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Abstract We consider a new family of derivatives whose payoffs become strictly
positive when the price of their underlying asset falls relative to its historical max-
imum. We derive the solution to the discretionary stopping problems arising in the
context of pricing their perpetual American versions by means of an explicit construc-
tion of their value functions. In particular, we fully characterise the free-boundary
functions that provide the optimal stopping times of these genuinely two-dimensional
problems as the unique solutions to highly nonlinear first order ODEs that have the
characteristics of a separatrix. The asymptotic growth of these free-boundary func-
tions can take qualitatively different forms depending on parameter values, which is
an interesting new feature.
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Two-dimensional free-boundary problem · Separatrix
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1 Introduction

Put options are the most common financial derivatives that can be used by investors
to hedge against asset price falls as well as by speculators betting on falling prices.
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In particular, out-of-the-money put options can yield strictly positive payoffs only if
the price of their underlying asset falls below a percentage of its initial value. In a
related spirit, equity default swaps (EDSs) pay out if the price of their underlying
asset drops by more than a given percentage of its initial value (EDSs were intro-
duced by J.P. Morgan London in 2003, and their pricing was studied by Medova and
Smith [16]). Further derivatives whose payoffs depend on other quantifications of as-
set price falls include the European barrier and binary options studied by Carr [2] and
Večeř [27], as well as the perpetual lookback American options with floating strike
that were studied by Pedersen [20] and Dai [5].

In this paper, we consider a new class of derivatives whose payoffs depend on as-
set price falls relative to their underlying asset’s historical maximum price. Typically,
a hedge fund manager’s performance fees are linked with the value of the fund ex-
ceeding a “high watermark”, which is an earlier maximum. We have therefore named
this new class of derivatives “watermark” options. Deriving formulas for the risk-
neutral pricing of their European-type versions is a cumbersome but standard exer-
cise. On the other hand, the pricing of their American-type versions is a substantially
harder problem, as expected. Here, we derive the complete solution to the optimal
stopping problems associated with the pricing of their perpetual American versions.

To fix ideas, we assume that the underlying asset price process X is modelled by
a geometric Brownian motion given by

dXt = μXt dt + σXt dWt , X0 = x > 0, (1.1)

for some constants μ and σ �= 0, where W is a standard one-dimensional Brownian
motion. Given a point s ≥ x, we denote by S the running maximum process defined
by

St = max
{
s, max

0≤u≤t
Xu

}
. (1.2)

In this context, we consider the discretionary stopping problems whose value func-
tions are defined by

v(x, s) = sup
τ∈T

E

[
e−rτ

(
Sb

τ

Xa
τ

− K

)+
1{τ<∞}

]
, (1.3)

u(x, s) = sup
τ∈T

E
[
e−rτ (Sb

τ − KXa
τ )+1{τ<∞}

]
(1.4)

and

υ0(x, s) = sup
τ∈T

E

[
e−rτ Sb

τ

Xa
τ

1{τ<∞}
]

(1.5)

for some constants a, b, r,K > 0, where T is the set of all stopping times. In prac-
tice, the inequality r ≥ μ should hold true. For instance, in a standard risk-neutral
valuation context, r > 0 should stand for the short interest rate whereas r − μ ≥ 0
should be the underlying asset’s dividend yield rate. Alternatively, we could view
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μ > 0 as the short rate and r − μ ≥ 0 as additional discounting to account for coun-
terparty risk. Here, we solve the problems without assuming that r ≥ μ because such
an assumption would not present any simplifications (see also Remark 2.2).

Watermark options can be used for the same reasons as the existing options we
have discussed above. In particular, they could be used to hedge against relative asset
price falls as well as to speculate by betting on prices falling relatively to their histor-
ical maximum. For instance, they could be used by institutions that are constrained
to hold investment-grade assets only and wish to trade products that have risk char-
acteristics akin to the ones of speculative-grade assets (see Medova and Smith [16]
for further discussion that is relevant to such an application). Furthermore, these op-
tions can provide useful risk-management instruments, particularly when faced with
the possibility of an asset bubble burst. Indeed, the payoffs of watermark options
increase as the running maximum process S increases and the price process X de-
creases. As a result, the more the asset price increases before dropping to a given
level, the deeper they may be in the money.

Watermark options can also be of interest as hedging instruments to firms invest-
ing in real assets. To fix ideas, consider a firm that invests in a project producing a
commodity whose price or demand is modelled by the process X. The firm’s future
revenue depends on the stochastic evolution of the economic indicator X, which can
collapse for reasons such as extreme changes in the global economic environment
(see e.g. the recent slump in commodity prices) and/or reasons associated with the
emergence of disruptive new technologies (see e.g. the fate of DVDs or firms such as
Blackberry or NOKIA). In principle, such a firm could diversify risk by going long
in watermark options.

The applications discussed above justify the introduction of watermark options as
derivative structures. These options can also provide alternatives to existing deriva-
tives that can better fit a range of investors’ risk preferences. For instance, the version
associated with (1.5) effectively identifies with the Russian option (see Remark 3.5).
It is straightforward to check that if s ≥ 1, then the price of the option is increas-
ing as the parameter b increases, ceteris paribus. In this case, the watermark option
is cheaper than the corresponding Russian option if b < a. On the other hand, in-
creasing values of the strike price K result in ever lower option prices. We have not
attempted any further analysis in this direction because this involves rather lengthy
calculations and is beyond the scope of this paper.

The parameters a, b > 0 and K ≥ 0 can be used to fine-tune different risk char-
acteristics. For instance, the choice of the relative value b/a can reflect the weight
assigned to the underlying asset’s historical best performance relative to the asset’s
current value. In particular, it is worth noting that larger (resp. smaller) values of b/a

attenuate (resp. magnify) the payoff’s volatility that is due to changes of the under-
lying asset’s price. In the context of the problem with value function given by (1.5),
the choice of a, b can be used to factor in a power utility of the payoff received by
the option’s holder. Indeed, if we set a = ãq and b = b̃q , then Sb

τ /Xa
τ = (Sb̃

τ /Xã
τ )q is

the CRRA utility with risk-aversion parameter 1 − q of the payoff Sb̃
τ /Xã

τ received
by the option’s holder if the option is exercised at time τ .

From a modelling point of view, the use of geometric Brownian motion as an
asset price process, which is standard in the mathematical finance literature, is an
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approximation that is largely justified by its tractability. In fact, such a process is not
an appropriate model for an asset price that may be traded as a bubble. In view of
the applications we have discussed above, the pricing of watermark options when
the underlying asset’s price process is modelled by diffusions associated with local
volatility models that have been considered in the context of financial bubbles (see
e.g. Cox and Hobson [3]) presents an interesting problem for future research.

The Russian options introduced and studied by Shepp and Shiryaev [25, 26] are
the special cases that arise if a = 0 and b = 1 in (1.5). In fact, the value function given
by (1.5) identifies with the value function of a Russian option for any a, b > 0 (see
Remark 3.5). The lookback American options with floating strike that were studied
by Pedersen [20] and Dai [5] are the special cases that arise for the choices a = b = 1
and a = b = K = 1 in (1.4), respectively (see also Remark 3.3). Other closely related
problems that have been studied in the literature include the well-known perpetual
American put options (a = 1, b = 0 in (1.4)), which were solved by McKean [15], the
lookback American options studied by Guo and Shepp [10] and Pedersen [20] (a = 0,
b = 1 in (2.1)), and the π -options introduced and studied by Guo and Zervos [11]
(a < 0 and b > 0 in (1.3)).

Further works on optimal stopping problems involving a one-dimensional diffu-
sion and its running maximum (or minimum) include Jacka [13], Dubins et al. [8],
Peskir [21], Graversen and Peskir [9], Dai and Kwok [6, 7], Hobson [12], Cox
et al. [4], Alvarez and Matomäki [1], and references therein. Furthermore, Peskir [22]
solves an optimal stopping problem involving a one-dimensional diffusion, its run-
ning maximum as well as its running minimum. Papers on optimal stopping problems
with an infinite time horizon involving spectrally negative Lévy processes and their
running maximum (or minimum) include Ott [18, 19], Kyprianou and Ott [14], and
references therein.

