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Abstract

We consider a class of vector autoregressive models with banded coefficient matrices. The

setting represents a type of sparse structure for high-dimensional time series, though the implied

autocovariance matrices are not banded. The structure is also practically meaningful when the

order of component time series is arranged appropriately. The convergence rates for the esti-

mated banded autoregressive coefficient matrices are established. We also propose a Bayesian

information criterion for determining the width of the bands in the coefficient matrices, which

is proved to be consistent. By exploring some approximate banded structure for the auto-

covariance functions of banded vector autoregressive processes, consistent estimators for the

auto-covariance matrices are constructed.

Keywords: Banded auto-coefficient matrices; BIC; Frobenius norm; Vector autoregressive model.

1 Introduction

The demand for modelling and forecasting high-dimensional time series arises from panel studies of

economic, social and natural phenomena, financial market analysis, communication engineering and

other domains. When the dimension of time series is even moderately large, statistical modelling is

challenging, as vector autoregressive and moving average models suffer from lack of identification,

over-parameterization and flat likelihood functions. While pure vector autoregressive models are

perfectly identifiable, their usefulness is often hampered by the lack of proper means of reducing the

number of parameters.

In many practical situations it is enough to collect the information from neighbour variables,

though the definition of neighbourhoods is case-dependent. For example, sales, prices, weather in-

dices or electricity consumptions influenced by temperature depend on those at nearby locations, in
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the sense that the information from farther locations may become redundant given that from neigh-

bours. See, for example, Can and Mebolugbe (1997) for a house price example which exhibits

such a dependence structure. In this paper, we propose a class of vector autoregressive models

to cater for such dynamic structures. We assume that the autoregressive coefficient matrices are

banded, i.e., non-zero coefficients form a narrow band along the main diagonal. The setting spec-

ifies explicit autoregression over neighbour component series only. Nevertheless, non-zero cross

correlations among all component series may still exist, as the implied auto-covariance matrices are

not banded. This is an effective way to impose sparse structure, as the number of parameters in each

autoregressive coefficient matrix is reduced from p2 to O(p), where p denotes the number of time

series. In practice, a banded structure may be employed by arranging the order of component series

appropriately. The ordering can be deduced from subject knowledge aided by statistical tools such

as Bayesian information criterion; see Section 5.2. With the imposed banded structure, we propose

least squares estimators for the autoregressive coefficient matrices which attain the convergence

rate (p/n)1/2 under the Frobenius norm and (log p/n)1/2 under the spectral norm when p diverges

together with the length n of time series.

In practice the maximum width of the non-zero coefficient bands in the coefficient matrices,

which is called the bandwidth, is unknown. We propose a marginal Bayesian information crite-

rion to identify the true bandwidth. It is shown that this criterion leads to consistent bandwidth

determination when both n and p tend to infinity.

We also address the estimation of the autocovariance functions for high-dimensional banded au-

toregressive models. Although the autocovariance matrices of a banded process are unlikely to be

banded, they admit some asymptotic banded approximations when the covariance of innovations is

banded. Because of this property, the band-truncated sample autocovariance matrices are consis-

tent estimators with the convergence rate log(n/ log p)(log p/n)1/2, which is faster than that for the

standard banding covariance estimators (Bickel and Levina, 2008). See also Wu and Pourahmadi

(2009), Bickel and Gel (2011) and Leng and Li (2011) for the estimation of the banded covariance

matrices of time series.

Most existing work on high-dimensional autoregressive models draws inspiration from recent

developments in high-dimensional regression. For example, Hsu et al. (2008) proposed lasso pe-

nalization for subset autoregression. Haufe et al. (2010) introduced the group sparsity for coefficient

matrices and advocated use of group lasso penalization. A truncated weighted lasso and group lasso

penalization approaches were proposed by Shojaie and Michailidis (2010) and Basu et al. (2015),

respectively, to explore graphical Granger causality. Basu and Michailidis (2015) focused on stable

Gaussian processes and investigated the theoretical properties of L1-regularized estimates of transi-

tion matrix in sparse autoregressive models. Bolstad et al. (2011) inferred sparse causal networks

through vector autoregressive processes and proposed a group lasso procedure. Kock and Callot

(2015) established oracle inequalities for high-dimensional vector autoregressive models. Han and

Liu (2015) proposed an alternative Dantzig-type penalization and formulated the estimation prob-

lem into a linear program. Chen et al. (2013) studied sparse covariance and precision matrix in high

dimensional time series under a general dependence structure.
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2 Methodology

