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Abstract

In a world in which rational individuals may hold different prior beliefs, a sender can

influence the behavior of a receiver by controlling the informativeness of an experiment

(public signal). We characterize the set of distributions of posterior beliefs that can

be induced by an experiment, and provide necessary and sufficient conditions for a

sender to benefit from persuasion. We then provide sufficient conditions for the sender

to benefit from persuasion for almost every pair of prior beliefs, even when there is no

value of persuasion under a common prior. Our main condition is that the receiver’s

action depends on his beliefs only through his expectation of some random variable.
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1 Introduction

A notable feature of organizations is that those with decision-making power are lobbied. In

many cases, individuals influence decision makers by changing the information available to

them. For instance, individuals can acquire and communicate hard evidence, or signal soft

information. Another way of influencing decision makers’ learning is through strategic exper-

imentation — i.e., by establishing what they can learn from the outcome of a public experi-

ment (as in, for example, Brocas and Carrillo (2007) and Kamenica and Gentzkow (2011)).

Persuasion through strategic experimentation is pervasive in economics and politics. A

pharmaceutical company chooses which initial animal tests to perform, and the results influ-

ence the Food and Drug Administration’s decision to approve human testing. A central bank

shapes the informativeness of a market index observed by households (such as inflation) by

determining which information is collected and how to compute the index. A news channel

selects the questions that the host asks during an electoral debate, and the answers affect

voters’ opinions about the candidates. In all of these cases, modifying the characteristics

of the experiment (e.g., changing the test, the rules to generate the index, or the questions

asked) changes what decision makers can learn. In many relevant cases, persuasion takes

place within environments in which individuals hold heterogeneous prior beliefs.1 In this

paper, we ask: how does open disagreement affect an individual’s benefit from persuading

others, and her choice of an optimal experiment?

The next example, in which a politician (sender) seeks to maximize the effort of a bureau-

crat (receiver), illustrates our main insights. The politician has proposed a new project that

must be implemented by an existing government agency. She wants to maximize the proba-

bility that the project will be successfully implemented because this increases her reelection

probability. However, the probability of successful implementation depends on the effort

exerted by the bureaucrat who controls the agency. Since the bureaucrat wants to maximize

his career perspectives, he will exert more effort only if he thinks that the new project is

1Many papers study the role of heterogeneous priors in economics and politics. Giat et al. (2010) use data

on pharmaceutical projects to study R&D under heterogeneous priors; Patton and Timmermann (2010) find

empirical evidence that heterogeneity in prior beliefs is an important factor explaining the cross-sectional

dispersion in forecasts of GDP growth and inflation; Gentzkow and Shapiro (2006) study the effects of prior

beliefs on media bias.
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more beneficial than other existing projects to his agency’s own goals. In addition to having

different goals, in many cases, the politician and the bureaucrat have heterogeneous prior

beliefs about the likely effects of the policy — see Hirsch (forthcoming) for a review of the

literature on principal-agent models of policymaking in political organizations, and on the

empirical evidence of belief disagreement between politicians and bureaucrats. To motivate

the bureaucrat to exert more effort, suppose that, prior to fully implementing the policy, the

politician can design a policy experiment — a pilot test that generates a public signal about

how the new policy will benefit the agency. The bureaucrat can then use the information

uncovered by this experiment to update his beliefs and adjust his effort choice. How does

the politician optimally design such a policy experiment?

This problem has gained increasing attention from governments around the world. For

instance, in 2010, David Cameron created the Behavioural Insights Team (BIT), a unit under

the Cabinet Office. The BIT would conduct small-scale tests of certain policy interventions

before they were broadly implemented by the UK government. The launch of the program

“was greeted with a great scepticism” (Rutter, 2015). However, it eventually had an impor-

tant impact on the relationship between politicians and bureaucrats. Before the program,

new governments would try to impose new ideas and projects on bureaucrats without much

empirical information to persuade them about the new policy’s value. With the program,

the government has more flexibility and control to uncover hard information to persuade

bureaucrats.2 After the initial success of the program, the BIT now “permeates almost ev-

ery area of government policy,” and are setting up similar programs in Australia, Singapore,

Germany and the US (Rutter, 2015).

Therefore, consider a politician who can design a policy experiment to influence a bu-

reaucrat. For simplicity, let the politician’s payoff be a, which is the bureaucrat’s effort to

2In a recent interview, David Halpern (chief executive of BIT) said, “If you’re a permanent secretary or

head of department[,] you have seen lots of ideas come and go. New governments come in on a wave of new

shiny ideas. But permanent secretaries can read a graph pretty well” (Rutter, 2015). This is an old concern

for bureaucrats around the globe. In 1996, Richard Darman (director of the US Office of Management and

Budget and a member of President Bush’s Cabinet from 1989 to 1993) argued: “As a society, we have been

guilty of what can fairly be termed policy corruption. In pursuit of bold visions, we have launched one risky

scheme after another without anything like responsible evidence. [...] Instead of [...] new Federal programs

launched at full scale, [the President] could initiate a set of bold research trials” (Darman, 1996).
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implement the new project. The bureaucrat’s payoff is uBur(a, θ) = θa − aρ

ρ
, where ρ ≥ 2

is a known preference parameter, and θ > 0 captures the project’s uncertain benefit to the

agency’s goals. The bureaucrat’s effort choice is, then, a concave function of his expectation,

a∗ = (EBur[θ])
1
ρ−1 . Prior to fully implementing the policy, the politician can design a policy

experiment that generates a public signal about θ.3 Can the politician benefit from persua-

sion? That is, can she design an experiment that, on average, leads the bureaucrat to exert

more effort?

First, suppose that players have a common prior belief over θ. The linearity of the politi-

cian’s payoff and the concavity of the bureaucrat’s effort choice imply that the politician’s

expected payoff is a concave function of beliefs. Therefore, there is no experiment that ben-

efits the politician — see Kamenica and Gentzkow (2011) (KG henceforth). Now, suppose

that players have heterogeneous prior beliefs. Let EPol[θ] and EBur[θ] be the expected value

of θ from the point of view of the politician and the bureaucrat. Trivially, if effort is lin-

ear in expectation (ρ = 2) and the bureaucrat is a “skeptic” (EBur[θ] < EPol[θ]), then the

politician benefits from persuading the bureaucrat. In particular, from the politician’s point

of view, a fully informative experiment that reveals θ is better than no experiment.4 One

could then conjecture that if effort is too concave (high ρ) or if the bureaucrat is already a

“believer” (EBur[θ] > EPol[θ]), then the politician cannot benefit from designing an experi-

ment. Perhaps surprisingly, this conjecture is wrong. Given any finite ρ, if there are at least

three possible values of θ, then the politician generically benefits from persuasion, where

genericity is interpreted over the space of pairs of prior beliefs.

To provide some intuition for this result, suppose that ρ = 2 so that a∗ = EBur[θ] in

the previous example. Consider possible states θ ∈ {1, 1.5, 2}: the politician’s prior belief

over states is pPol = (0.85, 0.10, 0.05), while the bureaucrat’s prior is pBur = (0.10, 0.40, 0.50).

3For example, the UK government proposed a change in the way that Job Centre advisors conducted in-

terviews with job seekers. The BIT conducted a small-scale test of the new policy (the Loughton Job Centre

experiment) before the policy was scaled up to other Job Centres. According to the BIT, the pilot program

showed very promising results and even increased staff happiness (see Figure 1.1 in The Behavioural In-

sights Team Update Report 2013-2015, available at http://www.behaviouralinsights.co.uk/publications/the-

behavioural-insights-team-update-report-2013-2015/).
4Nevertheless, even if the bureaucrat is a skeptic, a fully informative experiment is often suboptimal. See

Section 4.
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The bureaucrat is then a believer of the policy, EPol[θ] = 1.1 < EBur[θ] = 1.7. Clearly, a

fully revealing experiment does not benefit the politician, as she expects the bureaucrat’s

expectation of θ to decrease, on average. Nevertheless, the politician can still benefit from

strategic experimentation. The optimal experiment determines only whether or not θ = 1.5.

The bureaucrat’s expectation decreases to 1.5 when the experiment reveals θ = 1.5, and it

increases to 0.1×1+0.5×2
0.1+0.5

= 1.83 when the experiment shows that θ 6= 1.5. With this experi-

ment, the politician expects the average effort to increase to 0.90× 1.83 + 0.10× 1.5 = 1.8.

To understand the result, first notice that players disagree on the likelihood of observing

the different experimental outcomes, although they fully understand how the experiment is

generated. The sender can then exploit this disagreement: In our example, the politician as-

signs more probability (0.90) than the bureaucrat (0.60) to the “beneficial” experiment result

{θ 6= 1.5}, and relatively less to the “detrimental” result {θ = 1.5}. In fact, we show that,

for this case, optimal experiments are always designed so that the sender is relatively more

optimistic than the receiver regarding the likelihood of observing “better” experiment results

(results that induce actions yielding a higher payoff to the sender). We also show that such

experiments are (generically) available to the sender, irrespective of the receiver’s beliefs.

Motivated by this example, we consider a general persuasion model in which a sender can

influence a receiver’s behavior by designing his informational environment. After observing

the realization of a public experiment, the receiver applies Bayes’ rule to update his belief,

and chooses an action accordingly. The sender has no private information and can influence

this action by determining what the receiver can learn from the experiment - i.e., by speci-

fying the statistical relation of the experimental outcomes to the underlying state. We make

three assumptions regarding how Bayesian players process information. First, it is common

knowledge that players hold different prior beliefs about the state - i.e., they “agree to dis-

agree.” Second, this disagreement is non-dogmatic: each player initially assigns a positive

probability to each possible state of the world.5 Third, the experiment chosen by the sender is

“commonly understood,” in the sense that if players knew the actual realization of the state,

then they would agree on the likelihood of observing each possible experimental outcome.

We start our analysis by asking: from the sender’s perspective, what is the set of distri-

5See Galperti (2015) for the case of prior beliefs with different supports.
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butions of posterior beliefs that can be induced by an experiment? We first show that, given

priors pS and pR, posteriors qS and qR form a bijection — qR is derived from qS through a

perspective transformation. Moreover, this transformation is independent of the actual ex-

periment. Consequently, given prior beliefs, the probability distribution of posterior beliefs

of only one player suffices to derive the joint probability distribution of posteriors generated

by an arbitrary experiment. This result allows us to characterize the set of distributions of

posteriors that can be induced by an experiment (Proposition 1). An important implication

of our results is that belief disagreement does not expand this set - that is, it does not allow

the sender to generate “more ways” to persuade the receiver. We then use the tools in KG

to solve for the sender’s optimal experiment (Proposition 2) and provide a necessary and

sufficient condition for a sender to benefit from experimentation (Corollary 1), and for the

optimal experiment to be fully revealing (Corollary 2).

In Section 4, we focus on models in which (i) the receiver’s action equals his expectation

of the state, a∗ = ER[θ]; and (ii) the sender’s payoff uS(a, θ) is a smooth function of the re-

ceiver’s action. We show that if there are three or more distinct states and ∂uS(a, θ)/∂a 6= 0,

then a sender generically benefits from persuasion. This result holds regardless of the re-

lationship between the sender’s payoff and the unknown state; regardless of the curvature

of the sender’s payoff with respect to the receiver’s action; and in spite of the fact that the

sender cannot induce “more” distributions over posterior beliefs than in the common-prior

case.6 To gain some intuition, consider the case uS(a, θ) = a, and note that every experiment

induces a lottery over the receiver’s actions. Belief disagreement over states translates to

disagreement over the likelihood of different experimental outcomes and, hence, over the like-

lihood of different receiver’s actions. We first show that persuasion is valuable whenever the

sender can design a lottery in which she is relatively more optimistic than the receiver about

higher, thus, more beneficial, actions. We then show that such lotteries exist for a generic

pair of players’ prior beliefs. In fact, any optimal experiment satisfies this property in a

strong sense: the sender’s relative optimism increases in the actions induced by the lottery.7

6Remarkably, the sender generically benefits from persuasion even in the most extreme case of conflict of

preferences uS(a, θ) = −uR(a, θ), so that the sender wants to minimize the receiver’s payoff.
7Formally, if PrS [a]/PrR[a] is the likelihood ratio of the probability that sender and receiver assign to

the action a being induced through an experiment, then PrS [a]/PrR[a] increases in a under an optimal
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Our results show that persuasion should be widespread in situations of open disagreement.

Yildiz (2004), Che and Kartik (2009), Van den Steen (2004, 2009, 2010a, 2011) and Hirsch

(forthcoming) study models with heterogeneous priors in which a sender would prefer to face

a like-minded receiver. In these cases, a sender believes the receiver’s view to be wrong, and

by providing a signal, she is likely to move the receiver’s decision towards what she considers

the right decision. That is, persuasion is valuable if belief disagreement is harmful to the

sender. In other situations, however, the sender may benefit from belief disagreement. In our

previous example, a politician interested in implementing a policy would prefer a bureaucrat

that is overly optimistic about the policy’s benefits. Providing a fully informative experiment

to such a receiver would then be detrimental to the sender. Nevertheless, we find that persua-

sion is valuable even in these cases, in which belief disagreement is beneficial to the sender.

Our paper is primarily related to two strands in the literature.

Persuasion through Strategic Experimentation: Some recent papers study the gains to

players from controlling the information that reaches decision makers. In Brocas and Car-

rillo (2007), a leader without private information sways a follower’s decision in her favor by

deciding the time at which a decision must be made. As information arrives sequentially,

choosing the timing of the decision is equivalent to shaping (in a particular way) the infor-

mation available to the follower. Duggan and Martinelli (2011) consider one media outlet

that can affect electoral outcomes by choosing the “slant” of its news reports. Gill and Sgroi

(2008, 2012) consider a privately informed principal who can subject herself to a test designed

to provide public information about her type, and can optimally choose the test’s difficulty.

Rayo and Segal (2010) study optimal advertising when a company can design how to reveal

its product’s attributes, but it cannot distort this information. Kolotilin (2014, 2015) studies

optimal persuasion mechanisms to a privately informed receiver. In a somewhat different

setting, Ivanov (2010) studies the benefit to a principal of limiting the information available

to a privately informed agent when they both engage in strategic communication (i.e., cheap

talk). The paper most closely related to ours is KG. The authors analyze the problem of a

sender who wants to persuade a receiver to change his action for arbitrary state-dependent

preferences for both the sender and the receiver, and for arbitrary, but common, prior be-

experiment.
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liefs. We contribute to this literature by introducing and analyzing a new motive for strategic

experimentation: belief disagreement over an unknown state of the world.

Heterogeneous Priors and Persuasion: Several papers in economics, finance and politics

have explored the implications of heterogeneous priors for equilibrium behavior and the per-

formance of different economic institutions. In particular, Yildiz (2004), Van den Steen (2004,

2009, 2010a, 2011), Che and Kartik (2009) and Hirsch (forthcoming) show that heterogeneous

priors increase agents’ incentives to acquire information, as each agent believes that new evi-

dence will back his “point of view” and, thus, “persuade” others. Our work complements this

view by showing that persuasion may be valuable even when others hold “beneficial” beliefs

from the sender’s perspective. We also differ from this work in that we consider situations in

which the sender has more leeway in shaping the information that reaches decision makers.

