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Execution in an aggregator

Roel Oomen∗

June, 2016

Abstract

An aggregator is a technology that consolidates liquidity – in the form of bid and ask prices and amounts –

from multiple sources into a single unified order book to facilitate “best-price” execution. It is widely used by

traders in financial markets, particularly those in the globally fragmented spot currency market. In this paper, I

study the properties of execution in an aggregator where multiple liquidity providers compete for a trader’s un-

informed flow. There are two main contributions. Firstly, I formulate a model for the liquidity dynamics and

contract formation process, and use this to characterise key trading metrics such as, the observed inside spread

in the aggregator, the reject rate due to the so-called “last-look” trade acceptance process, the effective spread that

the trader pays, as well as the market share and gross revenues of the liquidity providers. An important observa-

tion here is that aggregation induces adverse selection where the liquidity provider that receives the trader’s deal

request will suffer from the “Winner’s curse”, and this effect grows stronger when the trader increases the number

of participants in the aggregator. To defend against this, the model allows liquidity providers to adjust the nom-

inal spread they charge or alter the trade acceptance criteria. This interplay is a key determinant of transaction

costs. Secondly, I analyse the properties of different execution styles. I show that when the trader splits her order

across multiple liquidity providers, a single provider that has quick market access and for whom it is relatively

expensive to internalise risk, can effectively force all other providers to join her in externalising the trader’s flow

thereby maximising the market impact and aggregate hedging costs. It is therefore not only the number, but also

the type of liquidity provider and execution style adopted by the trader that determines transaction costs.
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thank two anonymous referees, Natalia Fabra, Alex Gerko, Søren Johansen, Anthony Neuberger, Mark Podolskij, colleagues at Deutsche Bank, and the seminar

participants at the London School of Economics, Erasmus University Rotterdam, and the “Microstructure of Foreign Exchange Markets” conference at the

Cambridge-INET Institute for helpful comments.



1 Introduction

How do you secure a fair price in a fragmented market where the same product can be traded in different venues? If

you contact a single dealer you may not get the best price available, whereas approaching all dealers may be imprac-

tical or too costly. A common approach, greatly facilitated by e-commerce developments over the past two decades,

is to query a representative panel of dealers and then to transact with the one that provides the best price (e.g. car

insurance, electronics, airline tickets, hotel rooms). Financial markets work in much the same way, particularly the

over-the-counter markets where there is no centralised exchange. A prime example here is spot foreign exchange:

the biggest financial market in the world (BIS, 2014), where a large and diverse set of liquidity providers (LPs) stand

ready to buy and sell currencies on a bi-lateral and disclosed basis. To source liquidity, traders routinely put multiple

LPs in competition and then transact with the one that offers the best price. To facilitate this process, aggregators

are used: a technology that consolidates liquidity, in the form of bid- and offer-prices and amounts, from various

sources into a single consolidated order book. But in a market where the terms of trade are privately negotiated

and the liquidity provided is bespoke to the trader, deciding on a suitable aggregation setup is not a trivial task. For

instance, how many LPs should the trader include into her aggregator? If there is heterogeneity across LPs, how to

choose amongst them? Or perhaps, when the marginal costs are negligible, the trader should simply include them

all? Once the setup is defined, the trader then needs to decide on how to execute within the aggregator. For large

amounts, should she trade with the LP that provides the best price in that amount, or should she spread execution

across multiple LPs trading only a portion of the order with each but perhaps at a tighter spread? And what is the

impact of execution uncertainty on transaction costs when the LP rejects the trader’s request to deal? In this paper

I provide insights into these type of questions. On the basis of a model for the liquidity dynamics and contract for-

mation process, I establish the determining factors of transaction costs associated with execution in an aggregator.

