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THE ALGEBRAIC METHOD IN TREE PERCOLATION∗

FATEMEH MOHAMMADI† , EDUARDO SÁENZ-DE-CABEZÓN‡ , AND HENRY P. WYNN§

Abstract. We apply the methods of algebraic reliability to the study of percolation on trees.
To a complete k-ary tree Tk,n of depth n we assign a monomial ideal Ik,n on

∑n
i=1 k

i variables and
kn minimal monomial generators. We give explicit recursive formulae for the Betti numbers of Ik,n
and their Hilbert series, which allow us to study explicitly percolation on Tk,n. We study bounds
on this percolation and study its asymptotical behavior with the mentioned commutative algebra
techniques.
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1. Introduction. The study of monomial ideals has experienced much growth
in the last couple of decades, not only from a theoretical point of view [8] but also
from the point of view of applications and algorithms [1]. Of particular interest are
the relations between the algebra of monomial ideals and the combinatorics of graphs
and networks [22, 15, 21]. In relation with these lines of research, the authors have
developed an algebraic theory of system reliability which can be applied to industrial,
biological, and communication systems, among others [4, 16, 19, 20]. In this theory,
a monomial ideal is associated to a coherent system, and the study of the reliability
of the system is performed by studying algebraic invariants of the ideal, such as
the Hilbert series and Betti numbers. This algebraic approach to system reliability
analysis is an example of enumerative methods for reliability evaluation. In particular,
it is an improvement of the inclusion-exclusion method, which is the most general one
for coherent systems [4, 16].

A main difficulty and the first step in the use of monomial ideals to study the
reliability of coherent systems is the enumeration of the working and failure states
of the system. This made the authors focus on several widely used and structured
systems, like k-out-of-n systems [16], series-parallel systems [18], all-terminal networks
[13, 14, 12], and the more general category of two-terminal networks [17, 12]. The
present paper follows this line extending the application of the algebraic approach
to reliability analysis to a more general situation, which allows us to introduce these
techniques in percolation theory, a branch of probability theory.

In the setting of two-terminal networks the situation is the following. Consider
a network as a simple connected graph G = (V,E), where V is the set of vertices
(nodes) and E is the set of edges (connections). To have a two-terminal network,
we select two special vertices in the graph, s (source) and t (target), and study the
connections between s and t in the network. We consider that vertices are reliable but
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edges may fail. The network fails to communicate between s and t whenever there is
a set of failing (removed) edges such that there is no path connecting s and t using
only the remaining edges. Such a set of edges is called a cut in this context. On the
other hand, a path is a set of working edges that connect s and t. We say that the
network is working whenever there is a path of working edges between s and t. In
the algebraic approach we consider a polynomial ring on n variables, where n is the
number of edges of G, i.e., n = |E|. We associate a variable xe, e ∈ {1, . . . , n}, to
each edge xe in E. To a set of edges we associate the product of their corresponding
variables. The main observation in the algebraic approach to network reliability is
that the monomials corresponding to the set of cuts (respectively, paths) of a network
G generate a monomial ideal, which we call the cut ideal of G, JG (respectively, the
path ideal of G, IG). The evaluation of the (numerator of the) Hilbert series of either
the cut ideal or the path ideal of G, using the probabilities of failure or function of
each edge and their combinations, gives us the reliability of G. Furthermore, if we
consider the form of the Hilbert series given by a free resolution of the ideal, we can
obtain bounds for the reliability of G, which are tighter than the usual Bonferroni
bounds [16].

The outline of the paper is the following. In section 2 we generalize this setting
to any situation in which a cut and a path are defined in opposition to each other,
in an obvious way: a cut separates a designated set of pairs of vertices and a path
connects all such pairs. This allows us to study the problem of all-terminal reliability
and multisource multiterminal reliability. These more general situations include the
setting of percolation theory. In section 3 we apply this method to study percolation
on complete trees. This is a new and relevant application of the algebraic method
in reliability. We describe the path and cut ideals in this case and compute exact
Hilbert series and Betti numbers. We also give and compute recursive formulae for
them. With these results in hand, we study in section 4 path and cut bounds for
percolation in trees, recover some classical results on critical values, and study the
asymptotic behavior of percolation on trees and their corresponding Betti numbers.

2. Monomial ideals, Betti numbers, and tight inclusion-exclusion
bounds.

Definition 1. Given two disjoint nonempty subsets A,B of V (G) we define

E(A,B) = {e ∈ E(G) : e ∩A 6= ∅ and e ∩B 6= ∅}.

For a nonempty subset A of V (G), E(A,Ac) is called a cut of G. A cut E(A,Ac)
is called connected if G[A] and G[Ac] are connected, where G[A] denotes the induced
subgraph of G with the vertex set A. A cut which is minimal with respect to inclusion
is called minimal.

Fix a vertex q of G as a source, and fix a subset L ⊆ V (G)\{q} as targets. Let
SL,q be the set containing all connected cuts E(A,Ac) of G, with L ⊂ A and q ∈ Ac,
and let DL,q be the set containing all paths between q and one of the vertices of L.

Let K be a field and let S = K[x] be the polynomial ring in the n = |E(G)|
variables {xe : e ∈ E(G)}. We associate the monomial mC =

∏
e∈C xe to each

cut C = E(A,Ac), and the monomial mP =
∏
e∈P xe to each path P . We will be

concerned with the following ideals in R:

CL,q = 〈mC : C ∈ SL,q〉 and PL,q = 〈mP : P ∈ DL,q〉.
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Fig. 1. Double bridge network.

Example 2. Consider the two-terminal network G depicted in Figure 1, known
as the double bridge network. We have EG = {12, 13, 14, 23, 25, 34, 35, 45}. Consider
vertex q = 1 as the source and let L = {5} be the set of targets. Following the
notation in Definition 1 we obtain the following table of cuts:

A Ac E(A,Ac)
{5} {1, 2, 3, 4} {24, 35, 45}
{2, 5} {1, 3, 4} {12, 23, 35, 45}
{3, 5} {1, 2, 4} {13, 23, 34, 25, 45}
{4, 5} {1, 2, 3} {14, 25, 34, 35}
{2, 3, 5} {1, 4} {12, 13, 34, 45}
{2, 4, 5} {1, 3} {12, 23, 14, 34, 35}
{3, 4, 5} {1, 2} {13, 23, 14, 25}
{2, 3, 4, 5} {1} {12, 13, 14}

Hence CL,q = 〈x25x35x45, x12x23x35x45, x13x23x25x34x45, x14x25x34x35, x12x13x34x45,
x12x14x23x34x35, x13x14x23x25, x12x13x14〉, which is exactly the cut ideal of G in the
two-terminal setting.