We present the model’s general setup in Section 2. Section 3 characterizes the value of

persuasion. In Section 4, we examine a class of persuasion models. Section 5 presents an

extension of the model. Section 6 concludes. All proofs are in the Appendices.

2 The Model

Preferences and Prior Beliefs: Players are expected utility maximizers. The receiver selects

an action a from a compact set A. The sender and the receiver have preferences over

actions characterized by continuous von Neumann-Morgenstern utility functions uS(a, θ)

and uR(a, θ), with θ ∈ Θ and Θ a finite state space, common to both players.

Both players are initially uncertain about the realization of the state θ. A key aspect

of our model is that players openly disagree about the likelihood of θ. Following Aumann

(1976), this implies that rational players must then hold different prior beliefs.8 Thus, let the

receiver’s prior be pR =
(
pRθ
)
θ∈Θ

and the sender’s prior be pS =
(
pSθ
)
θ∈Θ

. We assume that pR

and pS belong to the interior of the simplex ∆ (Θ) - that is, players have prior beliefs that

are “totally mixed,” as they have full support.9 This assumption will avoid known issues of

8See Morris (1994, 1995) and Van den Steen (2010b, 2011) for an analysis of the sources of heterogeneous

priors and extended discussions of their role in economic theory.
9Actually, our results require only that players’ prior beliefs have a common support, which may be a

strict subset of Θ. Assuming a full support eases the exposition without any loss of generality.
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non-convergence of posterior beliefs when belief distributions fail to be absolutely continuous

with respect to each other (see Blackwell and Dubins, 1962, and Kalai and Lehrer, 1994).

In our base model, prior beliefs are common knowledge. We extend the base model

in Section 5 to the case in which players’ prior beliefs are drawn from some distribution

H(pR, pS). Depending on the support of this distribution, belief disagreement may not be

common knowledge among players.

It is natural to inquire whether the sources of heterogeneous priors affect the way in

which players process new information. For instance, mistakes in information processing

will eventually lead players to different posterior beliefs, but will also call Bayesian updating

into question. We take the view that players are Bayes rational, but may initially openly

disagree on the likelihood of the state. This disagreement can come, for example, from a lack

of experimental evidence or historical records that would otherwise allow players to reach

a consensus on their prior views.10 Disagreement can also come from Bayesian players that

misperceive the extent to which others are differentially informed (Camerer, Lowenstein and

Weber, 1989). For instance, the receiver may fail to realize that the sender had private

information when selecting an experiment. A privately informed sender who is aware of this

perception bias will then select an experiment as if players openly disagreed about the state.

Strategic Experimentation: All players process information according to Bayes’ rule. The

receiver observes the realization of an experiment π, updates his belief, and chooses an action.

The sender can affect this action through the design of π. To be specific, an experiment π

consists of a finite realization space Z and a family of likelihood functions over Z, {π (·|θ)}θ∈Θ,

with π (·|θ) ∈ ∆(Z). Note that whether or not the realization is observed by the sender does

not affect the receiver’s actions.

Key to our analysis is that π is a “commonly understood experiment”: the receiver ob-

serves the sender’s choice of π, and all players agree on the likelihoods π (·|θ).11 Common

10In fact, as argued by Van den Steen (2011), the Bayesian model specifies how new information is to be

processed, but, is largely silent on how priors should be (or actually are) formed. Lacking a rational basis for

selecting a prior, the assumption that individuals should, nevertheless, all agree on one may seem unfounded.
11Our assumption of a commonly understood experiment is similar to the notion of “concordant beliefs”

in Morris (1994). Morris (1994) indicates that “beliefs are concordant if they agree about everything except

the prior probability of payoff-relevant states.” Technically, his definition requires both agreement over the
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agreement over π generates substantial congruence: if all players knew the actual realization

of the state, then they would all agree on the likelihood of observing each z ∈ Z for any

experiment π.12

We make two important assumptions regarding the set of available experiments. First,

the sender can choose any experiment that is correlated with the state. Thus, our setup

provides an upper bound on the sender’s benefit from persuasion in a setting with a more

restricted space of experiments. Second, experiments are costless to the sender. This is not a

serious limitation if all experiments impose the same cost, and would not affect the sender’s

choice if she decides to experiment. However, the optimal experiment may change if different

experiments impose different costs.13

Our setup is related to models that study agents’ incentives to affect others’ learning -

e.g., through “signal jamming,” as in Holmström’s model of career concerns (Holmström,

1999), or through obfuscation, as in Ellison and Ellison (2009). In contrast to this literature,

the sender in our model shapes the receiver’s learning through the statistical specification of a

public experiment. For instance, rating systems and product certification fit this framework,

with consumers observing an aggregate measure of the underlying quality of firms/products.

Quality tests provide another example, as a firm may not know the quality of each single

product, but can control the likelihood that a test detects a defective product.

In our model of strategic experimentation, the sender has no private information when

selecting an experiment. As KG show, this model is isomorphic to a model in which a sender

can commit to a disclosure rule before becoming privately informed - i.e., commit to how

her knowledge will map to her advice. It is also equivalent to models in which a sender is

required to certifiably disclosed her knowledge while being free to choose what she actually

learns (Gentzkow and Kamenica, 2014b).

Our focus is on understanding when and how the sender benefits from experimentation.

conditional distribution of an experiment’s realizations, given the state, and that each player assigns positive

probability to each realization. Our assumptions of a commonly understood experiment and totally mixed

priors imply that players’ beliefs are concordant in our setup.
12See Van den Steen (2011) and Acemoglu et al. (2006) for models in which players also disagree on the

informativeness of experiments.
13Gentzkow and Kamenica (2014a) offer an initial exploration of persuasion with costly experiments, where

the cost of an experiment is given by the expected Shannon entropy of the beliefs that it induces.
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Given π, for a realization z that induces the profile of posterior beliefs (qS(z), qR(z)), the

receiver’s choice in any Perfect Bayesian equilibrium must satisfy

a(qR(z)) ∈ arg max
a∈A

∑
θ∈Θ

qRθ (z)uR(a, θ),

while the corresponding (subjective) expected utility of the sender after z is realized is∑
θ∈Θ

qSθ (z)uS(a(qR(z)), θ).

We restrict attention to equilibria in which the receiver’s choice depends only on his pos-

terior belief induced by the observed realization. To this end, we define a language-invariant

Perfect Bayesian equilibrium as a Perfect Bayesian equilibrium in which for all experiments

π and π′, and realizations z and z′ for which qR(z) = qR(z′), the receiver selects the same

action (or the same probability distribution over actions). Our focus on language-invariant

equilibria allows us to abstract from the particular realization. Given an equilibrium a(·),

we define the sender’s expected payoff v when players hold beliefs (qS, qR) as

v(qS, qR) ≡
∑
θ∈Θ

qSθ uS(a(qR), θ), with a(qR) ∈ arg max
a∈A

∑
θ∈Θ

qRθ uR(a, θ). (1)

We concentrate on equilibria for which the function v is upper-semicontinuous. This class

of equilibria is non-empty: an equilibrium in which the receiver selects an action that max-

imizes the sender’s expected utility whenever he is indifferent between actions is a (sender-

preferred) language-invariant equilibrium for which v is upper-semicontinous.14 Given a

language-invariant equilibrium that induces v, let Vπ be the sender’s expected payoff from

experiment π, given prior beliefs. The sender’s equilibrium expected utility is simply

V (pS, pR) = max
π

Vπ(pS, pR) = max
π

Eπ
S

[
v(qS(z), qR(z))

]
, (2)

where the maximum is computed over all possible experiments π. An optimal experiment

π∗ is such that Vπ∗(p
S, pR) = V (pS, pR). We can then define the value of persuasion as the

sender’s equilibrium expected gain when, in the absence of experimentation, the receiver

would remain uninformed; it is given by V (pS, pR)− v(pS, pR).

14As noted in KG, this follows from Berge’s maximum theorem. Upper-semicontinuity will prove convenient

when establishing the existence of an optimal experiment.
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Timing: The sender selects π after which the receiver observes a realization z ∈ Z, updates

his beliefs according to Bayes’ rule, selects an action, payoffs are realized and the game ends.

We focus on language-invariant perfect equilibria for which v is upper-semicontinuous.

We have been silent regarding the true distribution governing the realization of θ. As

our analysis is primarily positive and considers only the sender’s choice of an experiment,

we remain agnostic as to the true distribution of the state.

Notational Conventions: Let card(A) denote the cardinality of the set A. For vectors s, t ∈

RN , let st be the component-wise product of s and t; that is, (st)i = siti, and let 〈s, t〉

represent the standard inner product in RN , 〈s, t〉 =
∑N

i=1 siti. As ours is a setup with

heterogeneous priors, this notation proves convenient when computing expectations for which

we need to specify both the information set and the individual whose perspective we are

adopting. We will often refer to the subspace W of “marginal beliefs,” defined as

W =
{
w ∈ RN : 〈1, w〉 = 0

}
. (3)

This terminology follows from the fact that the difference between any two beliefs must lie

in W . Also, we will denote by s||W the orthogonal projection of s onto W .

Let rSθ =
pSθ
pRθ

and rRθ =
pRθ
pSθ

be the state-θ likelihood ratios of prior beliefs. We then define

rS = (rSθ )θ∈Θ =

(
pSθ
pRθ

)
θ∈Θ

and rR = (rRθ )θ∈Θ =

(
pRθ
pSθ

)
θ∈Θ

. (4)

Given π, we denote by PrS[z] and PrS[z] the probabilities of realization z obtained from the

sender’s and the receiver’s beliefs, and define the likelihood-ratios over realizations

λSz ≡
PrS[z]

PrR[z]
and λRz ≡

PrR[z]

PrS[z]
. (5)

3 The Value of Persuasion under Open Disagreement

When does the sender benefit from experimentation? We show that, when the experiment is

commonly understood, the posterior belief of one player can be obtained from that of another

player without explicit knowledge of the actual experiment. This allows us to characterize

the (subjective) distributions of posterior beliefs that can be induced by any experiment

(Proposition 1). It also enables us to translate the search for an optimal experiment to an

11



auxiliary problem - where the belief of each player is expressed in terms of the belief of a

reference player- and then apply the techniques developed in KG to solve it (Proposition 2).

We obtain necessary and sufficient conditions for a sender to benefit from experimentation

(Corollary 1), and for a sender to select a fully informative experiment (Corollary 2).

3.1 Induced Distributions of Posterior Beliefs

From the sender’s perspective, each experiment π induces a (subjective) distribution over

profiles of posterior beliefs. In any language-invariant equilibrium, the receiver’s posterior

belief uniquely determines his action. Thus, knowledge of the distribution of posterior beliefs

suffices to compute the sender’s expected utility from π.

If players share a common prior p, KG show that the martingale property of posterior

beliefs Eπ[q] = p is both necessary and sufficient to characterize the set of distributions of

beliefs that can be induced in Bayesian rational players by some experiment. This leads

us to ask: when players hold heterogeneous priors, what is the set of joint distributions

of posterior beliefs that are consistent with Bayesian rationality? While the martingale

property still holds when a player evaluates the induced distribution of his own posterior

beliefs, it is no longer true that the sender’s expectation over the receiver’s posterior belief

always equals the receiver’s prior. Nevertheless, we next show that posteriors qS and qR

form a bijection — qR is derived from qS through a perspective transformation. Moreover,

this transformation is independent of the experiment π and realization z.

Proposition 1 Let the prior beliefs of the sender and the receiver be the totally mixed beliefs

pS and pR, and let rR =
(
rRθ
)
θ∈Θ

be the likelihood-ratio defined by (4). From the sender’s

perspective, a distribution over profiles of posterior beliefs τ ∈ ∆ (∆ (Θ)×∆ (Θ)) is induced

by some experiment if and only if

(i) if (qS, qR) ∈ Supp(τ), then

qRθ = qSθ
rRθ∑

θ′∈Θ q
S
θ′r

R
θ′

=
qSθ r

R
θ

〈qS, rR〉
. (6)

(ii) Eτ [q
S] = pS.

Proposition 1 establishes that the martingale property of the sender’s beliefs and the

perspective transformation (6), together, characterize the set of distributions of posterior

12



beliefs that are consistent with Bayesian rationality. It also shows that, in spite of the de-

grees of freedom afforded by heterogeneous priors, not all distributions are consistent with

Bayesian rationality. Indeed, any two experiments that induce the same marginal distribu-

tion over the sender’s posterior must necessarily induce the same marginal distribution over

the receiver’s posteriors.15 In fact, (6) implies that the set of joint distributions of players

posterior beliefs under common priors and heterogeneous priors form a bijection. That is,

belief disagreement does not generate “more ways” to persuade the receiver. Equation (6)

relies on both the assumptions of common support of priors and a commonly understood

experiment. One implication of a common support of priors is that any realization that

leads the receiver to revise his belief must also induce a belief update by the sender — a

realization is uninformative to the receiver if and only if it is uninformative to the sender.

Expression (6) affords a simple interpretation. Heterogeneous priors over θ imply that,

for given π, with realization space Z, players also disagree on how likely they are to observe

each z ∈ Z. Just as the prior disagreement between the receiver and the sender is encoded in

the likelihood ratio rRθ = pRθ /p
S
θ , we can encode the disagreement over z in the likelihood ratio

λRz = PrR(z)/PrS(z), defined by (5). The proof of Proposition 1 shows that this likelihood

ratio can be obtained from rR by

λRz =
〈
qS(z), rR

〉
. (7)

From (6) and (7), we can relate the updated likelihood ratio qRθ (z)/qSθ (z) to rR and λRz ,

qRθ (z)

qSθ (z)
=
rRθ
λRz
. (8)

In words, the state-θ likelihood ratio after updating based on z is the ratio of the likelihood

ratio over states to the likelihood ratio over realizations. This implies that a realization z

that comes more as a “surprise” to the receiver than to the sender (so λRz < 1) would lead to

a larger revision of the receiver’s beliefs and, thus, a component-wise increase in the updated

likelihood ratio. Moreover, both likelihood ratios (rRθ and λRz ) are positively related, in the

15When players disagree on the likelihood functions that describe π (as is the case in Acemoglu et al.,

2006 and Van den Steen, 2011), then, even for Bayesian players, knowledge of the marginal distribution of

posterior beliefs of one player may not be enough to infer the entire joint distribution, and, thus, it may not

be enough to compute the sender’s expected utility from π.
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sense that realizations that come more as a surprise to the receiver than to the sender are

associated with states that the receiver perceives as less likely.16

As a final remark, note that the likelihood ratio rR is the Radon-Nikodym derivative

of pR with respect to pS. Therefore, (6) states that Bayesian updating under a commonly

understood experiment simply induces a linear scaling of the Radon-Nikodym derivative,

where the proportionality factor does not depend on the experiment π.

3.2 Value of Persuasion

If τ ∈ ∆ (∆ (Θ)×∆ (Θ)) is a distribution over (qS, qR), then the sender’s problem is

V (pS, pR) = sup
π

Eπ
S

[
v(qS(z), qR(z))

]
(9)

s.t. τ is induced by π,

where τ obtains from π and the sender’s prior pS, and the receiver’s posterior qR follows

from applying Bayes’ rule to the prior pR. Proposition 1 allows us to translate (9) to the

following equivalent, but lower dimensional, optimization problem,

V (pS, pR) = sup
σ

Eσ

[
v(qS, qR)

]
(10)

s.t. σ ∈ ∆ (∆ (Θ)) ,Eσ

[
qS
]

= pS, qR =
qSrR

〈qS, rR〉
,

By writing all posterior beliefs as a function of the beliefs of a reference player (in (10), the

reference player is the sender), then (10) becomes amenable to the tools developed in KG.