The model assumes a setup where multiple competing LPs provide liquidity for a specified security in a standard

amount at a nominal spread centred around their best but imperfect estimates of the unobserved true or efficient

price. The trader uses an aggregator to consolidate the liquidity provided and trades with the LP that shows the best

price. She is assumed to be uninformed with respect to the future evolution of the price process and her liquidity

demand is exogenously motivated, i.e. a “noise” trader in Kyle (1985) terminology. The LPs that participate in the

aggregator each contribute a continuous stream of bid- and ask-prices without knowing what their competitors are

showing (this is a key difference with exchange based trading where a market maker can observe the central limit

order book prior to submitting an interest). The liquidity they provide is indicative: the prices and amounts are

available to the trader for use in a deal request for consideration by the LP who will subsequently make an accept or
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reject decision. As such, the contract formation process is one where finality of the deal resides with the LP. In prac-

tice, the trade acceptance process serves a critical role that lets the LP – for instance – check whether sufficient credit

is available to satisfy the deal request, ensure trades are conducted at valid prices for allowable amounts, manage its

exposures when it simultaneously provides liquidity to a large number of traders, and prevent uncontrolled trading

over a system outage or market dislocation. Additionally, it may include what is often referred to as a “last-look”

feature1 (see, e.g. Bank of England, 2011) where the LP makes a trade acceptance decision based on pre-set criteria

in light of its assessment of the market price at the moment of trade acceptance. The last-look feature can include

taking a brief period of time – often referred to as a latency buffer – to update information sources and enable accu-

rate decision making. In a globally fragmented market, and with information disseminating from a variety of venues

each with bespoke publication protocols, the transmission and update times involved in gathering the required in-

formation necessitates the existence of this last-look feature, and, for certain traders including those with highly

aggregated execution setups, an added latency buffer. The last-look trade acceptance decision is incorporated into

the model setup via the specification of a tolerance level to price movements over the latency buffer that are adverse

to the LP which, when exceeded, results in the rejection of a trader’s deal request.

What determines execution costs in the above setup? Suppose there is only one LP in the aggregator. The trader

pays the nominal (half-) spread on execution which the LP can fully retain as revenues because the flow is unin-

formed. With two or more LPs in the aggregator, this logic breaks down: when the LP wins a deal request he must

have shown a better price than any of its competitors but with uncertainty of where the true price is, chances are

that he mis-priced the deal. The mere act of aggregation induces adverse selection where the LP that secures the

deal suffers from the “Winner’s curse” (Thaler, 1988). The trader will observe tighter or even negative spreads in

the aggregator while the LP will find that the post-deal price movement is more likely to go in the trader’s favour

than in his. To defend against this, the LP can enforce the last-look trade acceptance criteria and adjust its tolerance

to adverse selection. I show that it is this interplay that determines transaction costs, i.e. the number of liquidity

providers, the nominal spread, and the trade acceptance criteria translate into an effective spread which represents

the true cost of execution in an aggregator.

This paper presents extensive results on the key metrics that characterise the properties of aggregation. For an

arbitrary number of LPs with identical liquidity dynamics and trade acceptance criteria, I derive closed form ex-

pressions for the observed spread in the aggregator, the reject rate due to last-look, and the effective spread as a

representative measure of actual transaction costs incurred by the trader taking into account the slippage result-

1In independent and concurrent work, Cartea and Jaimungal (2015) study how venue specific last look requirements influence the choice

of where latency arbitrageurs operate.
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ing from execution uncertainty. Next, I introduce heterogeneity of LPs by allowing each to have distinct dynamics,

nominal spreads, and trade acceptance settings. This allows for an analysis of relative market share and gross rev-

enues, along with effective spread and reject rate, which now vary across LPs. Finally, I investigate the impact of

differences in the speed of price discovery across LPs and how that can be mitigated by use of the latency buffer.