In Sect. 2, we solve the optimal stopping problem whose value function is given
by (1.3) for a = 1 and b ∈ (0,∞) \ {1}. To this end, we construct an appropriately
smooth solution to the problem’s variational inequality that satisfies the so-called
transversality condition, which is a folklore method. In particular, we fully deter-
mine the free-boundary function separating the “waiting” region from the “stopping”
region as the unique solution to a first order ODE that has the characteristics of a
separatrix. It turns out that this free-boundary function conforms with the maximal-
ity principle introduced by Peskir [21]: it is the maximal solution to the ODE under
consideration that does not intersect the diagonal part of the state space’s boundary.
The asymptotic growth of this free-boundary function is notably different in each of
the cases 1 < b and 1 > b, which is a surprising result (see Remark 2.6).

In Sect. 3, we use an appropriate change of probability measure to solve the
optimal stopping problem whose value function is given by (1.4) for a = 1 and
b ∈ (0,∞) \ {1} by reducing it to the problem studied in Sect. 2. We also outline
how the optimal stopping problem defined by (1.1)–(1.3) for a = b = 1 reduces to
the problem given by (1.1), (1.2) and (1.4) for a = b = 1, which is the one arising
in the pricing of a perpetual American lookback option with floating strike that has
been solved by Pedersen [20] and Dai [5] (see Remark 3.3). We then explain how
a simple re-parametrisation reduces the apparently more general optimal stopping
problems defined by (1.1)–(1.4) for any a > 0, b > 0 to the corresponding cases with
a = 1, b > 0 (see Remark 3.4). Finally, we show that the optimal stopping problem
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defined by (1.1), (1.2) and (1.5) reduces to the one arising in the context of pricing
a perpetual Russian option that has been solved by Shepp and Shiryaev [25, 26] (see
Remark 3.5).

2 The solution to the main optimal stopping problem

We now solve the optimal stopping problem defined by (1.1)–(1.3) for a = 1 and
b = p ∈ (0,∞) \ {1}, namely, the problem defined by (1.1), (1.2) and

v(x, s) = sup
τ∈T

E

[
e−rτ

(
S

p
τ

Xτ

− K

)+
1{τ<∞}

]
. (2.1)

To fix ideas, we assume in what follows that a filtered probability space (Ω,F ,(Ft ),P)

satisfying the usual conditions and carrying a standard one-dimensional (Ft )-Brown-
ian motion W has been fixed. We denote by T the set of all (Ft )-stopping times.

The solution to the optimal stopping problem that we consider involves the general
solution to the ODE

1

2
σ 2x2f ′′(x) + μxf ′(x) − rf (x) = 0, (2.2)

which is given by

f (x) = Axn + Bxm (2.3)

for some A,B ∈ R, where the constants m < 0 < n are the solutions to the quadratic
equation

1

2
σ 2k2 +

(
μ − 1

2
σ 2

)
k − r = 0, (2.4)

given by

m,n = −μ − 1
2σ 2

σ 2
∓

√(
μ − 1

2σ 2

σ 2

)2

+ 2r

σ 2
. (2.5)

We make the following assumption.

Assumption 2.1 The constants p ∈ (0,∞)\ {1}, r,K > 0, μ ∈R and σ �= 0 are such
that

m + 1 < 0 and n + 1 − p > 0.

Remark 2.2 We can check that given any r > 0, the equivalences

m + 1 < 0 ⇐⇒ r + μ > σ 2 and 1 < n ⇐⇒ μ < r

hold true. It follows that Assumption 2.1 holds true for a range of parameter values
such that r ≥ μ, which is associated with the applications we have discussed in the
introduction, as well as such that r < μ.
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We prove the following result in the Appendix.

Lemma 2.3 Consider the optimal stopping problem defined by (1.1), (1.2) and (2.1).
If the problem data is such that either m + 1 > 0 or n + 1 − p < 0, then v ≡ ∞.

We solve the problem studied in this section by constructing a classical solution
w to the variational inequality

max

{
1

2
σ 2x2wxx(x, s) + μxwx(x, s) − rw(x, s),

(
sp

x
− K

)+
− w(x, s)

}

= 0 (2.6)

with boundary condition

ws(s, s) = 0, (2.7)

that identifies with the value function v. Given such a solution, we denote by S and
W the so-called stopping and waiting regions, which are defined by

S =
{
(x, s) ∈R

2 : 0 < x ≤ s and w(x, s) =
(

sp

x
− K

)+}
,

W = {(x, s) ∈R
2 : 0 < x ≤ s} \ S.

In particular, we show that the first hitting time τS of S , defined by

τS = inf{t ≥ 0 : (Xt , St ) ∈ S}, (2.8)

is an optimal stopping time.
To construct the required solution to (2.6) and (2.7), we first note that it is not

optimal to stop whenever the state process (X,S) takes values in the set

{
(x, s) ∈R

2 : 0 < x ≤ s and
sp

x
− K ≤ 0

}

=
{
(x, s) ∈ R

2 : s > 0 and
sp

K
≤ x ≤ s

}
.

On the other hand, the equivalences

1

2
σ 2x2 ∂2(spx−1 − K)

∂x2
+ μx

∂(spx−1 − K)

∂x
− r(spx−1 − K) ≤ 0

⇐⇒
(

1

2
σ 2 −

(
μ − 1

2
σ 2

)
− r

)
sp

x
+ rK ≤ 0

⇐⇒ x ≤ (n + 1)(m + 1)sp

nmK
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Fig. 1 Depiction of the
free-boundary function H

separating the stopping region S
from the waiting region W

imply that the set
{
(x, s) ∈ R

2 : (n + 1)(m + 1)sp

nmK
< x ≤ s

}

should be a subset of the continuation region W as well. Furthermore, since

∂

∂s

(
sp

x
− K

)∣∣∣∣
x=s

= psp−2 > 0 for all s > 0,

the half-line {(x, s) ∈ R
2 : x = s > 0}, which is part of the state space’s boundary,

should also be a subset of W because the boundary condition (2.7) cannot hold oth-
erwise.

In view of the preceding observations, we look for a strictly increasing function
H : R+ →R satisfying

H(0) = 0 and 0 < H(s) < (Γ sp) ∧ s for s > 0, (2.9)

where

Γ = (n + 1)(m + 1)

nmK
∧ 1

K
=

{
(n+1)(m+1)

nmK
, if μ < σ 2,

1
K

, if σ 2 ≤ μ,
(2.10)

such that

S = {(x, s) ∈R
2 : s > 0 and 0 < x ≤ H(s)}, (2.11)

W = {(x, s) ∈R
2 : s > 0 and H(s) < x ≤ s}

(see Fig. 1).
To proceed further, we recall the fact that the function w(·, s) should satisfy the

ODE (2.2) in the interior of the waiting region W . Since the general solution to (2.2)
is given by (2.3), we therefore look for functions A and B such that

w(x, s) = A(s)xn + B(s)xm, if (x, s) ∈W .
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To determine the free-boundary function H and the functions A, B , we first note that
the boundary condition (2.7) requires that

Ȧ(s)sn + Ḃ(s)sm = 0, (2.12)

where Ȧ, Ḃ denote the first derivatives of A, B . In view of the regularity of the
optimal stopping problem’s reward function, we expect that the so-called “principle
of smooth fit” should hold true. Accordingly, we require that w(·, s) should be C1

along the free-boundary point H(s) for s > 0. This requirement yields the system of
equations

A(s)Hn(s) + B(s)Hm(s) = spH−1(s) − K,

nA(s)Hn(s) + mB(s)Hm(s) = −spH−1(s),

which is equivalent to

A(s) = −(m + 1)spH−1(s) + mK

n − m
H−n(s), (2.13)

B(s) = (n + 1)spH−1(s) − nK

n − m
H−m(s). (2.14)