16Formally, given experiment π, consider the probability distribution ζj(θ, z) in Θ×Z defined by ζj(θ, z) =

π(z|θ)pjθ. Define the random variables ri(θ, z) = riθ and λi(θ, z) = λiz. Then, ri and λi are positively (linearly)

correlated under ζj(θ, z). To see this, note that

Eζi
[
λiri

]
=

∑
z∈Z

∑
θ∈Θ

〈
π(z), pi

〉
〈π(z), pj〉

piθ
pjθ
π(z|θ)pjθ =

∑
z∈Z

(〈
π(z), pi

〉
〈π(z), pj〉

)2 〈
π(z), pj

〉
,

≥

(∑
z∈Z

〈
π(z), pi

〉
〈π(z), pj〉

〈
π(z), pj

〉)2

= 1,

Eζi
[
ri
]

=
∑
z∈Z

∑
θ∈Θ

piθ
pjθ
π(z|θ)pjθ = 1,

Eζi
[
λi
]

=
∑
z∈Z

∑
θ∈Θ

〈
π(z), pi

〉
〈π(z), pj〉

π(z|θ)pjθ =
∑
z∈Z

〈
π(z), pi

〉
= 1.
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The next proposition provides properties of optimal experiments. For this purpose, and

following KG, for an arbitrary real-valued function f, define f̃ as the concave closure of f ,

f̃(q) = sup {w|(q, w) ∈ co(f)} ,

where co(f) is the convex hull of the graph of f . In other words, f̃ is the smallest upper

semicontinuous and concave function that (weakly) majorizes the function f .

Proposition 2 (i) An optimal experiment exists. Furthermore, there exists an optimal ex-

periment with realization space Z such that card(Z) ≤ min{card(A), card(Θ)}.

(ii) Define the function VS by

VS
(
qS
)

= v

(
qS,

qSrR

〈qS, rR〉

)
. (11)

The sender’s expected utility under an optimal experiment is

V (pS, pR) = ṼS
(
pS
)
. (12)

Expression (12) implies that the value of persuasion is ṼS
(
pS
)
−VS

(
pS
)
. Direct applica-

tion of Proposition 2 to establish whether this value is positive would require the derivation of

the concave closure of an upper-semicontinous function. Nevertheless, the following corollary

provides conditions that make it easier to verify whether experimentation is valuable.

Corollary 1 There is no value of persuasion if and only if there exists a vector γ ∈ Rcard(Θ)

such that 〈
γ, qS − pS

〉
≥ VS

(
qS
)
− VS

(
pS
)
, qS ∈ ∆ (Θ) . (13)

In particular, if VS is differentiable at pS, then there is no value of persuasion if and only if〈
∇VS

(
pS
)
, qS − pS

〉
≥ VS

(
qS
)
− VS

(
pS
)
, qS ∈ ∆ (Θ) . (14)

This corollary provides a geometric condition for the value of persuasion to be zero: a

sender does not benefit from experimentation if and only if VS admits a supporting hyper-

plane at pS. This observation is based on the characterization of concave functions as the

infimum of affine functions, and Figure 1 depicts this insight graphically.

If (13) is violated, then the sender will choose to experiment. Corollary 2 shows when

the sender will choose an experiment that perfectly reveals the state. For this purpose, let

1θ be the posterior belief that puts probability 1 on state θ.
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VS (q
S )

pS qS

(a) No Value of Persuasion

VS (q
S )

pS qS

(b) Positive Value of Persuasion

Figure 1: Illustration of Corollary 1

Corollary 2 A perfectly informative experiment is optimal if and only if∑
θ∈Θ

qSθ uS(a(1θ), θ) ≥ VS
(
qS
)
, qS ∈ ∆ (Θ) . (15)

Condition (15) admits a simple interpretation. Suppose that players observe a realization

that induces qS in the sender. The right-hand side of (15) is the sender’s expected utility if

she discloses no more information, while the left-hand side of (15) is the sender’s expected

utility if she allows the receiver to perfectly learn the state. Then, a sender does not benefit

from garbling a perfectly informative experiment if and only if for every possible experiment

π and realization z, she is not worse off by fully revealing the state.

In some applications, it will be convenient to rewrite the sender’s problem as follows. De-

fine ǔS(a, θ) = uS(a, θ)rSθ , where the likelihood ratio rSθ is defined by (4). For any experiment

π = (Z, {π (·|θ)}θ∈Θ) and receiver’s decision rule a(z), z ∈ Z, we have

ES [uS(a(z), θ)] =
∑
θ∈Θ

∑
z∈Z

π(z|θ)pSθ uS(a(z), θ) =
∑
θ∈Θ

∑
z∈Z

π(z|θ)pRθ uS(a(z), θ)rSθ = ER [ǔS(a(z), θ)] .

That is, the expected utility of a sender with prior pS and utility uS is the same as the

expected utility of a sender who shares the receiver’s prior pR, but has utility ǔS. Thus,

under a commonly understood experiment, one can convert the original problem to one with

common priors as follows. Rewrite (1) as v̌
(
qS, qR

)
≡
∑

θ∈Θ q
S
θ ǔS(a(qR), θ), and define

VR
(
qR
)

= v̌
(
qR, qR

)
. (16)

Remark: The claims of Proposition 2 remain valid if one substitutes VR
(
qR
)

for VS
(
qS
)
.
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Note, however, that in many cases, the transformed utility ǔS is hard to interpret and

defend on economic grounds. Moreover, by maintaining the original formulation, one is able

to gather a better economic understanding of the implications of heterogeneous priors. For

example, an important result in Section 4 is that on the space of pairs of prior beliefs, the

sender generically benefits from persuasion. Such a result would be hard to postulate and

interpret if one examined only the transformed problem.

4 Skeptics and Believers

How might a sender gain from designing a receiver’s access to information? The literature has

explored two broad sources of value under the assumption of a common prior. One source is

based on the value of information: a sender who benefits from decisions that are adapted to

the underlying state would certainly benefit from providing an informative experiment to a

decision maker that shares her preferences. The other source is based on conflicting interests.

For instance, if the sender’s utility is independent of the state — “pure persuasion” —, then

she would draw no value from learning the state if she could make decisions herself. However,

KG and Brocas and Carrillo (2007) show that she can still benefit from experimentation if,

instead, it is a receiver who makes decisions — when players share a common prior, the

sender can exploit non-concavities in the receiver’s action or in her own utility.

Van den Steen (2004, 2010a) and Che and Kartik (2009) show that the presence of het-

erogeneous priors can increase the incentives of influencers to persuade a decision maker

who holds unfavorable beliefs. In this paper, we explore the extent to which open disagree-

ment provides a third, distinct rationale for a sender to benefit from experimentation. To

be sure, there are situations in which belief disagreement does not lead to experimentation.

Proposition 3 provides necessary and sufficient conditions for the sender not to benefit from

persuasion for every pair of mixed prior beliefs (pR, pS). We then provide sufficient conditions

for the sender to benefit from persuasion for almost every pair of prior beliefs. Our main

condition is that the receiver’s action depends on his beliefs only through his expectation

of some random variable. In this case, belief disagreement generically induces the sender to

experiment, even when there is no value of persuasion under a common prior. Moreover, the

optimal experiment is often not fully revealing of the state.
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4.1 No Positive Value of Persuasion

We can express the sender’s payoff VR
(
qR
)

in (16) as

VR
(
qR
)

=
∑

θ∈Θ

pSθ
pRθ
qRθ uS

(
a(qR), θ

)
. (17)

With common prior beliefs, KG show that there is no value of persuasion for every pair of

common priors if and only if the expectation
∑

θ∈Θ q
R
θ uS

(
a(qR), θ

)
is everywhere concave in

qR. With heterogeneous priors, this condition must be satisfied for each possible state.

Proposition 3 The value of persuasion is zero for every pair of mixed prior beliefs if and

only if for each state θ, the function qRθ uS
(
a(qR), θ

)
is everywhere concave in qR .

The following example illustrates Proposition 3.

Example 1: Let Θ = {θL, θH}, with θL < θH . Consider quadratic payoffs uR = −(a−θ)2 and

uS = −(a−f(θ))2, where f captures the possible misalignment in preferences. The receiver’s

optimal action is, then, a(qR) = ER[θ]. Using the condition from Proposition 3, the value of

persuasion is zero for every pair of prior beliefs if and only if f(θH) ≤ θL < θH ≤ f(θL). �

The example shows that heterogeneous priors may not be enough for senders to engage

in experimentation. In the example, this result follows from two forces. First, an application

of Proposition 1 to a binary state shows that any realization that makes the receiver more

optimistic about the state being θH also leads the sender to raise the likelihood of θH . Second,

when f(θH) ≤ θL < θH ≤ f(θL), the misalignment in preferences is extreme: the receiver

would choose a higher action if he is more confident that θ = θH , while the sender would

prefer a lower action if θ = θH becomes more likely. Overall, the receiver would adversely

adjust his action after any realization of any experiment, regardless of the prior disagreement.

4.2 Generic Positive Value of Persuasion

Consider the following model of persuasion. Let A,Θ ⊂ R. Our main assumption is that

the receiver’s action depends on his beliefs only through his expectation of some random

variable, which we take to be the state θ. Formally, a(qR) = F
(〈
qR, θ

〉)
, with F twice
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continuously differentiable. We normalize the receiver’s action by incorporating F into the

sender’s payoff:

(A1): The receiver’s action is a(qR) =
〈
qR, θ

〉
.

(A2): The sender’s payoff uS(a, θ) is a twice continuously differentiable function of a.17

In Section 4.5, we provide a series of economic applications in which both assumptions hold.

Our first result is a sufficient condition for the sender to benefit from experimentation.

We start by listing some definitions. For each state θ, let

u′S,θ ≡
∂uS(a, θ)

∂a

∣∣∣∣
a=〈pR,θ〉

be the sender’s state-contingent marginal utility at the receiver’s action chosen at his prior

belief. Define the vector u′S ≡
(
u′S,θ
)
θ∈Θ

. Finally, we recall the following definition.

Definition: Vectors v and w are negatively collinear with respect to the subspace W , defined

by (3), if there exist λ < 0 such that the projections18 v||W and w||W satisfy

v||W = λw||W . (18)

We now state our first proposition in this section.

Proposition 4 Suppose that (A1) and (A2) hold. If (i)
(
rS · u′S

)
||W 6= 0, and (ii) rS · u′S

and θ are not negatively collinear with respect to W , then the sender benefits from persuasion.

Conditions (i) and (ii) are easy to illustrate. For each state θ, we plot the point (θ, rSθ u
′
S,θ)

on a two-dimensional graph. Condition (i) is violated if and only if all points fall on a single

horizontal line (see Figure 2(a))— that is, if the term rSθ u
′
S,θ is constant across all states.

Condition (ii) is violated if and only if all points fall on a single line with a strictly negative

slope19 (see Figure 2(b)). Figures 2(c) to (f) provide examples in which both conditions are

satisfied; hence, the sender benefits from persuasion.

17It is immediate to rewrite our results for the case a(qR) = F
(〈
qR, x(θ)

〉)
, so that x(θ) is the random

variable relevant to defining the receiver’s action, and θ is the random variable relevant to the sender’s payoff.
18Given vector v = (v1, . . . , vN ), the projection v||W captures the deviation of each element of v from the

mean of the elements of v: v||W = (v1 −
∑N
n=1 vn/N, . . . , vN −

∑N
n=1 vn/N).

19For example, recall Example 1 from Section 4.1. Condition (ii) is violated whenever (rSθHu
′
S,θH

−

rSθLu
′
S,θL

) < 0. If f(θH) ≤ θL < θH ≤ f(θL), then u′S,θH < 0 and u′S,θL > 0 for every prior belief of

the receiver. Hence, (rSθHu
′
S,θH

− rSθLu
′
S,θL

) < 0 for all rS (for every pair of prior beliefs).
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Figure 2: Illustration of Conditions (i) and (ii) from Proposition 4

In the proof of Proposition 4, we exploit (16), which is the sender’s payoff as a function

of the receiver’s belief, VR(qR). The vector rS · u′S then represents the sender’s expected

marginal utility evaluated according to the receiver’s prior belief:

ES
[
u′S|pS

]
= 〈pS, u′s〉 = 〈pR · rS, u′s〉 = 〈pR, rS · u′s〉 = ER

[
rS · u′S|pR

]
. (19)

Thus,
(
rS · u′S

)
||W is the direction in the space of the receiver’s beliefs along of highest

rate of increase of the sender’s expected utility. Likewise, θ||W provides the direction in

the space of the receiver’s beliefs along which his expectation of θ, and, hence, his action,

increases at the highest rate. Proposition 4 then states that the sender benefits from strategic

experimentation whenever these two directions are not opposite to each other.20 In this case,

the proof of Proposition 4 shows that there exists a direction such that the sender’s payoff

VR is locally strictly convex at pR.

We now provide further intuition for Proposition 4. To do so, we construct a binary

experiment that improves upon non-experimentation whenever rS·u′S and θ are not negatively

collinear with respect to W . Intuitively, this binary experiment increases the receiver’s action

20Note that Proposition 4 also applies to the case of common prior beliefs, so that rS = 1. In this case,

the sender benefits from experimentation if u′S||W and θ||W are not negatively collinear.
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only for beliefs where the sender’s expected marginal utility is higher than under her prior

belief.

pR E[θ |qR]=E[θ |pR]

E[rSu'S|q
R]=E[rSu'S|p

R]

rSu'S||W

θ||W

●

●
qR+

qR-

●

●

qR+

qR-

θ1 θ2

θ3

Figure 3: Finding a Beneficial Experiment

Figure 3 provides a graphical illustration of this beneficial experiment, which we construct

in two steps. Consider, first, a binary experiment π̂ with two equally likely outcomes that

do not change the receiver’s prior action. That is, under π̂, the receiver can have one of two

posterior beliefs, q̂R+ = pR + w and q̂R− = pR − w, where
〈
q̂R+ − pR, θ

〉
= 〈w, θ〉 = 0. Clearly,

the sender does not benefit from this experiment and Vπ̂ = 0. Starting with π̂, consider,

now, a binary experiment π that induces one of two equally likely beliefs in the receiver,

qR+ = q̂R+ + εθ‖W and qR− = q̂R− − εθ‖W , with ε > 0. Under π, the receiver changes his action

by ∆a = a(qR+) − a(pR) = ε
∥∥θ‖W ∥∥2

if the realization induces qR+ and by −∆a if it induces

qR−. To understand the sender’s gain from π, we compare the sender’s expected gain from
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the realizations qR+ under π and realization q̂R+ under π̂

V +
π − V +

π̂ = Pr S
[
qR+
]
ES[uS(a

(
qR+
)
, θ)]− Pr S

[
q̂R+
]
ES[uS(a

(
q̂R+
)
, θ)]

= Pr R
[
qR+
]
ER[rSuS(a

(
qR+
)
, θ)|qR+]− Pr R

[
q̂R+
]
ES[rSuS(a

(
q̂R+
)
, θ)|q̂R+]

≈ 1

2

(〈
q̂R+, r

S ∂uS
∂a

(a
(
pR
)
, θ)

〉
∆a+ ε

〈
θ‖W , r

SuS(a
(
pR
)
, θ)
〉)

.