Remark 3. Alexander duality will be very useful in this context (see [11, Def. 5.20]).
We recall that the square-free Alexander dual of I = 〈xa1 , . . . ,xar 〉 is the ideal
I∗ = ma1 ∩ · · · ∩ mar , where xai =

∏
aji 6=0 xj and ma = 〈xj : aji 6= 0〉 for each

vector ai = (a1
i , . . . , a

n
i ) ∈ Nn, which is a zero-one vector.

In this setting, we show that the path ideal is the Alexander dual of the cut ideal.
Let us give a brief reminder adapted to our setting. Let ΣG denote the associated
simplicial complex to PL,q on the vertices {xe : e ∈ E(G)}. The following result is a
slight generalization of [14, Prop. 8.1].

Proposition 4. The number of facets of ΣG is the same as the number of mini-
mal cuts of G. For each cut C, the corresponding facet τC is τC = {xe : e ∈ E(G)\C}.
The minimal prime decomposition of PL,q is

PL,q =
⋂

C∈SL,q

〈xe : e ∈ C〉,

the intersection being over all minimal cuts of G. In particular, PL,q is the Alexander
dual of CL,q.
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1196 F. MOHAMMADI, E. SÁENZ-DE-CABEZÓN, AND H. P. WYNN

Proof. The ideal PL,q is generated by monomials
∏
e∈P xe, where P is a path

from q to one of the vertices in L. First we show that for each cut C, the monomial
mC̄ :=

∏
e∈E(G)\C xe does not belong to PL,q. Clearly mC̄ ∈ PL,q if and only if mC̄

is divisible by one of the given generators
∏
e∈P xe. But∏

e∈P
xe

∣∣∣∣ ∏
e∈E(G)\C

xe ⇐⇒ P ⊆ (E(G)\C) .

However, it follows from the definition of cuts that E(G)\C does not contain any path
from q to any element of L. This shows that τC = {xe : e ∈ E(G)\C} is a face in the
simplicial complex ΣG. Next we show that τC must be a facet; for f ∈ C, because C
is a minimal cut of G, G[C\{f}] still has a path between q and some element of L.
Then the monomial mC · xf is divisible by

∏
e∈P xe.

It remains to show that for any monomial m =
∏
e∈F xe that does not belong

to PL,q we have F ⊆ (E(G)\C) for some cut C. To show this, we repeatedly use
the fact that m is not divisible by generators of the form

∏
e∈P xe for various P , and

we construct a cut C. Note that if
∏
x∈F xe is not divisible by

∏
e∈P xe, then there

exists an e ∈ P such that e 6∈ F . We consider the set consisting of all such edges
which is clearly a (not necessarily minimal) cut. The proof now is complete by [11,
Thm. 1.7].

Let us now step into probability theory. In order to apply monomial algebra to
network reliability, we assign a working probability to each of the connections (edges)
of our network (graph). We shall consider that each edge e operates with independent
probability pe and fails with probability qe = 1 − pe. Our task is then to compute
the probability P(pe) that the system operates (at least one path) or fails (at least
one cut), which is 1 − P(pe). For these computations, we use the numerator of the
Hilbert series of the path or cut ideals. Note that we could also consider dependent
probabilities for each edge. This would need more complicated computations but not
different methods.

The multigraded Hilbert series of S/I for an ideal I can be expressed in terms of
the multidegrees of the modules in any multigraded resolution of S/I, as

HSI(x, t) =
1 +

∑d
i=1(−1)ixi(

∑
α∈Nn γi,αt

α)∏n
j=1(1− ti)

,

where the γi,α are the ranks of the multigraded modules in the resolution. If the
resolution is minimal, then

HSI(x, t) =
1 +

∑d
i=1(−1)ixi(

∑
α∈Nn βi,αt

α)∏n
j=1(1− ti)

,(1)

where the βi,α depend only on I and are known as the multigraded Betti numbers of
S/I. Observe that the minimality of the resolution means that

βi,α ≤ γi,α ∀α, i.

To simplify our notation, we set

HI(x, t) = −
d∑
i=1

(−1)ixi

(∑
α∈Nn

βi,αt
α

)
,(2)
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and we refer to this as the numerator of the Hilbert series of I, which can be seen
as a special kind of inclusion-exclusion formula for counting the monomials in the
union of the ideals based on each individual minimal generator. By truncating at
different homological degrees, or “depths,” i we obtain successive upper and lower
bounds for the indicator function of this union. A key point here is that the bounds
given by the minimal resolution are tighter, or at least as tight as, those given by
the classical Bonferroni (inclusion-exclusion) bounds. In the algebraic setting the
Bonferroni bounds correspond to the computation of the Hilbert series of S/I using
the Taylor resolution; see [16] for a full explanation.

Observe that if we have that each edge e of G has a different operating probability
pe, then we need the multigraded version of the Hilbert series of S/I to obtain the
bounds and probability formulae for the reliability of the network. However, if all the
edges operate (do not fail) independently with the same probability p, i.e., if pe = p
for each edge e of G, then we only need the graded Betti numbers to obtain the
bounds. Each of the graded Betti numbers sums up all the multigraded ones of the
same total degree j for each homological degree i, i.e., βi,j(I) =

∑
deg(µ)=j βi,µ(I).

A good way to relate the information of the Hilbert series and Betti numbers is the
use of generating functions. We first fix some notation and then express the bounds
in terms of the Betti numbers βi,j . First, consider a variable x as a placeholder for the
homological degree i. Thus we define the graded Betti number generating function of
an ideal I as

GI(x, t) =
∑
i,j

βi,j(S/I)xitj for i, j > 0.

The numerator of the graded Hilbert series can now be expressed as

HI(x, t) = −GI(−x, t).(3)

Notation 5. In our setting, to simplify the notation, H(x, t) denotes the numer-
ator of the Hilbert series of the path ideal PL,q and H̃(x, t) denotes the numerator of

the Hilbert series of the cut ideal CL,q. Similarly, we denote G(x, t), G̃(x, t), βi,j, and

β̃i,j for GCL,q
(x, t), GPL,q

(x, t), βi,j(S/PL,q), and βi,j(S/CL,q).