2.1 Banded vector autoregressive models

Let yt be a p× 1 time series defined by

yt = A1yt−1 + · · ·+ Adyt−d + εt, (1)

where εt is the innovation at time t, E(εt) = 0 and var(εt) = E(εtε
T

t ) = Σε, and εt is independent

of yt−1, yt−2, . . .. Furthermore, all the coefficient matrices A1, . . . , Ad are banded in the sense that

a
(ℓ)
ij = 0, |i− j| > k0, ℓ = 1, . . . , d, (2)

where a
(ℓ)
ij denotes the (i, j)-th element of Aℓ. Thus the maximum number of non-zero elements in

each row of Aℓ is the bandwidth 2k0 + 1, and k0 is called the bandwidth parameter. We assume that

k0 ≥ 0 and d ≥ 1 are fixed integers, and p ≫ k0, d. Our goal is to determine k0 and to estimate the

banded coefficient matrices A1, . . . , Ad. For simplicity, we assume that the autoregressive order d is

known, as the order-determination problem has already been thoroughly studied; see, e.g., Chapter

4 of Lütkepohl (2007).

Under the condition det(Ip−A1z−· · ·−Adz
d) 6= 0 for any |z| ≤ 1, model (1) admits a weakly

stationary solution {yt}, where Ip denotes the p× p identity matrix. Throughout this paper, yt refers

to this stationary process. If, in addition, εt is independent and identically distributed, yt is also

strictly stationary.

In model (1), we do not require var(εt) = Σε to be banded, but even if it is, the autocovariance

matrices are not necessarily banded; see (12) below. Therefore, the proposed banded model is ap-

plicable when the linear dynamics of each component series depend predominately on its neighbour

series, though there may be non-zero correlations among all component series of yt.

2.2 Estimating banded autoregressive coefficient matrices

Since each row of Aℓ has at most 2k0+1 non-zero elements, there are at most (2k0+1)d regressors

in each row on the right-hand side of (1). For i = 1, . . . , p, let βi be the column vector obtained by

stacking the non-zero elements in the i-th rows of A1, . . . , Ad together. Let τi denote the length of

βi. Then

τi ≡ τi(k0) =
{ (2k0 + 1)d, i = k0 + 1, k0 + 2, . . . , p− k0,

(2k0 + 1− j)d, i = k0 + 1− j or p− k0 + j, j = 1, . . . , k0.
(3)

Now (1) can be written as

yi,t = xT

i,tβi + εi,t, i = 1, . . . , p, (4)

where yi,t, εi,t are respectively the i-th component of yt and εt and xi,t is the τi × 1 vector consisting

of the corresponding components of yt−1, . . . , yt−d. Consequently, the least squares estimator of βi

based on (4) is

β̂i = (XT

i Xi)
−1XT

i y(i), (5)
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where y(i) = (yi,d+1, . . . , yi,n)
T, and Xi is an (n− d)× τi matrix with xT

i,d+j as its j-th row.

By estimating βi, i = 1, . . . , p, separately based on (5), we obtain the least squares estimators

Â1, . . . , Âd for the coefficient matrices in (1). Furthermore, the resulting residual sum of squares is

RSSi ≡ RSSi(k0) = yT

(i){In−d −Xi(X
T

i Xi)
−1XT

i }y(i). (6)

We write this as a function of k0 to stress that the above estimation presupposes that the bandwidth

is (2k0 + 1) in the sense of (2).

2.3 Determination of bandwidth

In practice the bandwidth is unknown and we need to estimate k0. We propose to determine k0 based

on the marginal Bayesian information criterion,

BICi(k) = log RSSi(k) +
1

n
dτi(k)Cn log(p ∨ n), i = 1, . . . , p, (7)

where RSSi(k) and τi(k) are defined, respectively, in (6) and (3), p ∨ n = max(p, n), and Cn > 0
is some constant which diverges together with n; see Condition 2. We often take Cn to be log log n.

An estimator for k0 is

k̂ = max
1≤i≤p

{
arg min

1≤k≤K
BICi(k)

}
, (8)

where K ≥ 1 is a prescribed integer. Our numerical study shows that the procedure is insensitive

to the choice of K provided K ≥ k0. In practice, we often take K to be [n1/2] or choose K by

checking the curvature of BICi(k) directly.

