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Abstract 

 
Asymptotic inference in nonlinear vector error correction models (VECM) that 
exhibit regime-specific short-run dynamics is nonstandard and complicated. This 
paper contributes the literature in several important ways. First, we establish the 
consistency of the least squares estimator of the cointegrating vector allowing for 
both smooth and discontinuous transition between regimes. This is a nonregular 
problem due to the presence of cointegration and nonlinearity. Second, we obtain 
the convergence rates of the cointegrating vector estimates. They differ depending 
on whether the transition is smooth or discontinuous. In particular, we find that the 
rate in the discontinuous threshold VECM is extremely fast, which is n^{3/2}, 
compared to the standard rate of n: This finding is very useful for inference on 
short-run parameters. Third, we provide an alternative inference method for the 
threshold VECM based on the smoothed least squares (SLS). The SLS estimator 
of the cointegrating vector and threshold parameter converges to a functional of a 
vector Brownian motion and it is asymptotically independent of that of the slope 
parameters, which is asymptotically normal. 
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1 Introduction

Nonlinear error correction models (ECM) have been studied actively in economics and there

are numerous examples of applications, which include smooth transition ECM of Granger

and Teräsvirta (1993), threshold cointegration of Balke and Fomby (1997), Markov switching

ECM of Spagnolo, Sola, and Psaradakis (2004) and reviews by Granger (2001). A strand of

econometric literature focuses on testing for the presence of nonlinearity and cointegration

in an attempt to disentangle the nonstationarity from nonlinearity. A partial list includes

Hansen and Seo (2002), Kapetanios, Shin, and Snell (2006) and Seo (2006). Time series

properties of various ECMs have been established by Corradi, Swanson, and White (2000)

and Saikkonen (2005, 2007) among others.

However, there is an important unresolved issue in this literature, which is the asymp-

totic properties of estimators of such models. First of all, consistency of least squares (LS)

or maximum likelihood estimators (MLE) has not been proven except for special cases.

Saikkonen (1995) argued that a general theory for consistency is di¢ cult to establish due

to the lack of uniformity in the convergence over the cointegrating vector space and demon-

strated that the approach of Wu (1981) and Pötscher and Prucha (1991) can be useful by

showing the consistency of an MLE of a cointegrated system that is nonlinear in parameters

but otherwise linear. de Jong (2002) studied consistency of a minimization estimator of a

smooth transition ECM where the error correction term appears in a bounded transition

function only. They also studied asymptotic distributions of smooth models assuming that

the cointegrating vector estimators converge at a certain rate. Second, these results are con-

�ned to smooth models while the threshold cointegration has acclaimed a large literature

of applications as reviewed by Lo and Zivot (2001) and Bec and Rahbek (2004). Hansen

and Seo (2002) proposed the MLE under normality but only to make conjecture on the

consistency. While it may be argued that the two-step approach by Engle and Granger

(1987) can be adopted due to the super-consistency of the cointegrating vector estimate,

the estimation error cannot be ignored in nonlinear ECMs as shown by de Jong (2001).

The purpose of this paper is to develop asymptotic theory for a class of nonlinear vec-

tor error correction models (VECM). In particular, we consider regime switching VECMs,

where each regime exhibits di¤erent short-run dynamics and the regime switching depends

on the disequilibrium error. Examples include threshold cointegration and smooth transi-

tion VECM. We �rst establish the square root n consistency for the cointegrating vector

estimates. This enables us to employ de Jong (2002) to make asymptotic inference for both

short-run and long-run parameters jointly in smooth transition models. Then, we turn to

discontinuous models, focusing on the threshold cointegration model that is particularly

relevant in practice.

This paper shows that the convergence rate of the LS estimator of the cointegrating vec-

tor in the threshold cointegration model is extremely fast, which is n3=2: This asymptotics

is based not on the diminishing threshold asymptotics of Hansen (2000) but on the �xed

threshold asymptotics. Two di¤erent irregularities contribute to this fast rate. First, the es-

1



timating function lacks uniformity over the cointegrating vector space as the data becomes

stationary at the true value, which is the reason for the super-consistency of the stan-

dard cointegrating vector estimates. Second, the cointegrating vector takes part in regime

switching, which is discontinuous. This model discontinuity also boosts the convergence

rate, yielding the super-consistency of the threshold estimate as in Chan (1993). While

this fast convergence rate is certainly interesting and has some inferential value, e.g. when

we perform sequential test to determine the number of regimes, it makes it very challeng-

ing to obtain an asymptotic distribution. Even in the stationary threshold autoregression,

the asymptotic distribution is very complicated and cannot be tabulated (see Chan 1993).

Subsampling is the only way to approximate the distribution in the literature reported by

Gonzalo and Wolf (2005), although it would not work when the cointegrating vector is es-

timated due to the involved nonstationarity. Meanwhile, Seo and Linton (2006) proposed

the smoothed least squares (SLS) estimation for threshold regression models, which results

in the asymptotic normality of the threshold estimate and is applicable to the threshold

cointegration model.

We develop the asymptotic distributions of the SLS estimators of the cointegrating

vector, the threshold parameter, and the other short-run parameters. The cointegrating

vector estimate and threshold estimate converge jointly to a functional of Brownian motions,

with the rates slightly slower than those of the unsmoothed counterparts. This slow-down

in convergence rate has already been observed in Seo and Linton and is the price to pay

to achieve standard inference. The remaining regression parameter estimates converge to

the Normal as if the true values of the cointegrating vector and threshold parameter were

known. It is worth noting that the estimation of cointegrating vector a¤ects the estimation

of short-run parameters in smooth models. We also show that the cointegrating vector

can be treated as known in the SLS estimation of the short-run parameters including the

threshold parameter if we plug in the unsmoothed cointegrating vector estimate due to the

fast convergence rate.

This paper is organized as follows. Section 2 introduces the regime switching VECMs

and establish the square root n consistency of the least squares estimator of the cointe-

grating vector. Section 3 concentrates on the threshold cointegration model, obtaining the

convergence rates of the LS estimators of the cointegrating vector and the asymptotic distri-

butions of the SLS estimators of all the model parameters. It also discusses the estimation

of the asymptotic variances. Section 4 concludes. Proofs of theorems are collected in the

appendix.

