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Abstract

We provide a characterization of the family of non-negative local martingales that
have continuous running supremum and vanish at infinity. This is done by describing
the class of random times that identify the times of maximum of such processes. In
this way we extend to the case of general filtrations a result proved by Nikeghbali and
Yor [21] for continuous filtrations. Our generalization is complementary to the one
presented by Kardaras [15], and is obtained by means of similar tools.
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1 Statement of the main result

1.1 Set-up and notations

We consider a filtered probability space (Ω,F ,F,P), where F = (Ft)t∈R+
is a fil-

tration satisfying the usual conditions of right-continuity and saturation by P-null sets
of F := F∞ =

∨
t∈R+

Ft. For a process X, we write oX and pX to indicate the op-
tional and predictable projections of X (see Appendix A.1), and we use the notation
X∞ := limt→∞Xt when the limit is well defined.1 Inequalities between random variables
and inclusions between subsets of Ω are always intended in the P-a.s. sense. All (local)
martingales are assumed to have càdlàg paths.

A random time ρ is a [0,∞]-valued F -measurable map, and it is said to avoid all
(predictable) stopping times if P [ρ = σ] = 0 for every (predictable) stopping time σ. With
this we also mean that P [ρ = 0] = 0. Furthermore, a random time ρ is said to be the
end of an optional (resp. predictable) set if there exists a set Γ ⊆ [0,∞]× Ω F-optional
(resp. predictable) such that ρ = sup{t : (t, ω) ∈ Γ}. To any random time ρ we associate
the so-called Azéma supermartingale, which is the optional projection of the stochastic
interval 1[[0,ρ[[, i.e., the process Zρ :=

o (
1[[0,ρ[[

)
; see [2]. Note that, for every t ∈ R+,

Zρt = P [ρ > t|Ft]. The process Zρ plays a key role in the enlargement of filtrations,
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Characterization of max-continuous local martingales

as shown in [24], [12] and [14], as well as in the characterization of special classes of
random times and in the theory of stochastic processes in general, see e.g. [17] and [20]
and the references therein. Below we recall a prominent class of random times, which is
the most studied within the non-stopping times.

Definition 1.1. A random time ρ is called honest if for every t > 0, ρ coincides with a
Ft-measurable random variable on {ρ < t}.

It is well-known that the end of an optional set is an honest time, and that a finite hon-
est time is the end of an optional set; see [12, p.74]. Among honest times, widely studied
in the literature are those which are the end of predictable sets. They can be identified
through the corresponding Azéma supermartingale as follow, see [2, Theorem 1.4] and
[13, Proposition 1].

Theorem 1.2. A random time ρ satisfying P [ρ > 0] = 1 is the end of a predictable set if
and only if Zρρ− = 1.

It was first noted in [21] that honest times can be related to times of maxima of local
martingales; see also [19], [20], [15]. In this note we shall provide a characterization of
the following set of local martingales:

M0 := {L local martingale : L ≥ 0, L0 = 1, L∞ = 0, L∗ is continuous},

where L∗ denotes the running supremum, that is, L∗t := sup0≤s≤t Ls for t ≥ 0. Such
characterization will be given in terms of the times of maximum of the processes inM0,
in the sense of the following definition, which is the same considered in [15].

Definition 1.3. For L ∈M0, we define the last time of maximum of L as

ρL := sup{t > 0 : Lt− = L∗t−}.

Let L ∈M0. Note that P [ρL <∞] = 1 since L∞ = 0, and that LρL− = L∗ρL− = L∗ρL by
left-continuity of L− and continuity of L∗. Moreover, since L∗ is continuous, L∗∞ cannot
be reached with a jump, and ρL = sup{t > 0 : Lt− = L∗t } = sup{t > 0 : Lt− = L∗∞},
with LρL− = L∗∞. This motivates the name of last time of maximum. In Corollary 2.8
it is proved that ρL is in fact the only time of maximum of L (i.e., the only time ρ such
that Lρ− = L∗∞), hence the specification last can be dropped. The maximum is actually
attained at ρL (i.e., Lρ = L∗∞) if L has continuous paths, while this is in general not the
case if L has jumps. In Corollary 2.9 we show that ρL can be expressed without need of
taking left limits, that is,

ρL = sup{t > 0 : Lt = L∗t }, (1.1)

which is the definition considered in [21].