The first term is the change in the sender’s expected utility from increasing the receiver’s

action by ∆a at belief q̂R+, while the second term gives the change in the sender’s utility

from the difference (from the sender’s perspective) in the likelihood of qR+ relative to q̂R+. A

similar analysis can be performed to compare the sender’s expected gain under realization

qR− under π relative to realization q̂R− under π̂. Combining these two calculations, we have,

after eliminating second-order terms21

Vπ = Vπ − Vπ̂ = V +
π − V +

π̂ + V −π − V −π̂

=
1

2

(〈
q̂R+ − q̂R−, rS

∂uS
∂a

(a
(
pR
)
, θ)

〉
∆a+ ε

〈
θ‖W , r

S
(
uS(a

(
qR+
)
, θ)− uS(a

(
qR−
)
, θ)
)〉)

≈
〈
w, rSu′S

〉
∆a (20)

Recall that the vector w ∈ W is orthogonal to θ and (rS · u′S)||W 6= 0. Therefore, (20) is

identically zero if and only if
(
rS · u′S

)
||W and θ||W are collinear. If

(
rS · u′S

)
||W and θ||W are

not collinear, however, one can find a vector w that makes (20) positive. Intuitively, under

experiment π, it is more valuable for the sender to raise the receiver’s action at q̂R+ and less

valuable at q̂R−, relative to the prior belief pR. Then, experiment π raises the sender’s utility,

as it induces the receiver to increase his action only for the realization for which the sender

benefits relatively more from a higher action.

How often does the sender benefit from persuading the receiver? Our next result es-

tablishes sufficient conditions for the sender to generically benefit from persuasion, where

genericity is interpreted over the space of pairs of prior beliefs. First, the state space must

be sufficiently rich, card (Θ) > 2. Moreover, we assume

21The second-order term that we eliminate is ε
〈
θ‖W , rS ∂uS

∂a (a
(
pR
)
, θ)
〉

∆a, which captures the change in

the sender’s utility owing to the relative difference in the probability of qR+ and q̂R+ versus qR− and q̂R−. The

first-order term in (20) is zero if (rS ·u′S)||W and θ||W are collinear. In this case, this second-order term is posi-

tive, and, thus, the sender benefits from experiment π if θ‖W and rS ∂uS

∂a (a
(
pR
)
, θ)‖W are positively collinear.
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(A3): For almost every belief pR, we have ∂uS(a,θ)
∂a

∣∣∣
a=〈pR,θ〉

6= 0 for at least one θ.

Assumption (A3) implies that for a generic prior belief of the receiver, changing the

receiver’s action marginally changes the sender’s state-contingent payoff for at least one state.

Condition (A3) holds in all applications of Section 4.5. Together, assumptions card (Θ) > 2

and (A3) guarantee that both conditions (i) and (ii) from Proposition 4 hold generically.

Corollary 3 Suppose that (A1) and (A2) hold. If card (Θ) > 2 and (A3) hold, then the

sender generically benefits from persuasion.

A remarkable feature of Corollary 3 is that it does not impose conditions on the alignment

of preferences between sender and receiver. Given a rich state space and conditions (A1) to

(A3), the sender can generically find a beneficial experiment to provide to the receiver even

under extreme conflict of preferences — e.g., even if uS(a, θ) = −uR(a, θ).

4.3 Pure Persuasion and Skeptics and Believers

In a world of common prior beliefs, KG describe how the value of persuasion fundamentally

depends on the curvature of a sender’s payoff as a function of the receiver’s beliefs. In a world

of heterogeneous prior beliefs, our Corollary 3 shows that if the state space is sufficiently

rich and conditions (A1) to (A3) hold, then the sender generically benefits from persuasion.

Furthermore, our conditions do not impose significant restrictions on the curvature of the

sender’s payoff other than smoothness.

Why is experimentation pervasive under open disagreement? To isolate the role of belief

disagreement in strategic experimentation, we focus on the case of pure persuasion, in which

the sender’s utility is independent of the state:

(A2′): The sender’s payoff is uS(a, θ) = G(a), with G twice continuously differentiable

and G′ > 0.

In this case, the sender benefits from the receiver choosing a higher action, which occurs

whenever he has a higher expectation of θ. We can then categorize as follows the type

of receiver that the sender may face. A sender views a receiver as a skeptic if the sender

would be made better off by a receiver who shares her point of view; that is, if
〈
qR, θ

〉
<
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〈
qS, θ

〉
.Conversely, a sender views a receiver as a believer if the sender would not be made

better off by a like-minded receiver; that is, if
〈
qR, θ

〉
≥
〈
qS, θ

〉
.

From the sender’s point of view, a fully revealing experiment increases the average action

of an skeptic receiver, and (weakly) decreases that of a believer. Whether such experiments

raise or decrease the sender’s expected utility depends on her risk preferences, as captured by

the curvature of G. Nevertheless, together, conditions (A1), (A2′) and card(Θ) > 2 imply

that all conditions of Corollary 3 hold. Thus, persuasion is generically valuable, regardless

of whether the sender is facing a skeptic or a believer, and regardless of her risk attitude.

We now derive a more intuitive interpretation of our collinearity condition in Proposition

4 when applied to the case of pure persuasion. We start by defining some relevant sets of

beliefs. Let the set of beneficial beliefs A+ be the set of the receiver’s beliefs that would

result in his choosing a (weakly) higher action than under the prior belief pR, and A− be the

set of detrimental beliefs. That is,

A+ =
{
qR ∈ ∆(θ)|

〈
qR, θ

〉
≥
〈
pR, θ

〉}
, (21)

A− =
{
qR ∈ ∆(θ)|

〈
qR, θ

〉
<
〈
pR, θ

〉}
.

Thus, the sender faces a skeptic if and only if pS ∈ A+. Figure 4(a) depicts the sets of

beneficial beliefs (gray area) and detrimental beliefs (white area).

Recall that players disagree on the likelihood of reaching certain posterior beliefs. It fol-

lows from (7) that for every qR ∈ ∆(Θ), we have PrS[qR] = PrR[qR]〈qR, rS〉. We say that the

receiver underestimates qR if PrS[qR] > PrR[qR], and he overestimates qR if PrS[qR] < PrR[qR].

We then define the sets of beliefs:

S+ = {qR ∈ ∆(θ)|〈qR, rS〉 > 1},

S− = {qR ∈ ∆(θ)|〈qR, rS〉 < 1}.

For every qR in the support of π, the receiver underestimates qR if and only if qR ∈ S+, and

he overestimates qR if and only if qR ∈ S−. Hence, we refer to S+ as the set of beliefs that

the receiver underestimates. Figure 4(b) depicts a series of hyperplanes along which 〈qR, rS〉

is constant. The gray area depicts S+ and the white area depicts S−.

Given (A1) and (A2′), note that the derivative ∂uS(a,θ)
∂a

= G′(a) > 0 is independent of

the state; hence, all elements of u′S are the same. In this case, conditions (i) and (ii) of
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Proposition 4 afford a simple interpretation.

Lemma 1 Suppose that (A1) and (A2′) hold. Then, the set of beneficial beliefs that the

receiver underestimates is non-empty, A+ ∩ S+ 6= ∅, if and only if (i) prior beliefs are not

common, and (ii) rS and θ are not negatively collinear with respect to W .

A+

A-

θ||W

pR

E[θ |qR]=E[θ |pR]

E[θ |qR]>E[θ |pR]

E[θ |qR]<E[θ |pR]

θ1 θ2

θ3

(a) Beneficial beliefs

S+ S-

rS||W
pR

E[rS|qR]=1

E[rS|qR]>1 E[rS|qR]<1

θ1 θ2

θ3

(b) Beliefs underestimated by the receiver

rS||W

A+ ⋂ S+

pR

E[θ |qR]=E[θ |pR]

E[rS|qR]=1

A- ⋂ S-

θ||W

θ1 θ2

θ3

(c) Non-empty set A+ ∩ S+

Figure 4: Finding a Beneficial Experiment.

Figure 4(c) describes the intersection of the sets A+ and S+ graphically. As the projec-

tions of θ and rS are not negatively collinear, A+ ∩ S+ is non-empty, and one can readily

find posterior beliefs that are beneficial and that the sender perceives to be more likely.22

22To further highlight the importance of the sets A+ and S+, suppose thatG is linear. Take any experiment

π that is supported only by beliefs in the areas A+ ∩ S+ and A− ∩ S−. Then, the sender strictly prefers to
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We can now extend Proposition 4 by providing both necessary and sufficient conditions

for a positive value of persuasion.

Proposition 5 Suppose that (A1) and (A2′) hold.

(i) If A+ ∩ S+ 6= ∅, then the sender benefits from persuasion.

(ii) If the sender’s payoff G is concave, then she benefits from persuasion if and only if

A+ ∩ S+ 6= ∅.

Proposition 5(i) shows that the sender will experiment as long as there are beneficial

beliefs underestimated by the receiver. Proposition 5(ii) then shows that if the sender’s

utility is a concave function of the receiver’s expectation, so that experimentation is never

valuable under a common prior, then the only reason for experimentation is that the sender

is more optimistic about some beneficial realization. Such realizations generically exist in

the space of prior beliefs, even if the receiver is a believer.

Corollary 4 Suppose that (A1) and (A2′) hold. If card (Θ) > 2, then A+ ∩ S+ 6= ∅ for a

generic pair of prior beliefs.

We end this section by studying when the optimal experiment would fully reveal the state.

That is, when would a sender not gain from garbling the realizations of a fully informative

experiment? To answer this question, we apply Corollary 2 to the function VS in (11) when

(A1) and (A2′) hold, so that

VS(qS) = G (ER[θ]) = G

(〈
qS, rRθ

〉
〈qS, rR〉

)
. (22)

Expression (22) suggests that the sender’s gain from a fully informative experiment depends

both on her “risk attitudes” (i.e., on the curvature of G) and the type of receiver she is facing.

The next proposition formalizes this intuition. To present this proposition, recall that pS

dominates pR in the likelihood-ratio sense, pS �LR pR, if rSθ = pSθ /p
R
θ (weakly) increases in θ

— see Shaked and Shanthikumar (2007, pg 42).

provide experiment π over no experimentation. Conversely, the sender prefers no experimentation over any

experiment that is supported only in the areas A+ ∩ S− and A− ∩ S+.
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Proposition 6 Suppose that (A1) and (A2′) hold.

(i) If G is convex and pS �LR pR, then a fully-revealing experiment is optimal.

(ii) If there exist states θ and θ′ such that

(θ′ − θ)
((
rSθ′
)2
G′ (θ′)−

(
rSθ
)2
G′ (θ)

)
< 0, (23)

then a fully revealing experiment is not optimal.

Note that likelihood ratio orders are preserved under Bayesian updating. In particular, if

pS �LR pR, then the receiver remains a skeptic after any realization that does not fully reveal

the state, meaning that by fully revealing the state, the sender can increase the receiver’s

average action. As any garbling reduces the variance of the receiver’s posterior beliefs, if uS

is convex and the receiver remains a skeptic after every partially informative realization, then

the sender cannot do better than letting him fully learn the state. Nevertheless, Proposition

6(ii) argues that if at least one of these conditions is relaxed, then the sender would prefer

to garble a fully informative experiment as long as (23) holds. In particular, if G is linear,

then a fully-revealing experiment is optimal if and only if pS �LR pR. Therefore, a fully

informative experiment is often suboptimal, even when the sender faces a skeptic.

4.4 Persuading Skeptics and Believers

When experimentation is valuable, what is the optimal experiment? To provide some intu-

ition, we now restrict attention to the case where G in condition (A2′) is concave, so that

according to Proposition 5(ii), experimentation is valuable if and only if A+ ∩ S+ 6= ∅.

An important property of optimal experiments is time-consistent disclosure: there is no

value in further releasing any information after each realization of an optimal experiment.

In our case, this implies that A+ ∩ S+ = ∅ after each realization of an optimal experiment

— ex-post, the sender is never more optimistic about any beneficial belief. This leads to the

following property of optimal experiments.

Proposition 7 Suppose that (A1) and (A2′) hold, and consider a concave G. Let Z∗

be the set of realizations of an optimal experiment, and define λSz = PrS [z] /PrR [z] and

az = ER [θ|z]. Then,

λSz′ ≥ λSz ⇐⇒ az′ ≥ az.
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The proposition states that if one considers the distribution of actions induced by an

optimal experiment, the sender always assigns more probability to higher actions by the

receiver than the receiver does. Actually, the sender’s belief (as given by PrS [az]) dominates

the receiver’s belief (as given by PrR [az]) in the likelihood ratio sense. In a nutshell, regard-

less of whether she is facing a skeptic or a believer, the sender always selects an experiment

about whose beneficial realizations she is always more optimistic. In the online Appendix

B we show how the sender can construct optimal experiments for particular cases, most

notably for the case when G is linear.

4.5 Applications

Attempts to persuade others are pervasive in economics and politics. Politicians and man-

agers try to persuade bureaucrats and workers to exert more effort. Bureaucrats and workers

try to influence the policy and managerial choices of politicians and executives. Interest

groups and firms try to influence governments’ and consumers’ expenditure decisions.

An example of persuasion that has gained increasing attention from governments around

the world is the use of small-scale policy experiments. The information uncovered by these

experiments can influence the actions of legislators, bureaucrats and voters. For example,

“the Perry Preschool Project, the Manhattan Bail Bond Experiment, the Work-Welfare

Experiments, and the National Job Training Partnership Act (JTPA) Study have all had

clear, direct impacts on the adoption or continuation of specific policies or (in the case

of JTPA) major funding changes for an ongoing program” (Orr, 1999, pg. 234). It is

important to note that the experiments’ results do not always meet the designer expectations.

According to David Halpern (chief executive of BIT), “one or two in every 10 trials [conducted

by the BIT] fail” (Rutter, 2015). Therefore, the sender might benefit from strategically

designing the experiment to better influence the receiver.23

23A recent example illustrates how the designer might strategically garble the experiment. Some local

police departments in the US conducted experiments to evaluate how body-worn video technology impacts

police-citizen behavior and crime. The test designers wanted legislators to approve a set of proposed rules

for the use of this new technology. The experiment designers chose not to test one important aspect of

the new policy: all police officers in the trial were allowed to watch the recorded video before writing their

reports. Many critics argued that watching the video would greatly influence the reports; therefore, the
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One of the main contributions of our paper is to show how the presence of belief disagree-

ment will fundamentally alter how much information is released. In this section, we apply

our results to show that persuasion should be widespread in all these cases. Throughout this

section, we implicitly assume that there are at least three states.