Remark 1. If the order d is unknown, we can modify the criterion in (8) as follows. Let RSSi(k, ℓ)
and τi(k, ℓ) be defined similarly to (6) and (3). The marginal Bayesian information criterion is

B̃ICi(k, ℓ) = log RSSi(k, ℓ) +
1

n
τi(k, ℓ)Cn log(p ∨ n), i = 1, . . . , p. (9)

Let L be a prescribed integer upper bound on d and often taken to be 10 or [n1/2]. Let

(k̂i, d̂i) = arg min
1≤k≤K,1≤ℓ≤L

B̃ICi(k, ℓ), i = 1, . . . , p,

and k̂ = max1≤i≤p k̂i and d̂ = max1≤i≤p d̂i. Proposition 1 in the Supplementary Material shows that

under Conditions 1–4 in Section 3.1, pr(k̂ = k0, d̂ = d) → 1 as n and p → ∞.

Remark 2. The banded structure of the coefficient matrices A1, . . . , Ad depends on the order of

the component series of yt. In principle it is possible to derive a complete data-driven method to

deduce the optimal ordering which minimizes the bandwidth, but such a procedure is computation-

ally burdensome for large p. For most applications meaningful orderings are suggested by practical

consideration. We can then calculate

BIC =

p∑

i=1

BICi(k̂) (10)

for each suggested ordering, and choose the ordering which minimizes (10). In expression (10),

BICi(·) and k̂ are defined as in (7) and (8). Two real data examples in Section 5.2 indicate that this

scheme works well in applications.
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3 Asymptotic properties

3.1 Regularity conditions

For vector v = (v1, . . . , vj) and matrix B = (bij), let

‖v‖q =
( p∑

j=1

|vj|q
)1/q

, ‖v‖∞ = max
1≤j≤p

|vj|, ‖B‖q = max
‖v‖q=1

‖Bv‖q, ‖B‖F =
(∑

i,j

b2ij

)1/2

,

i.e., ‖ · ‖q denotes the ℓq norm of a vector or matrix, and ‖ · ‖F denotes the Frobenius norm of a

matrix.

First we note that the model (1) can be formulated as,

ỹt = Ãỹt−1 + ε̃t,

where

ỹt =




yt
yt−1

...

yt−d+1


 , Ã =




A1 A2 · · · Ad

Ip 0p · · · · · ·
... · · · ... · · ·
0 · · · Ip 0


 , ε̃t =




εt
0p×1

...

0p×1


 . (11)

Now we list the regularity conditions required for our asymptotic results.

Condition 1. For Ã defined in (11), ‖Ã‖2 ≤ C and ‖Ãj0‖2 ≤ δj0 , where C > 0, δ ∈ (0, 1) and

j0 ≥ 1 are constants free of n and p, and j0 is an integer.

Condition 1’. For Ã defined in (11), ‖Ãj0‖2 ≤ δj0 , ‖Ã‖∞ ≤ C and ‖Ãj0‖∞ ≤ δj0 , where C > 0,

δ ∈ (0, 1) and j0 ≥ 1 are constants free of n and p, and j0 is an integer.

Condition 2. Let a
(ℓ)
ij be the (i, j)-th element of Aℓ. For each i = 1, . . . , p, |a(ℓ)i,i+k0

| or |a(ℓ)i,i−k0
| is

greater than {Cnk0n
−1 log(p ∨ n)}1/2 for some 1 ≤ ℓ ≤ d, where Cn → ∞ as n → ∞.

Condition 3. The minimal eigenvalue λmin{cov(yt)} ≥ κ1 and max1≤i≤p |σii| ≤ κ2 for some pos-

itive constants κ1 and κ2 free of p, where σii is the i-th diagonal element of cov(yt), and λmin(·)
denotes the minimum eigenvalue.

Condition 4. The innovation process {εt, t = 0,±1,±2, . . .} is independent and identically dis-

tributed with zero mean and covariance Σε. Furthermore, one of the two assertions holds:

(i) max1≤i≤p E(|εi,t|2q) ≤ C and p = O(nβ), where q > 2, β ∈ (0, (q − 2)/4) and

C > 0 are some constants free of n and p;

(ii) max1≤i≤pE{exp(λ0|εi,t|2α)} ≤ C and log p = o{nα/(2−α)}, where λ0 > 0,

α ∈ (0, 1] and C > 0 are constants free of n and p.