Differentiating these expressions with respect to s and substituting the results for Ȧ

and Ḃ in (2.12), we can see that H should satisfy the ODE

Ḣ (s) = H
(
H(s), s

)
, (2.15)

where

H(H̄ , s) = psp−1H̄ ((m + 1)(s/H̄ )n − (n + 1)(s/H̄ )m)

((m + 1)(n + 1)sp − nmKH̄)((s/H̄ )n − (s/H̄ )m)
. (2.16)

In view of (2.9), we need to determine in the domain

DH = {(H̄ , s) ∈R
2 : s > 0 and 0 < H̄ < (Γ sp) ∧ s} (2.17)

the solution to (2.15) that satisfies H(0) = 0. To this end, we cannot just solve (2.15)
with the initial condition H(0) = 0 because H(0,0) is not well defined. Therefore,
we need to consider all solutions to (2.15) in DH and identify the unique one that
coincides with the actual free-boundary function H . It turns out that this solution is
a separatrix. Indeed, it divides DH into two open domains Du

H and Dl
H such that the

solution to (2.15) that passes though any point in Du
H hits the boundary of DH at

some finite ŝ, while the solution to (2.15) that passes though any point in Dl
H has

asymptotic growth as s → ∞ such that the corresponding solution to the variational
inequality (2.6) does not satisfy the transversality condition that is captured by the
limits on the right-hand side of (2.27) (see also Remark 2.5 and Figs. 2 and 3).

To identify this separatrix, we fix any δ > 0 and consider the solution to (2.15) that
is such that

H(s∗) = δ for some s∗ > s†(δ), (2.18)
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Fig. 2 (p < 1p < 1p < 1) Illustration of Lemma 2.4 (I) for s◦(δ) = s◦(δ). The free-boundary function
H(·) = H(·; s◦) that separates the stopping region S from the waiting region W is plotted in red. The
intersection of R

2 with the boundary of the domain DH in which we consider solutions to the ODE
(2.15) satisfying (2.18) is designated by green. Every solution to the ODE (2.15) satisfying (2.18) with
s∗ ∈ (s†, s◦) (resp. s∗ > s◦) hits the upper part of the boundary of DH in the picture (resp. has asymptotic
growth as s → ∞ that is of different order than the one of the free-boundary); such solutions are plotted
in blue

Fig. 3 (p > 1p > 1p > 1) Illustration of Lemma 2.4 (II) for s◦(δ) = s◦(δ). The free-boundary function
H(·) = H(·; s◦) that separates the stopping region S from the waiting region W is plotted in red. The
intersection of R

2 with the boundary of the domain DH in which we consider solutions to the ODE
(2.15) satisfying (2.18) is designated by green. Every solution to the ODE (2.15) satisfying (2.18) with
s∗ ∈ (s†, s◦) (resp. s∗ > s◦) hits the upper part of the boundary of DH in the picture (resp. has asymptotic
growth as s → ∞ that is of different order than the one of the free boundary): such solutions are plotted in
blue

where s†(δ) ≥ δ is the intersection of {(x, s) ∈R
2 : x = δ and s > 0} with the bound-

ary of DH , which is the unique solution to the equation
(
Γ s

p

† (δ)
) ∧ s†(δ) = δ. (2.19)
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The following result, which we prove in the Appendix, is primarily concerned with
identifying s∗ > s† such that the solution to (2.15) that passes through (δ, s∗), i.e.,
satisfies (2.18), coincides with the separatrix. Using purely analytical techniques, we
have not managed to show that this point s∗ is unique, i.e., that there exists a separatrix
rather than a funnel. For this reason, we establish the result for an interval [s◦, s◦] of
possible values for s∗ such that the corresponding solution to (2.15) has the required
properties. The fact that s◦ = s◦ follows immediately from Theorem 2.8, our main
result, thanks to the uniqueness of the optimal stopping problem’s value function.

Lemma 2.4 Suppose that the problem data satisfy Assumption 2.1. Given any δ > 0,
there exist points s◦ = s◦(δ) and s◦ = s◦(δ) satisfying

δ ≤ s†(δ) < s◦(δ) ≤ s◦(δ) < ∞,

where s†(δ) ≥ δ is the unique solution to (2.19), such that the following statements
hold true for each s∗ ∈ [s◦, s◦]:
(I) If p ∈ (0,1), the ODE (2.15) has a unique solution

H(·) := H(·; s∗) : (0,∞) →DH

satisfying (2.18) that is a strictly increasing function such that

lim
s↓0

H(s) = 0, H(s) < csp for all s > 0 and lim
s→∞

H(s)

sp
= c,

where c = m+1
mK

∈ (0,Γ ) (see Fig. 2).

(II) If p > 1, the ODE (2.15) has a unique solution

H(·) := H(·; s∗) : (0,∞) →DH

satisfying (2.18) that is a strictly increasing function such that

lim
s↓0

H(s) = 0, H(s) < cs for all s > 0 and lim
s→∞

H(s)

s
= c,

where c = ( (m+1)(p−n−1)
(n+1)(p−m−1)

)1/(n−m) ∈ (0,1) (see Fig. 3).

(III) The corresponding functions A and B defined by (2.13) and (2.14) are both
strictly positive.

Remark 2.5 Beyond the results given in the last lemma, we can prove the following:
(a) Given any s∗ ∈ (s†, s◦), there exist a point ŝ = ŝ(s∗) ∈ (0,∞) and a function

H(·) := H(·; s∗) : (0, ŝ) → DH that satisfies the ODE (2.15) as well as (2.18). In
particular, H is strictly increasing and lims↑ŝ H (s) = (Γ ŝp) ∧ ŝ.

(b) Given any s∗ > s◦, there exists a function H(·) := H(·; s∗) : (0,∞) → DH

which is strictly increasing and satisfies the ODE (2.15) as well as (2.18).

Any solution to (2.15) that is as in (a) does not identify with the actual free-boundary
function H because the corresponding solution to the variational inequality (2.6) does
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not satisfy the boundary condition (2.7). On the other hand, any solution to (2.15) that
is as in (b) also does not identify with the actual free-boundary function H because we
can show that its asymptotic growth as s → ∞ is such that the corresponding solution
w to the variational inequality (2.6) does not satisfy (2.24), and the transversality
condition, which is captured by the limits on the right-hand side of (2.27), is also not
satisfied. To keep the paper at a reasonable length, we do not expand on any of these
issues that are not really needed for our main results thanks to the uniqueness of the
value function.

Remark 2.6 The asymptotic growth of H(s) as s → ∞ takes qualitatively different
forms in each of the cases p < 1 and p > 1 (recall that the parameter p stands for the
ratio b/a, where the parameters a, b are as in the introduction (see also Remark 3.4)).
Indeed, if we denote the free-boundary function by H(·;p) to indicate its dependence
on the parameter p, then

H(s;p) �
{

csp, if p < 1

cs, if p > 1

}
as s → ∞,

where c > 0 is the constant appearing in (I) or (II) of Lemma 2.4, according to the
case. Furthermore, c is proportional to (resp. independent of) K−1 if p < 1 (resp.
p > 1).

We now consider a solution H to the ODE (2.15) that is as in Lemma 2.4. In
the following result, which we prove in the Appendix, we show that the function w

defined by

w(x, s) = spx−1 − K, if 0 < x ≤ H(s), (2.20)

w(x, s) = A(s)xn + B(s)xm

= −(m + 1)spH−1(s) + mK

n − m

(
x

H(s)

)n

+ (n + 1)spH−1(s) − nK

n − m

(
x

H(s)

)m

, if H(s) < x ≤ s, (2.21)

is such that

(x, s) �→ w(x, s) is C2 outside {(x, s) ∈ R
2 : s > 0 and x = H(s)}, (2.22)

x �→ w(x, s) is C1 at H(s) for all s > 0, (2.23)

and satisfies (2.6) and (2.7).