Application 1 (Motivating Effort): Consider an incumbent politician (or manager) who

wants to persuade a bureaucrat (or worker) to exert more effort. Although politicians usually

hold the power to define policies, bureaucrats’ actions affect the actual implementation and

enforcement of policies — see Bertelli (2012) for an overview of the related literature. More-

over, empirical evidence suggests that there is often open disagreement between politicians

and bureaucrats — see references in Hirsch (forthcoming). 24

For concreteness, suppose that a politician wishes to implement a new policy — e.g., she

wants to change the flat-wage payment of public school teachers to a pay-for-performance

scheme. In order for the policy to be successful, a bureaucrat (e.g., the school district super-

intendent) must exert effort to implement it. State θ > 0 captures the uncertainty regarding

how this new policy will affect voters’ and the bureaucrat’s payoff. Let uR(a, θ) = θa − aρ

ρ

be the payoff of the bureaucrat, where ρ ≥ 2 is a known preference parameter. Let

uS(a, θ) = f(θ)a be the payoff of voters (hence, the payoff of the politician who seeks

reelection), where the function f > 0 captures voters’ preferences. Before implementing

the new policy, the politician can run a policy experiment that will provide information to

influence the bureaucrat’s effort — e.g., design a pilot test in selected schools. Assumptions

(A1) to (A3) hold; therefore, persuasion is generically valuable, independent of the shape

of the politician’s preference f and the alignment of interests between players.

Application 2 (Influencing Policies): In the previous application, the politician (or

manager) had the authority to design and implement the experiment. However, in some

officers should be required to write the report first. While most people agree that watching the video before

writing the report has some influence on the report, we do not know (and might have different priors over)

how big this influence is. To measure the actual impact of this aspect of the policy, the experimenter could

have easily (at no additional monetary cost) randomly assigned some of the officers already participating in

the trial to write the report before watching the video. But the designer strategically chose not to do that.
24For related models of a manager motivating the effort of a worker under heterogeneous prior beliefs, see

Van den Steen (2004, 2009, 2010a, 2011).
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situations, the bureaucrat (or worker) is the one who controls the generation of information

that the politician uses in choosing policies (or that the manager uses to make decisions).

Suppose that the school superintendent (sender) is an independent elected official who

has the authority to run pilot policy tests in the school district. The information uncovered

influences the policy a chosen by the incumbent politician (receiver). The politician max-

imizes the payoff of voters, uR(a, θ) = −(a − θ)2, 0 ≤ θ ≤ 1, so that a∗ = ER[θ] ∈ [0, 1].

For example, the politician selects the compensation of schoolteachers, where a = 0 repre-

sents a flat wage and a = 1 represents a very steep pay-for-performance scheme. State θ

then represents the optimal policy from the politician’s point of view. The superintendent’s

payoff is uS(a, θ) = −(a − f(θ))2, where function f captures the possible misalignment in

preferences. Assumptions (A1) to (A3) also hold in this case; therefore, persuasion is gener-

ically valuable, independent of the shape of bureaucrat’s preference f and the alignment of

interests between the players.25 In summary, even under extreme conflicts of interest, hard

information still flows in the government — communication does not shut down.

This application is closely related to the “Lobbying” example proposed by KG. In the

example, the authors consider “a setting where a lobbying group commissions a study with

the goal of influencing a benevolent politician. [...] The tobacco lobby has spent large

sums funding studies about the health effects of smoking [...]. Would it make sense for the

lobbyist to commission such studies even if the politician is rational and knows the lobbyist

is providing information with the goal of influencing her decision? Would the optimal study

in this case be biased toward supporting the lobbyist’s position or fully revealing of the true

state?” (KG, pg. 2605)

KG’s conclusion, assuming common priors, is that “the lobbyist either commissions a

fully revealing study or no study at all. This contrasts with the observation that industry-

funded studies often seem to produce results more favorable to the industry than independent

studies. The model suggests that commissioning such biased studies when policymakers are

rational may not be optimal from the industry’s perspective.” (KG, pg. 2606)

Our results might help explain this apparent puzzle. If the lobbyist and the politician

25Note that Application 2 is equivalent to Example 1 in Section 4.1. If there are only two states, then

Example 1 defines the preference misalignment that eliminates the value of persuasion for all prior beliefs.

However, if there are three or more states, then persuasion is generically valuable.
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have heterogeneous priors, then the lobbyist generically benefits from persuasion, the opti-

mal experiment is often partial information disclosure, and the optimal experiment is such

that the sender is more optimistic than the receiver about the expected results.

Application 3 (Seeking Resources): In certain cases, the public signal is better inter-

preted as the sender’s ability to commit to a certain information disclosure rule, such as,

the ability of a government agency (or a private firm) to commit to a certain disclosure rule

about its activities, services and products. This information, in turn, affects the amount of

resources it receives from the government (or the demand from consumers).

For concreteness, consider a government agency or independent institution that produces

a public good g (e.g., an environmental agency in charge of protecting the rain forest). The

bureaucrat who is the head of the institution (sender) wants to maximize the amount of

resources she receives from the government. The incumbent politician (receiver) chooses the

proportional income tax rate a ∈ [0, 1] that is used to finance the institution. The politician is

office-motivated and wants to maximize the payoff of a representative voter. The voter cares

about her consumption of a private good c and the public good g according to cρ+θg, where

ρ ∈ (0, 1) is a known preference parameter and θ is the unknown marginal benefit of the public

good. Let c = (1− a)ym and g = aY , where ym is the pre-tax income of the representative

(median) voter; Y is the total income of the population; and aY is the total tax revenue used

to finance the institution. Hence, the bureaucrat’s payoff is uS(a, θ) = aY . Assuming that

θ > ρyρm
Y

, it follows that the politician’s optimal choice is a(qR) = 1−
(

ρyρm
ER[θ]Y

) 1
1−ρ

. Because

the receiver’s action depends only on his beliefs through his expectation of θ, without loss

of generality, we can normalize his action so that assumption (A1) holds.

The bureaucrat can commit to disclose information about the marginal value of the public

good (e.g., to a disclosure rule about the information it gathers about the dynamics of the

fauna and flora of the different regions). Since the politician’s action is a strictly increasing,

strictly concave function of her expectation ER[θ], under common priors, it is optimal not

to disclose any information. However, conditions (A1) to (A3) apply, and the bureaucrat

generically benefits from persuasion. That is, persuasion is valuable even if the incumbent

politician strongly believes in the value of protecting the forests and in spite of the fact that

the politician’s financial decision is a strictly concave function of her expectation.
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We can rewrite the model as a firm committing to disclose certain information about the

quality of its products and services to a consumer. Persuasion is then generically valuable,

even when the consumer is overly optimistic about the quality of the firm’s products.

Application 4 (Extreme Conflict): Consider a situation of direct conflict between sender

and receiver — e.g., two politicians competing for the same office or two firms competing for

market share. To highlight the importance of belief disagreement to persuasion, consider the

extreme case uS(a, θ) = −uR(a, θ). If the receiver chooses a, when would the sender benefit

from providing information about θ?

For concreteness, consider an incumbent politician whose political platform is known by

voters, against a challenger who needs to choose a campaign platform (or a known incumbent

firm against a potential entrant who must choose how to enter the market). The challenger

(entrant) wants to choose the action that maximizes his probability of election (or market

share): uR(a, θ) = 1 − (a − θ)2, where 0 ≤ θ ≤ 1, so that a(qR) = ER[θ] ∈ [0, 1]. From

the challenger’s point of view, his expected payoff from an optimal action decreases in the

variance, ER[uR(a(qR), θ)] = −VARR[θ]. The incumbent’s objective is to minimize the chal-

lenger’s probability of election, uS(a, θ) = −uR(a, θ). Remarkably, persuasion is generically

valuable even in this extreme case, since assumptions (A1) to (A3) hold. Note that from

the sender’s point of view, her expected payoff can be written as (ES(θ)−ER[θ])2 +VARS[θ].

That is, the sender benefits from the size of the receiver’s “mistake,” captured by the term

(ES(θ)−ER[θ])2, and from the degree of uncertainty, captured by VARS[θ]. Any informative

experiment decreases VARS[θ], which hurts the sender. However, the sender can generically

design an experiment that sufficiently increases the expected mistake, so that persuasion is

valuable. �

5 Private Priors

We can extend the analysis to a case in which the sender is uncertain about the receiver’s prior

beliefs when designing π. Suppose that prior beliefs are drawn from a distribution H(pR, pS)

with conditional distribution h(pR|pS).26 Proposition 1 still applies for each (pR, pS). Con-

26Note that the receiver’s preferences are unaffected by his beliefs about the sender’s prior. Therefore, the

sender’s choice of experiment conveys no additional information to the receiver. This would not be true if
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sequently, given pS and h(pR|pS), knowledge of the sender’s posterior qS suffices to compute

the joint distribution of posterior beliefs. Moreover, the restriction to language-invariant

equilibria implies that, given (pR, pS), the receiver’s choice depends only on his posterior

belief qR. Therefore, we can compute the sender’s expected payoff VS using the implied

distribution of qR. More specifically, (11) translates to

VS
(
qS
)

= ES[v(qS, qR)|pS] =

∫
v

qS, qS p
R

pS〈
qS, p

R

pS

〉
 dh(pR|pS). (24)

With this modification, the expected utility of a sender under an optimal experiment is

ṼS
(
pS
)
, and the sender would benefit from persuasion under the conditions of Corollary

1. Moreover, the expected value to the sender of a perfectly informative experiment is

independent of the receiver’s prior belief. Therefore, the value of garbling is positive whenever

(24) satisfies the conditions in Corollary 2.

As an application of (24), consider the pure persuasion model from Section 4.3. When

the sender knows the receiver’s prior, Proposition 5(i) provides conditions on the likelihood

ratio of priors for persuasion to be valuable. Suppose that these conditions are met, and

the sender strictly benefits from providing experiment π to a particular receiver. By a

continuity argument, the same π strictly benefits the sender when she faces another receiver

whose prior belief is not too different. Consequently, even if the sender does not know the

receiver’s prior, persuasion remains beneficial when the receiver’s possible priors are not too

dispersed. Proposition B.1 in Online Appendix B shows that this is, indeed, the case and

provides an upper bound on how dispersed these beliefs can be.

6 Conclusion

In this paper, we study the gain to an individual (sender) from controlling the information

available to a decision maker (receiver) when they openly disagree about their views of the

world. We first characterize the set of distributions over posterior beliefs that can be induced

through an experiment, under our assumption of a “commonly understood experiment” (i.e.,

when players agree on the statistical relation of the experiment to the payoff-relevant state).

the sender privately observed a signal about the state, see Sethi and Yildiz (2012).
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This allows us to compute the gains from persuasion.

In Section 4, we provide necessary and sufficient conditions for some belief disagreement

to render experimentation valuable to the sender. We then define a large class of models

in which the sender gains from experimentation for almost every pair of prior beliefs, even

when there is no value of persuasion under a common prior. Our main conditions are:

(i) the receiver’s action depends on his beliefs only through his expectation of some random

variable; and (ii) there are more than two states. The fact that these conditions hold in many

important applications emphasizes our main finding that persuasion should be widespread

in situations of open disagreement.

For a case in which experimentation is not valuable under a common prior, we show

that optimal experiments under heterogeneous priors have an intuitive property: the sender

is relatively more optimistic than the receiver in inducing beneficial outcomes. Indeed, we

show that the sender’s relative optimism is quite strong — her prior belief over realizations

of an optimal experiment dominates the receiver’s prior in the likelihood-ratio sense. This

allows us to clarify why even a sender facing a “believer” can design an experiment about

whose outcomes she is more optimistic.

One important example of persuasion that has gained increasing attention from govern-

ments around the world is the use of small-scale policy experiments. Many policy experi-

ments have had real impacts on policies later adopted (see examples in Section 4.5). There

are many econometric books explaining how to conduct the most informative experiment.

However, many of these experiments are paid for and controlled by a politician or a bu-

reaucrat. Given the preferences and beliefs of the parts involved, the experiment might be

strategically designed (garbled) to influence others. We hope that our results might guide

future empirical investigations that aim to identify which experiments conducted around the

world were, indeed, strategically modified.

To focus on the role of heterogeneous priors on strategic experimentation, we restrict our

analysis in several ways. First, the sender has no private information. Second, we consider

a single receiver. In many situations, however, the sender may want to affect the beliefs of

a collective, where she is typically constrained to use a public signal. Third, we consider

a fixed decision-making process. However, sometimes the sender can both offer a contract

and provide some information to a receiver — i.e., the sender designs a grand mechanism
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specifying the information to be released and several contractible variables. Similarly, one

can examine how the optimal experiment varies across different mechanisms of preference

aggregation (e.g., Alonso and Câmara (2015, forthcoming) examine persuasion in a voting

model). We leave all of these promising extensions for future work.

A Proofs

Proof of Proposition 1: Necessity : Consider an experiment π =
(
Z, {π (·|θ)}θ∈Θ

)
that

induces, from the sender’s perspective, the distribution τ, and let π(z) = (π (z|θ))θ∈Θ and

qR(z) and qS(z) be the posterior beliefs of the receiver and the sender if z ∈ Z is realized.

The marginal distribution over the sender’s posterior beliefs satisfies the martingale property

— i.e., Eτ [q
S] = pS. Furthermore, as priors are totally mixed, the receiver assigns positive

probability to z if and only if the sender also assigns positive probability to z.27 Suppose,

then, that π(z) 6= 0. Bayesian updating implies that after observing z,

qSθ (z) =
π(z|θ)pSθ
〈π(z), pS〉

,

so we can write

qSθ (z)
〈
π(z), pS

〉 pRθ
pSθ

= π(z|θ)pRθ ,

and summing over θ ∈ Θ, we obtain〈
π(z), pS

〉 〈
qS(z), rR

〉
=
〈
π(z), pR

〉
.

Then, we can relate the two posterior beliefs by

qRθ (z) =
π(z|θ)pRθ
〈π(z), pR〉

=
π(z|θ)pSθ

〈π(z), pS〉 〈qS(z), rR〉
pRθ
pSθ

= qSθ (z)
rRθ

〈qS(z), rR〉
.

Sufficiency : Given a distribution τ satisfying (i) and (ii), let τS(qS) be the marginal distribu-

tion of the sender’s posterior beliefs and define the realization space Z =
{
qS : qS ∈ Supp(τS)

}
and the likelihood functions π(qS|θ) =

qSθ PrτS q
S

pSθ
. Then, simple calculations reveal that the

experiment π =
(
Z,
{
π(qS|θ)

}
θ∈Θ

)
induces τ . �

Proof of Proposition 2: Part (i) See KG. Part (ii) As (10) can be seen as a persuasion

model with a common prior, the claim then follows from KG (Corollary 2: pg. 2597).

27Indeed, we have PrR [z] =
〈
π(z), pR

〉
= 0⇔ π (z|θ) = 0, θ ∈ Θ⇔ PrS [z] =

〈
π(z), pS

〉
= 0.
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Proof of Corollary 1: Condition (13) can be rephrased in terms of the subdifferential

∂V (p) of a function V evaluated at p, and simply states that the sender does not benefit

from persuasion if and only if ∂
(
−VS(pS)

)
6= ∅. Condition (14) then follows immediately

as, if VS is differentiable at pS, then ∂
(
−VS(pS)

)
can have at most one element.