How should the trader execute in the aggregator once its setup has been defined? For small amounts, she can

simply trade on best price. For larger amounts, there may not be sufficient liquidity available at the inside spread

and so she faces a choice: either aggress through the stack of bids or offers and simultaneously deal with multiple

LPs for the combined amount required (i.e. “stack-sweep” execution) or trade with a single LP that offers her the

best price in the full amount (i.e. “full-amount” execution). The usual argument for using stack-sweep is that each

child-order is of smaller size and will therefore cross a tighter spread than what is charged for a single full amount

order size. But this assumes of course that the LPs offer the same liquidity to a trader irrespective of execution

style. To study this, I formulate a model where the LPs decide to either internalise trades by holding the risk until

they find opposing interest from other traders, or to externalise trades by immediate one-for-one hedging on public

venues thereby creating an instantaneous market impact that is proportional to the volume executed. Some LPs are

quicker in accessing the market than others. All LPs aim to minimise cost of trading. In this setup, I characterise

the equilibrium hedging strategies of the LPs and show that with stack execution, a single LP that has quick market

access and for whom it is relatively expensive to internalise risk, can effectively force all other LPs to externalise the

trader’s flow thereby maximising the market impact and aggregate costs levied onto the LPs. The LPs are locked in

a “Prisoner’s dilemma” type equilibrium. This is unlikely to benefit the trader’s effective spread. In fact, it is hard to

imagine any scenario where a trader with uninformed flow will achieve lower trading costs with LPs that externalise

than with those that internalise. The results here highlight the fragility of the aggregator setup in this regard, where

the addition of a single new LP into an established well-functioning setup, can change the hedging behaviour of all

participating LPs and radically increase execution costs for the trader.

The central message of the paper is then that execution costs associated with trading in an aggregator are not

simply controlled by the nominal spreads the LPs charge or the inside spread observed in the aggregator, but are

instead determined by a combination of factors including (i) the number of LPs participating in the aggregator, (ii)

the type of LPs selected, (iii) the trader’s execution style, (iv) the nominal spread charged by each LP, (v) the LPs’

trade acceptance criteria as well as (vi) intrinsic characteristics of the LPs such as the quality of price discovery and

(vii) market volatility. In practice, the first 5 factors are choice variables that can be negotiated between the trader

and the LPs: the primary initiative on the first three generally sits with the trader whereas iv & v are then set by the

LPs aiming to satisfy spread or fill-ratio requirements of the trader subject to commercial viability. The effective
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spread measure proposed in the paper is a quantity that is representative of the all-in execution costs. For a given

set of trades and the LP’s post-deal price stream it is trivial to calculate it in practice, both for the trader and for the

LP, as the required information is common to them (and only to them). Careful trade cost analysis and an open and

informed dialogue between the trader and LPs on the nature of the liquidity provision and aggregator configuration

is thus of fundamental importance.

The applicability of this paper is not restricted to the spot currency market. Aggregation of one form or another

is taking an increasingly prominent role across a number of over-the-counter markets. For example, the Dodd-

Frank act mandates that trading of vanilla interest rate and credit default swaps now takes place on Swap Execution

Facilities where a minimum of three LPs are required to compete for a trader’s flow (see Commodity Futures Trading

Commission, 2013). Traders in the US Treasury and corporate bond markets adopt a similar approach where they

request quotes from multiple LPs when they require liquidity. The contract formation process and execution style

may vary across these markets but the basic mechanisms discussed in this paper still apply.

The remainder of the paper is organised as follows. Section 2 formulates the model which is then used to obtain

the results for an arbitrary number of homogenous LPs in Section 3 and two heterogenous LPs in Section 4. The

analysis of trader execution style and equilibrium hedging strategies is presented in Section 5. The appendices

contain the proofs and some additional results.