1.2 State of the art and main theorem

The following characterization ofM0 is a consequence of [21].

Theorem 1.4. Assume that every martingale is continuous. Then a random time ρ

satisfies ρ = ρL for some local martingale L ∈M0 if and only if it is an honest time that
avoids all stopping times. In this case, Zρ = L/L∗.

Without the continuity assumption, this characterization is no more true in general,
in the sense that there exist local martingales L inM0 such that P [ρL = τ ] > 0 for some
stopping time τ ; see Example 1.8. Therefore, in order to obtain a similar characterization,
one may either require some additional property on the local martingales, or alternatively
consider a larger class of honest times. The first approach is the one adopted in [15],
where the author considers those martingales in M0 that do no jump at the time of
maximum, obtaining the following characterization.
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Characterization of max-continuous local martingales

Theorem 1.5. A random time ρ satisfies ρ = ρL for some local martingale L ∈M0 such
that ∆L = 0 on {L− = L∗−} if and only if it is an honest time that avoids all stopping
times. In this case, Lρ− = Lρ = L∗∞, and Zρ = L/L∗.

On the other hand, in the present note we look for conditions that characterize the
times of maxima for the processes in the class M0, without any restriction. We shall
therefore consider a larger class of honest times; see Remark 1.7. This leads to the main
result of this note:

Theorem 1.6. For a random time ρ the following are equivalent:

(I) ρ = ρL for one (and only one) local martingale L ∈M0;
(II) ρ is the end of a predictable set and it avoids all predictable stopping times.

Under (any of) the previous conditions, Lρ− = L∗∞, and Zρ = L/L∗.

This multiplicative representation of the Azéma supermartingale expresses the fact
that the ratio of a local martingale L ∈ M0 over its running maximum equals the
conditional probability that the time of maximum of L is still ahead. This stresses the
fact that by studying ZρL one can infer information on L. In [18], under the assumption
that all martingales are continuous, this multiplicative decomposition has been extended
to the framework of local submartingales of the class (Σ).

Remark 1.7. 1. An honest time that avoids all stopping times is in particular the end of
a predictable set, as shown in Lemma 2.2. This implies that the class of honest times
we consider is in general larger than that in Theorems 1.4,1.5. Under the assumption
that all martingales are continuous, however, the two classes coincide, since all stopping
times are predictable. Therefore our Theorem 1.6 is a genuine generalization of Theo-
rem 1.4. Note also that, in view of (1.1), Theorem 3.2 in [20] can be deduced from our
characterization result.

2. Any stopping time τ is the end of the predictable set [[0, τ ]]. Therefore, the class of
honest times considered in Theorem 1.6 includes in particular all totally inaccessible
stopping times τ such that P [0 < τ <∞] = 1. In this case we are also able to spell
out the corresponding local martingales in the sense of Theorem 1.6, see the following
example.

Example 1.8. Let τ be a totally inaccessible stopping time such that P [0 < τ <∞] = 1.
Consider Y := (I[[0,τ [[)

p, the predictable compensator of I[[0,τ [[, which is a continuous
non-increasing process, and the compensated martingale M := I[[0,τ [[ − Y . Then the
process defined by

L := E(M) = exp(−Y )I[[0,τ [[

is a local martingale that belongs toM0 and has maximum at τ , in the sense that ρL = τ .
Note that, since L has a down jump at the time of maximum, it is excluded from the

processes considered in Theorem 1.5; see also [15, Remark 1.4].

Remark 1.9. The request that ρ is the end of a predictable set in Theorem 1.6-(II) cannot
be weakened by asking ρ to be the end of an optional set, i.e. ρ being an honest time, as
the following example shows.

Example 1.10. Let N be a Poisson process and M its compensated martingale. Define
the process S := E(M) and the random time ρ := sup{t : St = S∗t }. Since St goes to zero
as t goes to infinity, ρ is a finite honest time. Moreover, Sρ = S∗ρ = S∗∞. Now, the Azéma
supermartingale associated to ρ satisfies

Zρt = P[ρ > t|Ft] = P[∃s > t, Ss ≥ S∗t |Ft] = P
[

sup
s≥t

Ss ≥ S∗t
∣∣∣Ft] ≤ St

S∗t
, t ∈ R+, (1.2)

cf. Section 4.2.3 in [1]. Indeed, to see the third equality, note that {sups≥t Ss ≥ S∗t } =