Lemma 2.7 Suppose that the problem data satisfy Assumption 2.1. Also, consider
any s∗ ∈ [s◦(δ), s◦(δ)], where s◦(δ) ≤ s◦(δ) are as in Lemma 2.4 for some δ > 0,
and let H(·) = H(·; s∗) be the corresponding solution to the ODE (2.15) that satis-
fies (2.18). The function w defined by (2.20) and (2.21) is strictly positive, satisfies
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the variational inequality (2.6) outside the set {(x, s) ∈ R
2 : s > 0 and x = H(s)} as

well as the boundary condition (2.7), and is such that (2.22) and (2.23) hold true.
Furthermore, given any s > 0, there exists a constant C = C(s) > 0 such that

w(x,u) ≤ C(1 + uγ ) for all (x,u) ∈ W such that u ≥ s, (2.24)

where

γ =
{

n(1 − p), if p < 1

p − 1, if p > 1

}
∈ (0, n).

We can now prove our main result.

Theorem 2.8 Consider the optimal stopping problem defined by (1.1), (1.2) and (2.1),
and suppose that the problem data satisfy Assumption 2.1. The optimal stopping
problem’s value function v identifies with the solution w to the variational inequality
(2.6) with boundary condition (2.7) described in Lemma 2.7, and the first hitting time
τS of the stopping region S , which is defined as in (2.8), is optimal. In particular,
s◦(δ) = s◦(δ) for all δ > 0, where s◦ ≤ s◦ are as in Lemma 2.4.

Proof Fix any initial condition (x, s) ∈ S ∪ W . Using Itô’s formula, the fact that S

increases only on the set {X = S} and the boundary condition (2.7), we can see that

e−rT w(XT ,ST )

= w(x, s) +
∫ T

0
e−rtws(St , St ) dSt + MT

+
∫ T

0
e−rt

(
1

2
σ 2X2

t wxx(Xt , St ) + μXtwx(Xt , St ) − rw(Xt , St )

)
dt

= w(x, s) + MT

+
∫ T

0
e−rt

(
1

2
σ 2X2

t wxx(Xt , St ) + μXtwx(Xt , St ) − rw(Xt , St )

)
dt,

where

MT = σ

∫ T

0
e−rtXtwx(Xt , St ) dWt .

It follows that

e−rT

(
S

p
T

XT

− K

)+

= w(x, s) + e−rT

(( S
p
T

XT

− K
)+ − w(XT ,ST )

)
+ MT

+
∫ T

0
e−rt

(
1

2
σ 2X2

t wxx(Xt , St ) + μXtwx(Xt , St ) − rw(Xt , St )

)
dt.
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Given a stopping time τ ∈ T and a localising sequence of bounded stopping times
(τj ) for the local martingale M , these calculations imply that

E

[
e−r(τ∧τj )

(
S

p
τ∧τj

Xτ∧τj

− K

)+]

= w(x, s) +E

[
e−r(τ∧τj )

(( S
p
τ∧τj

Xτ∧τj

− K
)+ − w(Xτ∧τj

, Sτ∧τj
)

)]
(2.25)

+E

[∫ τ∧τj

0
e−rt

(
1

2
σ 2X2

t wxx(Xt , St ) + μXtwx(Xt , St ) − rw(Xt , St )

)
dt

]
.

In view of the fact that w satisfies the variational inequality (2.6) and by Fatou’s
lemma, we can see that

E

[
e−rτ

(
S

p
τ

Xτ

− K

)+
1{τ<∞}

]
≤ lim inf

j→∞ E

[
e−r(τ∧τj )

(
S

p
τ∧τj

Xτ∧τj

− K

)+]
≤ w(x, s),

and the inequality

v(x, s) ≤ w(x, s) for all (x, s) ∈ S ∪W (2.26)

follows.
To prove the reverse inequality and establish the optimality of τS , we note that

given any constant T > 0, (2.25) with τ = τS ∧ T and the definition (2.8) of τS yield

E

[
e−rτS

(
S

p
τS

XτS
− K

)+
1{τS≤τj ∧T }

]

= w(x, s) −E
[
e−r(T ∧τj )w(XT ∧τj

, ST ∧τj
)1{τS>τj ∧T }

]
.

In view of (2.24), Lemma A.1 in the Appendix, the fact that S is an increasing process
and the dominated and monotone convergence theorems, we can see that

E

[
e−rτS

(
S

p
τS

XτS
− K

)+
1{τS<∞}

]

= w(x, s) − lim
T →∞ lim

j→∞E
[
e−r(T ∧τj )w(XT ∧τj

, ST ∧τj
)1{τS>τj ∧T }

]

≥ w(x, s) − lim
T →∞ lim

j→∞E
[
e−r(T ∧τj )C(1 + S

γ

T ∧τj
)
]

(2.27)

= w(x, s) − lim
T →∞E[e−rT C(1 + S

γ

T )]

= w(x, s).

Combining this result with (2.26), we obtain the identity v = w and the optimality
of τS . Finally, given any δ > 0, the identity s◦(δ) = s◦(δ) follows from the uniqueness
of the value function v. �
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3 Ramifications and connections with the perpetual American lookback
with floating strike, and with Russian options

We now solve the optimal stopping problem defined by (1.1), (1.2) and (1.4) for a = 1
and b = p ∈ (0,∞) \ {1}, i.e., the problem given by (1.1), (1.2) and

u(x, s) = sup
τ∈T

E
[
e−rτ (Sp

τ − KXτ )
+1{τ<∞}

]
, (3.1)

by means of an appropriate change of probability measure that reduces it to the one
we solved in Sect. 2. To this end, we denote

μ̃ = μ + σ 2 and r̃ = r − μ, (3.2)

and we make the following assumption that mirrors Assumption 2.1.

Assumption 3.1 The constants p ∈ (0,∞)\ {1}, r,K > 0, μ ∈R and σ �= 0 are such
that

m̃ + 1 > 0, ñ + 1 − p > 0 and r̃ > 0,

where m̃ < 0 < ñ are the solutions to the quadratic equation (2.4), which are given
by (2.5) with μ̃ and r̃ defined by (3.2) in place of μ and r .

Theorem 3.2 Consider the optimal stopping problem defined by (1.1), (1.2) and (3.1)
and suppose that the problem data satisfy Assumption 3.1. The problem’s value func-
tion is given by

u(x, s) = xv(x, s) for all s > 0 and x ∈ (0, s]
and the first hitting time τS of the stopping region S is optimal, where v is the value
function of the optimal stopping problem defined by (1.1), (1.2) and (2.1), given by
Theorem 2.8, and S is defined by (2.11) with μ̃, r̃ defined by (3.2) and the associated
m̃, ñ in place of μ, r and m, n.

Proof We are going to establish this result by means of an appropriate change of
probability measure. We therefore consider a canonical underlying probability space
because the problem we solve is over an infinite time horizon. To this end, we as-
sume that Ω = C(R+), the space of continuous functions mapping R+ into R, and
we denote by W the coordinate process on this space, given by Wt(ω) = ω(t). Also,
we denote by (Ft ) the right-continuous regularisation of the natural filtration of W ,
which is defined by Ft = ⋂

ε>0 σ(Ws, s ∈ [0, t + ε]), and we set F = ∨
t≥0 Ft . In

particular, we note that the right-continuity of (Ft ) implies that the first hitting time
of any open or closed set by an R

d -valued continuous (Ft )-adapted process is an
(Ft )-stopping time (see e.g. Protter [24, Theorems I.3 and I.4]). Furthermore, we de-
note by P (resp. P̃) the probability measure on (Ω,F) under which the process W

(resp. the process W̃ defined by W̃t = −σ t + Wt ) is a standard (Ft )-Brownian mo-
tion starting from 0. The measures P and P̃ are locally equivalent, and their density
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process is given by

dP̃

dP

∣∣∣∣
FT

= ZT for T ≥ 0,

where Z is the exponential martingale defined by

ZT = exp

(
−1

2
σ 2T + σWT

)
.