2 The model setup

Let the unobserved true (logarithmic) price process of a specified security follow a random walk, i.e.

p ∗t = p ∗t−1+ εt , (1)

with ε ∼ i.i.d. N (0,σ2). There are N competing liquidity providers (LPs) that offer liquidity in the security to a

known counterpart or trader on a bi-lateral basis, i.e. they each post a bid-price (b ) and an ask-price (a ) at which

they are willing to buy and sell a standard amount, at a spread s = a −b centred around a mid-price p . I assume the

dynamics of the observed bid- and ask-prices for LP-i , i ∈ [1, 2, . . . , N ], to be as follows:

b (i )t = p (i )t −
si

2
and a (i )t = p (i )t +

si

2
, (2)

where

p (i )t = p ∗t +m (i )
t , (3)

m (i )
t = βi m (i )

t−1+η
(i )
t , (4)
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Figure 1: Aggregated liquidity dynamics

Panel A : sample price paths Panel B : spread in the aggregator
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Note. Panel A draws sample price paths of bids (b ) and offers (a ) of two (N = 2) competing liquidity providers together with the unobserved

“true” price (p ∗). Parameters are equal for both LPs and set as s = 1,σ = 0.5,ω = 0.35,β = 0.9,ρ = 0.5. Panel B draws the inside spread

observed in the aggregator decomposed into (unobservable) ask spread a −p ∗ and bid spread p ∗− b .

withη(i ) ∼ i.i.d.N (0, (1−β2
i )ω

2
i ), 0≤β < 1, and corr(η(i )t ,η

( j )
t ) =ρi , j for i 6= j . The process m – also referred to below

as p ∗-deviation – allows for a dual interpretation. The LP may set the mid-price p equal to its best but imperfect

estimate of the unobserved true price p ∗. In this case m represents the measurement error of the estimator. Alter-

natively, one may assume the measurement error is negligible and m instead reflects a price “skew” that the LP uses

to indicate its relative willingness to buy or sell the security. As part of an inventory risk management strategy, the

LP may skew down its mid-price (m < 0) to discourage further sell orders and actively solicit buy orders to reduce its

long position, and vice versa. Whilst the LPs independently construct their mid-prices, in practice the information

sets they use for the purposes of price discovery may be partially overlapping and this can lead to cross-sectional

correlation in their measurement errors. Similarly, the set of counterparts the LPs provide liquidity to may be fully

or partially overlapping, and this can lead to cross-sectional correlation in positions and thus in price skews. The

parameter ρ captures this effect.

The trader’s liquidity demand is assumed to be exogenously motivated, and independent of the future evolution

of the price process, i.e. a “noise” trader in Kyle (1985) terminology. She uses an aggregator to consolidate the
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liquidity provided by the LPs and deals in standard amounts on the best available price. That is, she submits an

offer to buy at price a t =mini a (i )t which the aggregator will route to LP i t = arg mini a (i )t , and she submits an offer to

sell at price b t =maxi b (i )t which the aggregator will route to LP i t = arg maxi b (i )t . As discussed in the introduction,

the liquidity provided to the trader is indicative in nature and depending on the circumstances a trader’s request

to deal may be accepted or rejected by the LP: she is not guaranteed to transact at b t or a t . From a transaction

cost analysis perspective, it is thus important to distinguish between the observed inside spread in the aggregator

(i.e. a t −b t ) and the effective spread that incorporates any slippage costs introduced by the execution uncertainty.

These quantities will be studied in detail below.

Figure 1 provides an illustration of the model setup.2 Panel A draws a simulated sample path of two LPs’ bid-

and ask-prices around the unobserved true price, based on the model defined by Eqs. (1 – 4) . It highlights the

alternating nature of the LP that has the best available price at any point in time. Panel B shows the time-varying

dynamics of the inside spread decomposed into its bid and ask components.