Sufficiency : As the concave closure ṼS is the lower envelope of all affine functions that ma-

jorize VS and, by assumption, the majorizing affine function f
(
qS
)

= VS
(
pS
)

+
〈
γ, qS − pS

〉
satisfies VS

(
pS
)

= f
(
pS
)
, then

VS
(
pS
)

= f
(
pS
)
≥ ṼS

(
pS
)
≥ VS

(
pS
)
,

implying that ṼS
(
pS
)

= VS
(
pS
)

and, by Proposition 2, there is no value of persuasion.

Necessity : Suppose that there is no value of persuasion. From Proposition 2 this implies

that ṼS
(
pS
)

= VS
(
pS
)
. As ṼS is the concave closure of an upper-semicontinuous function

in a compact set, the differential of −ṼS
(
qS
)

is non-empty for all qS ∈ int(∆ (Θ)). Any

element of ∂
(
−ṼS(pS)

)
would then satisfy (13). �

Proof of Corollary 2: Sufficiency : Suppose that (15) is satisfied. Then, any π that induces

the distribution over posterior beliefs σ must satisfy Eσ

[
qS
]

= pS, implying that

∑
θ∈Θ

pSθ uS(a(1θ), θ) = Eσ

[∑
θ∈Θ

qSθ uS(a(1θ), θ)

]
≥ Eσ

[
VS
(
qS
)]
.

Thus, a fully informative experiment weakly dominates any π and is, thus, optimal.

Necessity : Fix any belief qS ∈ ∆ (Θ) and let δ̄ be defined as

δ̄ = max

{
δ : pSθ −

δ

1− δ
(qSθ − pSθ ) ≥ 0, δ ∈ [0, 1]

}
.

As the prior belief pS ∈ int(∆ (Θ)) we have 1 > δ̄ > 0. Letting 1θ be the belief that assigns

probability 1 to state θ, consider, now, an experiment that induces belief qS with probability

δ̄ and belief 1θ with probability (1− δ̄)
(
pSθ − δ̄

1−δ̄ (q
S
θ − pSθ )

)
= pSθ − δqSθ ≥ 0 for each θ ∈ Θ.

The expected utility of the sender under this experiment is

δVS
(
qS
)
+
∑
θ∈Θ

(
pSθ − δqSθ

)
uS(a(1θ), θ) = δ

(
VS
(
qS
)
−
∑
θ∈Θ

qSθ uS(a(1θ), θ)

)
+
∑
θ∈Θ

pSθ uS(a(1θ), θ).

Full disclosure is optimal by assumption; therefore, we must have

δ

(
VS
(
qS
)
−
∑
θ∈Θ

qSθ uS(a(1θ), θ)

)
+
∑
θ∈Θ

pSθ uS(a(1θ), θ) ≤
∑
θ∈Θ

pSθ uS(a(1θ), θ),
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from which, given that δ̄ > 0, we must then necessarily have (15). �

Proof of Proposition 3: Necessity : We prove the contrapositive: if for some θ′, qRθ′uS
(
a(qR), θ′

)
is not concave, then there exists a pair of mixed prior beliefs pR and pS such that the

sender benefits from persuasion. Let n = card (Θ) , and suppose that for θ′, the function

qRθ′uS
(
a(qR), θ′

)
is not concave. Then, there exist q+, q− ∈ int (∆ (Θ)) , and ν, 0 < ν < 1,

such that

νq+
θ′uS

(
a(q+), θ′

)
+ (1− ν)q−θ′uS

(
a(q−), θ′

)
− pRθ′uS

(
a(pR), θ′

)
= Ψ > 0,

where pR ∈ int (∆ (Θ)) is given by pR = νq+ + (1− ν)q−. Since uS
(
a(qR), θ

)
is bounded, let

Ψ̄ = min
θ∈Θ

(
νq+

θ uS (a(q+), θ) + (1− ν)q−θ uS (a(q−), θ′)− pθuS (a(p), θ′)

pRθ

)
.

Define the belief pS such that pSθ = ψ if θ 6= θ′ and pSθ′ = 1− (n− 1)ψ, where ψ is defined by

ψ = min

(
1

n (n− 1)
(
Ψ + pRθ′

∣∣Ψ̄∣∣) , 1

n

)
> 0.

Consider an experiment π̂ with Z = {q+, q−}, which induces posterior beliefs q+ and q− in

a receiver with prior pR. The value of experiment π̂ to a sender with prior pS, is

Vπ̂ − v(pS, pR) = νVR
(
q+
)

+ (1− ν)VR
(
q+
)
− VR

(
pR
)

=

=
∑

θ∈Θ

pSθ
pRθ

(
νq+

θ uS
(
a(q+), θ

)
+ (1− ν)q−θ uS

(
a(q−), θ′

)
− pθuS (a(p), θ′)

)
≥ 1− (n− 1)ψ

pRθ′
Ψ− (n− 1)ψ

∣∣Ψ̄∣∣ ≥ 1− 1
n

pRθ′
> 0.

Therefore, a sender with prior pS benefits from persuading a receiver with prior pR.

Sufficiency : Suppose that qRθ uS
(
a(qR), θ

)
is everywhere concave in qR for every θ ∈ Θ.

Then, for any pair of totally mixed priors, VR
(
qR
)

=
∑

θ∈Θ

pSθ
pRθ
qRθ uS

(
a(qR), θ

)
is concave as

a positive linear combination of concave functions. Thus, ṼR
(
qR
)

= VR
(
qR
)

for all qR and

Proposition 2 implies that the value of persuasion is zero. �

The following two lemmas are used in the proof of our next propositions.

Lemma A.1 Let x, y ∈ RN , and W defined by (3). Then,

1

2

(∥∥x‖W ∥∥∥∥y‖W ∥∥+
〈
x‖W , y‖W

〉)
= max 〈x, v〉 〈y, v〉 , s.t., v ∈ W, ‖v‖ = 1. (25)
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Proof of Lemma A.1: Let ρ(x, y) be the angle formed by the vectors x and y. If v ∈ W ,

then 〈v, x〉 =
〈
v, x‖W

〉
and 〈v, y〉 =

〈
v, y‖W

〉
. Therefore, for every v ∈ W, ‖v‖ = 1, we have

〈x, v〉 〈y, v〉 =
〈
v, x‖W

〉 〈
v, y‖W

〉
=
∥∥x‖W ∥∥∥∥y‖W ∥∥ ‖v‖2 cos ρ

(
v, x‖W

)
cos ρ

(
v, y‖W

)
=

∥∥x‖W ∥∥∥∥y‖W ∥∥ cos
(
ρ
(
v, x‖W

)
+ ρ

(
v, y‖W

))
+ cos

(
ρ
(
v, x‖W

)
− ρ

(
v, y‖W

))
2

=
∥∥x‖W ∥∥∥∥y‖W ∥∥ cos

(
2ρ
(
v, x‖W

)
+ ρ

(
x‖W , y‖W

))
+ cos

(
ρ
(
x‖W , y‖W

))
2

,

which implies that

max
v∈W,‖v‖=1

〈x, v〉 〈y, v〉

=
∥∥x‖W ∥∥∥∥y‖W ∥∥[cos

(
ρ
(
x‖W , y‖W

))
2

+ max
v∈W,‖v‖=1

cos
(
2ρ
(
v, x‖W

)
+ ρ

(
x‖W , y‖W

))
2

]

=
∥∥x‖W ∥∥∥∥y‖W ∥∥[cos

(
ρ
(
x‖W , y‖W

))
2

+
1

2

]
,

where the maximum is achieved by selecting a vector v such that ρ
(
v, x‖W

)
= −1

2
ρ
(
x‖W , y‖W

)
.

Rewriting this last expression, one obtains (25). �

Lemma A.2 Suppose that N = card(Θ) ≥ 3, and consider the subspace W =
{
w ∈ RN : 〈w, 1〉 = 0

}
with the derived topology. Then, for x /∈ W, the rational function 〈w, x〉 / 〈w, y〉, w ∈ W , is

bounded in a neighborhood of 0 if and only if x‖W and y‖W are collinear.

Proof of Lemma A.2: Consider the linear subspaceWx,1 =
{
w ∈ RN : 〈w, x〉 = 0, 〈w, 1〉 = 0

}
.

As, by assumption, x /∈ W , then Wx,1 is a linear subspace of dimension N − 2 ≥ 1. Con-

sider, now, the subspace Wy =
{
w ∈ RN : 〈w, y〉 = 0

}
. The ratio 〈w, x〉 / 〈w, y〉 is locally

unbounded in W iff Wx,1 ∩ W c
y 6= ∅. First, if the projections x‖W and y‖W are not

collinear, then the orthogonal projection y‖Wx,1 is non-zero, implying that
〈
y‖Wx,1 , x

〉
= 0

but
〈
y‖Wv,1 , y

〉
> 0. This establishes that Wx,1 ∩W c

y 6= ∅. Now suppose that x‖W = λ y‖W

for some λ 6= 0. Then,
〈
w, x‖W

〉
= 0 iff

〈
w, y‖W

〉
= 0, implying Wx,1 ∩W c

y = ∅. �

Proof of Proposition 4: Define the vectors uS (a) = (uS (a, θ))θ∈Θ and ∂uS (a) =
(
∂uS(a,θ)

∂a

)
θ∈Θ

,

so that at the prior belief, we have u′S = ∂uS
(〈
pR, θ

〉)
The representation (17) can be con-

cisely written as VR
(
qR
)

=
〈
qR, rSuS

(〈
qR, θ

〉)〉
, and has gradient at pR

∇VR(pR) =
〈
pR, rSu′S

〉
θ + rSuS

(〈
pR, θ

〉)
.
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Corollary 1 implies that the value of persuasion is zero if and only if

〈
∇VR(pR), qR − pR

〉
≥ V R(qR)− V R(pR), qR ∈ ∆ (Θ) ,

which, in our case, leads to

〈
pR, rSu′S

〉 〈
θ, qR − pR

〉
−
〈
qR, rS

(
uS
(〈
qR, θ

〉)
− uS

(〈
pR, θ

〉))〉
≥ 0, qR ∈ ∆ (Θ) . (26)

To ease notation, let ε = qR − pR ∈ W and define 4 as the left-hand side of (26)

4 =
〈
pR, rSu′S

〉
〈θ, ε〉 −

〈
qR, rS

(
uS
(〈
qR, θ

〉)
− uS

(〈
pR, θ

〉))〉
. (27)

We now show that if rSu′S‖W 6= 0 and if θ and rSu′S are not negatively collinear with respect

to W , we can find a feasible qR such that 4 < 0. First, with the help of the identities

rS
(
uS
(〈
qR, θ

〉)
− uS

(〈
pR, θ

〉))
=

(∫ 〈qR,θ〉
〈pR,θ〉

rSθ
∂uS(t, θ)

∂a
dt

)
θ∈Θ

and

〈
pR, rS

(
uS
(〈
qR, θ

〉)
− uS

(〈
pR, θ

〉))〉
− 〈θ, ε〉

〈
pR, rSu′S

〉
=

∫ 〈qR,θ〉
〈pR,θ〉

〈
pR, rS∂uS (t)

〉
dt−

∫ 〈qR,θ〉
〈pR,θ〉

〈
pR, rSu′S

〉
dt

=

∫ 〈qR,θ〉
〈pR,θ〉

〈
pR, rS

(
∂uS(t, θ)

∂a
−
∂uS(

〈
pR, θ

〉
, θ)

∂a

)〉
dt

=

∫ 〈qR,θ〉
〈pR,θ〉

∫ t

〈pR,θ〉

〈
pR, rS

∂2uS(τ, θ)

∂2a

〉
dτdt,

we can rewrite 4 in (27) as

4 = −
∫ 〈qR,θ〉
〈pR,θ〉

∫ t

〈pR,θ〉

〈
pR, rS

∂2uS(τ, θ)

∂2a

〉
dτdt−

∫ 〈qR,θ〉
〈pR,θ〉

〈
ε, rS∂uS (t)

〉
dt. (28)

The smoothness condition (A2) implies that ∂uS(a,θ)
∂a

and ∂2uS(a,θ)
∂2a

are bounded in the

compact set A =
{
a : a =

〈
qR, z

〉
, qR ∈ ∆ (Θ)

}
. Let MS = maxa∈A,θ∈Θ

∣∣∣∂2uS(a,θ)
∂2a

∣∣∣, which, for

some φ ∈
[〈
pR, θ

〉
,
〈
qR, θ

〉]
, allow us to write the following second-order expansion∫ 〈qR,θ〉

〈pR,θ〉

〈
ε, rS∂uS (t)

〉
dt =

〈
ε, rSu′S

〉
〈ε, θ〉+

1

2

〈
ε, rS

∂2uS(φ, θ)

∂2a

〉
(〈ε, θ〉)2

≥
〈
ε, rSu′S

〉
〈ε, θ〉 − 1

2
MS

〈
|ε| , rS

〉
(〈ε, θ〉)2 .
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Then,

4 ≤ MS

∫ 〈qR,θ〉
〈pR,θ〉

∫ t

〈pR,θ〉
dτdt−

〈
ε, rSu′S

〉
〈ε, θ〉+

1

2
MS

〈
|ε| , rS

〉
(〈ε, θ〉)2

=
1

2
〈ε, θ〉2

(
1 +

〈
|ε| , rS

〉)
MS −

〈
ε, rSu′S

〉
〈ε, θ〉

= 〈ε, θ〉2
(

1 +
〈
|ε| , rS

〉
2

MS −
〈
ε, rSu′S

〉
〈ε, θ〉

)
.

From Lemma A.1, if rSu′S||W 6= 0, and θ and rSu′S are not negatively collinear wrt W , then

there exists a neighborhood N(0) of 0 in W such that
〈
ε, rSu′S

〉
/ 〈ε, θ〉 admits no upper

bound. This establishes the existence of ε ∈ N(0), and, thus, a feasible qR = pR+ε, such that

1 +
〈
|ε| , rS

〉
2

MS −
〈
ε, rSu′S

〉
〈ε, θ〉

< 0,

implying that 4 < 0. �

Proof of Corollary 3: Fix a mixed prior pR, and define the sets

O =

{
p ∈ int (∆ (Θ)) : pθ

u′S,θ
pRθ

= k, k ∈ R, θ ∈ Θ

}
, and

P =

{
p ∈ int (∆ (Θ)) :

(
pθ
u′S,θ
pRθ
− pθ′

u′S,θ′

pRθ′

)
= −λ1 (θ − θ′) , λ1 > 0, θ, θ′ ∈ Θ

}
.

The sets O and P capture the conditions in Proposition 4 since (i)
(
rS · u′S

)
||W = 0 iff pS ∈ O,

and (ii) rS · u′S and θ are negatively collinear with respect to W iff pS ∈ P . We first show

that each set is contained in a one-dimensional subspace of W

We start by studying the set O. If u′S,θ = 0 for all θ, then O = ∆ (Θ). However, this

condition would violate assumption (A3). If u′S,θ 6= 0 and u′S,θ′ = 0 for some θ′ 6= θ, then

the set O = ∅ as O does not contain a mixed prior. Finally, if u′S,θ 6= 0 for all θ, then O is

contained in the one-dimensional subspace
{
p ∈ Rcard(Θ) : pθ = k

pRθ
u′S,θ

, k ∈ R
}
.

Now consider the set P. If u′S,θ = u′S,θ′ = 0 for two distinct states θ 6= θ′, then P = ∅.