Provided {εt} is independent and identically distributed, Condition 1 implies that yt is strictly

stationary and that for any j ≥ 1, ‖Ãj‖2 ≤ Cδj with some constant C > 0 and δ ∈ (0, 1).
The independent and identically distributed assumption in Condition 4 is imposed to simplify the

proofs but is not essential. Condition 2 ensures that the bandwidth (2k0 + 1) is asymptotically

identifiable, as {n−1 log(p ∨ n)}1/2 is the minimum order of a non-zero coefficient to be identifiable;

see, e.g., Luo and Chen (2013). Condition 3 guarantees that the covariance matrix var(yt) is strictly

positive definite. Condition 4 specifies the two asymptotic modes: (i) high-dimensional cases with

p = O(nβ), and (ii) ultra high-dimensional cases with log p = o{nα/(2−α)}.
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3.2 Asymptotic theorems

We first state the consistency of the selector k̂, defined in (8), for determining the bandwidth param-

eter k0.

Theorem 1. Under Conditions 1–4, pr(k̂ = k0) → 1 as n → ∞.

Remark 3. In Theorem 1, k0 is assumed to be fixed, as in applications small k0 is of particular inter-

est. But we can allow the bandwidth parameter k0 to diverge as n, p → ∞. To show its consistency,

the regularity conditions would need to be strengthened. To be specific, if k0 ≪ C−1
n n/ log(p ∨ n),

pr(k̂ = k0) → 1 as n → ∞ under Conditions 1’ and 2–4 in Section 3.1; see the Supplementary

Material.

Since k0 is unknown, we replace it by k̂ in the estimation procedure for A1, . . . , Ad described

in Section 2.2, and still denote the resulted estimators by Â1, . . . , Âd. Theorem 2 addresses their

convergence rates.

Theorem 2. Let Conditions 1–4 hold. As n → ∞, it holds for j = 1, . . . , d that

∥∥Âj −Aj

∥∥
F
= OP

{
(p/n)1/2

}
,
∥∥Âj −Aj

∥∥
2
= OP

{
(log p/n)1/2

}
.

Conditions 4(i) and 4(ii) impose, respectively, a high moment condition and an exponential tail

condition on the innovation distribution. Although the convergence rates in Theorem 2 have the

same expressions in terms of n and p, due to the different conditions imposed on them in Condi-

tions 4(i) and 4(ii), the actual convergence rates are different under the two settings. For example,

Condition 4(i) allows p to grow in the order nβ , which implies the convergence rate (log n/n)1/2

for Âj under the spectral norm. On the other hand, Condition 4(ii) may allow p to diverge at the

rate exp{nα/(2−α)−2ǫ} for a small constant ǫ > 0, and the implied convergence rate for Âj under the

spectral norm is n1/2+ǫ−α/(4−2α).

4 Estimation for auto-covariance functions

For the banded vector autoregressive process yt defined by (1), the auto-covariance function Σj =
cov(yt, yt+j) is unlikely to be banded. For example for a stationary banded autoregressive process

with order 1, it can be shown that

Σ0 ≡ var(yt) = Σε +

∞∑

i=1

Ai
1Σε(A

T

1 )
i. (12)

For any banded matrices B1 and B2 with bandwidths 2k1 + 1 and 2k2 + 1, respectively, the product

B1B2 is a banded matrix with the enlarged bandwidth 2(k1 + k2) + 1 in general. Thus Σ0 presented

in (12) is not a banded matrix. Nevertheless if var(εt) = Σε is also banded, Theorem 3 shows that

Σj can be approximated by some banded matrices.

Condition 5. The matrix Σε is banded with bandwidth 2s0+1 and ‖Σε‖1 ≤ C < ∞, where C, s0 > 0
are constants independent of p, and s0 is an integer.
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Theorem 3. Let Conditions 1 and 5 hold. For any integers r, j ≥ 0, there exists a banded matrix

Σ
(r)
j with bandwidth 2{(2r + j)k0 + s0}+ 1 such that

‖Σ(r)
j − Σj‖2 ≤ C1 δ

2(r+j)+1, ‖Σ(r)
j − Σj‖1 ≤ C2 r δ

2(r+j)+1,

where C1 and C2 are positive constants independent of r and p, and δ ∈ (0, 1) is specified in

Condition 1.