The usual setup for a model of market making in the microstructure literature is one where a dealer faces a

crowd of anonymous traders and either sets a single price or spread for all based on inventory considerations and

the need to be compensated for absorbing risk or based on information considerations and the need to balance the

costs of dealing with informed traders with the revenues made from uninformed traders (see, e.g. O’Hara, 1995, for

an overview). The model presented here differs in a number of important ways, namely it focusses on the bi-lateral

interactions between a single trader and the LPs competing for its flow, the relationship between trader and LP is

disclosed, and this in turn allows the LP to provide liquidity and set prices that are bespoke to the trader. The setup

is consistent with an over-the-counter market structure as opposed to anonymous exchange-based trading. And

while the model in Eqs. (1 – 4) is of reduced form, it is not incompatible with the basic premise of information-

and inventory-based models. For instance, despite the trader being uninformed, I will show below that important

information effects arise: when the LP wins an offer to transact from the trader it knows that at that point its price

was more aggressive than any of the other LPs competing in the aggregator and this information can be used by the

2The illustrations throughout the paper require a choice of specific model parameter values. Because statistical inference is beyond the

scope of this paper, I normalise onσ and setω≈σ on the basis that the high-frequency data literature estimates the so-called “noise ratio”,

i.e. ω/σ in the setup here, to be around 0.5 for a range of liquid currencies and US equities(see, e.g., Christensen, Oomen, and Podolskij,

2014, Table 3). In standard market microstructure models, the spread s typically compensates the market maker for providing immediacy in

a risky asset (with risk measured byσ) and/or to protect against adverse selection due to information asymmetry or mis-pricing (magnitude

of this is measured byω). It therefore seems reasonable to set the spread to a (small) multiple of theσ orω. For the parametersβ andρ there

is little guidance available so I set them to ad hoc values: ρ = 0.5 in a range (0.5, 0.75) and β in a range (0.5, 0.9) depending on the specific

illustration.
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LP to refine its estimate of the unobserved efficient price process. While this feedback mechanism is not explicitly

modelled here, the mean-reverting nature of the m-process captures such dynamics. Similarly, when the market

maker acquires a large position from traders’ directional flow, inventory considerations would lead it to adjust prices

in an attempt the balance the flow and reduce the position. Again, this is consistent with a mean-reverting process

for m and the price skewing interpretation outlined above.

3 Homogenous liquidity providers

I start by analysing the case of N ≥ 1 competing LPs with identical dynamics, i.e. ωi =ω,βi = β , si = s and ρi , j =ρ

for all i 6= j . I derive properties of the observed spread and show that despite the uninformed nature of the trader’s

flow, strong adverse selection can be introduced by the act of aggregation. Using a simple rule to characterise the

trade acceptance decision of the LP, I study the probability of a trader’s deal request getting rejected and the factors

that make this more or less likely. I then provide a characterisation of the effective spread: a representative measure

of actual transaction costs incurred by the trader that incorporates any slippage costs associated with the execution

uncertainty that the trade acceptance process introduces. Section 4 studies the same topics for heterogenous LPs

with distinct liquidity dynamics and trade acceptance criteria.

3.1 Observed spread and adverse selection in an aggregator

Proposition 1 For a panel of N homogenous liquidity providers, the expected observed spread in an aggregator is

S ≡ E (a t − b t ) = s −2ω
p

1−ρψN , (5)

whereψN = E (maxi {ui }Ni=1) for ui ∼ i.i.d.N (0, 1). Note thatψ1 = 0,ψ2 = 1/
p
π,ψ3 = 3/

p
4π, andψN ∝

p

log N for

large N .

Proof See Appendix B. �

This result characterises a number of important properties of S . First, the observed spread decreases with an in-

crease in ω (i.e. ∂ S/∂ ω < 0) or a decrease in ρ (i.e. ∂ S/∂ ρ > 0). Intuitively, ω and ρ control the variability of the

LPs prices relative to the common true price and relative to each other respectively. With increased variability or

disagreements across the LPs prices, the higher the best bid and the lower the best ask will be and thus the tighter

the observed spread. Note that when ω = 0 or ρ = 1 the effective number of LPs is one (they all quote identical

prices) and S = s . Second, the observed spread decreases with an increase in the number of liquidity providers N
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Figure 2: Observed spread and adverse selection in an aggregator