We make the following conventions throughout the paper. The integral
R
is taken over

R unless speci�ed otherwise. For a function g; kgk22 =
R
g (x)2 dx: The subscript 0 in any

parameter and the hat indicate the true value and an estimate of the parameter, respectively,

e.g., �0 and �̂. And, for a function g (xt; �) ; we let gt = g (xt; �0) and ĝt = g
�
xt; �̂

�
; for

example, zt = x0t�0 and ẑt = x
0
t�̂ for z (xt; �) = x

0
t�:
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2 Regime Switching Error Correction Models

Let xt be a p-dimensional I (1) vector that is cointegrated with a cointegrating vector �;

and zt (�) = x0t�: The �rst element of � is normalized to 1: The vector of the lagged �rst

di¤erence terms
�
�x0t�1; � � � ;�x0t�l+1

�0 is denoted as �t�1: And let

Xt�1 (�) =
�
1; zt�1 (�) ;�

0
t�1
�0
;

which is a (pl + 2)-dimensional vector. We consider a two-regime vector error correction

model

�xt = A
0Xt�1 (�) +D

0Xt�1 (�) dt�1 (�; ) + ut; (1)

where t = l+1; :::; n; and dt (�; ) = d (zt (�) ; ) is a bounded function that controls the tran-

sition from one regime to the other regime. Typical examples of the transition function in-

clude the indicator function 1 fzt (�) > g ; the logistic function (1� exp (�1 (zt (�)� 2)))�1

and 1�exp
�
�2zt�1 (�)2

�
:While we may easily generalize the results in this paper to mod-

els with more regimes than 2, the distributional features are well exposed in the two-regime

model.

De�ne X (�), X�
 (�) ; y; and u as the matrices stacking X

0
t�1 (�), X

0
t�1 (�) dt�1 (�; ) ;

�xt and ut, respectively. Let � = vec
�
(A0; D0)0

�
; where vec stacks rows of a matrix.

We call by Az and Dz the columns of A0 and D0 that are associated with zt�1 (�) and

zt�1 (�) dt�1 (�; ) ; respectively, and by �z the collection of Az and Dz: Then, we may

write

y =
��
X (�) ; X�

 (�)
�

 Ip

�
�+ u:

We consider the Least Squares (LS) estimation, which minimizes

S�n (�) =
�
y �

��
X (�) ; X�

 (�)
�

 Ip

�
�
�0 �
y �

��
X (�) ; X�

 (�)
�

 Ip

�
�
�
; (2)

where � =
�
�0; �0; 

�0
: The LS estimator is then de�ned as

�̂
�
= argmin

�
S�n (�) ;

where the minimum is taken over a compact parameter space �. The concentrated LS is

computationally convenient, since it is simple OLS for a �xed (�; ) ; i:e:

�� (�; ) =

0@" X (�)0X (�) X (�)0X�
 (�)

X�
 (�)

0X (�) X�
 (�)

0X�
 (�)

#�1 
X (�)0

X�
 (�)

0

!

 Ip

1A y;
which is then plugged back into (2) for optimization over (�; ) :

The asymptotic property of the estimator �̂
�
is nonstandard due to the irregular feature

of S�n, which does not obey a uniform law of large numbers. Thus, we take a two-step

approach. First it is shown that �̂
�
= �0 + op

�
n�1=2

�
by evaluating the di¤erence between

inf S�n (�) and S
�
n (�0) ; where the in�mum is taken over all � 2 � such that rn j� � �0j > � for

a sequence rn: This approach is taken by Wu (1981) and Saikkonen (1995) among others.
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The latter established the consistency of the maximum likelihood estimator of nonlinear

transformation of the cointegrating vector in a linear model. Second, the consistency of the

other short-run parameter estimates are established by the standard consistency argument

using a uniform law of large numbers.

We assume the following for the consistency of the estimator �̂
�
.

Assumption 1 (a) futg is an independent and identically distributed sequence with Eut =
0; Eutu

0
t = � that is positive de�nite.

(b) f�xt; ztg is a sequence of strictly stationary strong mixing random variables with mixing

numbers �m; m = 1; 2; : : : ; that satisfy �m = o
�
m�(�0+1)=(�0�1)

�
as m ! 1 for some

�0 � 1; and for some " > 0; E
��XtX

>
t

���0+" < 1 and E jXt�1utj�0+" < 1: Furthermore,
E�xt = 0: and x[ns]=

p
n converges weakly to a vector Brownian motion B with a covariance

matrix 
, which is the long-run covariance matrix of �xt and has rank p� 1 s.t. �00
 = 0:
Let x2t be the subvector of xt excluding the �rst element of xt: Then, x2[ns]=

p
n converges

weakly to a vector Brownian motion B with a covariance matrix 
, which is positive de�-

nite.

(c) � is compact and S�n (�) =n
p�! S� (�) uniformly in � 2 �, which is uniquely mini-

mized at �0; when � is �xed at �0: Moreover, �z is bounded away from zero, and in�mums

over � and  of n�2
Pn

t=1 x2t�1x2t�1dt�1 (�; ) and n
�2Pn

t=1 x2t�1x2t�1 (1� dt�1 (�; ))
are bounded below by a random variable that is positive with probability one.

Condition (a) is common as in Chan (1993) : It simpli�es our presentation but could be

relaxed. It is referred to Bec and Rahbek (2004) and Saikkonen (2005) for the implication of

the primitive conditions on futg to the stationarity and the mixing conditions of f�xt; ztg
in the general nonlinear error correction models. They show the existence of such a process

as (b) : The �rst element of � is normalized to one and thus (b) introduced B, a subvector

of B that excludes the �rst element of B. Condition (c) is a set of identifying assumptions.

When the cointegrating vector is known the model is a standard nonlinear model that

satis�es standard consistency conditions. When dt�1 (�; ) is the indicator function, Seo

and Linton (2006) showed that condition (c) is satis�ed, thus establishing the consistency of

short-run parameter estimates. The logistic function is continuous and satis�es a uniform

law of large numbers. The condition for �z is not necessary but convenient for our proof

and does not appear to be much restrictive. We note that the case with �z = 0 has been

studied by de Jong (2002) in the context of a smooth transition error correction model.

The last condition in (c) implies that each regime has reasonable proportion of data thus

identifying the parameters in each regime. The distributional limit of such quantities are

well de�ned as in e.g. Seo (2005).

Theorem 1 Under Assumption 1,
p
n
�
�̂
� � �0

�
and

�
�̂
� � �0

�
are op (1) :

When the transition function dt�1 (�; ) satis�es certain smoothness condition, the as-

ymptotic distribution of �̂
�
can be derived following the standard approach using the Taylor
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series expansion. de Jong (2002) explored minimization estimators with nonlinear objective

function that involves the error correction term. It derived the asymptotic distributions of

such estimators under the assumption that
p
n
�
�̂
� � �0

�
= Op (1) : Thus, we refer to de

Jong (2002) for the case with a smooth dt�1 (�; ) : It is worth noting that the asymptotic

distribution of the short-run parameter estimates is in general dependent on the estimation

error of the cointegrating vector despite its super-consistency due to the nonlinearity of

the model. On the contrary, the threshold model where dt�1 (�; ) = 1 fzt�1 (�) > g has
not been studied while the model has been adopted frequently for testing and empirical re-

search. We turn to the so-called threshold cointegration model and develop an asymptotics

for that in the next section.