Suppose, now, that u′S,θ 6= 0 for all θ. Then, P is contained in the one-dimensional subspace{
p ∈ Rcard(Θ) : pθ =

(
λ0

1

u′S,θ
− λ1

θ

u′S,θ

)
pRθ ,

∑(
λ0

1

u′S,θ
− λ1

θ

u′S,θ

)
pRθ = 1, λ0,λ1 ∈ R

}
.

Overall, for every sender’s prior, the set in which the conditions in Proposition 4 are

violated, given by the union of O and P , is contained in the union of two one-dimensional
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subspaces. If card (Θ) > 2, then dim(∆ (Θ)) > 1, and this set is a non-generic set of ∆ (Θ).

Since this is true for every mixed prior pR ∈ int (∆ (Θ)), the conditions in Proposition 4 are

violated in a non-generic set of pairs of mixed prior beliefs. �

Proof of Lemma 1: Let ε = qR − pR ∈ W with qR ∈ ∆ (Θ). Posterior belief qR ∈ A+ if

and only if 〈ε, θ〉 ≥ 0, while (7) implies qR ∈ S+ if and only if
〈
ε, rS

〉
> 0. We now show

that A+ ∩ S+ = ∅ iff pR = pS or rS and θ are negatively collinear with respect to W.

First, if pR = pS, then rSθ = 1 and
〈
ε, rS

〉
=
〈
qR − pR, 1

〉
= 0, so S+ = ∅. Second,

suppose that pR 6= pS. Then, since −ε ∈ W if ε ∈ W,then A+ ∩ S+ = ∅ iff

〈ε, θ〉
〈
ε, rS

〉
≤ 0 , ε = qR − pR, qR ∈ ∆ (Θ) .

Since the set
{
ε : ε = qR − pR, qR ∈ ∆ (Θ)

}
⊂ W contains a neighborhood of 0 in W , then

the previous condition is satisfied if and only if the following global condition is true:

〈ε, θ〉
〈
ε, rS

〉
≤ 0 for ε ∈ W,

or, in other words, iff the quadratic form 〈ε, θ〉
〈
ε, rS

〉
is negative semidefinite in W .

Consider the orthogonal decompositions θ = θ‖W +αθ1 and rS = rS‖W +αr1. Whenever ε ∈

W, we have 〈ε, θ〉 =
〈
ε, θ‖W

〉
and

〈
ε, rS

〉
=
〈
ε, rS‖W

〉
, implying that negative semidefiniteness

of 〈ε, θ〉
〈
ε, rS

〉
in W is equivalent to negative semidefiniteness of

〈
ε, θ‖W

〉 〈
ε, rS‖W

〉
in W.

From Lemma A.1, we have

0 = max
ε∈W,‖ε‖=1

〈
ε, θ‖W

〉 〈
ε, rS‖W

〉
⇔
〈
θ‖W , r

S
‖W
〉

= −||θ‖W ||||rS‖W ||,

Since θ‖W 6= 0 and rS‖W 6= 0, then
〈
θ‖W , r

S
‖W

〉
= −||θ‖W ||||rS‖W || iff cos

(
θ‖W , r

S
‖W

)
= −1,

which is equivalent to the existence of α > 0 such that θ‖W = −αrS‖W .�

Proof of Proposition 5: The representation (16) in our setup gives VR(qR) = G(
〈
qR, θ

〉
)
〈
qR, rS

〉
.

Let 4 be defined in (27), which translates in our case to

4 = G′(
〈
pR, θ

〉
) 〈θ, ε〉 −

〈
qR, rS

〉 (
G(
〈
qR, θ

〉
)−G(

〈
pR, θ

〉
)
)
. (29)

The proof of Proposition 4 shows that the value of persuasion is zero if and only if 4 ≥ 0.

Part (i)- Follows from applying Proposition 4 to (A1) and (A2’).
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Part (ii)- We show that if G is concave, then the condition on θ and rS is also necessary

for the sender to benefit from persuasion. We prove the contrapositive: if θ and rS are

negatively collinear wrt W, then the value of persuasion is zero.

Concavity of G yields the following bound

G(
〈
qR, θ

〉
)−G(

〈
pR, θ

〉
) ≤ G′(

〈
pR, θ

〉
) 〈ε, θ〉 ,

which, applied to (29) and noting that 1−
〈
qR, rS

〉
=
〈
ε, rS

〉
, implies that

4 ≥ −G′(
〈
pR, θ

〉
) 〈ε, θ〉

〈
ε, rS

〉
. (30)

As θ and rS are negatively collinear wrt W , Lemma 1 implies that

〈ε, θ〉
〈
ε, rS

〉
≤ 0 for ε ∈ W,

which applied to (30) leads to

4 ≥ −u′S(
〈
pR, θ

〉
) 〈ε, θ〉

〈
ε, rS

〉
≥ 0 for ε ∈ W, .

As 4 ≥ 0 for all beliefs, Corollary 1 establishes that the value of persuasion is zero. �

Proof of Corollary 4: Assumption (A2’) implies that ∂uS(a,θ)
∂a

= G′(a) > 0, so that

Assumption (A3) is satisfied. The claim then follows from applying Corollary 3 to this

particular case. �

Proof of Proposition 6: Part (i) - First, likelihood ratio orders are preserved by Bayesian

updating with commonly understood experiments (Whitt, 1979; Milgrom, 1981). Thus,

induced posteriors satisfy qS(z) �LR qR(z) if pS �LR pR for any π and realization z, so we

must then have
〈
qS(z), θ

〉
≥
〈
qR(z), θ

〉
. Therefore,

qSθG(〈1θ, θ〉) ≥ G(
〈
qS, θ

〉
) ≥ G(

〈
qR, θ

〉
) = VS

(
qS
)
, qS ∈ ∆ (Θ) ,

where the first inequality follows from convexity of G. Corollary 2 then implies that a

fully-revealing experiment is optimal.

Part (ii) - Consider two states θ and θ′ and the indexed family of receiver and sender’s

posterior beliefs qR(δ) and qS(δ) given by

qR(δ) = δ1θ′ + (1− δ)1θ, δ ∈ [0, 1],

qS(δ) = λ(δ)1θ′ + (1− λ(δ))1θ,with λ(δ) = δrSθ′/(δr
S
θ′ + (1− δ)rSθ ).
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Define W (δ, θ, θ′) as

W (δ, θ, θ′) = λ(δ)G(θ′) + (1− λ(δ))G(θ′)−G(δθ′ + (1− δ)θ′).

From Corollary 2, if for some (δ, θ, θ′), we have W (δ, θ, θ′) < 0, then the value of garbling is

positive. After some algebraic manipulations, we can express W (δ, θ, θ′) as

W (δ, θ, θ′) =
δ(1− δ)

(δrSθ′ + (1− δ)rSθ )
S(δ, θ, θ′),

with

S(δ, θ, θ′) = rSθ′
1

(1− δ)

∫ θ′

δθ′+(1−δ)θ
G′ (t) dt− rSθ

1

δ

∫ δθ′+(1−δ)θ

θ

G′ (t) dt.

Evaluating S(δ, θ, θ′) at the extremes, we obtain

S(0, θ, θ′) = (θ′ − θ)
(
rSθ′Ḡ

′ − rSθG′ (θ)
)
, (31)

S(1, θ, θ′) = (θ′ − θ)
(
rSθ′G

′ (θ′)− rSθ Ḡ′
)
, (32)

with

Ḡ′ =
1

(θ′ − θ)

∫ θ′

θ

G′ (t) dt.

By assumption, there exist θ′ and θ, θ′ > θ, such that
(
rSθ′
)2
G′ (θ′) <

(
rSθ
)2
G′ (θ). This

implies that
rS
θ′
rSθ
G′ (θ′) <

rSθ
rS
θ′
G′ (θ), which means that either S(0, θ, θ′) or S(1, θ, θ′) is strictly

negative. To see this, suppose, for example, that S(0, θ, θ′) ≥ 0. Then,

rSθ′

rSθ
G′ (θ′)− Ḡ′ < rSθ

rSθ′
G′ (θ)− Ḡ′ = − S(0, θ, θ′)

(θ′ − θ) rSθ′
≤ 0⇒ S(1, θ, θ′) < 0.�

Proof of Proposition 7: Consider a pair of realizations z and z′ of an optimal experiment

π. Consider a new experiment π̂, which is identical to π except that realizations z and z′ are

merged into a single realization. The difference in the sender’s expected utility from these

two experiments is

Vπ̂ − Vπ = (PrS[z] + PrS[z′])G

(
PrR[z]

PrR[z] + PrR[z′]
az +

PrR[z]

PrR[z] + PrR[z′]
az′

)
− (PrS[z]G(az) + PrS[z′]G(az′))

≥ (PrS[z] + PrS[z′])
PrR[z]

PrR[z] + PrR[z′]
G (az) +

PrR[z]

PrR[z] + PrR[z′]
G (az′)

− (PrS[z]G(az) + PrS[z′]G(az′))

=
PrR[z] PrR[z′]

PrR[z] + PrR[z′]

(
λSz′ − λSz

)
(G(az)−G(az′)) .

Optimality of π requires that 0 ≥ Vπ̂ − Vπ so that 0 ≥
(
λSz′ − λSz

)
(G(az)−G(az′)). Since G

is increasing, if λSz′ > λSz , then we must have az′ ≥ az. �
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B Online Appendix

In this Online Appendix we provide formal statements and proofs of the claims made in Sec-

tion 4.4 and 5 of “Bayesian Persuasion with Heterogeneous Priors,”by Alonso and Câmara.

B.1 Optimal Experiments to Persuade Skeptics and Believers

We complete Section 4.4 by characterizing properties of optimal experiments and describe

a procedure to derive an optimal experiment. To describe this procedure, we now restrict

attention to the case in which the sender is risk-neutral over the receiver’s beliefs.

Proposition 8 Suppose that (A1) and (A2′) hold, with G linear, card (Θ) > 2, and that

for each triplet θi, θj, θk ∈ Θ of states, (θi, θj, θk) and (rSi , r
S
j , r

S
k ) are not negatively collinear

with respect to W. For each pair of states (θi, θj), define

∆(i,j) = −
(
rSj − rSi

)
(θj − θi) . (33)

If π∗ is an optimal experiment, then, after each realization of π∗, the receiver puts positive

probability in at most two states. Furthermore, for each state θi, there is a threshold ξi ≥ 0

such that there is a realization of π∗ induced by both states θi and θj if and only if ∆(i,j) ≥ ξi.

Consequently, for every subset of states {θi, θj, θk}, if either ∆(i,j) ≤ min{∆(i,k),∆(k,j)}

or ∆(i,j) < 0, then there is no realization supported on both θi and θj.

Consider any pair θj > θi. The term ∆(i,j) captures the value to the sender of “bundling”

states θi and θj — the value of pooling these states into the same realization of the experi-

ment. Pooling the states has positive value if and only if the receiver is a believer (rSj < rSi ),

conditional on the partition {θi, θj}. A positive-value bundle becomes more valuable when

the differences rSi − rSj and θj − θi are larger. If state θi has more than one positive-value

bundle, then the sender optimally allocates probability mass from θi across these bundles

according to their value. Bundles with low positive value may be broken so that more

probability mass can be assigned to higher-value bundles.

We now apply Proposition 8 to construct an algorithm to solve for the optimal experi-

ment when there are three states, θ1 < θ2 < θ3 (see the proof of Proposition 8 for details):

Step 1: Compute the ratios
rS2−rS1
θ2−θ1 and

rS3−rS2
θ3−θ2 . If the ratios are equal to each other and

1



(weakly) negative, then no experimentation is optimal. Otherwise, proceed to Step 2.

Step 2: Compute the pooling values ∆(1,2), ∆(2,3) and ∆(3,1). If all values are (weakly)

negative, then a fully informative experiment is optimal. Otherwise, proceed to Step 3.

Step 3: Let θi and θj be the states with the lowest pooling value ∆(i,j), and θk the remaining

state. Construct experiment πα as follows. There is a binary realization space Z = {zi, zj}.

Likelihood functions are: state θi induces realization zi with probability one; state θj induces

zj with probability one; state θk induces realization zi with probability α and induces zj with

probability 1−α. The optimal experiment πα∗ is the one with α∗ that maximizes the sender’s

expected payoff

max
α∈[0,1]

PrS[zi|πα]ER[θ|zi, πα] + PrS[zj|πα]ER[θ|zj, πα]. (34)

We can use this algorithm to solve the example from the introduction: Θ = {1, 1.5, 2},

pS = (0.85, 0.10, 0.05) and pR = (0.10, 0.40, 0.55). The condition in Step 1 is not met, so we

proceed to Step 2 and compute ∆1,1.5 = 4.125, ∆1.5,2 = 0.075 and ∆1,2 = 8.4. Since they are

positive, we proceed to Step 3. The lowest pooling value is ∆1.5,2; hence, we construct the

binary realization space Z = {z1.5, z2}. State {1.5} induces z1.5 with probability one; state

{2} induces z2 with probability one; and state {1} induces z1.5 with probability α. Given

this experiment, (34) becomes

max
α∈[0,1]

(α0.85 + 0.1)

(
1

α0.85

0.1 + α0.85
+ 1.5

0.1

0.1 + α0.85

)
+ ((1− α)0.85 + 0.05)

(
1

(1− α)0.85

(1− α)0.85 + 0.05
+ 2

0.05

(1− α)0.85 + 0.05

)
,

and the sender’s optimal choice is α∗ = 1.

In summary, the sender’s primary concern is which bundles should be broken and which

should be kept. When there are more than three states, the logic above can be used to

eliminate all bundles with negative value and, for each triplet of states, eliminate the bundle

with the lowest value. After all the “weak” bundles are eliminated, each group of states

no longer “connected” with other groups of states can then be treated independently in the

design of an optimal experiment.

Proof of Proposition 8: Proposition 5.i shows that the condition on each triplet θi, θj, θk ∈

Θ implies that any realization of an optimal experiment leads to posterior beliefs supported

2



on at most two states. For each pair (θi, θj), we now investigate under what conditions the

optimal experiment has a realization induced by states θi and θj.

Denote by zij a realization induced by both states θi and θj. In particular, we allow

zii to be a realization induced only by θi (and, thus, that fully reveals the state). For any

experiment π, we have that the sender’s expectation over its posterior expectations must

equal the prior expectation — i.e., Eπ
S [ES [θ|z]] = ES [θ]. Therefore, if an experiment π∗

maximizes the sender’s expectation of the receiver’s posterior expectation, it also maximizes

the sender’s expectation of the difference between the receiver’s and the sender’s expectation.

That is, for an arbitrary π,

Eπ∗

S [ER [θ|z]] ≥ Eπ
S [ER [θ|z]]⇔ Eπ∗

S [ER [θ|z]− ES [θ|z]] ≥ Eπ
S [ER [θ|z]− ES [θ|z]] .

If a sender seeks to maximize the difference between the receiver’s and her expectation of

the state, her expected utility from an experiment π can be written as

Eπ
S [ER [θ|z]− ES [θ|z]] =

∑
PrS[z]

(〈
qR(z), θ

〉
−
〈

qR(z)rS

〈qR(z), rS〉
, θ

〉)
=

∑
PrR[z]

(〈
qR(z), θ

〉 〈
qR(z), rS

〉
−
〈
qR(z)rS, θ

〉)
.