Panel A : observed inside spread Panel B : valuation of a trade
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Note. Panel A draws the expected observed spread S as a function of the number of competing liquidity providers, N . For the baseline

scenario the model parameters are set to s = 1,σ = 0.5,ω= 0.4,β = 0.8,ρ = 0.5. This is varied to ρ = 0.75 for the higher correlation scenario

and toω= 0.5 for the higher dispersion scenario. Panel B draws the marked-to-mid valuation of a trade Vh (solid lines for h ≥ 0) as in Eq. (7)

for different number of liquidity providers N using the baseline parameters as in Panel A. The pre-deal behaviour (solid lines for h < 0) and

the long-term valuation V∞ (dashed lines) are superimposed.

(i.e. ∂ S/∂ N < 0, unless ω = 0 and / or ρ = 0 in which case ∂ S/∂ N = 0). With every addition of a new LP the best

bid and ask can – ceteris paribus – only be improved and never worsened. However, because ∂ 2S/∂ N 2 > 0, the

rate at which the spread contracts as new LPs are added decreases with N . Third, while the observed spread in the

aggregator can never exceed the nominal spread s , there is nothing that prevents it from turning negative. In fact,

for sufficiently largeω or N the expected observed spread can be arbitrarily negative. Note that a negative spread

implies that the bid of at least one LP must exceed the ask of another and that this would present a guaranteed arbi-

trage opportunity were it not for the indicative nature of the liquidity and the associated trade acceptance process

discussed below. Finally, the observed spread is invariant to the speed of mean reversion β (this is simply because

the unconditional variance of m is assumed to be independent of β ) and the efficient price volatilityσ (it is devia-

tions from the true price that affect the observed spread rather than the variability of the true price itself). Panel A

of Figure 2 provides an illustration.

Additional insights into the properties of aggregation can be obtained by considering the value of a trade to the
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liquidity provider (for the moment I assume that every deal request is accepted). At trade inception, the LP earns

half the spread whilst the long-term expected valuation of the trade is established by adding any systematic (adverse

or favourable) price movements. Specifically, the LP’s valuation of a trade h periods after the point of execution is:

Vh ≡ E
� s

2
+ (p (i )t+h −p (i )t ) | b

(i )
t > b (6=i )

t

�

= E
� s

2
− (p (i )t+h −p (i )t ) | a

(i )
t < a (6=i )

t

�

for h ≥ 0. (6)

Naively, one may expect due to the uninformedness of the trader’s flow there to be no systematic price impacts

post-deal and the value of a trade to equal half the spread charged. But this reasoning overlooks that to win the deal

request in the first place, the LP needs to show a more attractive price than any of its competitors. With uncertainty

of where the true price is, the LP that wins the trader’s deal request to sell (buy) is likely the one that over- (under-)

estimates the true value. This is the so-called Winner’s curse (see Thaler, 1988). A type of adverse selection that

was first discussed in the literature in the context of bidding in common value auctions (see, e.g., Capen, Clapp,

and Campbell, 1971; Kagel and Levin, 1986) and to which the aggregator setup here bears a close resemblance. The

below result formalises this intuition.

Proposition 2 For a panel of N homogenous liquidity providers competing for a trader’s uninformed flow, the LP’s

expected valuation of a trade marked-to-mid h periods post deal is:

Vh =
s

2
− (1−βh )ω

p

1−ρψN for h ≥ 0, (7)

whereψN is as defined in Proposition 1.

Proof See Appendix B. �

When N = 1 the spread capture at deal inception is fully retained (i.e. Vh = s/2 for all h > 0): because there is no

competition, the Winner’s curse does not apply. When N > 1, adverse selection is introduced merely through the act

of aggregation and this results in an erosion of initial spread capture and a valuation of Vh < s/2. Logic dictates that

the effective half-spread the trader pays should equal the LP’s long-term valuation of a trade. The effective spread,

denoted by S, can therefore be defined as:

S≡ 2 lim
h→∞

Vh = s −2ω
p

1−ρψN . (8)