Remark 6. Using the path ideal, the path probability (percolation) is given by

P(p) = H(1, p).(4)

Observe that this expression comes from the fact that the numerator of the Hilbert
series represents the full inclusion-exclusion of the orthants with “corner” at the min-
imal paths, and then replacing t by p translates this into the reliability function; see
[16].

On the other hand, as mentioned, the cut probability is given by

1− P(p) = 1−H(1, p).(5)

Put briefly, the full Hilbert series gives the full operating set. We also have the cut
ideal and use a tilde for the cut quantities. So we have for the cut ideal

G̃(x, t) =
∑
i,j

β̃i,jx
itj for i, j > 0,

H̃(x, t) = −G̃(−x, t).
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The probability of system failure is

P̃(q) = H̃(1, q).

So combining the formulae, we have two ways of expressing the probability P(p):

(6) P(p) = 1− P̃(1− p).

This is a manifestation of the Alexander duality in terms of probability.
To complete the notation, consider any power series in x, say f(x) =

∑
i≥0 cix

i,

and let Tm(f(x)) =
∑m
i=0 cix

i be the truncated version at i = m. Thus, powers of
the “dummy” variable x can be used to pick out the depth at which we truncate to
get bounds:

T2r+2(H(x, p)) x=1 ≤ P(p) ≤ T2r+1(H(x, p)) x=1, r = 0, 1, . . . ,

T2r+2(H̃(x, q)) x=1 ≤ P̃(q) ≤ T2r+1(H̃(x, q)) x=1, r = 0, 1, . . . .

As we will see in detail in section 4, the path bounds are accurate for small p, and
the cut bounds for small q, or p = 1− q close to 1.

3. Tree percolation. Let us apply these techniques to a prominent example,
namely, percolation in complete k-ary trees. A complete k-ary tree Tk,n of depth n
is a tree with n levels in which each node (except the leaves) has exactly k children.
Each edge between nodes is called a bond. See Figure 2 for k = 2 and n = 3.
We are interested in standard tree bond percolation on Tk,n. Each bond has an
independent probability p of being operative. A percolation is a path of bonds from
the first generation (root) to the last (a leaf). If we consider the unique minimal ways
to connect each of the leaves with the root as minimal connecting events, then we
want to find the probability of the union of events that contain at least one minimal
connecting path from the root to a leaf. We will use an algebraic approach to solve
this problem.

x1 x2

x3 x4 x5 x6

x7 x8 x9 x10x7 x8 x11 x12 x13 x14

Fig. 2. T2,3.

Much of the theory of percolation is about critical values. For the bond percolation
on Tk,n, there is a critical value, denoted pc, such that for 0 ≤ p ≤ pc, as n → ∞,
the probability of a percolation tends to zero, whereas for pc ≤ p ≤ 1 the probability
tends to a positive probability. This critical value is known to be pc = 1

k . This is a
classical result and is often covered in the theory of branching processes, where the
positive probability is referred to as the probability of survival of a branching process,
in which in every generation each individual has k offspring. For the general theory
of percolation see [5], and for work on percolation on trees see [9] and Chapter 5 of
[10].

D
ow

nl
oa

de
d 

08
/3

0/
16

 to
 1

58
.1

43
.1

97
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE ALGEBRAIC METHOD IN TREE PERCOLATION 1199

For the study of critical values in our algebraic setting, we use recurrence rela-
tionships for the Hilbert series, giving Hk,n(x, t) in terms of Hk,n−1(x, t). In the final
section we use these recurrences to study the behavior of the bounds, as n → ∞,
including a notion of asymptotic Betti numbers.

3.1. The path ideal of Tk,n. Let us consider Tk,n as a rooted graph with the
edge set E (the edges are oriented going away from the root) as in Figure 2. We
label each node with increasing integers, starting from the root, which has label 0,
and within the same level from left to right. Each edge will be labeled with xi, where
i is the head of the edge, i.e., the edge is directed toward i.

Let K be a field and let S = K[x] be the polynomial ring in the m = |E| =∑n
j=1 k

j variables {xe : e ∈ E}. The path ideal Ik,n is the monomial ideal in R
generated by the monomials xi1 · · ·xin , where 0, i1, . . . , in is a unique path from the
root to the leaf in. The ideal Ik,n then has kn minimal generators (one for each leaf).

Notation 7. For fixed integers k and n, we fix 0 as a source, and the set of
leaves as targets instead of q and L from section 2. The ideals Ik,n and Jk,n denote
the corresponding path ideal PL,q and the corresponding cut ideal CL,q from section 2.

Remark 8. Let R = K[y] be the polynomial ring over a field K on |V (Tk,n)|
variables. The path ideal of length n associated to Tk,n is the monomial ideal In+1 ⊂ S
generated by monomials yi0yi1 · · · yin , where i0, i1, . . . , in is a path in Tk,n. Such ideals
are studied in [2, 7]. Note that if n is the depth of the tree, then yi0 is the variable
corresponding to the root. In particular In+1 is isomorphic to our ideal Ik,n under
the induced isomorphism

ϕ : G(In+1)→ G(Ik,n) with yi0yi1 · · · yin 7→ xi1 · · ·xin ,

where G(I) denotes the generating set of I, and xi` is the variable corresponding to
the edge between the vertices yi`−1

and yi` .

Lemma 9. Let Tk,n be a k-ary tree and Ik,n its path ideal. Then we have that
(i) the Taylor resolution of Ik,n is minimal for all k and n,

(ii) the Betti numbers are given by βi(Ik,n) =
(
kn

i

)
,

(iii) the length of the resolution, i.e., the projective dimension of Ik,n, is kn.

Proof. Each minimal generator mα of Ik,n has a variable that appears only in
it, namely, the one corresponding to the edge ij, where j is the leaf in mα. Hence
the monomials corresponding to the least common multiple of any two different sets
of minimal generators are different; hence the multidegrees of the generators of the
Taylor resolution of Ik,n are all different, and thus the Taylor resolution of Ik,n is
minimal. The Betti numbers of Ik,n are then the ranks of the modules in the Taylor
resolution.

3.2. Path formulae. Here we read the resolution of Ik,n as a tensor product of
the resolutions of ideals arising from Ik,n−1 to obtain the generating function and a
recursive formula for the ideal’s Betti numbers (see Appendix A for some basic facts
about tensor products of chain complexes).