Given any (Ft )-stopping time τ , we use the monotone convergence theorem, the
fact that E[ZT |Fτ ]1{τ≤T } = Zτ 1{τ≤T } and the tower property of conditional expec-
tation to calculate

E
[
e−rτ (Sp

τ − KXτ )
+1{τ<∞}

] = lim
T →∞E

[
e−rτXτ

(
S

p
τ

Xτ

− K

)+
1{τ≤T }

]

= lim
T →∞xE

[
ZT e−r̃τ

(
S

p
τ

Xτ

− K

)+
1{τ≤T }

]

= lim
T →∞x Ẽ

[
e−r̃τ

(
S

p
τ

Xτ

− K

)+
1{τ≤T }

]

= x Ẽ

[
e−r̃τ

(
S

p
τ

Xτ

− K

)+
1{τ<∞}

]
,

and the conclusions of the theorem follow from the fact that

dXt = μ̃Xt dt + σXt dW̃t

and Theorem 2.8. �

Remark 3.3 Using a change of probability measure argument such as the one in the
proof of the theorem above, we can see that if p = 1, the value function defined by
(2.1) admits the expression

v(x, s) = x−1 sup
τ∈T

E
[
e−(r+μ−σ 2)τ (Sτ − KXτ )

+1{τ<∞}
]
,

where X is given by

dXt = (μ − σ 2)Xt dt + σXt dWt , X0 = x > 0,

and expectations are computed under an appropriate probability measure P under
which W is a standard Brownian motion. This observation reveals that the optimal
stopping problem defined by (1.1), (1.2) and (2.1) for p = 1 reduces to the one arising
in the pricing of a perpetual American lookback option with floating strike, which has
been solved by Pedersen [20] and Dai [5].
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Remark 3.4 If X̂ is the geometric Brownian motion given by

dX̂t = μ̂X̂t dt + σ̂ X̂t dWt , X̂0 = x̂ > 0, (3.3)

then

dX̂a
t =

(
1

2
σ̂ 2a(a − 1) + μ̂a

)
X̂a

t dt + σ̂ aX̂a
t dWt , X̂a

0 = x̂a > 0,

and given any ŝ ≥ x̂,

Ŝt = max
{
ŝ, max

0≤u≤t
X̂u

}
=

(
max

{
ŝa, max

0≤u≤t
X̂a

u

})1/a

. (3.4)

In view of these observations, we can see that the solution to the optimal stopping
problem defined by (3.3), (3.4) and

v̂(x̂, ŝ) = sup
τ∈T

E

[
e−rτ

(
Ŝb

τ

X̂a
τ

− K

)+
1{τ<∞}

]
,

which identifies with the problem (1.1)–(1.3) discussed in the introduction, can be
immediately derived from the solution to the problem given by (1.1), (1.2) and (2.1).
Similarly, we can see that the solution to the optimal stopping problem defined by
(3.3), (3.4) and

û(x̂, ŝ) = sup
τ∈T

E
[
e−rτ (Ŝb

τ − KX̂a
τ )+1{τ<∞}

]
,

which identifies with the problem (1.1), (1.2) and (1.4) discussed in the introduction,
can be obtained from the solution to the problem given by (1.1), (1.2) and (3.1). In
particular,

v̂(x̂, ŝ) = v(x̂a, ŝa) and û(x̂, ŝ) = u(x̂a, ŝa),

for

μ = 1

2
σ̂ 2a(a − 1) + μ̂a, σ = σ̂ a and p = b

a
.

Therefore, having restricted attention to the problems given by (1.1), (1.2) and (2.1)
or (3.1) has not involved any loss of generality.

Remark 3.5 Consider the geometric Brownian motion X given by (1.1) and its run-
ning maximum S given by (1.2). If X̃ is the geometric Brownian motion defined by

dX̃t =
(

1

2
σ 2b(b − 1) + μb

)
X̃t dt + σbX̃t dWt , X̃0 = x̃ > 0,

and S̃ is its running maximum given by

S̃t = max
{
s̃, max

0≤u≤t
X̃u

}
for s̃ ≥ x̃,
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then

X = X̃1/b and S = S̃1/b if x = x̃1/b and s = s̃1/b.

As a consequence, we obtain that the value function υ0 defined by (1.5) admits the
expression υ0(x, s) = υ̃0(x

b, sb), where

υ̃0(x̃, s̃) = sup
τ∈T

E

[
e−rτ S̃τ

X̃
a/b
τ

1{τ<∞}
]
.

Using a change of probability measure argument such as the one in the proof of
Theorem 3.2, we can see that

υ̃0(x̃, s̃) = x̃−a/b sup
τ∈T

E
[
e−(r+μa− 1

2 σ 2a(a+1))τ S̃τ 1{τ<∞}
]
,

where expectations are computed under an appropriate probability measure P under
which the dynamics of X̃ are given by

dX̃t =
(

1

2
σ 2b(b − 1) + μb − σ 2ab

)
X̃t dt + σbX̃t dWt , X̃0 = x̃ > 0,

for a standard Brownian motion W . It follows that the optimal stopping problem
defined by (1.1), (1.2) and (1.5) reduces to the one arising in the context of pricing a
perpetual Russian option, which has been solved by Shepp and Shiryaev [25, 26].
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Appendix: Proof of results in Sect. 2

We need the following result, the proof of which can be found e.g. in Merhi and
Zervos [17, Lemma 1].

Lemma A.1 Given any constants T > 0 and ζ ∈ (0, n), there exist constants
ε1, ε2 > 0 such that

E
[
e−rT S

ζ
T

] ≤ σ 2ζ 2 + ε2

ε2
sζ e−ε1T and E

[
sup
T ≥0

e−rT S
ζ
T

]
≤ σ 2ζ 2 + ε2

ε2
sζ .

Proof of Lemma 2.3 Suppose first that m + 1 > 0. Since m < 0 is a solution to the
quadratic equation (2.4), this inequality implies that

1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r > 0.
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It follows that

v(x, s) ≥ sup
t≥0

E

[
e−rt

(
S

p
t

Xt

− K

)+]
≥ sup

t≥0
E

[
e−rt spX−1

t

] − e−rtK

= spx−1 sup
t≥0

exp

([
1

2
σ 2 −

(
μ − 1

2
σ 2

)
− r

]
t

)
− e−rtK = ∞.

On the other hand, the inequality p − 1 > n and the fact that n > 0 is a solution to the
quadratic equation (2.4) imply that

1

2
σ 2(p − 1)2 +

(
μ − 1

2
σ 2

)
(p − 1) − r > 0.

In view of this inequality, we can see that

v(x, s) ≥ sup
t≥0

E

[
e−rt

(
S

p
t

Xt

− K

)+]
≥ sup

t≥0
E

[
e−rtX

p−1
t

] − e−rtK

= xp−1 sup
t≥0

exp

([
1

2
σ 2(p − 1)2 +

(
μ − 1

2
σ 2

)
(p − 1) − r

]
t

)
− e−rtK

= ∞,

and the proof is complete. �

Proof of Lemma 2.4 Throughout the proof, we fix any δ > 0 and denote by s† = s†(δ)

the unique solution to (2.19). Combining the assumption m + 1 < 0 with the obser-
vation that

(Γ sp) ∧ s ≤ Γ sp ≤ (m + 1)(n + 1)

nmK
sp (A.1)

by (2.10) and the definition (2.17) of DH , we can see that

(m + 1)(n + 1)sp − nmKH̄ < (m + 1)(n + 1)sp − nmK
(
(Γ sp) ∧ s

)

