilding’ & high vacancy rates + cycles in transaction volume and ‘time on market’

- **Mortgage markets** ⇒ downpayment & liquidity constraints

- Existence of **myopic agents, unrealistic expectations** & other ‘behavioural aspects’

- **Transaction costs** and other market imperfections (i.e. assumed efficient markets)

⇒ May give rise to ‘**endogenous cycles**’ – initial shock may trigger endogenous oscillations (=cycles independent of exogenous shocks)...
1. Myopic agents (developers & lenders) + lags
2. Irrational exuberance (euphoria of investors)
3. Liquidity constraints
4. Loss aversion
5. Option theory and investment lags
6. Search theory & matching
1. Myopic agents & lags (Hog cycle, stock flow models)

- Idea
 - Starting point: Unanticipated increase in demand
 - Strong increase in prices due to (short-term) supply shortage
 - Myopic developers and mortgage lenders base decisions on observed prices

- Consequence?
Myopic agents & lags (cont.)

\[P_0 = P^*_0 \]

\[STS_0 = STS_1 \]

\[D_0 = D^e_1 \]

Intro – stylized facts
Exogenous cycles – theory/evidence
Further puzzles
Endogenous cycles
Conclusions
Myopic agents & lags—Continued

Intro – stylized facts
Exogenous cycles – theory/evidence
Further puzzles
Endogenous cycles
Conclusions
Myopic agents & lags—Continued

\[P_0 = STS_{1} = STS_0 \]

\[D_0 = D^e_1 \]

\[D_1 = D_2 \]

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Myopic agents & lags—Continued

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Myopic agents & lags—Continued

Price Falls

Q

P

P^e_1 P^*_0 P^*_2

D_0 = D^e_1

D_1 = D_2

P^*_1

P^*_2

Intro – stylized facts Exogenous cycles – theory/evidence Further puzzles Endogenous cycles Conclusions
Predictions

- In places with elastic long-term supply, unexpected positive demand shocks lead to
 - Significant overbuilding (high vacancy rates) if prices are sticky or
 - Drop in property prices or
 - Both

- In commercial RE: Excess supply greater if existing tenants have long term leases
Empirical evidence

- Dallas & Houston (TX) in 80s
 - Unexpected boom in late 70s lead to **severe overbuilding** caused by myopic developers & mortgage lenders
 - Subsequent oil price shock and recession lead to **price collapse**
1980s Bust in Dallas and Houston

Why Dallas and Houston?
Critique

- Relies on expectation errors on the part of **supply actors** (developers, bankers)
- Even if supply actors are myopic, are they likely to constantly repeat mistakes?
- Merely anecdotic evidence
2. Irrational exuberance (euphoria)

- **Idea**
 - Investors observe strong *past* price increases
 - “Plausible story” tells them that price increases will go on forever
 - **Excessive/unrealistic public expectations** of future price increases start to form
 - Buyers *become euphoric* and increase their reservation prices

 ⇒ **Herding behaviour of investors** further spurs demand which raises prices (vicious cycle) ultimately creating ‘bubble’

 ⇒ Refers to a situation in which *excessive* public expectations of future price increases cause prices to be temporarily elevated *(Case and Shiller 2003)*
Predictions

- Property prices can strongly deviate from values that are supported by fundamentals
- “Bubbles” ultimately end in price crash
 (Definition of “bubble” according to Case & Shiller (2003): *Refers to a situation in which excessive public expectations of future price increases cause prices to be temporarily elevated*)
Empirical evidence

- Tulip Bubble in 17th Century (controversial)
- Internet equity-bubble in late 1990s
- **In real estate?**
 - Asset bubble in **Japan** (incl. RE) **during late 1980s**
 - **Indirect evidence** from survey results (Case & Shiller 1988, 2003, Case, Shiller & Thompson 2012)
 - Capozza *et al.* (2004): Show that **serial correlation is stronger in booming markets** consistent with ‘euphoria’ and backward-looking expectations
Critique