3 Threshold Cointegration Model

Balke and Fomby (1997) introduced the threshold cointegration model to allow for nonlinear

and/or asymmetric adjustment process to the equilibrium. The motivation of the model was

that the magnitude and/or the sign of the disequilibrium plays a central role in determining

the short-run dynamics (see e.g. Taylor 2001). Thus, they employed the error correction

term as the threshold variables. This threshold variable makes the estimation problem

highly irregular as the cointegrating vector subjects to two di¤erent sorts of nonlinearity.

Even when the cointegrating vector is prespeci�ed, the estimation is nonstandard.

To resolve this irregularity, Seo and Linton (2006) introduced a smoothed least squares

estimator. To describe the estimator, de�ne a bounded function K (�) satisfying that

lim
s!�1

K (s) = 0; lim
s!+1

K (s) = 1:

A distribution function is often used for K. Let Kt (�; ) = K
�
zt(�)�

h

�
; where h ! 0

as n ! 1: To de�ne the smoothed objective function, we replace dt�1 (�; ) in (1) with
Kt (�; ) and de�ne X (�) that stacks Xt�1 (�)Kt�1 (�; ) : Then, we have

Sn (�) = (y � [(X (�) ; X (�))
 Ip]�)0 (y � [(X (�) ; X (�))
 Ip]�) : (3)

And, the Smoothed Least Squares (SLS) estimator is de�ned as

�̂ = argmin
�

Sn (�) :

Similarly as the concentrated LS estimator, we can de�ne

� (�; ) =

0@" X (�)0X (�) X (�)0X (�)

X (�)
0X (�) X (�)

0X (�)

#�1 
X (�)0

X (�)
0

!

 Ip

1A y: (4)

It is worth mentioning that the true model is a threshold model and we employ the

smoothing only for the estimation purpose. Also note that K
�
zt(�)�

h

�
! 1 fzt (�) > g as

h! 0:

We make the following assumptions regarding the smoothing function K and the smooth-
ing parameter h:
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Assumption 2 (a) K is twice di¤erentiable everywhere, K(1) is symmetric around zero,��K(1)�� and ��K(2)�� are bounded, and each of the following integrals is �nite: R ��K(1)��4 ; R ��K(2)��2,
and

R ��s2K(2) (s)�� ds:
(b) For some integer # � 1 and each integer i (1 � i � #) ;

R ��siK(1) (s)�� ds <1; andZ
si�1sgn (s)K(1) (s) ds = 0; and

Z
s#sgn (s)K(1) (s) ds 6= 0;

and K (x)�K (0) ? 0 if x ? 0:
(c) For each integer i (0 � i � #) ; and � > 0; and any sequence fhg converging to 0;

lim
n!1

h1�#
Z
jhsj>�

���siK(1) (s)��� ds = 0; and lim
n!1

h�1
Z
jhsj>�

���K(2) (s)��� ds = 0:
(d) lim sup

n!1
nh2# <1 and

lim
n!1

h�2#
Z
jhsj>�

���K(1) (s)��� ds = 0:
(e) For some � 2 (0; 1]; a positive constant C; and all x; y 2 R;���K(2) (x)�K(2) (y)��� � C jx� yj� :
(f) (log n) =

�
nh2

�
! 0 as n!1:

These conditions are imposed in Seo and Linton (2006) and common in smoothed es-

timation as in Horowitz (1992) for example. Condition (b) is an analogous condition to

that de�ning the so-called #th order kernel, and requires a kernel K(1) that permits negative
values when # > 1 and K (0) = 1=2: Conditions (d) and (h) serves to determine the rate

for h: While this range of rates is admissible, we do not have a sharp bound and thus no

optimal rate.

The consistency of the smoothed estimator �̂ is a direct consequence of Theorem 1

under Assumption 2. If the cointegrating vector � were prespeci�ed, then Seo and Linton�s

consistency applies. For the consistency of �̂; it is su¢ cient to check if the condition (c)

of Assumption 1 is satis�ed, in particular, the last requirement in (c). It follows from the

invariance principle in Assumption 1 (b) and the fact that K and the indicator function are
bounded that

E jKt�1 (�; )� 1 fzt�1 (�) > gj2 = h
Z
jK (s)� 1 fs > 0gj2 �t�1 (hs+ ) ds+ o (1) ;

where �t is a normal density which is uniformly bounded in t. As
R
jK (s)� 1 fs > 0gj2 ds <

1 due to Assumption 2, we conclude that n�2
Pn

t=1 jxtx0tKt�1 (�; )� 1 fzt�1 (�) > gj =
op (1) applying the Cauchy-Schwarz inequality.
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3.1 Convergence Rates and Asymptotic Distributions

The unsmoothed LS estimator of the threshold parameter is super-consistent in the stan-

dard stationary threshold regression and has complicated asymptotic distribution, which

depends not only on certain moments but on the whole distribution of data. On the con-

trary, the smoothed LS estimator of the same parameter exhibits asymptotic normality,

while the smoothing slows down the convergence rate. The nonstandard nature of the esti-

mation of threshold models becomes more complicated in threshold cointegration since the

thresholding relies on the error correction term, which is estimated simultaneously with the

threshold parameter : We begin with developing the convergence rates of the unsmoothed

estimators of the cointegrating vector � and the threshold parameter  and then explore

the asymptotic distribution of the smoothed estimators.

The asymptotic behavior of the threshold estimator heavily relies on the continuity of

the model. We focus on the discontinuous model. The following is assumed.

Assumption 3 (a) For almost every �t; the probability distribution of zt conditional on

�t has everywhere positive density with respect to Lebesque measure.

(b) E
�
X 0
t�1D0D

0
0Xt�1jzt�1 = 0

�
> 0:

Then, we obtain the following rate result for the unsmoothed estimator of � and :

Theorem 2 Under Assumption 1 and 3, �̂
�
= �0 +Op

�
n�3=2

�
and ̂� = 0 +Op

�
n�1

�
:

It is surprising that the cointegrating vector estimate converges faster than the standard

n-rate. Intuitively, � = ̂ � x0t�1
�
�̂ � �0

�
behaves like a threshold estimate in a stationary

threshold model as 1 fzt�1 (�) > g = 1 fzt�1 > �g : Observing that supt xt�1 = Op
�
n1=2

�
;

we conclude that �̂ � �0 = Op
�
n�3=2

�
: This fast rate of convergence has an important

inferential implication for the short-run parameters as will be discussed later.