{∃s > t, Ss ≥ S∗t } ∪ {Ss < S∗t ∀s > t, St = S∗t }. Since {Ss < S∗t ∀s > t, St = S∗t } = {ρ = t},
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and P[ρ = t] = 0, the stated equality holds. The inequality in (1.2) follows by (2.3).
Therefore we have

Zρρ− ≤
Sρ−
S∗ρ−

< 1,

where the strict inequality follows from the nature of the process S: S has positive
jumps at the same times where N jumps, and it is decreasing between jump times,
which implies Sσ− < S∗σ− at every jump time σ. Since ρ is a finite random time, with
[[ρ]] ⊂ {∆S 6= 0}, then Sρ− < S∗ρ− holds, as claimed. In particular, ρ is the end of an
optional set but not the end of a predictable set, from Theorem 1.2.

We conclude the section with an observation regarding the modeling of default times
in the hazard-rate approach of credit risk, where the Azéma supermartingale already
proved to play an important role, see e.g. [8], [11] and [5]. According to this approach,
a default time is defined as a random time, say τ , which is not a stopping time with
respect to some initial filtration F. The whole information available in the market is then
described by the filtration Fτ = (Fτt )t∈R+

obtained by progressively enlarging F with
τ , that is, Fτ is the smallest (right-continuous) filtration that contains F and makes τ a
stopping time:

Fτt = Gt+, with Gt = Ft ∨ σ(τ ∧ t).
In this approach the default time occurs as a surprise for the market, hence τ needs
to be an Fτ -totally inaccessible stopping time. This is the case for the random times
identified in Theorem 1.6, as shown in Remark 2.3, implying that the random times
we are studying are suitable for modeling default times in the hazard-rate approach of
credit risk.

2 Proof of Theorem 1.6

In Sections 2.1, 2.2, 2.3 we show some preliminary results that will be used in order
to prove Theorem 1.6 in Section 2.4.

2.1 Dual predictable and optional projections

In this section we consider random times ρ such that P [0 < ρ <∞] = 1, noting that
this condition is satisfied by the random times intervening in Theorem 1.6. We denote
by A and a the dual optional and predictable projections of the process H = 1[[ρ,∞[[,
respectively (see Appendix A.2). The Azéma supermartingale associated to ρ has then
the following additive decompositions

Zρt = E[A∞|Ft]−At = E[a∞|Ft]− at, (2.1)

see Appendix A.3.

Lemma 2.1. For a random time ρ such that P [0 < ρ <∞] = 1 the following hold:

(a) ρ avoids all stopping times if and only if A (≡ a) is continuous;
(b) ρ avoids all predictable stopping times if and only if a is continuous.

Proof. Since the increasing process H has a unique jump of size one at time ρ, for any
stopping time τ we have ∆Hτ = 1{ρ=τ}. Now Theorem VI.76 in [7] yields

∆A =
o (
1[[ρ]]

)
, i.e. ∆Aτ = E[∆Hτ |Fτ ] = P[ρ = τ |Fτ ] for all stopping times τ ,

∆a =
p (
1[[ρ]]

)
, i.e. ∆aτ = E[∆Hτ |Fτ−] = P[ρ = τ |Fτ−] for all predictable stopping times τ ,

from which the statements of the lemma follow.

Lemma 2.2. An honest time that avoids all stopping times is the end of a predictable
set.
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Proof. Let ρ be an honest time. By definition of dual optional projection we have

E

[∫
[0,∞)

o (
1[[ρ,∞[[

)
d1[[ρ,∞[[

]
= E

[∫
[0,∞)

1[[ρ,∞[[dA

]
= E [A∞ −Aρ−] .

Now, let Z̃ρ be the optional projection of the stochastic interval 1[[0,ρ]], and recall that

P
[
Z̃ρρ = 1

]
= 1 since ρ is a finite honest time, see [12, Proposition 5.1]. This gives

E

[∫
[0,∞)

o (
1[[ρ,∞[[

)
d1[[ρ,∞[[

]
= E

[
o (
1[[ρ,∞[[

)
ρ

]
= E

[
1− Zρρ

]
= E

[
Z̃ρρ − Zρρ

]
= E [∆Aρ] = E [Aρ −Aρ−] ,

showing that P [At = At∧ρ] = 1. If in addition ρ avoids all stopping times, then A ≡ a by
Lemma 2.1. This implies at = at∧ρ, which by [13, Proposition 3] is equivalent to the fact
that ρ is the end of a predictable set, as claimed.