≤ 0 for all (H̄ , s) ∈ DH , (A.2)

which implies that the function H defined by (2.16) is strictly positive in DH . Since
H is locally Lipschitz in the open domain DH , it follows that given any s∗ > s†, there
exist points s∗ ∈ [0, s∗) and s∗ ∈ (s∗,∞] and a unique strictly increasing function
H(·) = H(·; s∗) : (s∗, s∗) → DH that satisfies the ODE (2.15) with initial condition
(2.18) and such that

lim
s↓s∗

H(s), lim
s↑s∗

H(s) /∈ DH

(see Piccinini et al. [23, Theorems I.1.4 and I.1.5]). Furthermore, we note that unique-
ness implies that

s1∗ < s2∗ ⇐⇒ H(s; s1∗) > H(s; s2∗) for all s ∈ (s1∗ ∨ s2∗, s1∗ ∧ s2∗). (A.3)
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Given a point s∗ > s† and the solution H(·; s∗) to (2.15)–(2.18) discussed above,
we define

h(s) = h(s; s∗)

=
{

s−pH(s; s∗), if 0 < p < 1

s−1H(s; s∗), if 1 < p < n + 1

}
for s ∈ (s∗, s∗), (A.4)

s◦ = sup
{
s∗ > s† : sup

s∈[s∗,s∗)
h(s; s∗) ≥ c

}
∨ s†, (A.5)

s◦ = inf
{
s∗ > s† : sup

s∈[s∗,s∗)
h(s; s∗) < c

}
, (A.6)

with the usual conventions that inf∅ = ∞ and sup∅ = −∞, where c > 0 is as in the
statement of the lemma, depending on the case. We also denote

D1
h = {

(h̄, s) ∈ R
2 : s > 0 and 0 < h̄ < Γ ∧ s1−p

}
,

D2
h = {

(h̄, s) ∈ R
2 : s > 0 and 0 < h̄ < (Γ sp−1) ∧ 1

}
,

and we note that

(H̄ , s) ∈DH ⇐⇒ (s−pH̄ , s) ∈ D1
h ⇐⇒ (s−1H̄ , s) ∈D2

h.

In particular, we can see that these equivalences and (A.2) imply that

(m + 1)(n + 1) − nmKh̄ < 0 for all (h̄, s) ∈ D1
h, (A.7)

(m + 1)(n + 1)sp−1 − nmKh̄ < 0 for all (h̄, s) ∈ D2
h, (A.8)

while (A.3) implies the equivalence

s1∗ < s2∗ ⇐⇒ h(s; s1∗) > h(s; s2∗) for all s ∈ (s1∗ ∨ s2∗, s1∗ ∧ s2∗). (A.9)

In view of the definitions (A.4)–(A.6), the required claims follow if we prove that

s∗ = 0 and s∗ = ∞ for all s∗ ∈ [s◦, s◦], (A.10)

s† < s◦ ≤ s◦ < ∞, (A.11)

h(s; s◦) < c for all s > 0, (A.12)

as well as

lim sup
s↓0

h(s; s∗) < ∞ and lim
s→∞h(s; s∗) = c, for all s∗ ∈ [s◦, s◦]. (A.13)

To prove that these results are true, we need to differentiate between the two cases
of the lemma: although the main ideas are the same, the calculations involved are
remarkably different (compare Figs. 4 and 5).
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Fig. 4 (p < 1p < 1p < 1) Illustration of
the proof of Lemma 2.4 (I) for
s◦(δ) = s◦(δ). The identity
h(s; s∗) = s−pH(s; s∗) for all
s > 0 relates the solutions to
(A.14) for s∗ = s1∗ , s◦, s2∗ plotted
here with the solutions to the
ODE (2.15) satisfying (2.18)
that are plotted in Fig. 2.
Furthermore, the intersection of
R

2 with the boundary of the
domain D1

h
in which we

consider solutions to (A.14) is
designated in green

Proof of (I) (p < 1). In this case, which is illustrated by Fig. 4, we calculate

ḣ(s) := ḣ(s; s∗) = h
(
h(s), s

)
and h(s∗) = δs

−p∗ , (A.14)

where

h(h̄, s) = − h̄

s

p(n(m + 1) − nmKh̄)(s1−ph̄−1)n−m

((s1−ph̄−1)n−m − 1)((m + 1)(n + 1) − nmKh̄)

+ h̄

s

pm(n + 1) − pnmKh̄

((s1−ph̄−1)n−m − 1)((m + 1)(n + 1) − nmKh̄)
.

In the arguments that we develop, the inequalities

m + 1 < 0 < n, 0 < p < 1 and c = m + 1

mK
∈ (0,Γ ),

which are relevant to the case we now consider, are worth keeping in mind. In view
of the inequalities

n(m + 1) − nmKh̄ = nmK(c − h̄)

{
< 0, if h̄ ∈ (0, c),

> 0, if h̄ ∈ (c,Γ ),

m(n + 1) − nmKh̄ < (m + 1)(n + 1) − nmKh̄ < 0 for all (h̄, s) ∈ D1
h

due to (A.7), we can see that
{
(h̄, s) ∈D1

h : h(h̄, s) < 0
} = {

(h̄, s) ∈D1
h : h̄ < c and s > s(h̄)

}
, (A.15)

where the function s is defined by

s(h̄) =
((m(n + 1) − nmKh̄

n(m + 1) − nmKh̄

)1/(n−m)

h̄

)1/(1−p)

for h̄ ∈ (0, c).
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Furthermore, we calculate

ṡ(h̄) > 0 for all h̄ ∈ (0, c), lim
h̄↓0

s(h̄) = 0 and lim
h̄↑c

s(h̄) = ∞,

and we note that

lim
h̄↑s1−p

h(h̄, s) = ∞ for all s ≤ c1/(1−p). (A.16)

In particular, this limit and (A.15) imply that

s
−1(s) < c ∧ s1−p ≤ Γ ∧ s1−p for all s > 0,

where s−1 is the inverse function of s. In view of these observations, we can see that

h(h̄, s)

{
< 0 for all s > 0 and h̄ ∈ (0, s−1(s)),

> 0 for all s > 0 and h̄ ∈ (s−1(s),Γ ∧ s1−p),
(A.17)

as well as

δs
−p∗ − s

−1(s)

{
> 0 for all s ∈ [s†, s

†),

< 0 for all s ∈ (s†,∞),
(A.18)

for a unique s† = s†(δ) > s†.
The conclusions (A.17) and (A.18) imply immediately that

sup
s∈(s∗,s∗)

h(s; s∗) < δs
−p∗ < c for all s∗ ≥ s†.

Combining this inequality with (A.9) and (A.17), we can see that

s◦ < s† and ∀s∗ ∈ (s◦, s†), ∃! sm = sm(s∗) such that

h(·; s∗)
{

is strictly increasing in (s∗, sm),

is strictly decreasing in (sm, s∗).

In view of this observation, (A.9), (A.16), (A.17) and a straightforward contradiction
argument, we can see that s◦ ∈ (s†, s

◦] holds true, the function h(·; s◦) is strictly
increasing on (0,∞) and

lim
s→∞h(s; s∗) = c for all s∗ ∈ [s◦, s◦],

lim
s↓0

h(s; s∗) = 0 for all s∗ ∈ (s†, s
◦].

It follows that (A.10)–(A.13) are all true.
Proof of (II) (p > 1). In this case, which is illustrated by Fig. 5, we calculate

ḣ(s) := ḣ(s; s∗) = h
(
h(s), s

)
and h(s∗) = δs−1∗ , (A.19)
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Fig. 5 (p > 1p > 1p > 1) Illustration of
the proof of Lemma 2.4 (II) for
s◦(δ) = s◦(δ). The identity
h(s; s∗) = s−1H(s; s∗) for all
s > 0 relates the solutions to
(A.19) for s∗ = s1∗ , s◦, s2∗ plotted
here with the solutions to the
ODE (2.15) satisfying (2.18)
that are plotted in Fig. 3.
Furthermore, the intersection of
R

2 with the boundary of the
domain D2

h
in which we

consider solutions to (A.19) is
designated in green

where

h(h̄, s) = h̄

s

sp−1((m + 1)(p − 1 − n) − (n + 1)(p − 1 − m)h̄n−m)

(1 − h̄n−m)((m + 1)(n + 1)sp−1 − nmKh̄)

+ h̄

s

nmKh̄

(m + 1)(n + 1)sp−1 − nmKh̄
.