We turn to the smoothed estimator for the inference for the cointegrating vector. While

subsampling is shown to be valid to approximate the asymptotic distribution of the un-

smoothed LS estimator of the threshold parameter in the stationary threshold autoregres-

sion (see Gonzalo and Wolf 2005), the extension to the threshold cointegration is not trivial

due to the involved nonstationarity. The smoothing of the objective function enables us

to develop the asymptotic distribution based on the standard Taylor series expansion. Let

f (�) denote the density of zt and f (�j�) the conditional density given �t = �. For each

positive integer i; de�ne

f (i) (zj�) = @if (zj�) =@zi

whenever the derivative exists. In the following, the ith order di¤erentiation is signi�ed by

the superscript (i); e.g. K(1) (s) = (@=@s)K (s) : Also de�ne

~K(1) (s) = K(1) (s) (1 fs > 0g � K (s))
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and

�2v = E

�K(1)2
2

�
X 0
t�1D0ut

�2
+
 ~K(1)2

2

�
X 0
t�1D0D

0
0Xt�1

�2 jzt�1 = 0� f (0) (5)

�2q = K(1) (0)E
�
X 0
t�1D0D

0
0Xt�1jzt�1 = 0

�
f (0) : (6)

First, we set out assumptions that we need to derive the asymptotic distribution.

Assumption 4 (a) E[jX 0
tutj

r] <1; E[jX 0
tXtjr] <1; for some r > 4;

(b) f�xt; ztg is a sequence of strictly stationary strong mixing random variables with mixing
numbers �m; m = 1; 2; : : : ; that satisfy �m � Cm�(2r�2)=(r�2)�� for positive C and �;as

m!1:
(c) For some integer # � 2 and each integer i such that 1 � i � #�1; all z in a neighborhood
of , almost every �; and some M < 1, f (i) (zj�) exists and is a continuous function of
z satisfying

��f (i) (zj�)�� < M . In addition, f (zj�) < M for all z and almost every �.

(d) The conditional joint density f (zt; zt�mj�t;�t�m) < M; for all (zt; zt�m) and almost

all (�t;�t�m) :

(e) �0 is an interior point of �:

These assumptions are analogous to those imposed in Seo and Linton (2006) that study

the SLS estimator of the threshold regression model. The condition (a) ensures the con-

vergence of the variance covariance estimators. We need stronger mixing condition as set

out in (b) : The conditions (c) - (e) are common in the smoothed estimation as in Horowitz

(1992), only (d) being an analogue of an iid sample to a dependent sample.

We present the asymptotic distribution below.

Theorem 3 Suppose Assumption 1 - 2 hold. Let W denote a standard Brownian motion

that is independent of B:Then,0@ nh�1=2
�
�̂ � �0

�
p
nh�1 (̂ � 0)

1A ) �v
�2q

 R 1
0 BB

0 R 1
0 BR 1

0 B
0 1

!�1 R
BdW

W (1)

!

p
n
�
�̂� �0

�
) N

0@0;"E 1 dt�1

dt�1 dt�1

!

Xt�1X

0
t�1

#�1

 �

1A ;
and these two random vectors are asymptotically independent. The unsmoothed estimator

�̂
�
has the same asymptotic distribution as �̂.

The asymptotic distribution for �̂ should be understood as that excluding its �rst el-

ement since it is normalized to one. We make some remarks on the similarities to and

di¤erences from the linear cointegration model and the stationary threshold model. First,

both �̂ and ̂, which appear inside the indicator function, are correlated in a similar form as

that of the constant and cointegrating vector estimates in linear models, as  is a constant

within the indicator function. In fact, a reading of the proof of this theorem reveals that the

linear part does not contribute to the asymptotic variance although � appears in the linear
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part of the model. Thus, the variance is di¤erent as it contains conditional expectations

and the density at the discontinuity point. Note that �2v=�
4
q is the variance of threshold

estimate if the true cointegrating vector were known. Second, the cointegrating vector con-

verges faster than the usual n rate but slower than the n3=2, which is obtained for the

unsmoothed estimator. This is also the case for the threshold estimates ̂� and ̂. Third,

as in the stationary threshold model, the slope parameter estimate �̂ is asymptotically

independent of the estimation of � and :

The convergence rates of �̂ and ̂ depend on the smoothing parameter h in a way the

smaller h accelerate the convergence. This is in contrast to the smoothed maximum score

estimation. In the extremum case where h = 0; we obtain the fastest convergence, which

corresponds to the unsmoothed estimator. The smaller h boosts the convergence rates by

reducing the bias but too small a h destroys the asymptotic normality. We do not know

the exact order of h where the asymptotic normality breaks down, which requires further

research.

The asymptotic independence between �̂ and the slope estimate �̂ and the asymptotic

normality of �̂ contrast the result in smooth transition cointegration models, where the

asymptotic distribution of �̂ not only draws on the estimation of � but is non-Normal

(see e.g. de Jong 2001; 2002):1 This is due to the slower convergence of the cointegrating

vector estimators. Therefore, it should also be noted that the Engle-Granger type two-step

approach, where the cointegrating vector is estimated by the linear regression of x1t on x2t
and the estimate is plugged in the error correction model, does not work in a nonlinear error

correction model. Therefore, the above independence result is useful for the construction

of con�dence interval for the slope parameter �.

Furthermore, we may propose a two-step approach for the inference of the short-run

parameters making use of the fact that the unsmoothed estimator �̂
�
converges faster than

the smoothed estimator �̂: In principle, we can treat �̂
�
as if it is the true value �0: The

following corollary states this.