Remark 2.3. With the notation introduced at the end of Section 1.2, we notice that any
random time ρ that avoids all (F-) predictable stopping times, is a totally inaccessible
stopping time in the enlarged filtration Fρ. Indeed, by Lemma 2.1, the dual predictable
projection of H is continuous. On the other hand, the compensator of H in Fρ is given
by the process αt =

∫ t∧ρ
0

das
Zρs−

, by Remark 4.5-(3) in [12]. Therefore α is continuous, or

equivalently, H is quasi-left continuous, which means that ρ is a totally inaccessible
stopping time in Fρ, as claimed.

2.2 Multiplicative decomposition of the Azéma supermartingale

As proved in [9], any nonnegative supermartingale can be written as the product
of a local martingale and a non-increasing process. The decomposition is in general
not unique. One can however require conditions on the factorizing processes in order
to identify some particular decomposition. This is what we want to do for the Azéma
supermartingale associated to a random time. In [15] it is noted that the optional multi-
plicative decomposition given in [16] is useful for the characterization of honest times.
Here we adopt a similar argumentation, using instead the predictable multiplicative
decomposition given in [22]. Precisely, by applying [22, Proposition 4.5] to the dual
predictable projection of 1[[ρ,∞[[, we obtain the following:

Proposition 2.4. Let ρ be a random time and a the dual predictable projection of 1[[ρ,∞[[.
Then there exists a pair of adapted càdlàg processes (L,D) such that:

1. L is a non-negative local martingale with L0 = 1;

2. D is a non-increasing predictable process with 0 ≤ D ≤ 1;

3. at = −
∫

[0,t]
Ls−dDs for all t ∈ R+, with L0− := 1;

4. Zρt = LtDt, t ∈ R+;

5. Lt = L0 +
∫ t

0
1{Ds>0}dLs, Dt = D0 +

∫ t
0
1{Ls−>0}dDs, t ∈ R+.

As the continuity of the dual optional projection A of 1[[ρ,∞[[ is of major importance in
[15], so the continuity of the dual predictable projection a will be in proving the main
results of this note. Indeed, note that when a is continuous, then D is continuous as well,
which is crucial in the proof of Proposition 2.5. This shows how in the present setting
we cannot simply use the multiplicative decomposition considered in [15], based on the
process A, since in our case A is no more continuous. However, in the particular case of
ρ avoiding all stopping times, then a ≡ A and the decomposition in Proposition 2.4-(4)
coincides with that in [15].
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Proposition 2.5. Let ρ be a random time that avoids all predictable stopping times,
and let (L,D) be a pair of processes associated to ρ as in Proposition 2.4. Then Dρ has
standard uniform distribution under P.

Proof. For u ∈ (0, 1], we define the stopping time ξu := inf{t ∈ R+|Dt < u}, with the
usual convention inf ∅ = +∞. By assumption P(ρ = 0) = 0, and therefore Zρ0 = 1, which
in turn implies D0 = 1 by Proposition 2.4. By Lemma 2.1-(b), a is continuous, hence D is
continuous as well, which in turn gives Dξu = u on {ξu < ∞} for all u ∈ (0, 1]. Now fix
v ∈ (0, 1]. By definition of dual predictable projection, and by Proposition 2.4-(3) together
with the continuity of D, we have

P [Dρ ≥ v] = E
[ ∫ ∞

0

1{Dt≥v}dat

]
= −E

[ ∫ ∞
0

1{Dt≥v}LtdDt

]
.

By means of (ξu)u∈(0,1] we perform a change-of-time (see e.g. [3, Ch.1]), obtaining

−E
[ ∫ ∞

0

1{Dt≥v}LtdDt

]
= E

[ ∫ 1

D∞

1{Dξu≥v}Lξudu
]
.