Under Condition 5, Σ
(r)
0 = Σε+

∑
1≤i≤r A

i
1Σε(A

T

1 )
i is a banded matrix with bandwidth 2(2rk0+

s0)+1. Theorem 3 ensures that the norms of the difference Σ0−Σ
(r)
0 =

∑
i>r A

i
1Σε(A

T

1 )
i admit the

required upper bounds. Theorem 3 also paves the way for estimating Σj using the banding method

of Bickel and Levina (2008), as Σj can be approximated by a banded matrix with a bounded error

and thus may be effectively treated as a banded matrix. To this end, we define the banding operator

as follows: for any matrix H = (hij), Br(H) =
{
hijI(|i − j| ≤ r)

}
. Then the banding estimator

for Σj is defined as

Σ̂
(rn)
j = Brn(Σ̂j), Σ̂j =

1

n

n−j∑

t=1

(yt − ȳ)(yt+j − ȳ)T, ȳ =
1

n

n∑

t=1

yt, (13)

where rn = C log(n/ log p), and C > 0 is a constant greater than (−4 log δ)−1
. Theorem 4 presents

the convergence rates for Σ̂
(rn)
j , which are faster than those in Bickel and Levina (2008), due to the

approximate banded structure in Theorem 3.

Theorem 4. Assume that Conditions 1–5 hold. Then for any integer j ≥ 0, as n, p → ∞,

‖Σ̂(rn)
j − Σj‖2 = OP

{
rn
(
n−1 log p

)1/2
+ δ2(rn+j)+1

}
= OP

{
log(n/ log p)

(
n−1 log p

)1/2}
,

and

‖Σ̂(rn)
j − Σj‖1 = OP

{
log(n/ log p)

(
n−1 log p

)1/2 }
.

In practice we need to specify rn. An ideal selection would be rn = argminr Rj(r), where

Rj(r) = E(‖Σ̂(r)
j − Σj‖1),

but in practice this is unavailable because Σj is unknown. We replace it by an estimator obtained

via a wild bootstrap. To this end, let u1, . . . , un be independent and identically distributed with

E(ut) = var(ut) = 1. A bootstrap estimator for Σj is defined as

Σ∗
j =

1

n

n−j∑

t=1

ut(yt − ȳ)(yt+j − ȳ)T.

For example, we may draw ut from the standard exponential distribution. Consequently the boot-

strap estimator for Rj(r) is defined as

R∗
j (r) = E

{
‖Br(Σ

∗
j )− Σ̂j‖1

∣∣ y1, . . . , yn
}
.
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We choose rn to minimize R∗
j (r). In practice we use the approximation

R∗
j (r) ≈

1

q

q∑

k=1

‖Br(Σ
∗
j,k)− Σ̂j‖1, (14)

where Σ∗
j,1, . . . ,Σ

∗
j,q are q bootstrap estimates for Σj , obtained by repeating the above wild bootstrap

scheme q times, and q is a large integer.

5 Numerical properties

5.1 Simulations

In this section, we evaluate the finite-sample properties of the proposed methods for the model

yt = Ayt−1 + εt,

where {εt} are independent and N(0, Ip). We consider two settings for the banded coefficient matrix

A = (aij) as follows:

(i) {aij ; |i − j| ≤ k0} are generated independently from U [−1, 1]. Since the spectral norm of A
must be smaller than 1, we re-scale A by ηA/‖A‖2, where η is generated from U [0.3, 1.0);

(ii) {aij ; |i− j| < k0} are generated independently from the mixture distribution ξ · 0 + (1− ξ) ·
N(0, 1) with pr(ξ = 1) = 0.4. The elements {aij ; |i− j| = k0} are drawn independently from

−4 and 4 with probability 0.5 each. Then A is rescaled as in (i) above.

In (ii), there are about 0.4(2k0 − 1)p zero elements within the band, i.e., A is sparser than in (i).

We set n = 200, p = 100, 200, 400, 800, and k0 = 1, 2, 3, 4. We repeat each setting 500 times.

We only report the results with K = 15 in (8), as the results with other values of K ≥ k0 are

similar. Table 1 lists the relative frequencies of the occurrence of the events {k̂ = k}, {k̂ > k0} and

{k̂ < k0} over the 500 replications. Overall k̂ under-estimates k0, especially when k0 = 3 or 4. In

fact when k0 = 4, k̂ chose 3 most times. The constraint ‖A‖ < 1 makes most non-zero elements

small or very small when p is large, and that only the coefficients at least as large as
√
log(p ∨ n)/n

are identifiable; see Condition 2. Estimation performs better in setting (ii) than in setting (i), as

Condition 2 is more likely to hold at the boundaries of the band in setting (ii).

The Bayesian information criterion (7) is defined for each row separately. One natural alternative

would be

BIC(k) =

p∑

i=1

log RSSi(k) +
1

n
|τ̃ (k)|Cn log(p ∨ n),

where τ̃(k) = (2p+ 1)k − k2 − k is the total number of parameters in the model. This leads to the

following estimator for the bandwidth parameter,

k̃ = arg min
1≤k≤K

BIC(k). (15)
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Although this joint approach can be shown to be consistent, its finite sample performance, reported

in Table 2, is worse than that of the marginal Bayesian information criterion (7), presented in Table

1.