Corollary 4 Let ̂ (�) be the smoothed estimator of  when � is given. Then, ̂
�
�̂
��
has

the same asymptotic distribution as that of ̂ (�0), which is N
�
0; �

2
v
�4q

�
:

3.2 Asymptotic Variance Estimation

The construction of con�dence interval for the slope parameter � is straightforward as �̂ and

�̂
�
are just OLS estimators given (�; ) :We may treat the estimates �̂ and ̂ (or �̂

�
and ̂�)

1 In case of Ezt = 0; we can still retain the asymptotic Normality of the slope estimate by estimating (1)

after replacing the zt�1 (�) with

�zt�1
�
~�
�
= �x0t�1~� =

 
xt�1 �

1

n

X
s

xs�1

!0
~�;

for any n-consistent ~�; as in de Jong (2001) : It is worth noting, however, that this demeaning increases the

asymptotic variance.
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as if they are �0 and 0 due to Theorem 3. We may use either 1 fẑt�1 > ̂g or Kt�1
�
�̂; ̂

�
for dt�1: The inference for (�; ) requires to estimate 
, �2v; and �

2
q : The estimation of 


can be done by applying a standard method for HAC estimation to �xt; see e.g., Andrews

(1991). Although �2v and �
2
q involve nonparametric objects like conditional expectation and

density, we do not have to do a nonparametric estimation as those are limits of the �rst

and second derivative of the objective function with respect to the threshold parameter :

Thus, let

�̂ t =
1

2
p
h
Xt�1

�
�̂
�0
DK(1)t�1

�
�̂; ̂

�
ût; (7)

where ût is the residual from the regression of (1) ; and let

�̂2v =
1

n

X
t

�̂2t ; and �̂
2
q =

h

2n
Qn22

�
�̂
�
;

where Qn22 is the diagonal element corresponding to  of the Hessian matrix Qn; see Ap-

pendix for the explicit formulas. Consistency of �̂2q is straightforward from the proof of

Theorem 3 and that of �̂2v can be obtained after a slight modi�cation of Theorem 4 of Seo

and Linton (2006) :

We can construct con�dence interval for  based on Corollary 4. The estimation of

�2v and �
2
q can be done as above with � = �̂

�
: Due to the asymptotic normality and

independence, the construction of con�dence interval is much simpler this way without the

need to estimate 
:

Even though �̂ and �̂
�
are asymptotically independent of

�
�̂; ̂

�
and

�
�̂
�
; ̂�
�
; they

are dependent in �nite samples. So, we may not bene�t from the imposition of the block

diagonal feature of the asymptotic variance matrix. Corollary 4 enables the standard way of

constructing con�dence interval based on the inversion of t-statistic with jointly estimated

covariance matrix. In this case, we may de�ne � t in (7) using the score of ut (�) with respect

to (; �) for a given �̂
�
: See Seo and Linton (2006) for a more discussion.

4 Conclusion

We have established the consistency of the LS estimators of the cointegrating vector in

general regime switching VECMs, validating the application of some of existing results

on the joint estimation of long-run and short-run parameters in such models with smooth

transition. We also provided an asymptotic inference method for threshold cointegration,

establishing the convergence rates and asymptotic distributions.

While we only considered two-regime models, it should be straightforward to extend our

results to multiple-regime models. In that case, we may consider the sequential estimation

strategy discussed in Bai and Perron (1998) and Hansen (1999) : A sequence of estimations

and tests can determine the number of regimes and the threshold parameter. The LM test

by Hansen and Seo (2002) can be employed without modi�cation due to the super fast

convergence rate of the cointegrating vector.
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It is also possible to think of more than one cointegrating vector if p is greater than 2:

In this case, the threshold variable can be understood as a linear combination of those coin-

tegrating vectors. But, the models commonly used in empirical applications are bivariate

and the estimation of such a model is more demanding and thus left as a future research.

Proof of Theorems

Proof of Theorem 1

Let �rn;� = f� 2 � : rn j� � �0j > �g : To show that �̂
� � �0 = op(r

�1
n ) we need to show

that for every � > 0;

Pr

�
inf

�2�rn;�
S�n (�) =n� S�n (�0) =n > 0

�
! 1: (8)

Let X�
�; =

�
X (�) : X�

 (�)
�
and rewrite (2) as

S�n (�) = y
0y + �0X�0

�;X
�
�;�� 2y0X�

�;�:

Let � =
p
n (� � �0) and rn be a sequence such that rn ! 1 and rn=

p
n ! 0 as n ! 1:

Then, � ! 1 for any � 2 �rn;�: We note that S�n (�0) =n and y0y=n are Op (1) by the law
of large numbers and show that y0X�

�;�=n = Op (j�j) while �0X�0
�;X

�
�;�=n = Op

�
j�j2
�
:

In particular, we show that inf�2�rn;� �
0X�0

�;X
�
�;�=

�
n j�j2

�
converges in distribution to a

random variable which is positive with probability one, thus proving (8) :

Note that y0X�
�;=n consists of sample means of the product of�xt and

�
1; zt�1 (�) ;�0t�1

�
and of �xt and

�
1; zt�1 (�) ;�0t�1

�
dt�1 (�; ) : However, as d is bounded, it is su¢ cient to

observe that 1
n

P
t j�x0tj ; and 1

n

P
t

���xt�0t�1�� are Op (1) ; and that
1

n

X
t

��zt�1 (�)�x0t�� � 1

n

X
t

��zt�1�x0t��+ 1

n

X
t

�����xtx0t�1p
n
�

���� = Op (j�j) ;
by the law of large numbers for jzt�1�x0tj ; the invariance principle for xt=

p
n and the

Cauchy-Schwarz inequality.

We can proceed similarly with the matrix �0X�0
�;X

�
�;�=n: We can easily see that the

leading terms in the matrix are 1
n

P
t zt�1 (�)

2 and 1
n

P
t dt�1 (�; )

2 zt�1 (�)
2 : Note that

1

n j�j2
X
t

dt�1 (�; )
2 zt�1 (�)

2 =
1

n

X
t

dt�1 (�; )
2

�
x0t�1�p
n

�2
+ op (1) = Op (1) ;

where j�j = 1: Thus,

1

n j�j2
�0X�0

�;X
�
�;� = �

0
z

�
��1= j�j

2 
 Ip
�
�z + op (1) ;

uniformly in �rn;�; where

��1 =

 
1
n

P
t zt�1 (�)

2 1
n

P
t dt�1 (�; )

2 zt�1 (�)
2

1
n

P
t dt�1 (�; )

2 zt�1 (�)
2 1

n

P
t dt�1 (�; )

2 zt�1 (�)
2

!
:
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Note that the weak limit of ��1= j�j
2 on �rn;� is a positive de�nite matrix with probability

one since 1
nj�j2

P
t zt�1 (�)

2 =)
R
(B0�)2 and

lim
n!1

1

n j�j2
X
t

zt�1 (�)
2 > lim

n!1
1

n j�j2
X
t

dt�1 (�; )
2 zt�1 (�)

2 > 0

almost surely by Assumption 1. Since j�zj is bounded away from zero, the in�mum of

�0z

�
��1= j�j

2 
 Ip
�
�z on �rn;� converges in distribution to a random variable that is positive

with probability one by the continuous mapping theorem.