In what follows, we use the inequalities

m + 1 < 0 < n, 1 < p < n + 1, c =
(

(m + 1)(p − 1 − n)

(n + 1)(p − 1 − m)

)1/(n−m)

∈ (0,1)

that are relevant to the case we now consider. In view of (A.8) and the inequalities

(m + 1)(p − 1 − n) − (n + 1)(p − 1 − m)h̄n−m

= (n + 1)(p − 1 − m)(cn−m − h̄n−m)

{
> 0, if h̄ ∈ (0, c),

< 0, if h̄ ∈ (c,1),

we can see that
{
(h̄, s) ∈D2

h : h(h̄, s) < 0
} = {

(h̄, s) ∈D2
h : h̄ < c and s > s(h̄)

}
, (A.20)

where the function s is defined by

s(h̄) =
( −nmK

(
1 − h̄n−m

)

(m + 1)(p − 1 − n) − (n + 1)(p − 1 − m)h̄n−m
h̄

)1/(p−1)

for h̄ ∈ (0, c). It is straightforward to check that

ṡ(h̄) > 0 for all h̄ > 0, lim
h̄↓0

s(h̄) = 0 and lim
h̄↑c

s(h̄) = ∞. (A.21)
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To proceed further, we define

Γ1 = (n + 1)(m + 1)

nmK
and Γ2 = 1

K
, (A.22)

we note that Γ = Γ1 ∧ Γ2, and we observe that

lim
h̄↑Γ1s

p−1
h(h̄, s) = ∞ for all s ≤

(
c

Γ1

)1/(p−1)

. (A.23)

If Γ = Γ2, then we can use the inequality (m+ 1)(n+ 1)−nm < 0, which holds true
in this case (see also (2.10)), to verify that

(m + 1)(p − 1 − n) − (n + 1)(p − 1 − n)h̄n−m + nm(1 − h̄n−m)

((m + 1)(n + 1) − nm)(1 − h̄n−m)
> p − 1

for all h̄ ∈ (0,1). Using this inequality, we can see that if Γ = Γ2, then

h(Γ sp−1, s) >
d

ds
(Γ sp−1) > 0 for all s ≤

(
c

Γ

)1/(p−1)

. (A.24)

Combining (A.20) with (A.23) and (A.24), we obtain

s
−1(s) < (Γ sp−1) ∧ c for all s > 0,

where s−1 is the inverse function of s. It follows that

h(h̄, s)
{

< 0 for all s > 0 and h̄ ∈ (0, s−1(s)),

> 0 for all s > 0 and h̄ ∈ (s−1(s),Γ1 ∧ sp−1) ⊇ (s−1(s),Γ ∧ sp−1),
(A.25)

as well as

δs−1∗ − s
−1(s)

{
> 0 for all s ∈ [s†, s

†),

< 0 for all s ∈ (s†,∞),
(A.26)

for a unique s† = s†(δ) > s†.
Arguing in exactly the same way as in Case (I) above by using (A.9), (A.25) and

(A.26), we can see that (A.11)–(A.13) are all true. Furthermore, (A.10) follows from
(A.21)–(A.24).

Proof of (III). In view of (2.17), (A.1) and the observation that

m + 1 < 0 =⇒ m + 1

m
∈ (0,1),

we can see that

H−1(s) >
nK

n + 1
s−p ⇐⇒ B(s) > 0 for all s > 0.
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If p < 1, then we can use the fact that

spH−1(s) > c−1 = mK

m + 1
for all s > 0,

which we have established in part (I) of the lemma, to see that

A(s) > 0 ⇐⇒ spH−1(s) >
mK

m + 1
for all s > 0

is indeed true. On the other hand, if p > 1, then we can verify that

(m + 1)(s/H̄ )n − (n + 1)(s/H̄ )m

(m + 1)((s/H̄ )n − (s/H̄ )m)
> 1 for all s > 0 and H̄ ∈ (0, s).

Using this inequality, we obtain

H
(

m + 1

mK
sp, s

)
>

d

ds

(
m + 1

mK
sp

)
for all s > 0.

Combining this calculation with (2.17), we can see that

H(s) <
m + 1

mK
sp ⇐⇒ A(s) > 0 for all s > 0,

because otherwise H would exit the domain DH . �

Proof of Lemma 2.7 We first note that the strict positivity of w follows immediately
from its definition in (2.20) and (2.21) and Lemma 2.4 (III). To establish (2.24), we
fix any s > 0 and note that Lemma 2.4 implies that there exists a point s ≥ s such that

H(u) ≥
{

1
2cup, if p < 1
1
2cu, if p > 1

}
for all u ≥ s.

Combining this observation with the fact that H is continuous, we can see that there
exists a constant C1(s) > 0 such that

upxnH−(n+1)(u) ≤ up+nH−(n+1)(u)

≤ max
u∈[s,s]

{up+nH−(n+1)(u)}1[s,s](u) + up+nH−(n+1)(u)1[s,∞)(u)

≤
{

C1(s)(1 + un(1−p)), if p < 1

C1(s)(1 + up−1), if p > 1

}
for all u ≥ s and x ≤ u,
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and

upxmH−(m+1)(u)

≤ upH−1(u)

≤
{

C1(s), if p < 1

C1(s)(1 + up−1), if p > 1

}
for all u ≥ s and x ∈ [H(u),u].

In view of these calculations, the definition (2.20) and (2.21) of w and the inequal-
ities m + 1 < 0 < n, we can see that there exists a constant C = C(s) > 0 such that
(2.24) holds true. For future reference, we note that the second of the estimates above
implies that given any s > 0,

up−1 ≤ upx−1 ≤ upH−1(u)

≤ C1(s)(1 + up−1) for all u ≥ s and x ∈ [H(u),u]. (A.27)

By construction, we shall prove that the positive function w is a solution to the
variational inequality (2.6) with boundary condition (2.7) that satisfies (2.22) and
(2.23) if we show that

f (x, s) := 1

2
σ 2x2 ∂2

∂x2

(
sp

x
− K

)
+ μx

∂

∂x

(
sp

x
− K

)
− r

(
sp

x
− K

)

=
(

1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

)
sp

x
+ rK

≤ 0 for all (x, s) ∈ S (A.28)

and

g(x, s) := w(x, s) − sp

x
+ K ≥ 0 for all (x, s) ∈ W . (A.29)

Proof of (A.28). In view of the assumption that m + 1 < 0 and the fact that
m < 0 < n are the solutions to the quadratic equation (2.4) given by (2.5), we can
see that

0 >
1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

= 1

2
σ 2(n + 1)(m + 1) = − r

nm
(n + 1)(m + 1). (A.30)

Combining this with the fact that

H(s) < Γ sp ≤ (n + 1)(m + 1)

nmK
sp for all s > 0
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(see (2.9) and (2.10)), we calculate

fx(x, s) = −
(

1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

)
sp

x2

> 0 for all s > 0 and x ∈ (0, s), (A.31)

and

f
(
H(s), s

)

=
(

1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

)
sp

H(s)
+ rK

<

(
1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

)
nmK

(n + 1)(m + 1)
+ rK (A.32)

= 0.

It follows that f (x, s) < 0 for all s > 0 and x ∈ [0,H(s)], and (A.28) has been estab-
lished.

A probabilistic representation of g. Before addressing the proof of (A.29), we first
show that given any stopping time τ ≤ τS , where τS is defined by (2.8), we have

g(x, s) = E

[
e−rτ g(Xτ ,Sτ )+

∫ τ

0
e−rtf (Xt , St ) dt +p

∫ τ

0
e−rtS

p−2
t dSt

]
. (A.33)

To this end, we assume (x, s) ∈ W in what follows without loss of generality. Since
the function w(·, s) satisfies the ODE (2.2) in the waiting region W , we can see that

1

2
σ 2x2gxx(x, s) + μxgx(x, s) − rg(x, s) = −f (x, s)

for all s > 0 and x ∈ (
H(s), s

)
. (A.34)

Using Itô’s formula, (2.7), the definition of g in (A.29) and this calculation, we obtain

g(x, s) = e−r(τ∧T )g(Xτ∧T , Sτ∧T ) +
∫ τ∧T

0
e−rtf (Xt , St ) dt

+ p

∫ τ∧T

0
e−rtS

p−2
t dSt − σ

∫ τ∧T

0
e−rt gx(Xt , St )Xt dWt .