Theorem 10. The total Betti numbers of Ik,n are βi(Ik,n) =
(
kn

i

)
, and the graded

Betti numbers βi,j can be determined recursively as

βi−1,j(Ik,n) = βi,j(S/Ik,n) =

k∑
s=1

∑
(i1,...,is)∈Ai,s
(j1,...,js)∈Bj,s

(
k

s

)
βi1,j1(S/Ik,n−1) · · ·βis,js(S/Ik,n−1) ,D
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where
Ai,s = {(i1, . . . , is) : i1 + · · ·+ is = i, i1, . . . , is > 0} and

Bj,s = {(j1, . . . , js) : j1 + · · ·+ js = j − s}.

Proof. Assume that x1, x2, . . . , xk are the variables corresponding to the edges of
the tree connected to the root. Then

Ik,n = x1I
(1)
k,n−1 + x2I

(2)
k,n−1 + · · ·+ xkI

(k)
k,n−1,

where each I
(i)
k,n−1 is a tree ideal associated to a k-ary tree of depth n− 1. Note that

their corresponding trees are disjoint, so the ideals I
(i)
k,n−1 live in disjoint polynomial

rings. Therefore, the resolution of Ik,n is the tensor product of the resolutions of the

ideals xiI
(i)
k,n−1. On the other hand, βi,j(xiI

(i)
k,n−1) = βi,j+1(Ik,n−1) for all k and n.

Thus the statement is an immediate consequence of Lemma 25(iii).

Remark 11. Let us denote by Gk,n =
∑
i,j βij(Ik,n)xitj the generating function

for the Betti numbers of the ideal Ik,n. We also denote the numerator of the graded
Hilbert series of Ik,n by Hk,n. Note that by Remark 3 we have

Hk,n(x, t) = −Gk,n(−x, t).

We recall that the ideal Ik,1 = 〈x1, x2, . . . , xk〉 is generated by k variables. Thus

βi,j =
(
k
i

)
if i = j, and it is zero otherwise. Therefore

Gk,1(x, t) = (1 + tx)k − 1.

From Theorem 10 and the above argument we obtain the following compact result.

Theorem 12. The generating function for the Betti numbers of Ik,n for all k and
n is equal to

(7) Gk,n(x, t) = (1 + tGk,n−1(x, t))k − 1.

3.3. Cut ideal and cut formulae. As explained in Proposition 4 the cut ideal
is the Alexander dual ideal of the path ideal Ik,n. We consider the following problem:
Given a probability pi for each edge i in Tk,n to be operative, we want to find the
probability of disconnecting the root with all leaves of graph. If we consider all minimal
possible ways to disconnect the leaves with the root as minimal connecting events,
then what we want to find is the probability of the union of events that does not
contain any path connecting the root to a leaf. As before, we consider pi = p for all i.

Here we read the ideal Jk,n as the Alexander dual of the tree ideal Ik,n studied in
section 3.2 to obtain the generating function and a recursive formula for its Hilbert
series.

For all k and n, the generating function for the Betti numbers of the ideal Jk,n
is denoted by G̃k,n. We recall that the ideal Ik,1 = 〈x1, x2, . . . , xk〉 is generated by k
variables, and its dual is Jk,1 = 〈x1x2 · · ·xk〉. Thus β0,0(S/Jk,1) = 1, β1,k(S/Jk,1) = 1,

and it is zero otherwise. Therefore G̃k,1(x, t) = tkx.

Theorem 13. The generating function of the Betti numbers of Jk,n for all k and
all n > 1 is equal to

(8) G̃k,n(x, t) = x−(k−1)
(
(1 + tx)(1 + G̃k,n−1(x, t))− 1

)k
.
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Proof. Assume that x1, x2, . . . , xk are the variables corresponding to the edges

of a tree connected to the root, and I
(i)
k,n−1 is a tree ideal associated to a k-ary tree

of depth n − 1. We denote J
(i)
k,n−1 for the Alexander dual of the ideal I

(i)
k,n−1. Thus

the Alexander dual of the ideal xiI
(i)
k,n−1 is equal to 〈xi〉+ J

(i)
k,n−1, because xi doesn’t

appear in the support of any monomial from the generating set of I
(i)
k,n−1. Thus the

numerator of the graded Hilbert series (1) of 〈xi〉+ J
(i)
k,n−1 is equal to

(1− tx)(1 + G̃k,n−1(−x, t)).

On the other hand, Jk,n can be written as the multiplication of the ideals 〈xi〉+J (i)
k,n−1

living in the polynomial rings on disjoint variables:

Jk,n =
(
〈x1〉+ J

(1)
k,n−1

)
· · ·
(
〈xk〉+ J

(k)
k,n−1

)
.

Now applying Lemma 26(iii), the same argument as Theorem 12 implies that the

minimal free resolution of the ideal Jk,n is the tensor product of that of xi + J
(i)
k,n−1,

and so we have

HSJk,n
(x, t) =

1 + (−x)−(k−1)
(
(1− tx)(1 + G̃k,n−1(−x, t))− 1

)k
(1− t)d

.

Therefore

HJk,n
(x, t) = −(−x)−(k−1)

(
(1− tx)(1 + G̃k,n−1(−x, t))− 1

)k
(9)

and
G̃(x, n) = x−(k−1)

(
(1 + tx)(1 + G̃k,n−1(x, t))− 1

)k
.

4. Bounds and critical values. Using the same notation as in Remark 11 and
applying Remark 6 the percolation probability of the path ideal Ik,n is then given by

Pk,n(p) = Hk,n(1, p).

Similarly we have
P̃k,n(q) = H̃k,n(1, q).

From (6) and Theorem 12 we have the iterative formula

(10) Hk,n(x, t) = 1−
(
1− t(Hk,n−1(x, t))

)k
.

This gives the formula for Pk,n(p):

(11) Pk,n(p) = 1− (1− p Pk,n−1(p))
k
,

which is well known from the theory of branching processes [6]. We will have in
mind the classical asymptotic form for Pk,n(p). As n → ∞, and for fixed k, Pk,n(p)
converges to the function

Pk,∞(p) = max(0, 1− u),

where u is the solution of
u = (1− p(1− u))k.
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Fig. 3. Upper and lower path and cut bounds for k = 2, n = 4, and m = 3, 4.

The value pc = 1
k is the maximum value of p for which Pk,∞(p) = 0.

For the bounds given in section 2 we write the path and cut bounds, respectively,
as

Bk,n,m(p) = Tm(H(x, p)) x=1,

Ck,n,m(q) = Tm(H̃(x, q)) x=1.