Now, as in the proof of Lemma 3.4 in [15], we note that P [ρ =∞] = 0, since ρ avoids all
predictable stopping times, which gives 0 = Zρ∞ = L∞D∞. This in turn implies L∞ = 0

on {D∞ > 0}, hence Lξu1{ξu<∞} = Lξu , since {ξu =∞} ⊆ {D∞ > 0} holds for u ∈ (0, 1].
Therefore

E
[ ∫ 1

D∞

1{Dξu≥v}Lξudu
]

= E
[ ∫ 1

D∞

1{Dξu≥v}1{ξu<∞}Lξudu
]

= E
[ ∫ 1

D∞∨v
1{ξu<∞}Lξudu

]
,

where in the second equality we used the fact that Dξu = u on {ξu <∞}. We proceed by
noticing that ξu =∞ on {D∞ > u}, which yields

E
[ ∫ 1

D∞∨v
1{ξu<∞}Lξudu

]
= E

[ ∫ 1

v

1{ξu<∞}Lξudu
]

= E
[ ∫ 1

v

Lξudu
]
,

again using the equality Lξu1{ξu<∞} = Lξu . Finally, for u ∈ (0, 1], since Zρ ≤ 1 and D ≥ u
on [[0, ξu]], then L ≤ 1/u holds on [[0, ξu]] by Proposition 2.4-(4). This implies that Lξu is a
true martingale, hence, in particular, E[Lξu ] = 1. Therefore, by Fubini’s theorem we get

E
[ ∫ 1

v

Lξudu
]

=

∫ 1

v

E[Lξu ]du = 1− v.

Altogether we proved that P [Dρ ≥ v] = 1 − v for v ∈ (0, 1], which shows that Dρ has
standard uniform distribution.

2.3 Doob’s maximal identity

Doob’s maximal identity states that, for L ∈ M0, 1/L∗∞ has uniform distribution.
This is a consequence of the optional stopping theorem and has been known for some
time, see e.g. [23, Exercise II.3.12]. In [21] this identity is exploited for the first time
in connection with the multiplicative decomposition of the Azéma supermartingale and
used to derive the conditional distribution of L∗∞; see also [18] for an extension to the
framework of local submartingales of the class (Σ) in a context where all martingales
are continuous. A generalization of the Doob’s maximal identity has then been proved
in [15], in the form of Lemma 2.6. This plays a crucial role in proving our main result,
and below we provide a proof of it based on the pathwise super-replication of the digital
option with payoff Φ := 1{L∗∞≥x}, for x ∈ (1,∞). It corresponds to finding an upper
bound on the no-arbitrage price of Φ, and the exact price under P when L ∈ M0, see
Remark 2.7.
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Lemma 2.6. Let L be a nonnegative local martingale with L0 = 1. Then P [L∗∞ ≥ x] ≤
1/x holds for all x ∈ (1,∞). Furthermore, P [L∗∞ ≥ x] = 1/x holds for all x ∈ (1,∞) if and
only if L ∈M0.

Proof. Let L be a nonnegative local martingale with L0 = 1. For x ∈ (1,∞), define the
stopping time τx := inf{t > 0 : Lt > x}. Then the following pathwise inequalities trivially
hold

1{L∗∞>x} = 1{τx<∞} ≤ Lτx/x, (2.2)

and by taking expectations we obtain P [L∗∞ > x] ≤ E [Lτx ] /x ≤ 1/x, for all x ∈ (1,∞).
Clearly, this also gives P [L∗∞ ≥ x] ≤ 1/x, for all x ∈ (1,∞). Now note that the inequality
in (2.2) is indeed an equality for all x ∈ (1,∞) if and only if the two following facts hold:
Lτx = x on {τx < ∞} for all x ∈ (1,∞), and L∞ = 0 on ∪x∈(1,∞){τx = ∞} = Ω. These
conditions hold P-a.s. if and only if L ∈M0. In this case Lτx is a true martingale, since
bounded, and passing to the expectations gives P [L∗∞ > x] = E [Lτx ] /x = 1/x for all
x ∈ (1,∞). This concludes the proof.

Remark 2.7. With the notation introduced above, the inequality in (2.2) means that the
option Φ is pathwise super-replicated by following the simple strategy which consists
in buying 1/x shares of L at time 0, and selling them when (if) the stock price exceeds
the value x (that is, at time τx if τx <∞). Clearly, having equality in (2.2) corresponds
to exact pathwise replication. Note that (2.2) can be seen as a particular case of the
pathwise inequality given in [4], where calls are used to hedge digital options. Being
L0 = 1, the above strategy has initial cost 1/x, and it is an admissible strategy in the
sense of [6], since the corresponding portfolio value is uniformly bounded from below.
Now, by no-arbitrage arguments, the capital 1/x needed to set up this portfolio cannot
be smaller than the price of Φ. On the other hand, for L ∈ M0 the portfolio value of
the above strategy is also uniformly bounded from above, hence selling this portfolio is
admissible as well, and so the option Φ is constrained to have the same price 1/x of the
replicating portfolio.