If an experiment induces realizations zij that are only supported on at most two states, then〈
qR(zij), θ

〉 〈
qR(zij), r

S
〉
−
〈
qR(zij)r

S, θ
〉

= −qRi (zij)q
R
j (zij)

(
rSj − rSi

)
(θj − θi)

= qRi (zij)q
R
j (zij)∆(i,j),

so that we can write

Eπ
S [ER [θ|z]− ES [θ|z]] =

∑
PrR [zij] q

R
i (zij)q

R
j (zij)∆(i,j). (35)

Letting αiij = Pr [zij|θi] PrS [θi] , and denoting by H(p, q) the harmonic mean of p and q, so

that H(p, q) = 2pq
p+q

, we can write (35) as

Eπ
S [ER [θ|z]− ES [θ|z]] =

1

2

∑
H(αiij, α

j
ij)∆(i,j). (36)

As previously noted, an experiment that maximizes (35) also maximizes Eπ
S [ER [θ|z]] . There-

fore, an optimal experiment under (A1) and (A2′) also solves the following program:

max
∑

H(αiij, α
j
ij)∆(i,j), s.t.α

i
ij, α

j
ij ≥ 0,

∑
θk∈Θ

αiik = pRθi . (37)

3



Consider a fixed state θi. We now investigate which realizations will be induced by θi. First,

if αiij, α
j
ij > 0, we must have ∆(i,j) > 0, as the sender could otherwise improve by having the

experiment fully reveal θi and θj if zij is realized. Second, as

∂H(αiij, α
j
ij)

∂αiij
=

(
αjij

αiij + αjij

)2

≤ 1,

the marginal return to increasing αiij in H(αiij, α
j
ij) is largest when αiij = 0, in which case it

equals 1. Now suppose that under an optimal experiment, we have that αiij > 0 and αiik = 0.

Then, we must have that ∆(i,j) ≥ ∆(i,k). Otherwise, if ∆(i,j) < ∆(i,k), marginally increasing

αiik while reducing αiij would generate a gain to the sender

∂H(αiij, α
k
ik)

∂αiik
∆(i,k) −

∂H(αiij, α
j
ij)

∂αiij
∆(i,j) = ∆(i,k) −

∂H(αiij, α
j
ij)

∂αiij
∆(i,j) > ∆(i,k) −∆(i,j) ≥ 0.

To prove the last claim, suppose by way of contradiction that ∆(i,j) ≤ min{∆(i,k),∆(k,j)}

and yet PrS [zi,j] > 0. First, this requires ∆(i,j) ≥ 0. Second, applying the first part of

Proposition 8 implies that ∆(i,j) ≥ ξi, and since ∆(i,k) ≥ ∆(i,j), we must have PrS [zi,k] > 0.

Similarly, ∆(k,j) ≥ ∆(i,j) ≥ ξj implies that PrS [zk,j] > 0. Finally, the fact that all elements

∆(i,j),∆(i,k),and ∆(k,j) are positive implies that rS decreases for a higher state — i.e., for

θj > θi, we must have rSj < rSi .

Suppose, wlog, that the three states are ordered θi < θj < θk. Since (7) can be rewritten

as λSz =
〈
qR(z), rS

〉
, PrS [zi,j] ,PrS [zj,k] > 0 implies rSi > λSzij > rSj > λSzjk > rSk . Therefore,

azij < azjk , but λSzij > λSzjk , which violates the conclusion of Proposition 7, and, thus, this

experiment cannot be optimal. �

B.2 Private Priors

Consider the extended model with private priors described in Section 5. As an application

of (24), consider the pure persuasion model from Section 4.3. When the sender knows the

receiver’s prior, Proposition 5(i) provides conditions on the likelihood ratio of priors such

that persuasion is valuable. Suppose that these conditions are met and the sender strictly

benefits from providing experiment π to a particular receiver. By a continuity argument,

the same π strictly benefits the sender when she faces another receiver whose beliefs are not

too different. Consequently, even if the sender does not know the receiver’s prior, persuasion

4



remains beneficial when the receiver’s possible priors are not too dispersed. Proposition B.1

provides an upper bound on how dispersed these beliefs can be. To this end, let R be the

set of likelihood ratios induced by the priors in the support of h(pR|pS),

R =
{
rR : {rRθ = pRθ /p

S
θ }θ∈Θ, p

R ∈ Supp(h(pR|pS))
}
. (38)

Proposition B.1 Suppose that rR and rRθ are not collinear w.r.t. W for all rR ∈ R, and

let m = 1
2

max|u′′S(a)|
minu′S(a)

> 0. If for all rR, rR
′ ∈ R∥∥∥rR − rR′∥∥∥ ≤ β, (39)

with β given by (47), then the sender benefits from persuasion.

The condition on rR and rRθ implies that if the sender knew the receiver’s prior, then she

could find an experiment with a positive value (cf. Proposition 5). The bound β is defined

below by (47), as a function of the curvature of uS. From (39), β represents a lower bound

on the cosine of the angle between any two likelihood ratios in the support of h(pR|pS).

Therefore, (39) describes how different the receiver’s possible prior beliefs can be for the

sender still to benefit from persuasion, by imposing an upper bound on the angle between

any two likelihood ratios in R.

Proof : The proof of this Proposition will make use of the following lemma:

Lemma B.1 Let R be defined by (38) and m = 1
2

max|u′′S(a)|
minu′S(a)

> 0, and for each rR ∈ R, define

∆S =
〈qS ,rRθ〉
〈qS ,rR〉 −

〈
pR, θ

〉
, and define lrR(ε) as

lrR(ε) =

〈
ε, rR

〉
∆S

. (40)

For any ε and rR ∈ R such that

lrR(ε) < −m and ∆S > 0, with pS + ε ∈ ∆ (Θ) , (41)

there exists an experiment π with the following properties: (i) Some realization of π induces

in the sender the belief pS + ε; and (ii) π increases the expected utility of the sender when

the receiver’s associated likelihood ratio is rR.
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Proof : The function lrR(ε) has an immediate interpretation as a measure of disagreement:

the numerator
〈
ε, rR

〉
is the difference in the probability that the receiver and sender attach

to a realization inducing a posterior qS = pS+ε on the sender, divided by the probability that

the sender ascribes to such realization, while the denominator is the change in the receiver’s

action when the sender changes her belief to qS. We first show that if some ε satisfies (41),

then the value of information control is positive. Consider VS defined in (11), which in this

case can be written as

VS(qS) = uS

(〈
qS, rRθ

〉
〈qS, rR〉

)
,

with gradient at pS

∇VS(pS) = u′S(
〈
pR, θ

〉
)
(
rRθ −

〈
pR, θ

〉
rR
)
.

By Corollary 1, the value of information control is positive if and only if there exists ε, with

pS + ε ∈ ∆ (Θ) , such that 〈
∇VS(pS), ε

〉
< VS(pS + ε)− VS(pS). (42)

We now show that an ε satisfying (41) also satisfies (42). Since

uS

(〈
qS, rRθ

〉
〈qS, rR〉

)
−uS(

〈
pR, θ

〉
)−u′S(

〈
pR, θ

〉
)

(〈
qS, rRθ

〉
〈qS, rR〉

−
〈
pR, θ

〉)
=

∫ 〈qS,rRθ〉
〈qS,rR〉

〈pR,θ〉

∫ t

〈pR,θ〉
u′′S(τ)dτdt,

we can rewrite (42) as

u′S(
〈
pR, θ

〉
)
〈
ε, rR

〉
∆S <

∫ 〈qS,rRθ〉
〈qS,rR〉

〈pR,θ〉

∫ t

〈pR,θ〉
u′′S(τ)dτdt.

By the mean value theorem, we have

∫ 〈qS,rRθ〉
〈qS,rR〉

〈pR,θ〉

∫ t

〈pR,θ〉
u′′S(τ)dτdt ≥ −max |u′′S(a)|

∫ 〈qS,rRθ〉
〈qS,rR〉

〈pR,θ〉

∫ t

〈pR,θ〉
dτdt = −1

2
max |u′′S(a)|∆2

S.

Moreover, if ε satisfies (41), then it also satisfies〈
ε, rR

〉
minu′S(a) < −1

2
max |u′′S(a)|∆S,

implying that ε also satisfies (42) since

u′S(
〈
pR, θ

〉
)
〈
ε, rR

〉
∆S <

〈
ε, rR

〉
∆S minu′S(a) < −1

2
max |u′′S(a)|∆2

S ≤
∫ 〈qS,rRθ〉
〈qS,rR〉

〈pR,θ〉

∫ t

〈pR,θ〉
u′′S(τ)dτdt.
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For each ε satisfying (41), we now construct an experiment that improves the sender’s

expected utility and that has a realization that induces belief pS + ε in the sender. Let υ be

the excess of the right-hand side over the left-hand side in (42),

υ = VS(pS + ε)− VS(pS)−
〈
∇VS(pS), ε

〉
> 0. (43)

Consider the experiment π(ε, δ) with Z = {ε+, ε−} , such that PrS[z = ε+] = δ, and if

z = ε+, then the sender’s posterior is pS + ε. A taylor series expansion of VS(qS) yields

VS(qS) = VS(pS) +
〈
∇VS(pS), qS − pS

〉
+ L

(
qS − pS

)
, with lim

t→0

L
(
t
(
qS − pS

))
t

= 0. (44)

Then, the sender’s gain from π(ε, δ) is

∆π(ε,δ) = δ
(
VS(pS + ε)− VS(pS)

)
+ (1− δ)

(
VS(pS − δ

1− δ
ε)− VS(pS)

)
= δ

(
υ +

〈
∇VS(pS), ε

〉)
− δ

〈
∇VS(pS), ε

〉
+ L

(
− δ

1− δ
ε

)
= δ

(
υ − (1− δ) L (−δε/(1− δ))

(−δ/(1− δ))

)
.

The convergence to zero of the second term in the parentheses when δ tends to zero and

υ > 0 guarantees the existence of δ > 0 such that ∆π(ε,δ) > 0. �

Proof of Proposition B.1: First, we introduce additional notation. With lrR(ε) defined

as in (40), define the sets M(rR) by

M(rR) =
{
ε : lrR(ε) < −m, ∆S > 0, pS + ε ∈ ∆ (Θ)

}
.

Note that rS and θ are negatively collinear if and only if rR and rRθ are positively collinear.

That is, the condition on Proposition 5 could instead be stated in terms of collinearity of

rR and rRθ. Moreover, if rR and rRθ are not collinear, then the restriction of lrR(ε) to

{ε : 〈ε, 1〉 = 0} is surjective, and, thus, the set M(rR) is non-empty.

Define the function

Ψ
(
ε, rR

)
=
〈
ε, rR −mfR

〉
+
(〈
ε, rR

〉)2
, with fR = rRθ −

〈
pS, rRθ

〉
,

which characterizes M(rR) since for ε such that pS+ε ∈ ∆ (Θ), Ψ
(
ε, rR

)
≤ 0 and

〈
ε, fR

〉
≥ 0

if and only if ε ∈M(rR). Finally, let

γ = 2

(
1 +m (max |θ|+ ‖θ‖) + (4 +m ‖θ‖) sup

rR∈R

∥∥rR∥∥) , (45)

Z = min
ε∈{ε:pS+ε∈∆(Θ)},rR∈R

Ψ
(
ε, rR

)
s.t.
〈
ε, rR

(
θ −

〈
pS, rRθ

〉)〉
≤ 0, rR ∈ R. (46)
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Under the conditions of Proposition B.1, Z < 0. Finally, define β in (39) as

β =
|Z|
γ
. (47)

Our proof is structured in two steps that show (i) if ∩rR∈RM(rR) is non-empty, then fol-

lowing Lemma B.1 allows us to design an experiment π that increases the sender’s expected

utility for every receiver’s belief in the support of h(pR|pS); and (ii) under the conditions of

Proposition B.1, ∩rR∈RM(rR) 6= ∅.

Step (i) - Suppose that ε ∈ ∩rR∈RM(rR). Consider υ as defined by (43). As υ is a continuous

function of rR in the compact set R, it achieves a minimum υ= minrR∈R υ > 0. Then, define

δ as

δ = min

{
δ : υ +

L
(
− δ

1−δε
)

δ
≥ 0

}
,

with the function L given by (44). Now, define the experiment π(ε, δ′) as in the proof of

Lemma B.1— i.e., Z = {ε+, ε−} , qS(ε+) = pS +ε and PrS[z = ε+] = δ′, and set δ′ =δ. Then,

the sender’s gain from π(ε, δ′) is positive for any receiver’s prior in Supp(h(pR|pS)).

Step (ii) - Fix pR
′
with associated likelihood ratio rR

′ ∈ R. For any rR ∈ R with η = rR−rR′ ,

we have

Ψ
(
ε, rR

)
−Ψ

(
ε, rR

′
)

=
(

1 +m
〈
pS, rR

′
θ
〉

+
〈
ε, rR + rR

′
〉)
〈ε, η〉−m 〈ε, ηθ〉+m

〈
pS, ηθ

〉
〈ε, r〉 .

The following bounds make use of the Cauchy-Schwartz inequality (in particular, the im-

plication that |〈ε, ηθ〉| ≤ ‖ε‖ ‖η‖ ‖θ‖—see Steele, 2004)28 and the fact that
∥∥pS∥∥ ≤ 1 and

‖ε‖ =
∥∥qS − pS∥∥ ≤ 2,

∣∣∣1 +m
〈
pS, rR

′
θ
〉

+
〈
ε, rR + rR

′
〉∣∣∣ ≤ 1 +mmax θ + 4 sup

rR∈R

∥∥rR∥∥ ,
|m 〈ε, ηθ〉| ≤ m ‖ε‖ ‖η‖ ‖θ‖ ≤ 2m ‖η‖ ‖θ‖ ,∣∣m 〈pS, ηθ〉 〈ε, r〉∣∣ ≤ 2m ‖η‖ ‖θ‖ sup

rR∈R

∥∥rR∥∥ .
28Steele, J. M. (2004) “The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical

Inequalities,” Mathematical Association of America.
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From these bounds, we then obtain the following estimate∣∣∣Ψ (ε, rR)−Ψ
(
ε, rR

′
)∣∣∣ ≤ ∣∣∣1 +m

〈
pS, rR

′
θ
〉

+
〈
ε, rR + rR

′
〉∣∣∣ ‖ε‖ ‖η‖

+ |m 〈ε, ηθ〉|+
∣∣m 〈pS, ηθ〉 〈ε, r〉∣∣

≤ 2

(
1 +mmax θ + 4 sup

rR∈R

∥∥rR∥∥) ‖η‖+ 2m ‖θ‖ ‖η‖

+2m ‖θ‖ sup
rR∈R

∥∥rR∥∥ ‖η‖
= γ ‖η‖ ,

where γ is defined by (45). Selecting ε′ an rR
′

that solve the program (46) and noting that

Z < 0, we have that for any rR ∈ R,

Ψ
(
ε′, rR

)
= Ψ

(
ε′, rR

′
)

+ Ψ
(
ε′, rR

)
−Ψ

(
ε′, rR

′
)
≤ Z + γ ‖η‖ ≤ Z + |Z| = 0.

This implies that ε′ ∈M(rR) for all rR ∈ R. �
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