We now discuss how the bounds for percolation based on Bk,n,m and Ck,n,m
behave. As a brief guide to a quite technical section, the following is an informal list
of the main features found by the authors:

1. The path bounds, Bk,n,m, are accurate as p→ 0.
2. The cut bounds, Ck,n,m, are accurate as p→ 1 (q = 1− p→ 0).
3. The path bounds display critical behavior at the critical value pc = 1

k in
that they diverge from the true probability, as n increases, and can only be
controlled by taking higher depth m.

4. The cut bounds reveal a new type of critical value p∗k = 1− q∗k > pc.
All these results are consequences of having the iterative formulae (7) and (8). It

should also be noted that the path bounds are easier to handle than the cut bounds,
which is a consequence of the Taylor resolution (standard inclusion-exclusion) being
the minimal free resolution in the path case, which is not true in the cut case. By
working on the first few bounds, we can obtain exact formula and limits in some cases.

Example 14. Figure 3 gives an example combining the path and the cut bounds
for k = 2, n = 4 and with depth m = 3, 4. Observe that together with the curve
showing the true probability of percolation there are four curves plotted together in
this figure, two on the left side of the figure, i.e., probability p closer to 0, and two
on the right side, i.e., probability p closer to 1. To cope with the divergence near
the critical value, the upper and lower bounds are truncated, respectively, at 1 and 0.
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THE ALGEBRAIC METHOD IN TREE PERCOLATION 1203

The upper bounds are shown in light gray: m = 3 for the path bound on the left and
m = 4 for the cut bound on the right. The lower bounds are shown in black: m = 4
for the path bound on the left, and m = 3 for the cut bound on the right. The central
gray curve is the true probability of percolation.

We begin with some formulae for the path case. Multiplying the bounds by a
truncated version of the product (1 − kp)(1 − k2p2)(1 − k3p3) · · · leads to tractable
formulae. Interestingly, the inverse of this infinite product is the generating function
for integer partitions. For the path bounds we have the following for n = 1, 2, 3:

Bk,n,1(p) = pnkn,

Bk,n,2(p)(1− kp) = pnkn
(

1− 1

2
(3k − 1)p+

1

2
(k − 1)knpn+1

)
,

Bk,n,3(p)(1− kp)(1− k2p2) = pnkn
(

1− 1

2
(3k − 1)p− 1

6
(k + 1)(5k − 2)p2

+
1

6
k(11k2 − 6k + 1)p3 +

1

2
kn(k − 1)pn+1

−1

2
kn(k − 1)2pn+2 − 1

2
kn+1(2k − 1)(k − 1)pn+3

+
1

6
k2n(2k − 1)(k − 1)p2n+2

+
1

6
k2n+1(k − 1)(k − 2)p2n+3

)
.

The general formula, whose proof is omitted, is

Bk,n,m

m−1∏
i=1

(1− kipi) = pnkn
(
Qk,p,m(k, p) +O(pn+1)

)
,

where Qk,p,m(k, p) is a polynomial in p, the degree of which depends only on k and
m. This gives some asymptotics as n→∞. To aid this we set p = R

k , having in mind
that 1

k is the critical value.
After a little algebra we have the following formulae:

Bk,n,1(p) = Rn,

Bk,n,2(p) = Rn
(

1− 1

2

k − 1

k

R

1−R

)
+ O(R2n+1),

Bk,n,3(p) = Rn
(

1− 1

6

k − 1

k2

R(−5R2k +R2 −Rk + 2R+ 3k)

(1−R)(1−R2)

)
+ O(R2n+1).

For fixed R < 1 the first bound Bk,n,1 → 0, as expected. It is instructive to let
k →∞, again while keeping R < 1 fixed. Combining the first two bounds (m = 2, 3)
asymptotically, we obtain

Rn
(

1− 1

2

R

(1−R)

)
≤ B∞,n,∞ ≤ Rn

(
1− 1

6

R(3−R− 5R2)

(1−R)(1−R2)

)
.

The bounds agree to order Rn+1, the left bound reaches zero at R = 1
2 , and the

bounds diverge to ±∞ as R → 1. It has a pole at R = 1 for all the bounds except
the first, from which we claim that p = pc = 1

k is a critical value for the path bounds,
albeit buried under a basic Rn convergence rate for R < 1.
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Now let us consider the cut bounds. We start with a basic form of the iteration
for the cut generating function from (9):

g(x, t, k, u) = (−1)k
1

xk−1
((1− tx)(1− u)− 1)

k
.(12)

Then the successive values of Hk,n(x, t) are given by the recurrence relation:

Hk,n(x, t) = g(x, t, k,Hk,n−1(x, t)).

Note that
Hk,1(x, t) = tkx.

The main difficulty is that although we have recurrence for Hk,n+1(x, y) there is not
in general such a nice formula for the truncated version, which is given by extracting
the Taylor expansion in x up to degree m.

However, there is one simple case, namely, the first upper cut bound, i.e., m = 2,
which we denote by Ck,n,2(q). We have for all n ≥ 1

Ck,n,2(q) = (Ck,n−1,2(q) + q)
k
.(13)

At any fixed k, q the value Ck,n,2(q) increases with n. There is a critical value q =
q∗k,n,2. For any q above this value Ck,n,2(q)→∞ as n→∞. In the interval 0 ≤ q ≤
q∗k,n,2, Ck,n,m tends from below to the solution to

z = (z + q)k.

We can solve this explicitly for q, giving q = z
1
k − 1. The critical values of q and z

are found by solving dz
dq = 0, and we obtain

q∗k =
k − 1

k2
k

k−2
k−1 ,

which plays a key role in the cut theory.

Example 15. For n = 2, 3 and k = 2 we obtain

H2,2(x, t) = t2(t+ 1)2x− 2t4(t+ 1)x2 + t6x3

H2,3(x, t) = t2(t3 + 2t2 + t+ 1)2x− 2t4(t3 + 2t2 + t+ 1)(t+ 1)(3t+ 1)x2

+ t6(15t4 + 40t3 + 36t2 + 18t+ 5)x3 − 2t8(10t3 + 20t2 + 12t+ 3)x4

+ t10(15t2 + 20t+ 6)x5 − 2t12(3t+ 2)x6 + t14x7.

Remark 16. Note that for all i and j, we can read off the Betti numbers βi,j(S/Jk,n)
as the coefficients of xitj in the polynomial Hk,n(x, t).

The limiting behavior of Ck,n,m(q) as n→∞ will be considered below.