- **Non-falsifiable:** Theory is long on predictions but short on testable hypotheses
 - Can look at residuals (actual price minus fundamental price) \(\Rightarrow \) But is this evidence for euphoria or OVs / model misspecification?
 - Survey evidence only very indirect

- **Theoretical arguments**
 - Are purchases and sales in housing markets really mainly driven by investment (rather than consumption) motives? And are homebuyers really ‘euphoric’
 - High transaction costs should reduce speculative incentives
3. Liquidity constraints

- Idea
 - Income shock strongly affects ability of potential first-time buyer to afford down-payment on a starter home
 - If income ↑ ⇔ demand ↑ ↑ ⇔ HP↑↑ ⇔ capital gain for existing owners ↑↑ ⇔ demand for trade-up home ↑↑ …
 - Can have dramatic impact on overall housing market
Empirical evidence

- Lamont & Stein (1999)
 - In cities with a large fraction of highly leveraged homeowners (first-time buyers), HP react more sensitively to city-specific shocks

- Genesove and Mayer (1997 AER)
 - High LTV homeowners set higher asking prices (because need to be able to buy next home)
 - Have longer expected time on market &
 - Ultimately sell at higher price
Critique

- Only applies to residential RE
 - Cannot explain commercial RE cycles, yet they are even more pronounced

- Assumes no role for developers—cannot explain overbuilding phenomenon

- Alternative explanations
 - ‘Leveraged cities’ might also be places with more inelastic supply of housing (untested)
 - Findings might be due to ‘loss aversion’….
4. Loss aversion

- Theory developed by Kahneman & Tversky (1991)
- Applied to real estate by Genesove & Mayer (2001)

Idea

- Property owners are loss averse and are not willing to sell with loss in downturn

Source: Genesove and Mayer (2001, QJE)
Predictions

- Sellers’ reservation prices are less flexible downward than buyers’ offers
 - Seller characteristics (loss aversion) affects transaction prices
 - Transaction volume falls and time on market increases when prices decline
Empirical evidence

- Genesove & Mayer (2001, QJE)
 - Loss aversion matters a lot
 - Liquidity constraints still matter, but much less than thought previously
 - Listing price only affected if seller is severely downpayment-constrained (LTV>0.8)
Critique

- Similar to liquidity constraints
 - Also cannot explain overbuilding phenomenon: no role for developers
 - Can it explain commercial cycles? Are profit maximizing developers loss averse?
5. Option theory and investment lag

- Theory developed by Grenadier (1995)
- Key idea
 - Consider profit maximising owner of land
 - What is the optimal timing to exercise the option to develop and the option to rent out extra units?
Prediction

- Increase in demand volatility
 - Increases value of **option to wait**
 - Makes **excess capacity** more profitable
Empirical evidence

- Real estate markets with most volatile demand (office) display greatest degree of vacancy rate stickiness
- Existence of building booms in times of declining demand
Critique

- Does good job explaining sticky vacancy rate and overbuilding phenomena but less good at explaining other phenomena
- Evidence is largely consistent with theory but not absolutely conclusive
6. Search theory and matching

- Builds on work by Mortensen, Diamond & Pissarides, first applied to real estate by Wheaton (1990), refined by Head et al. (2014)

- Idea
 - Buyers expend costly search effort to find better house, while sellers hold two units until buyer is found
Mechanism

- Income shock spurs immediate increase in house search as HHs (buyers) enter
- It takes time for buyers to find suitable houses and for construction to respond
- To meet immediate housing demand, vacant houses are shifted to rental market \Rightarrow tightness of owner-occupied market rises \Rightarrow Sales price \uparrow
- Eventually: Construction \uparrow \Rightarrow vacant homes \uparrow
- As income reverts to long-run level, stock of buyers declines \Rightarrow buyer-to-seller ratio falls \Rightarrow price reverts to steady-state
Evidence