Since �̂
���0 = op

�
r�1n
�
for any rn=

p
n! 0; we should have �̂

���0 = Op
�
n�1=2

�
: Oth-

erwise, there exist " > 0 and an increasing sequence bn !1 such that Prf
p
n
����̂� � �0��� >

bn in�nitely ofteng > " and bn=
p
n ! 0: Now, let cn =

p
n
bn
; then cn ! 1 and cn=

p
n ! 0

and thus cn
�
�̂
� � �0

�
= op (1) ; which yields contradiction since

Prfcn
����̂� � �0��� = pn ����̂� � �0��� =bn > 1 in�nitely ofteng > 0:

Now, let ��� = f� : � <
p
n (� � �0) < C for a �nite constant Cg. Let � =  �

x0t�1 (� � �0) and assume � lies in a compact set without loss of generality as supt xt�1 =
Op (

p
n) and �̂

� � �0 = Op
�
n�1=2

�
(see e.g. de Jong 2002 p.256). Then, y0X�

�;=n =

y0X�
�0;�

=n+ op (1) ; uniformly in ���: Furthermore,

�0X�
�;X

�
�;� = �

0X�0
�0;�

X�
�0;�

�+ �0z (�
�
2 
 Ip)�z + op (1) ;

uniformly in ���, where �2 is the matrix obtained by replacing zt�1 (�) in �1 with xt�1 (� � �0) :
Thus,

S�n (�) =n = u
� (�0; �; �)

0 u� (�0; �; �) =n+ �
0
z (�

�
2=n
 Ip)�z + op (1) ;

uniformly in ���; where u� (�0; ; �) = y�X�
�0;

�: Note that u� (�0; ; �)
0 u� (�0; ; �) =n con-

verges uniformly in probability to a limit that is greater than or equal to p limn!1 S�n (�0) =n

for all (; �) by Assumption 1. Furthermore, as for ��1; �
�
2=n converges to a positive de�nite

matrix as C >
p
n (� � �0) > � > 0: Thus, inf�2��� �

0
z (�

�
2 
 Ip)�z converges in distribution

a positive random variable. Therefore, (8) is proven for r = 1=2:

Next, we turn to the consistency of the short-run parameters. Since
p
n
�
�̂
� � �0

�
=

op (1), we have ��2=n = op (1) and

S�n

�
��
�
=n = u� (�0; �; �)

0 u� (�0; �; �) =n+ op (1) :

Then, the standard consistency proof of using the uniform convergence of the �rst term

on the right hand side applies to the estimates of � and � (see e.g. Theorem 1 in Seo and

Linton 2006). As � = +op (1) ; the consistency of ̂� also follows. Again the same argument

applies for the smoothed estimator of the short-run parameters as above. Therefore, the

proof is complete. �
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Proof of Theorem 2

As in the proof of Theorem 1, let � =
p
n (� � �0) : Since �̂� = op (1) ; it follows that

supt
x0tp
n
�̂� = op (1) due to the invariance principle for xt=

p
n: Then, x0tp

n
�+ can be con�ned

to a compact set without loss of generality. Thus, let � = x0tp
n
� +  and consider a new

parametrization of the model:

_ut

�
_�
�
= �xt �A0Xt�1 �D0Xt�11 fzt�1 > �g � (Az +Dz1 fzt�1 > �g)

x0t�1p
n
�;

where _� =
�
�0; �0; �

�0. Note that for any � there is _� such that ut (�) = _ut

�
_�
�
for each

realization of data and vice versa. Also note that �0 = _�0 and the least squares estimates

of � and _� must be the same. Here, we show that �̂ = 0 + Op
�
n�1

�
; which implies

that �̂ = x0tp
n
�̂� + ̂� = Op

�
n�1

�
and thus

p
n
�
�̂
� � �0

�
and ̂� are Op

�
n�1

�
: Partition

_� =
�
_�
0
1; �
�0
:

Let �c =
n
_� :
��� _� � �0��� < co : Due to the consistency shown in Theorem 1, we may

restrict the parameter space to �c for some c > 0; which will be speci�ed later. It is

su¢ cient to show the following claim for �̂ to be n-consistent.

Claim For any " > 0; there is c > 0 and K > 0 such that with probability greater than

1 � ", if _� 2 �c; and j�j > K=n, then
�
_Sn

�
_�
�
� _Sn

�
_�1; �0

��
> 0; where _Sn

�
_�
�
=P

t _ut

�
_�
�0
_ut

�
_�
�
.

Proof of Claim First assume � > 0 and �0 = 0 for simplicity. Let ut = ut (�0) = _ut

�
_�0

�
and _u1t

�
_�
�
= �xt �A0Xt�1 �D0Xt�11 fzt�1 > �g and _u2t

�
_�
�
= _ut (�)� _u1t

�
_�
�
: Then,

�
_Sn

�
_�
�
� _Sn

�
_�1; 0

��
=n =

1

n

X
t

�
_u1t

�
_�
�0
_u1t

�
_�
�
� _u1t

�
_�1; 0

�0
_u1t

�
_�1; 0

��
+
1

n

X
t

�
_u2t

�
_�
�0
_u2t

�
_�
�
� _u2t

�
_�1; 0

�0
_u2t

�
_�1; 0

��
� 2
n

X
t

�
_u1t

�
_�
�0
_u2t

�
_�
�
� _u1t

�
_�1; 0

�0
_u2t

�
_�1; 0

��
;

which are denoted as D1n
�
_�
�
; D2n

�
_�
�
; and D3n

�
_�
�
; respectively. After some tedious

algebra, we can show that

���D2n � _����� =

����� 1nX
t

�
x0t�1p
n
�

�2 �
D0zDz � 2A0zDz

�
1 f0 < zt�1 � �g

�����
� 1

n

X
t

1 f0 < zt�1 � �g sup
t

�
x0t�1p
n
�

�2
max
_�2�c

��D0zDz � 2A0zDz

�� ;
which is Op (�c) because 1

n

P
t 1 f0 < zt�1 � �g = Op (�) due to Chan (1993, Claim 2),

supt

�
x0t�1p
n

�
= Op (1) ; j�j < c; and the parameter space bounded. Similarly, we can show
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that D3n
�
_�
�
= Op (�c) as

D3n

�
_�
�
=
2

n

X
t

�
X 0
t�1D (Az +Dz)�

�
�xt �A0Xt�1

�0
Dz

��x0t�1p
n
�

�
1 f0 < zt�1 � �g :

Thus, for the given " > 0; we can choose a constantM such that Pr
n���D2n � _����� > Mco < "

and Pr
n���D3n � _����� > Mco < ": On the other hand, Chan (1993, Claim 1) also showed that

D1n

�
_�
�
> �c� for some �c > 0 for all large n and for all K=n < � < c by choosing c small.