Because every deal request is accepted by the LP, the observed spread equals the effective spread and its properties

carry over one-for-one: the degree of adverse selection the LP is exposed to upon winning a deal request increases

with an increase inω and N and a decrease in ρ. The speed at which the LP’s valuation converges to the effective

9



spread is determined byβ . Panel B of Figure 2 provides an illustration. It emphasises the key point that even though

the trader’s flow is random and uninformed, each and every liquidity provider competing in the aggregator will

perceive the flow as informed in that post-deal they will observe a systematic move in their mid-price p that favours

the trader and is adverse to the LP.3

3.2 “Last look” trade acceptance

With adverse selection induced by aggregation, it is easy to arrive at a point where the effective spread paid by

the trader is not commercially viable anymore for the LPs. At this point, one can proceed along a few different

avenues. Firstly, individual LPs may decide to terminate their relationship with the trader by withdrawing liquidity

provision. This leads to a reduction in N and, ceteris paribus, an increase in effective spread which may be sufficient

to regain commercial viability for the remaining LPs. Secondly, the LPs may decide to widen the nominal spread they

charge to a point where liquidity provision can be resumed on a sustained basis. The impact of both these options

is quantified above, but neither may be desirable in practice. The LP may be reluctant to terminate its relationship

especially when the liquidity provision is only one component of the overall service it provides to the trader, and

equally the trader may require a certain number of LPs in her aggregator for redundancy purposes or to satisfy

internal execution guidelines. Widening the spread by a single LP will lead to reduced market share and a likely

increase in adverse selection which taken together may reduce the revenues for this LP (Section 4 studies this in

more detail). A uniform widening of the spread across LPs would avoid this situation but the coordination required

to achieve this is incompatible with the competitive nature of the market and the independent decision making by

LPs. A third option exists to control the adverse selection and effective spread, and that is for the LPs to enforce trade

acceptance criteria. To study this mechanism, I specify a simple rule where a trader’s request to sell, submitted at

time t , will be accepted by the LP at time t +n if

b (i )t+n − b (i )t >−δ for n ≥ 1,δ≥ 0, (9)

and rejected otherwise. Analogously, the LP will accept a trader’s request to buy if a (i )t+n−a (i )t <δ and reject otherwise

(in Oomen, 2016, I study a number of alternative last look specifications). The parameter n specifies the number of

periods the LP takes to make a trade acceptance decision. In the spirit of the NIPS code (Bank of England, 2011), I

refer to this as a “latency buffer”. In a globally fragmented market, and with information disseminating from a variety

3As an aside, note that the chart also includes the pre-deal mid-price evolution (adjusted for trade direction) which shows an increasing

aggression of the price in the run-up to winning a deal request. This pattern is specific to the setup here, and will look very different if for

instance the trader’s buy or sell decisions are triggered by the (true) price reaching specific levels, e.g. stop-loss or take-profit orders.
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Figure 3: Trade acceptance and adverse selection in an aggregator

Panel A : reject rate for varying n and δ Panel B : distribution of price move over latency buffer n
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Note. Panel A draws the probability of a reject R as a function of tolerance level δ for varying latency buffer horizons n . The solid lines are

based on numerical simulations, whereas the markers (×) indicate the analytical approximation given in Eq. (11). Panel B draws the price

distribution over the latency buffer n = 1 with the shaded areas highlighting the range where deal requests are accepted or rejected for δ= s .

In both panels, the model parameters are set as s = 1,σ= 0.5,ω= 0.4,β = 0.5,ρ = 0.5, N = 10.

of venues each with bespoke publication protocols, it takes time to gather all the relevant information required for

accurate price discovery and to make an informed trade acceptance decision and this is precisely what the latency

buffer provides (in practice, it is typically set to a fraction of a second). The parameter δ represents the maximum

adverse price movement over the latency buffer that the LP is willing to tolerate short of rejecting the trade request.