Let L be a nonnegative local martingale with L0 = 1. Then, for any stopping time τ ,
on the set {τ <∞} we have

P

[
sup
t≥τ

Lt ≥ L∗τ
∣∣∣Fτ] ≤ Lτ

L∗τ
, (2.3)

with equality holding if L∗ is continuous on [[τ,∞[[ and L∞ = 0, in which case we have

P

[
sup
t≥τ

Lt > L∗τ

∣∣∣Fτ] = P

[
sup
t≥τ

Lt ≥ L∗τ
∣∣∣Fτ] =

Lτ
L∗τ
. (2.4)

Indeed, this is clearly true on {Lτ = 0}, and on {Lτ > 0} it follows by applying Lemma 2.6

to the local martingale
(
Lτ+t
Lτ

)
t≥0

in the filtration (Fτ+t)t≥0.

Corollary 2.8. Let L ∈ M0 and let ρ be a time of maximum for L, in the sense that
P [Lρ− = L∗∞] = 1. Then P [ρ = ρL] = 1, that is, the time of maximum is unique. Moreover,
the Azéma supermartingale corresponding to ρ is given by Zρ = L/L∗.

Proof. The proof follows from (2.4) by the same arguments used in [15, Lemma 3.6].

Corollary 2.9. For L ∈M0, define the random time

ρ′L := sup{t > 0 : Lt = L∗t }.

Then P [ρL = ρ′L] = 1.

Proof. We first prove the inequality ρL ≤ ρ′L. Recall that LρL− = L∗∞ (see the discussion
after Definition 1.3), and define the set Λ := {Lρ′L− = L∗∞}. Note that ρL = ρ′L on Λ.
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Indeed, suppose this is not true and consider the random time σ := ρ′L1Λ + ρL1Λc . Since
Lρ′L− = L∗∞ = LρL− on Λ, then σ is a time of maximum in the sense that Lσ− = L∗∞, which
gives a contradiction by Corollary 2.8. On the other hand, on Λc we have Lρ′L− < L∗∞,
and then Lρ′L = L∗∞ must hold, since ρ′L = sup{t > 0 : Lt = L∗∞}. Therefore, on Λc we
have Lρ′L− < L∗∞ = Lρ′L , which means that L jumps to its overall maximum L∗∞ at time
ρ′L. Since L∗ is continuous, this implies the existence of a random time ρ′′ such that
ρ′′ < ρ′L and Lρ′′− = L∗∞ = L∗ρ′L

hold on Λc. Then ρ′′ = ρL on Λc, again by Corollary 2.8.

Therefore, ρL = ρ′′ < ρ′L on Λc, which concludes the proof of ρL ≤ ρ′L.

Now, in [20] it is shown that the Azéma supermartingale associated to ρ′L satisfies
Zρ
′
L = L/L∗. Therefore, from Theorem 1.6 we get that the optional projection o

(1[[ρL,ρ′L[[)

is equal to zero up to indistinguishability. This gives P [ρL = ρ′L] = 1.

2.4 Proof of Theorem 1.6

(I) ⇒ (II): Let L ∈ M0. By definition, ρL is the end of the predictable set {L− =

L∗−} and P [ρL <∞] = 1. It remains to prove that ρL avoids all predictable stopping
times. To this end, fix a predictable stopping time τ such that P[τ < ∞] = 1, and
define B := {Lτ− = L∗τ−} ∈ Fτ−. We denote by τB the restriction given by τB =

τ on B and τB = ∞ elsewhere. Recall that ∆LτB1{τB=∞} = 0 by convention. By
Proposition I.2.10 in [10], τB is predictable, which in turn yields E[∆LτB |FτB−] = 0. On
the other hand, on {∆LτB > 0} we have L∗τB > L∗τB−, which is impossible because L∗

is continuous. Consequently, P[∆LτB ≤ 0] = 1, which in turn implies P [∆LτB = 0] = 1.
Now we proceed as in the proof of (2) ⇒ (1) in [15, Theorem 1.2] and note that,
since LρL− = L∗ρL− = L∗ρL (see the discussion after Definition 1.3), we have {ρL =