Then, letting c < �c=M , we have _Sn

�
_�
�
� _Sn

�
_�1; 0

�
> 0 for all large n with probability

greater than 1� " as desired. The case where � < 0 can be done similarly. �

Proof of Theorem 3

To derive the limit distribution of the SLS �̂; de�ne Tn (�) =
@Sn(�)
n@� and Qn (�) =

@2Sn(�)
n@�@�0

:

Then, by the mean value theorem,

p
nD�1n

�
�̂ � �0

�
=
�
DnQn

�
~�
�
Dn

��1p
nDnTn (�0) ;

where Dn = diag
�
(h=n)1=2 Ip�1;

p
h; I2(pl+2)

�
and ~� lies between �̂ and �0:

Convergence of Tn

Let

et (�) = �xt �A0Xt�1 �D0Xt�1Kt�1 (�; )� (Az +DzKt�1 (�; ))x0t�1 (� � �0)

= ut � (A�A0)0Xt�1 � (D �D0)0Xt�1dt�1 (9)

�D0Xt�1 (Kt�1 (�; )� dt�1)� (Az +DzKt�1 (�; ))x0t�1 (� � �0) ;

recalling that X 0
t�1 (�)D = X 0

t�1D + x
0
t�1 (� � �0)D0z, and note that

@et (�)
0

@�
= �x2t�1

h
A0z +D

0
zKt�1 (�; ) +

�
D0zx

0
t�1 (� � �0) +X 0

t�1D
�
K(1)t�1 (�; ) =h

i
(10)

@et (�)
0

@
= �

�
X 0
t�1D +D

0
zx
0
t�1 (� � �0)

�
K(1)t�1 (�; ) =h

@et (�)
0

@�
=

 
�
�
X 0
t�1D +D

0
zx
0
t�1 (� � �0)

�

 Ip

�Kt�1 (�; )
�
X 0
t�1D +D

0
zx
0
t�1 (� � �0)

�

 Ip

!
:

Note that x2t�1 appears in (10) due to the normalization restriction. The asymptotic

distribution of
p
nDnTn (�0) =2 =

1p
n
Dn
P

t
@et(�0)

0

@� et (�0) has been developed in Seo and

Linton (2006) except for the �rst part of �: Thus, we focus on
p
h

2n

X
t

@et (�0)
0

@�
et (�0) = �

1

n

X
t

x2t�1(
p
hv1t +

p
hv2t + v3t=

p
h);
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where

v1t = A0z0ut +D
0
z0Kt�1ut;

v2t =
�
A0z0 +D

0
z0Kt�1

�
D00Xt�1 (Kt�1 � dt�1) ;

v3t = K(1)t�1X 0
t�1D0

�
ut �D00Xt�1 (Kt�1 � dt�1)

�
:

Since v1t is a martingale di¤erence sequence, 1n
P

t x2t�1v1t
p
h = Op

�p
h
�
due to the con-

vergence of stochastic integrals (see e.g. Kurtz and Protter 1991). We derive the conver-

gence of 1n
P

t x2t�1v3t=
p
h. Then, similar argument yields that 1

n

P
t x2t�1v3t

p
h = op (1)

as h ! 0: Let �v3t = (v3t � Ev3t) =
p
h; then �v3t is a zero mean strong mixing array Seo

and Linton (2006, Lemma 2) has shown that
p
n=hEv3t ! 0 and var

h
(hn)�1=2

P
t v3t

i
=

var
h
v3t=

p
h
i
+op (1)! �2v; which is de�ned in (5) : This implies that

1
n

P
t x2t�1Ev3t=

p
h =

op (1) and that n�1=2
P[nr]

t=2

�
�x02t�1; �v3t=�v

�
=) (B0;W ) due to Assumption 4 and the in-

variance principle of Wooldridge and White (1988, Theorem 2.11). For the independence be-

tween B andW , see Lemma 2 of Seo and Linton (2006) to get
Pn

s;t=1E�xs�v3t = o (1). Here,

similar argument leads to the asymptotic independence between the score for � and �: For

the relation between the asymptotic distributions of ̂ and �̂; note that v3t = h
@et(�0)

0

@ et (�0) :

For the convergence of 1n
P

t x2t�1�v3t; we resort to Hansen (1992, Theorem 3.1). While

Hansen imposes moment condition higher than 2, we show here that the second moment

condition is su¢ cient by studying Hansen�s proof directly. We �nd that the moment condi-

tion higher-than-2 is used to show that supt�n n
�1=2P1

k=1E [�v3t+kjFt] = op (1) ; where Ft
is the natural �ltration at time t: Using the Markov inequality and mixing inequality, he

obtains

Pr

(�����supt�n
n�1=2

1X
k=1

E [�v3t+kjFt]
����� � "

)
� CE j�v3tjp

"pnp=2�1
; (11)

which converges to zero provided p > 2 and E j�v3tjp <1: Now we show that while E j�v3tjp

is not bounded for p > 2 but diverges slower than np=2�1: As
p
n=hEv3t ! 0 and the part

with ut can be done in the same manner, we focus on

E
���K(1)t�1X 0

t�1D0D
0
0Xt�1 (Kt�1 � dt�1)

���p h�p=2
= h�p=2

Z ��X 0D0D
0
0X
��p ����K(1)�z � 0h

��
K
�
z � 0
h

�
� 1 (z > 0)

�����p f (zjX) dzdPX
= h1�p=2

Z ��X 0D0D
0
0X
��p ���K(1) (s) (K (s)� 1 (s))���p f (hs+ 0jX) dsdPX ;

where PX is the distribution of Xt�1 and the last equality follows by the change-of-variables.

Note that f is bounded almost every X, K (s)� 1 (s) is bounded,
��K(1)��p is integrable, and

E jX 0D0D00Xj
p < 1. As h1�p=2np=2�1 ! 0; we conclude that (11) converges to zero.

Therefore, p
h

2�vn

X
t

@et (�0)
0

@�
et (�0))

Z 1

0
BdW: (12)
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Convergence of Qn

First, we show that h�1 (̂ � 0) and h�1�̂ are op (1) : De�ne �; _� and �rn for some sequence
rn ! 0 as in the proof of Theorem 2. With slight abuse of notation, let K(1)t�1 (�) =
K(1)

�
zt�1��

h

�
: Since supt

x0t�1p
n
�̂ = op (1) and K(1)t�1 (�; ) is bounded; we may write

�1
2n

X
t

@et

�
_�
�0

@
et

�
_�
�

=
1

n

X
t

�
X 0
t�1D +D

0
zx
0
t�1 (� � �0)

�
K(1)t�1 (�; ) et

�
_�
�

=
1

n

X
t

X 0
t�1DK

(1)
t�1 (�) et

�
�0;