We also calculate bothL1 and L2 errors in estimating the banded coefficient matrixA. The means

and the standard deviations of the errors for setting (i) are reported in Table 3. Table 3 also reports

results from estimating A using the true values for the bandwidth parameter k0. The accuracy loss

in estimating A caused by unknown k0 is almost negligible. The results for setting (ii) are similar

and are therefore omitted.

To evaluate the estimation performance for the auto-covariance matrices Σ0 and Σ1, we set

k0 = 3, and the spectral norm of A at 0.8. Furthermore, we let εt be independent and N(0,Σε)
now, where Σε = BBT and B = (bij), b11 = 1, bij = 0.8I(|i − j| = 1) + 0.6I(i = j), i > 1 or

j > 1. Table 4 lists the average estimation errors and the standard deviations over 100 replications,

measured by matrix L1-norm. We also report Monte Carlo results for a thresholded estimator and

the sample covariance estimator. For the banded estimator, we choose r to minimize the bootstrap

loss defined in (14) with q = 100. For the thresholded estimator, the thresholding parameter is

selected in the same manner. Table 4 shows that the proposed banding method performs much better

than the thresholded estimator since it adapts directly to the underlying structure, while the sample

covariance performs much worse than both the banding and threshold methods.

5.2 Real data examples

Consider first the weekly temperature data across 71 cities in China from 1 January 1990 to 17

December 17 2000, i.e., p = 71 and n = 572. Fig.5.2 displays the weekly temperature of Ha’erbin,

Shanghai and Hangzhou, showing strong seasonal behavior with period 52 weeks. Therefore, we

set the seasonal period to be 52 and estimate the seasonal effects by taking averages of the same

weeks across different years. The deseasonalized series, i.e., the original series subtracting estimated

seasonal effects, are denoted by { yt; t = 1, . . . , 572 }, and each yt has 71 components.

Naturally we would order the 71 cities according to their geographic locations. However the

choice is not unique. For example, we may order the cities from north to south, from west to east,

from northwest to southeast, or from southwest to northeast. By setting d = 1, each ordering leads

to a different banded autoregressive model with order 1. We compare those four models by one-

step ahead, and two-step ahead post-sample prediction for the last 30 data points in the series. To

select an optimum model, we compute (10) for these four orderings. These numerical results and

the selected bandwidth parameters k̂ are reported in Table 5. Three out of those four models select

k̂ = 2, while the model based on the ordering from west to east picks k̂ = 4. Overall the model

based on the ordering from southwest to northeast is preferred, which also has the minimum one-step

ahead post-sample predictive errors. The performances of the four models in terms of the prediction

are very close.

Also included in Table 5 are the post-sample predictive errors of the sparse autoregressive model

with order 1 obtained via lasso by minimizing

n∑

t=2

‖yt − Ayt−1‖2 +
p∑

i,j=1

λi|aij |,

9



where λ1, . . . , λp are tuning parameters estimated by five-fold cross-validation as in Bickel and

Levina (2008). The prediction accuracy of the sparse model via lasso is comparable to those of the

banded autoregressive models, though slightly worse, especially for the two-step ahead prediction.

However the lack of any structure in the estimated sparse coefficient matrix Ã, displayed in Fig.2(b),

makes such fits difficult to interpret. In contrast, the banded coefficient matrix, depicted in Fig.2(a),

is attractive.

As a second example, we consider the daily sales of a clothing brand in 21 provinces in China

from 1 January 2008 to 9 December 2012, i.e., n = 1812, p = 21. Fig.3 plots the relative geo-

graphical positions of 21 provinces and province-level municipalities. We first subtract each of the

21 series by its mean. Similar to the example above, we order the 21 provinces according to the

four different geographic orientations, and fit a banded autoregressive model with order 1 for each

ordering. The selected bandwidth parameters, the values according to (10) and the post sample pre-

diction errors for the last 30 data points in the series are reported in Table 6. We also rank the series

according to their geographic distances to Heilongjiang, the most northwestern province; see Fig.3.

This results in a different ordering to that from north to south. Table 6 indicates that the minimum

bandwidth parameter k̂ is 3, attained by the ordering based on the distances to Heilongjiang, fol-

lowed by k̂ = 4 attained by the north-to-south ordering. The post-sample prediction performances

of those two models are almost the same, and are better than those of the other three banded models

and the sparse autoregressive model.