Lemma 17. For fixed q and k = m = 2, the lower asymptotic bound of Ck,n,m(q)
as n→∞ is

C2,∞,2(q) =
1

2
− q2 +

1

2

6q2 + 2q − 1√
1− 4q

.

Proof. We consider the solution in u of u− g(x, t, k, u) = 0. As k = 2, we use the
solution

(14) u∗(x, t) =
1

2

(2t2x− 2t+ 1 +
√
−4t+ 1 + 4t2x)x

(1− xt)2
.
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If we expand in powers of x, we obtain(
1

2

√
1− 4t

)
x−

(
t

2

√
1− 4t+ t2 − t

√
1− 4t

)
x2 + O(x3).

The cut bounds are obtained by truncating such expansions and setting t = q and
x = 1. Thus the above expansion gives the k = 2,m = 2 lower asymptotic bound:

C2,∞,2(q) =
1

2
− q2 +

1

2

6q2 + 2q − 1√
1− 4q

.

Further expansion in t gives asymptotic Betti numbers, which we will cover in
the next section. We collect these informal results into the following.

Theorem 18. For fixed k, m, and q, the cut bounds Ck,n,m(q) converge to the
function which is the truncated Taylor expansion of the smallest solution, in u, of the

equation u − g(x, q, k, u) = 0, provided 0 ≤ q ≤ q∗k = k−1
k2 k

k−2
k−1 . For q∗k < q ≤ 1,

Ck,n,m(q)→∞ when m is odd and −∞ when m is even.

Proof. The case m = 1 above is a good guide, because it gives the first term in
the Taylor expansions, and further analysis shows that it also gives a pole governing
the expansion for any m > 1. Although we cannot get closed forms for the solutions
of u − g(x, q, k, u) = 0 for k > 3, nonetheless we can show the presence of a pole at
q∗k.

We use the shorthand g(u) = g(x, t, k, u). Then g(u) is convex and increasing in u
in the region 0 ≤ x, t ≤ 1 and g(0) = xtk. Moreover u1 = xtk, where u1 is the starting
value in the iteration un+1 = g(un). Suppose first that, under such suitable conditions
on x, t, the equation u = g(u) has at least one solution, and let u∗ be the smallest
(there can be no more than two by the convexity of g(u)). Then, for the dynamic
system un+1 = g(un), the iterate un converge upward to u∗. The complication is that
the existence of the solution x∗ depends on x and q. We know that x∗ does not exist
if and only if g(u) > u for all u > 0.

We consider the case k = 2, for which q∗2 = 1
4 . The function g(u)− u has roots

1

2

(2t2x− 2t+ 1 +
√

4t2x− 4t+ 1)x

1 + t2x2 − 2tx
, −1

2

(−2t2x+ 2t− 1 +
√

4t2x− 4t+ 1)x

1 + t2x2 − 2tx
.

In the region 0 ≤ q ≤ 1
4 these roots exist for all x > 0, except when t = 1

x , which
can be eliminated by taking x sufficiently small. When q > 1

4 , however, the roots are
complex for x sufficiently small, noting that the smallest root is(

−t+
1

2
− 1

2

√
1− 4t

)
x+O(x2).

In that case g(u) > u and un diverges to infinity. The case of general k proceeds along
the same lines. The fact that the bounds, which are achieved at x = 1, converge in the
“good” region, 0 ≤ q ≤ q∗k, follows by standard analysis on the uniform convergence
of power series. For q∗k < q ≤ 1, the divergence of Ck,n,m(q) follows immediately from
the divergence of un, with sign dependent on m

Figure 4 shows an example of the behavior of the cut bounds for k = 2 and
relatively modest value n = 6. The cut upper bound for m = 3 (dashed line) and the
cut lower bound for m = 4 (solid line) are already approaching the vertical line at the
critical value q = 1

4 .
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Fig. 4. Approaching the q∗ = 1
4

critical cut bounds for n = 6, k = 2, m = 3 (cut upper bound,
dashed line) and m = 4 (cut lower bound, solid line).

4.1. Asymptotic Betti number: Cut case. For the case k = 2 we use the
appropriate generating function in (8) with the discussion in the last section to give
the graded Betti number generating function:

(15) G2,∞(x, t) = −1

2

2t− 1 + 2t2x+ (
√

1− 4t− 4t2x)x

(1 + xt)2
.

There are more complex formulae for k > 2.
This generating function enables us to derive a combinatorial formula for the

coefficients, which we shall call the asymptotic graded Betti numbers.

Theorem 19. The asymptotic graded Betti numbers for the cut ideal on a binary
(k = 2) tree are given by

βi,j(J2,∞) =
[2(j − i)]!

(j − i+ 1)(j − i)(j − i)!(j − 2i)!(i− 1)!
for j ≥ 2i and zero otherwise.

Proof. We temporarily make the transformation t = z
1+y , x = y(1+y)

z in the

generating function (15), giving

(16) G2,∞(x, t) =
1−
√

1− 4z

2z

y

1 + y
− y

1 + y
.

We recognize the first term on the right-hand side as the generating function of the
Catalan numbers cr = 1

r+1

(
2r
r

)
zr,

1−
√

1− 4z

2z
=

∞∑
r=0

crz
r.
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We now back substitute y = xt, z = t(1 + xt) so that the generating function for
the cr becomes

∑∞
r=0 crt

r(1 + xt)r. Expanding each term (1 + xt)r into binomial
terms and incorporating the other terms y, we find the Betti numbers βi,j(J2,∞) as
the coefficient of xixj for j ≥ 2i:

βi,j(J2,∞) = cj−i

i−1∑
r=0

(−1)i+j−1

(
j − i
r

)
= cj−i

(j − i− 1)!

(i− 1)!(j − 2i)!

for j ≥ 2i and zero otherwise. Using the form of cj−i, we obtain the result.

Theorem 20. In the region 0 ≤ q ≤ q∗k, for each i there is a maximal integer
N(n, i) such that for any j < N(n, j)

βi,j(Jk,n) = βi,j(Jk,∞).

Furthermore N(n, j) is increasing in n for fixed i.

Proof. This follows from the uniform convergence of the power series derived from
un and the fact that the coefficients are integers.