- Diaz & Jerez (2013) & Head *et al.* (2014)
 - Income shocks cause prices, construction levels and vacancy rates to respond cyclically, consistent with search & matching mechanism

- Ngai & Tenreyro (2014)
 - Seasonal moving patterns and weather fluctuations cause “hot” and “cold” seasons in housing market, consistent with search & matching
Critique

- Mainly applies to residential RE
 - Cannot really explain commercial RE cycles, yet they are even more pronounced
 - Some price cycles are not associated with strong cyclicality in vacancy rates or construction
1. **Housing cycles** can often be explained by altering economic demand shocks (business cycles) in conjunction with inelastic long-run supply.

2. **Policy implication:** In places with inelastic supply – be cautious with place-based policies ⟷ ‘help people—not places’

3. Many cycles – especially commercial ones – are ‘endogenously driven’
4. Office and retail cycles often bear almost no relation to broader economic cyclicality
 ▶ Cycles triggered by initial economic shock
 ▶ Causes oscillations to eventually revert to long-run trend
 ▶ Cycles often very pronounced

5. Residential and commercial RE differ because involved agents and underlying assets differ
 ▶ Investment vs. consumption motives
 ▶ Importance of liquidity constraints & loss aversion
 ▶ Demand volatility & durability of assets differ
 ▶ Time lags differ (planning & construction lags, lease length)

⇒ No single theory can explain all phenomena; many factors drive real estate cycles!
Thank you!

Q&A
I. Key readings

Lecture 1 (Exogenous Cycles)

Lecture 2 (Endogenous Cycles)

II. Other relevant readings

TOPIC: THE ECONOMIC IMPACT OF THE UK PLANNING SYSTEM

II. Other relevant readings (cont.)

Topic: The Economic Impact of the UK Planning System (cont.)

Hilber, C., 2013, Help to Buy will likely have the effect of pushing up house prices further, making housing become less – not more – affordable for young would-be-owners. [British Politics and Policy at LSE Blog](https://blogs.lse.ac.uk/britishpoliticsandpolicy/), June 25.

Hilber, C., 2015b, Help-to-Buy ISAs Will End up Feathering Nests of the Wealthy – Here is How. [The Conversation](https://theconversation.com/), 19 March.

Hilber, C., 2015c, Deep-rooted vested interests are to blame for our housing crisis,” [Disclaimer](https://www.disclaimer.com/), May.
II. Other relevant readings (cont.)

Topic: Long-Term Supply Constraints & Business Cycles

Hilber and Vermeulen, 2016. – See under key readings.
II. Other relevant readings (cont.)

TOPIC: LONG-TERM SUPPLY CONSTRAINTS & BUSINESS CYCLES (CONT.)

TOPIC: IRRATIONAL EXUBERANCE (“BUBBLES”) & SPECULATION

II. Other relevant readings (cont.)

Topic: Irrational Exuberance (“Bubbles”) & Speculation (Cont.)

Case, Shiller & Thompson, 2012. – See under key readings.

II. Other relevant readings (cont.)

Topic: Irrational Exuberance ("Bubbles") & Speculation (Cont.)

Topic: Myopic Agents and Lags

Wheaton, 1999. – See under key readings.

Topic: Liquidity Constraints

II. Other relevant readings (cont.)

Topic: Liquidity Constraints (cont.)

Topic: Loss Aversion and Other Behavioral Explanations

II. Other relevant readings (cont.)

Topic: Option Theory and Investment Lags

Topic: Search Theory & Matching

II. Other relevant readings (cont.)

TOPIC: SEARCH THEORY & MATCHING (CONT.)

TOPIC: GENERAL EVIDENCE ON CYCLICALITY

TOPIC: EMPIRICAL ISSUES & ERROR CORRECTION MODELS

II. Other relevant readings (cont.)

Topic: Commercial Real Estate

Topic: Conclusions & Policy Implications

II. Other relevant readings (cont.)

Topic: Conclusions & Policy Implications (Cont.)