The ordering based on the direction from northwest to southeast leads to k̂ = 12. Therefore

the corresponding banded model has 21 regressors for some components according to (3), i.e., no

banded structure is observed in this case. Fig.3 indicates that the ordering from northwest to south-

east puts together some provinces which are distance away from each other. Hence this is certainly

a wrong ordering as far as the banded autoregressive structure is concerned.

The estimated coefficient matrix Â for the banded vector autoregressive model with order 1

based on the distances to Heilongjiang and the estimated Ã by lasso for the autoregressive model

with order 1 are plotted in Fig.4. The banded model facilitates an easy interpretation, i.e., the sales

in the neighbour provinces are closely associated with each other. The lasso fitting cannot reveal

this phenomenon.
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Table 1: Relative frequencies (%) for the occurrence of the events {k̂ = k}, {k̂ > k0} and {k̂ < k0}
in a simulation study with 500 replications, where k̂ is defined in (8).

Setting (i) Setting (ii)

{k̂ = k0} {k̂ > k0} {k̂ < k0} {k̂ = k0} {k̂ > k0} {k̂ < k0}
k0 = 1 82 17 1 98 2 0

p = 100 k0 = 2 87 8 5 95 3 2

k0 = 3 73 6 21 83 2 15

k0 = 4 55 14 31 64 2 34

k0 = 1 91 9 0 97 3 0

p = 200 k0 = 2 89 4 7 93 2 5

k0 = 3 65 3 32 83 0 17

k0 = 4 54 1 45 63 2 35

k0 = 1 95 5 0 99 1 0

p = 400 k0 = 2 87 2 11 90 1 9

k0 = 3 66 2 32 76 1 23

k0 = 4 45 1 54 60 0 40

k0 = 1 97 3 0 100 0 0

p = 800 k0 = 2 86 1 13 91 1 8

k0 = 3 59 1 40 67 1 32

k0 = 4 40 0 60 52 0 48

Supplementary Material

Supplementary material available at Biometrika online includes proofs of Theorems 1-4, the consis-

tency of generalized Bayesian information criterion defined by (9) in Section 2.3 and the consistency

of the marginal Bayesian information criterion in the setting k0 → ∞, as well as the detailed proofs

of all the lemmas in this paper.
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Table 2: Relative frequencies (%) for the occurrence of the events {k̃ = k}, {k̃ > k0} and {k̃ < k0}
in a simulation study with 500 replications, where k̃ is defined in (15).

Setting (i) Setting (ii)

{k̃ = k0} {k̃ > k0} {k̃ < k0} {k̃ = k0} {k̃ > k0} {k̃ < k0}
k0 = 1 64 0 36 88 0 12

p = 100 k0 = 2 42 0 58 63 0 37

k0 = 1 56 0 44 84 0 16

p = 200 k0 = 2 32 0 68 55 0 45

k0 = 1 48 0 52 83 0 17

p = 400 k0 = 2 23 0 77 45 0 55

k0 = 1 44 0 56 76 0 24

p = 800 k0 = 2 11 0 89 41 0 59

Table 3: Means (×102) with their corresponding standard deviations (×102) in parentheses of the

errors in estimating A under setting (i) in a simulation study with n = 200 and 500 replications.

With estimated k0 With true k0
p ‖Â− A‖1 ‖Â− A‖2 ‖Â−A‖1 ‖Â−A‖2

k0 = 1 38 (6) 27 (3) 37 (5) 27 (3)

p = 100 k0 = 2 54 (6) 33 (3) 53 (5) 33 (3)

k0 = 3 70 (8) 39 (4) 69 (7) 38 (3)

k0 = 4 85 (10) 43 (5) 85 (8) 43 (3)

k0 = 1 40 (6) 28 (3) 40 (5) 28 (3)

p = 200 k0 = 2 58 (7) 35 (3) 58 (6) 35 (3)

k0 = 3 74 (8) 40 (4) 74 (6) 40 (3)

k0 = 4 90 (11) 46 (5) 88 (7) 45 (3)

k0 = 1 43 (5) 30 (3) 42 (4) 30 (3)

p = 400 k0 = 2 60 (6) 36 (3) 60 (5) 36 (3)

k0 = 3 77 (8) 42 (4) 76 (6) 42 (3)

k0 = 4 95 (14) 48 (7) 93 (7) 46 (3)

k0 = 1 44 (4) 31 (2) 44 (4) 31 (2)

p = 800 k0 = 2 63 (5) 37 (3) 62 (5) 37 (2)

k0 = 3 81 (9) 43 (5) 80 (6) 43 (2)

k0 = 4 98 (14) 49 (7) 96 (7) 47 (2)
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Table 4: Means with their corresponding standard deviations in parentheses of the errors in estimat-

ing autocovariance matrices in a simulation study with n = 200 and 100 replications.