The following tables show the graded Betti numbers βij of the cut ideal for k = 2,
n = 2, . . . , 5, and ranges of values of i = 1, . . . , 7 and j = 2, . . . , 14. Note that its
(i, j)-entry is simply βi,i+j(S/Jk,n). The tables for n = 2, 3 are complete. The last
table gives the asymptotic Betti numbers.

i\j 0 1 2 3

Total 1 4 4 1

0 1
1 1
2 2 2
3 1 2 1

n = 2

i\j 0 1 2 3 4 5 6 7

Total 1 25 80 114 90 41 10 1

0 1
1 1
2 2 2
3 5 10 5
4 6 18 18 6
5 6 24 36 24 6
6 4 20 40 40 20 4
7 1 6 15 20 15 6 1

n = 3
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i\j 0 1 2 3 4 5 6 7

Total 1 676 5460 21113 51348 87288 109314 103726

0 1
1 1
2 2 2
3 5 10 5
4 14 42 42 14
5 26 104 156 104 26
6 44 220 440 440 220 44
7 69 414 1035 1380 1035 414 69
8 94 658 1974 3290 3290 1974 658
9 114 912 3192 6384 7980 6384 3192
10 116 1044 4176 9744 14616 14616 9744
11 94 940 4230 11280 19740 23688 19740
12 60 660 3300 9900 19800 27720 27720
13 28 336 1848 6160 13860 22176 25872
14 8 104 624 2288 5720 10296 13728

n = 4

i\j 0 1 2 3 4 5 6 7

Total 1 458329 8308144 73630338 424216050 1783078865 5818552406 15319701281

0 1
1 1
2 2 2
3 5 10 5
4 14 42 42 14
5 42 168 252 168 42
6 100 500 1000 1000 500 100
7 221 1326 3315 4420 3315 1326 221
8 470 3290 9870 16450 16450 9870 3290
9 958 7664 26824 53648 67060 53648 26824
10 1860 16740 66960 156240 234360 234360 156240
11 3434 34340 154530 412080 721140 865368 721140
12 6036 66396 331980 995940 1991880 2788632 2788632
13 10068 120816 664488 2214960 4983660 7973856 9302832
14 15864 206232 1237392 4537104 11342760 20416968 27222624

n = 5

i\j 0 1 2 3 4 5 6 7
0 1
1 1
2 2 2
3 5 10 5
4 14 42 42 14
5 42 168 252 168 42
6 132 660 1320 1320 660 132
7 429 2574 6435 8580 6435 2574 429
8 1430 10010 30030 50050 50050 30030 10010
9 4862 38896 136136 272272 340340 272272 136136
10 16796 151164 604656 1410864 2116296 2116296 1410864
11 58786 587860 2645370 7054320 12345060 14814072 12345060
12 208012 2288132 11440660 34321980 68643960 96101544 96101544
13 742900 8914800 49031400 163438000 367735500 588376800 686439600
14 2674440 34767720 208606320 764889840 1912224600 3442004280 4589339040

n = ∞

Let us make a final remark on the relation of the Betti numbers of J2,n and
J2,∞ with Mandelbrot and Catalan numbers. This will make evident the interplay of
algebra, combinatorics, and asymptotics that permeates this paper.
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Mandelbrot numbers are defined as follows: the Mandelbrot set is a fractal formed
by iterating the following polynomials:

z0(q) = 0,

zn(q) = zn−1(q)2 + q.

The first few polynomials in the sequence are

z0(q) = 0,

z1(q) = q,

z2(q) = q2 + q,

z3(q) = (q2 + q)2 + q = q + q2 + 2q3 + q4,

z4(q) = (q + q2 + 2q3 + q4)2 + q = q + q2 + 2q3 + 5q4 + 6q5 + 6q6 + 4q7 + q8.

We see that the coefficient of qj in zi(q) is the (i, j)-Mandelbrot number, and we
denote it by Mi,j .

Lemma 21. C1,n,2(q) = zn+1(q)− q.
Proof. The proof goes by induction. For n = 1 we have that C1,1,2(q) = q2 and

z2(q) = q2 + q. Now, C1,n+1,2(q) = (C1,n+1,2(q) + q)2, and by the induction step this
is (zn+1(q) − q + q)2 = zn+1(q)2. On the other hand, we have that, by definition,
zn+2(q) = zn+1(q)2 + q.

This identification of polynomials gives us an expression of the Betti numbers of
J2,n in terms of Mandelbrot numbers.

Corollary 22. βi,i+j(J2,n) = Mn+1,j+1

(
j−1
i−1

)
.

Proof. We have that β1,j+1(J2,n) is the coefficient of qj in C1,n,2(q). Since
C1,n,2(q) = zn+1(q) − q, the result holds for i = 1. For i > 1 we only need to
multiply by the binomial coefficient, which comes from the recursive expression of the
Betti numbers of J2,n.

In the asymptotic case n = ∞ we have a similar expression, where Mandelbrot
numbers are substituted by Catalan numbers.

Corollary 23. βi,i+j(J2,∞) = cj
(
j−1
i−1

)
.

Proof. The proof is obtained simply by substituting j by i+j in the last expression
of the proof of Theorem 19.

The last two corollaries together with the asymptotic study of the Betti numbers
imply the following.

Corollary 24. limn→∞Mn,j = cj.

Appendix A. Tensor product of complexes. To keep the paper self-contained,
we review here some basic and relevant notions of the tensor product of resolutions.
We begin by recalling the tensor product of resolutions from [3]. The tensor product
of two chain complexes (A, d1) and (B, d2), say A⊗B, is formed by taking all products
Ai⊗Bj and letting (A⊗B)k =

⊕
i+j=k Ai⊗Bj . The differential maps are defined as

∂(a⊗ b) = d1a⊗ b+ (−1)ia⊗ d2b when a ∈ Ai. Then we have ∂2 = 0 and ∂ induces a
natural map ∂ : H(A)⊗H(B)→ H(A⊗B) such that ∂(a⊗ b) = a⊗ b. If a = d1c is
a boundary and b is a cycle, then a⊗ b = ∂(c⊗ b) is again a boundary, which shows
that ∂ is well-defined.
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Lemma 25. Let Ii ⊆ Si be a monomial ideal in the polynomial ring Si for i =
1, . . . , r, and let I = I1 + · · ·+ Ir be the ideal in the polynomial ring S = S1⊗· · ·⊗Sr.
Assume that Fi is the minimal free resolution of S/Ii for all i. Then the minimal free
resolution of S/I is obtained by F1 ⊗F2 ⊗ · · · ⊗Fr. In particular, the following hold:

(i) βi,j(S/I) =
∑

(i1,...,ir)∈Ai,r
(j1,...,jr)∈Bj,r

βi1,j1(S/I1) · · ·βir,jr (S/Ir), where

Ai,r = {(i1, . . . , ir) : i1+· · ·+ir = i} and Bj,r = {(j1, . . . , jr) : j1+· · ·+jr = j}.