τ, Lτ < L∗τ} ⊆ {Lτ− = L∗τ−,∆Lτ < 0} = {τB < ∞,∆LτB < 0}. From P [∆LτB = 0] = 1,
we then deduce that P [ρL = τ, Lτ < L∗τ ] = 0. On the other hand, on {Lτ = L∗τ} we
have P [supt>τ Lt > L∗τ |Fτ ] = P

[
supt≥τ Lt > L∗τ |Fτ

]
= Lτ

L∗τ
= 1, by (2.4), which gives

P [ρL = τ, Lτ = L∗τ ] = 0. It follows that P [ρL = τ ] = 0, as wanted.

(II) ⇒ (I): Let ρ be the end of a predictable set such that it avoids all predictable
stopping times, and let (L,D) be a pair of processes associated to ρ as in Proposition 2.4.
We first prove that ρ is a time of maximum for L, in the sense that P [Lρ− = L∗∞] = 1,
and that L ∈ M0. Since ρ is the end of a predictable set and P [ρ > 0] = 1, Zρρ− = 1

follows by Theorem 1.2 and, by Proposition 2.4-(4), 1 = Zρρ− = Lρ−Dρ− = Lρ−Dρ holds.
This implies that 1/Lρ− has uniform distribution, by Proposition 2.5. On the other
hand, from Lemma 2.6, 1/L∗∞ dominates a uniform random variable in the sense of first
order stochastic dominance. This means that X := 1/L∗∞ dominates Y := 1/Lρ− in first
order stochastic dominance, and since P [X ≤ Y ] = 1, then P [X = Y ] = 1 follows, that
is, P [Lρ− = L∗∞] = 1. This in turn implies that 1/L∗∞ has uniform distribution, hence
L ∈ M0 by Lemma 2.6. Now, ρ = ρL and Zρ = L/L∗ follow from Corollary 2.8. We are
left to show that ρ identifies a unique L ∈M0. In order to do so, we proceed as in [21]
and apply Itô’s formula to Zρ = L/L∗, obtaining the following Doob-Meyer decomposition
of Zρ:

Zρt = E[logL∗∞|Ft]− logL∗t = 1 +

∫ t

0

1

L∗s
dLs − logL∗t ,

by (2.1). The uniqueness of the Doob-Meyer decomposition implies that if L,M ∈ M0

are such that ρL = ρM , then L = M holds up to indistinguishability.

A Basic notions

In this section we recall the notions of optional (resp. predictable) projection and of
dual optional (resp. predictable) projection, which play a fundamental role in this note.
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A.1 The optional and predictable projections

Let X be a non-negative measurable process. The optional projection of X is the
unique (up to indistinguishability) optional process Y such that

E
[
Xτ1{τ<∞}|Fτ

]
= Yτ1{τ<∞} a.s.

for every stopping time τ .
The predictable projection of X is the unique (up to indistinguishability) predictable

process N such that
E
[
Xτ1{τ<∞}|Fτ−

]
= Nτ1{τ<∞} a.s.

for every predictable stopping time τ .

A.2 The dual optional and predictable projections

Let H be an integrable raw increasing process. The dual optional projection of H is
the optional increasing process U defined by

E

[∫
[0,∞)

XtdUt

]
= E

[∫
[0,∞)

XtdHt

]

for any bounded optional process X.
The dual predictable projection of H is the predictable increasing process V defined

by

E

[∫
[0,∞)

XtdVt

]
= E

[∫
[0,∞)

XtdHt

]
for any bounded predictable process X.

A.3 The additive decompositions in (2.1)

Let A and a denote the dual optional and predictable projections of the process
Ht := 1{ρ≤t}, respectively. From the previous section we have that, for every bounded
predictable process X,

E [Xρ] = E

[∫
[0,∞)

XtdAt

]
= E

[∫
[0,∞)

Xtdat

]
. (A.1)

Fix t ∈ R+ and Ft bounded Ft-measurable, then Xs := Ft1{t<s} defines a predictable
process, and from (A.1) we have

E
[
Ft1{t<ρ}

]
= E [Ft(A∞ −At)] = E [Ft(a∞ − at)] .

This in turn yields

Zρt = E
[
1{t<ρ}|Ft

]
= E [A∞|Ft]−At = E [a∞|Ft]− at,

which is exactly equation (2.1).
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