_�2

�
+ op (1) ;

uniformly in _� 2 �rn ; where _� =
�
�; _�2

�
: However, Lemma 5 of Seo and Linton shows

that h�1
�
�̂ � 0

�
= op (1) using the convergence of 1n

P
tX

0
t�1DK

(1)
t�1 (�) et

�
�0;

_�2

�
; which

corresponds to T n (�) there, and that of its expectation. Thus, h�1 (̂ � 0) and h�1�̂ are
op (1) : Now let �0n = f� 2 � : j� � �0j < rn; h�1 j � 0j < rn; h�1 j�j < rng:

Next, we may write

Qn (�) =2 = Qan (�) +Q
b
n (�)

=
1

n

X
t

@et (�)
0

@�

@et (�)

@�0
+

pX
i=1

1

n

X
t

@2eit (�)

@�@�0
eit (�) ;

where eit (�) is the ith element of et (�) : Start with Qbn (�) ; in particular,

�
X
t

@2eit (�)

@�@�0
eit (�)

=
X
t

x2t�1x
0
2t�1

 
2Dzi

K(1)t�1 (�; )
h

+

�
X 0
t�1Di +Dzi

x0t�1�p
n

� K(2)t�1 (�; )
h2

!
eit (�) :(13)

where Mi indicates the ith Column of a matrix M and the ith element if it is a vector. We

show that

h

n2

X
t

x2t�1x
0
2t�1X

0
t�1Di

K(2)t�1 (�; )
h2

eit (�) (14)

p�! E
�
D00iX

0
t�1Xt�1D0ijzt�1 = 0

�
f (0)

Z
~K(2)

Z 1

0
BB0;

uniformly in �0n; where
R
~K(2) =

R
K(2) (s) (K (s)� 1 fs > 0g) ; and then we can see that

the other terms in (13) are op (1) as h! 0 and supt
x0t�1�

h
p
n
= op (1) uniformly in �0n: Recall

(9) and �rst observe that

1

hn2

X
t

x2t�1x
0
2t�1X

0
t�1DiK(2)t�1 (�; )uit = Op

�
(nh)�1=2

�
;

uniformly in �0n following the same reasoning for (12) : While we have K(2)t�1 (�; ) with
(�; ) 6= (�0; 0), we may write K

(2)
t�1 (�; ) = K(2)

�
zt�1�0

h + g
�
and restrict g into a set
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fjgj < rng for a sequence rn ! 0; as supt x
0
t�1 j� � �0j =h + j � 0j =h = op (1) : Thus, it

does not a¤ect the derivation. Similarly, we can show that all the other terms are op (1)

except the following:

1

hn2

X
t

x2t�1x
0
2t�1X

0
t�1DiK(2)t�1 (�; )

�
X 0
t�1Di (Kt�1 (�; )� dt�1)

�
;

which converges in probability to the limit in (14) uniformly in �0n: This follows from

Hansen (1992, Theorem 3.3), the invariance principle, and the fact that

EX 0
t�1DiK(2)t�1 (�; )

�
X 0
t�1Di (Kt�1 (�; )� dt�1)

�
=h

! E
�
D00iX

0
t�1Xt�1D0ijzt�1 = 0

�
f (0)

Z
~K(2);

uniformly in �0n as in (12) using the change-of-variables.

Next, note that @2eit(�)
@�@�0

= 0 and 
@2eit(�)
@@�0

@2eit(�)
@@0

@2eit(�)
@�@�0

@2eit(�)
@�@0

!

=

0BBB@
�
DziK(1)t�1 (�; ) =h+Xt�1 (�)

0DiK(2)t�1 (�; ) =h2
�
x02t�1 �Xt�1 (�)

0DiK(2)t�1 (�; ) =h2

�

0@ �2

Kt�1 (�; ) �2 +
K(1)t�1(�;)

h Xt�1 (�)

1Ax02t�1 
 Ii
0@ 0

K(1)t�1(�;)
h Xt�1 (�)

1A
 Ii
1CCCA ;

where �2 = (0; 1; 0; :::; 0) whose dimension is (pl + 2) : The same reasoning as above applies

to @2eit(�)
@@�0

and @2eit(�)
@�@�0

and Seo and Linton (2006, Corollary 3) to the remaining terms, and

thus we conclude

DnQ
b
nDn ) ~�2q

Z
~K(2)1

0BB@
�
R 1
0 BB

0 R 1
0 B 0R 1

0 B
0 1 0

0 0 0

1CCA ;
where ~�2q =

Pp
i=1E

�
D00iX

0
t�1Xt�1D0ijzt�1 = 0

�
f (0) : Similarly,

DnQ
a
nDn )

266664
K(1)2

2
~�2q

 R 1
0 BB

0 �
R 1
0 B

�
R 1
0 B

0 1

!
0

0 E

 
1 dt�1

dt�1 dt�1

!

Xt�1X 0

t�1 
 Ip

377775 :

Finally, note that
K(1)2

2
�
R
~K(2)1 = K(1) (0) by an application of the integral by parts,

which yield the desired result. �

Proof of Corollary 4

We examine the score function Tn and the Hessian Qn as functions of �: But, we have

already derived the convergence of the Hessian Qn for �̂ = �0+Op
�
hn�1=2

�
: Thus, we only
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have to examine the score Tn: Let �n = � +Op
�
n�3=2

�
, �� = (; �) and

�et

�
��;�n

�
= ut � (A�A0)0Xt�1 � (D �D0)0Xt�1dt�1

�D0Xt�1 (Kt�1 (�n; )� dt�1)� (Az +DzKt�1 (�n; ))x0t�1 (�n � �0) ;

@�et

�
��
�0

@��
=

0BB@
�
�
X 0
t�1D +D

0
zx
0
t�1 (�n � �0)

�
K(1)t�1 (�n; ) =h

�
�
X 0
t�1D +D

0
zx
0
t�1 (�n � �0)

�

 Ip

�Kt�1 (�n; )
�
X 0
t�1D +D

0
zx
0
t�1 (�n � �0)

�

 Ip

1CCA
Then, some straightforward but tedious algebra yields that

p
hp
n

nX
t=1

�������
@�et

�
��0;�n

�0
@��

�et

�
��0;�n

�
�
@�et

�
��0;�0

�0
@��

�et

�
��0;�0

�������� = op (1) :
As the arguments are all similar for each term, we show

p
hp
n

nX
t=1

��X 0
t�1D0D

0
0Xt�1 (Kt�1 (�n; 0)�Kt�1)

��
� 1p

nh
sup
t

��x0t�1n (�n � �0)�� 1n
nX
t=1

���X 0
t�1D0D

0
0Xt�1K(1)t�1

�
~�; 0

���� = op (1) ;
where ~� lies between �0 and �n: The remaining terms can be analyzed similarly. �
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