(ii) The Hilbert series of S/I is HSI(t) =
∏r

i=1(1+QS/Ii
(t))

(1−t)d , where HSIi(t) =
1+QS/Ii

(t)

(1−t)d and d is the number of variables of the ring S. Note that here we

are looking at the ideals Ii in the polynomial ring S.
In particular, if all the ideals are the same (but in polynomial rings on disjoint set of

variables), then we have HSI(x, t) =
(1+QS/Ii

(t))r

(1−t)d and

(iii) βi,j(S/I) =
∑r
s=1

∑
(i1,...,is)∈Ai,s
(j1,...,js)∈Bj,s

(
r
s

)
βi1,j1(S/I1) · · ·βis,js(S/I1), where

Ai,s = {(i1, . . . , is) : i1 + · · ·+ is = i, i1, . . . , is > 0} and

Bj,s = {(j1, . . . , js) : j1 + · · ·+ js = j}.

Proof. The proof is by induction on r. Assume that r > 1. Since differential maps
of the tensor complex are defined in terms of differential maps of F`’s, the minimality
of the tensor complex follows by the minimality of the resolutions of all components.
On the other hand, these ideals live in rings with disjoint variables, which implies
that Tori(S/(I1 + · · ·+ Ir−1), S/Ir) = 0 for i > 0, and so the constructed complex is
indeed a minimal free resolution for S/I.

In Lemma 25 if we replace I1 + · · ·+Ir and S/I by I1I2 · · · Ir and I, then an anal-
ogous statement holds. The original statement appeared in the Habilitationsschrift
of Jürgen Herzog in 1974, and the proof is similar to the proof of the above lemma.

Lemma 26. Let Ii ⊆ Si be a monomial ideal in the polynomial ring Si for i =
1, . . . , r, and let I = I1I2 · · · Ir be the ideal in the polynomial ring S = S1 ⊗ · · · ⊗ Sr.
Assume that Fi is the minimal free resolution of Ii for all i. Then the minimal free
resolution of I is obtained by F1 ⊗F2 ⊗ · · · ⊗ Fr. In particular, the following hold:

(i) βi,j(I) =
∑

(i1,...,ir)∈Ai,r
(j1,...,jr)∈Bj,r

βi1,j1(I1) · · ·βir,jr (Ir), where

Ai,r = {(i1, . . . , ir) : i1 + · · ·+ ir = i} and

Bj,r = {(j1, . . . , jr) : j1 + · · ·+ jr = j}.

(ii) The Hilbert series of S/I is HSI(x, t) =
1+(−x)−(r−1) ∏r

i=1QS/Ii
(t)

(1−t)d , where

HSIi(t) =
1+QS/Ii

(t)

(1−t)d and d is the number of variables of the ring S. Note

that here we are looking at the ideals Ii in the polynomial ring S.
(iii) In particular, if all the ideals are the same (but in polynomial rings on disjoint

set of variables), then we have

HSI(x, t) =
1 + (−x)−(r−1)

(
QS/Ii(t)

)r
(1− t)d

.
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Example 27. Let I = 〈x1x2x3, x2x4, x1x5x6〉 and J = 〈y1y2y3, y2y4y5〉. The Betti
tables of S/I, S/J , S/(I + J), and S/IJ are as follows:

i\j 0 1 2 3

Total 1 3 3 1

0 1
1 1
2 2 1
3 2 1

i\j 0 1 2

Total 1 2 1

0 1
1
2 2
3 1

i\j 0 1 2 3 4 5

Total 1 5 10 10 5 1

0 1
1 1
2 4 1
3 5 1
4 4 3
3 6 3
3 2 1

i\j 0 1 2 3 4

Total 1 6 9 5 1

0 1
1
2
3
4 2
5 4 3
6 6 3
7 2 1

Note that the (i, j)-entry of the table corresponding to S/I is simply βi,i+j(S/I) =
βi−1,i+j(I), and we have only listed the entries corresponding to the nonzero Betti
numbers. Since

HSI(x, t) =
1− x(t2 + 2t3) + x2(t4 + 2t5)− x3t6

(1− t)12
and HSJ(x, t) =

1− 2xt3 + x2t5

(1− t)12
,

we have that

HSI+J(x, t)

=
(1− x(t2 + 2t3) + x2(t4 + 2t5)− x3t6)(1− 2xt3 + x2t5)

(1− t)12

=
1− x(t2 + 4t3) + x2(t4 + 5t5 + 4t6)− x3(t6 + 3t7 + 6t8) + x4(3t9 + 2t10)− x5t11

(1− t)12
.

Note that the above formula includes the graded Betti numbers. For example,

β1(S/(I + J)) = β1,3(S/(I + J)) + β1,2(S/(I + J))

=
(
β0(S/I)β1,3(S/J) + β1,3(S/I)β0(S/J)

)
+ β1,2(S/I)β0(S/J)

= (2 + 2) + 1 = 5,

which is encoded as the coefficient of −x (for t = 1) in the above formula.

Similarly, we have that

HSIJ(x, t) =
1− x−1(−x(t2 + 2t3) + x2(t4 + 2t5)− x3t6)(−2xt3 + x2t5)

(1− t)12

=
1− x(2t5 + 4t6) + x2(3t7 + 6t8)− x3(3t9 + 2t10) + x4t11

(1− t)12
.

From the above formula we obtain the graded Betti numbers. For example,

β0(IJ) = β0,5(IJ) + β0,6(IJ) = β0,2(I)β0,3(J) + β0,3(I)β0,3(J) = 2 + 4 = 6,
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which is encoded as the coefficient of −x in the above formula.

β1(IJ) = β1,7(IJ) + β1,8(IJ)

=
(
β0,2(I)β1,5(J) + β1,4(I)β0,3(J)

)
+
(
β1,5(I)β0,3(J) + β0,3(I)β1,5(J)

)
=
(
1 + 2) + (4 + 2) = 9.

The term x2(3t7 + 6t8) in the above formula shows that β1,7 = 3 and β1,8 = 6.
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[1] A. Bigatti, P. Gimenez, and E. Sáenz-de Cabezón, Monomial Ideals, Computations and
Applications, Lecture Notes in Math. 2083, Springer-Verlag, Berlin, Heidelberg, 2013.
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