‖Σ̂n,0 − Σ0‖1 ‖Σ̂n,1 − Σ1‖1
Banding Thresholding Sample Banding Thresholding Sample

Matrix L1-Norm Matrix L1-Norm

p = 100 2.1 (0.04) 2.6 (0.02) 14 (0.07) 2.9 (0.03) 3.5 (0.04) 14 (0.07)

p = 200 2.7 (0.04) 3.4 (0.03) 29 (0.02) 3.1 (0.03) 4.2 (0.04) 30 (0.02)

p = 400 2.3 (0.02) 2.9 (0.02) 55 (0.02) 2.8 (0.03) 3.7 (0.02) 55 (0.02)

p = 800 2.7 (0.03) 3.4 (0.02) 112 (0.03) 2.9 (0.03) 3.9 (0.03) 110 (0.04)

Spectral Norm Spectral Norm

p = 100 1.1 (0.01) 1.4 (0.02) 4.0 (0.07) 1.4 (0.01) 1.7 (0.02) 3.7 (0.02)

p = 200 1.3 (0.03) 1.7 (0.02) 6.5 (0.03) 1.5 (0.01) 1.9 (0.01) 6.1 (0.02)

p = 400 1.2 (0.01) 1.6 (0.01) 10 (0.03) 1.3 (0.01) 1.9 (0.01) 9.2 (0.02)

p = 800 1.4 (0.02) 1.8 (0.01) 17 (0.03) 1.4 (0.01) 2.3 (0.02) 15 (0.03)

Table 5: Results of Example 1: Estimated bandwidth parameters, Bayeysian information criterion

values and average one-step-ahead and two-step-ahead post-sample predictive errors over 71 cities

with their corresponding standard errors in parentheses.

Ordering k̂ BIC One-step ahead Two-step ahead

north to south 2 552.5 1.543 (1.170) 1.622 (1.245)

west to east 4 555.9 1.545 (1.152) 1.602 (1.247)

northwest to southeast 2 552.4 1.552 (1.167) 1.624 (1.249)

southwest to northeast 2 551.9 1.538 (1.160) 1.617 (1.253)

Lasso - - 1.545 (1.172) 1.632 (1.250)

Table 6: Results of Example 2: Estimated bandwidth parameters, Bayeysian information crite-

rion values and average one-step-ahead and two-step-ahead post-sample predictive errors over 21

provinces with their corresponding standard errors in parentheses.

Ordering k̂ BIC One-step ahead Two-step ahead

north to south 4 114.9 0.314 (0.377) 0.407 (0.386)

west to east 7 115.2 0.323 (0.363) 0.409 (0.386)

northwest to southeast 12 115.2 0.322 (0.361) 0.409 (0.395)

southwest to northeast 5 115.1 0.316 (0.374) 0.407 (0.385)

distance to Heilongjiang 3 114.7 0.313 (0.378) 0.407 (0.386)

Lasso - - 0.322 (0.362) 0.410 (0.393)
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Figure 1: Deseasonalized weekly temperature in degrees Celsius (◦C) from January 1990 to Decem-

ber 2000, where Ha’erbin, Shanghai and Nanjing correspond to the plots from top to bottom.
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Figure 2: Example 1: (a) Estimated banded coefficient matrix Â for the model based on the ordering

from southwest to northeast, and (b) estimated sparse coefficient matrix Ã by lasso. White points

represent zeros entries and gray or black points represent nonzero entries. The larger the absolute

value of a coeffcient is, the darker the colour is.
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Figure 3: Location plot of 21 provinces and province-level municipalities in China, where Shang-

hai is a province-level municipality, and Ha’erbin, Hangzhou and Nanjing are the capitals of Hei-

longjiang, Zhejiang, and Jiangsu provinces, respectively.
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Figure 4: Example 2: (a) Estimated banded coefficient matrix Â for the model based on the ordering

using distances to Heilongjiang, and (b) estimated sparse coefficient matrix Ã by lasso. White points

represent zeros entries and gray or black points represent nonzero entries. The larger the absolute

value of a coeffcient is, the darker the colour is.
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