It follows that

g(x, s) = E

[
e−r(τ∧T ∧τj )g(Xτ∧T ∧τj

, Sτ∧T ∧τj
)

+
∫ τ∧T ∧τj

0
e−rtf (Xt , St ) dt + p

∫ τ∧T ∧τj

0
e−rtS

p−2
t dSt

]
, (A.35)

where (τj ) is a localising sequence of stopping times for the stochastic integral.
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Combining (2.24), (A.27) and the positivity of w with the definition of g in (A.29)
and the fact that S is an increasing process, we can see that

|g(XT ,ST )| ≤ C + CS
γ

T + S
p−1
T + K for all T ≤ τ.

On the other hand, (A.27), the definition of f in (A.28), (A.31) and the fact that S is
an increasing process imply that there exists a constant C2 = C2(s) > 0 such that

|f (Xt , St )| ≤ C2(1 + S
p−1
t ) for all t ≤ τ.

These estimates, the fact that γ ∈ (0, n), the assumption that p − 1 < n and
Lemma A.1 imply that

E

[
sup
T ≥0

e−r(T ∧τ)|g(XT ∧τ , ST ∧τ )|
]

≤ E

[
sup
T ≥0

e−r(T ∧τ)(C + CS
γ

T ∧τ + S
p−1
T ∧τ + K)

]

≤ E

[
sup
T ≥0

e−rT (C + CS
γ

T + S
p−1
T + K)

]

< ∞
and

E

[∫ τ

0
e−rt |f (Xt , St )|dt

]
≤ E

[∫ ∞

0
e−rtC2(1 + S

p−1
t ) dt

]
< ∞.

In view of these observations and the fact that S is an increasing process, we can
pass to the limits as j → ∞ and T → ∞ in (A.35) by using the dominated and the
monotone convergence theorems to obtain (A.33).

Proof of (A.29). We first note that (A.30) and the definition (A.22) of Γ1 imply
that

−f (s, s) =
{

> 0, if sp−1 > Γ −1
1 ,

< 0, if sp−1 < Γ −1
1 .

Combining these inequalities with (A.31) and (A.32), we can see that

−f (x, s) =

⎧⎪⎨
⎪⎩

> 0, if sp−1 > Γ −1
1 and x ∈ (H(s), s),

> 0, if sp−1 < Γ −1
1 and x ∈ (H(s), x̃(s)),

< 0, if sp−1 < Γ −1
1 and x ∈ (x̃(s), s),

where x̃(s) is a unique point in (H(s), s) for all s > 0 such that sp−1 < Γ −1
1 . In view

of these inequalities, (A.34) and the maximum principle, we can see that given any
s > 0,

if sp−1 ≥ Γ −1
1 , then g(·, s) has no positive maximum in

(
H(s), s

)
, (A.36)

if sp−1 < Γ −1
1 , then g(·, s) has no positive maximum in

(
H(s), x̃(s)

)
, (A.37)

if sp−1 < Γ −1
1 , then g(·, s) has no negative minimum in

(
x̃(s), s

)
. (A.38)
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To proceed further, we use the identity

gxx(x, s) = n(n − 1)
−(m + 1)spH−1(s) + mK

n − m
H−n(s)xn−2

+ m(m − 1)
(n + 1)spH−1(s) − nK

n − m
H−m(s)xm−2 − 2spx−3,

which holds true in W by the definition (2.20), (2.21) of w, as well as (A.30) and
(A.32) to calculate

lim
x↓H(s)

gxx(x, s) = −(1 + n + m + nm)spH−1(s) + nmKH−2(s)

= − 2

σ 2
f

(
H(s), s

)
H−2(s) > 0.

This result and the identities g(H(s), s) = gx(H(s), s) = 0, which follow from the
fact that w(·, s) is continuously differentiable at H(s), imply that

gx

(
H(s) + ε, s

)
> 0 and g

(
H(s) + ε, s

)
> 0, for all ε > 0 small enough.

(A.39)
Combining this observation with (A.36), we obtain (A.29) for all s > 0 such that
sp−1 ≥ Γ −1

1 and x ∈ (H(s), s). On the other hand, combining (A.39) with (A.37)
and (A.38), we obtain (A.29) for all s > 0 such that sp−1 ≤ K and x ∈ (H(s), s),
because g(s, s) ≥ 0 if sp−1 ≤ K thanks to the positivity of w. It follows that

g(x, s) = w(x, s) − sp

x
+ K ≥ 0 if sp−1 ∈ (0,K] ∪ [Γ −1

1 ,∞)

and x ∈ (
H(s), s

)
. (A.40)

In particular, (A.29) holds true if the problem data is such that μ ≥ σ 2, thanks to the
equivalences

μ ≥ σ 2 ⇐⇒ Γ1 ≥ Γ2 ⇐⇒ Γ −1
1 ≤ K (A.41)

(see also (2.10) and (A.22)).
To establish (A.29) if μ < σ 2, we argue by contradiction. In view of (A.37),

(A.38), (A.40) and (A.41), we therefore assume that there exist strictly positive
s̃1 < s̃2 such that s̃

p−1
1 , s̃

p−1
2 ∈ [K,Γ −1

1 ],

g(x, s)

{
< 0 for all x = s ∈ (s̃1, s̃2),

≥ 0 for all s ∈ (0, s̃1] ∪ [s̃2,∞) and x ∈ (H(s), s).
(A.42)

Also, we note that (A.39) implies that there exists ε̃ > 0 such that

H(s̃2) < s̃2 − ε̃ and g
(
H(s̃2), s

)
> 0 for all s ∈ [s̃2 − ε̃, s̃2). (A.43)
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Given such an ε̃ > 0 fixed, we consider the solution to (1.1) with initial condition
X0 = s̃2 − ε̃ and the running maximum process S given by (1.2) with initial condition
S0 = s̃2 − ε̃. Also, we define

S̄t = s̃2 ∨ St for t ≥ 0 and τ = inf{t ≥ 0 : Xt = H(s̃2) ∨ H(St )}.
Using (A.33), (A.42), (A.43), the identity g(H(s), s) = 0 that holds true for all s > 0
and the fact that the function f (x, ·) : [x,∞) → R is strictly decreasing for all x > 0,
which follows from the calculation

fs(x, s) = p

(
1

2
σ 2(−1)2 +

(
μ − 1

2
σ 2

)
(−1) − r

)
sp−1

x

< 0 for all s > 0 and x ∈ (0, s)

due to (A.30), we obtain

0 > g(s̃2 − ε̃, s̃2 − ε̃)

= E

[
e−rτ g(Xτ ,Sτ ) +

∫ τ

0
e−rtf (Xt , St ) dt + p

∫ τ

0
e−rtS

p−2
t dSt

]

= E

[
e−rτ g

(
H(s̃2), Sτ

)
1{Sτ <s̃2} +

∫ τ

0
e−rtf (Xt , St ) dt

+ p

∫ τ

0
e−rt1{St<s̃2}S

p−2
t dSt + p

∫ τ

0
e−rt S̄

p−2
t dS̄t

]

> E

[∫ τ

0
e−rtf (Xt , S̄t ) dt + p

∫ τ

0
e−rt S̄

p−2
t dS̄t

]

= E

[
e−rτ g(Xτ , S̄τ ) +

∫ τ

0
e−rtf (Xt , S̄t ) dt + p

∫ τ

0
e−rt S̄

p−2
t dS̄t

]

= g(s̃2 − ε̃, s̃2)

≥ 0,

which is a contradiction. �
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27. Večeř, J.: Maximum drawdown and directional trading. Risk 19, 88–92 (2006)