For instance, with δ = s/2 the LP will reject the request to deal only if more than the full half-spread is lost to an

adverse price movement within the latency buffer. Also note that negative values of δ are not permissible in the

current model setup, i.e. I enforce that the LP will accept the deal request when the price doesn’t move over the

latency buffer.

The key quantity of interest in this discussion is of course the probability of a deal request getting rejected, i.e.

R≡ Pr(b (i )t+n − b (i )t <−δ | b (i )t > b (6=i )
t ) = Pr(a (i )t+n −a (i )t >δ | a

(i )
t < a (6=i )

t ). (10)

Proposition 3 For a panel of N homogenous liquidity providers competing for a trader’s uninformed flow, and a trade
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acceptance rule as defined by Eq. (9), the probability of a deal request getting rejected is approximately:

R≈Φ
�

(1−βn )ω
p

1−ρψN −δ
p

nσ2+ (1−β2n )ω2

�

, (11)

where Φ(·) denotes the distribution of a standard normal random variable.

Proof See Appendix B. �

This result characterises the key properties of the reject rate in an aggregator setup with last-look trade acceptance.

As expected, an increase in tolerance level δ lowers the reject rate (i.e. ∂ R/∂ δ < 0) and drives it down to zero as

δ→∞. Note that whenδ= 0 the reject rate is at its highest and will always exceed 50%: this is a direct consequence

of the adverse selection induced by aggregation that makes price moves in the trader’s favour more likely than those

in the LP’s favour (provided that N > 1,ω> 0,ρ < 1). An increase in the latency buffer n increases the reject rate (i.e.

∂ R/∂ n > 0). Two re-inforcing effects are at play here, namely (i) due to mean-reversion in m the adverse selection

builds up over time (i.e. the second term in Eq. 7) so that with larger n the LP is better able to identify the effect and

(ii) the natural variation of the efficient price process grows linearly over time and so a longer latency buffer makes it

more likely for the price to exceed the tolerance level. Similarly, anything that elevates the variability or dispersion of

LPs’ prices leads to an increase in reject rate, i.e. ∂ R/∂ σ > 0, ∂ R/∂ N > 0, ∂ R/∂ ω> 0, and ∂ R/∂ ρ < 0. With higher

N ,ω or lower ρ the adverse selection effect grows and this in turn heightens the chances of a price move to exceed

the set tolerance level and generate a reject. Note that the same impact is observed with increases in the efficient

price volatilityσ. This is a somewhat undesirable yet unavoidable property of the last-look mechanism, as modelled

here, in that efficient price moves are unrelated to the trader’s actions or the Winner’s curse and should therefore not

affect the reject rate. But because p ∗ is unobservable, efficient price moves are indistinguishable and inseparable

from adverse selection effects.4 Finally, consider the impact of β on the reject rate. With a more persistent and

less erratic measurement error, the price discovery is essentially slower and the ability of the LP to identify adverse

selection is reduced, hence ∂ R/∂ β < 0. Likewise, with more persistent position skewing, the LP’s prices are less

volatile, reducing the probability of them exceeding the threshold.

Figure 3 further illustrates some of these points. Panel A draws the reject rates as a function of the tolerance level

δ and for different values of the buffer n . It shows that the approximation in Eq. (11) is very accurate in a wide range

of the parameter space. The shaded area highlights the impermissible range of negative tolerance levels where the

4In practice one may find the sensitivity of the reject rate to changes in σ to be limited because (i) empirically σ and s tend to move in

tandem and (ii) whilst ∂ R/∂ s = 0 in the model here, a larger s does affords the LP with more room to loosen the tolerance levelδ. Alternatively,

it is of course possible to specify a trade acceptance rule where δ is an increasing function ofσ or s .
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reject rate continues to go up and eventually converges to 100%. Panel B draws the post-deal price distribution over

the latency buffer to illustrate the adverse selection effect, i.e. price moves in favour of the trader are more likely

than those in favour of the LP. There are three distinct regions, namely (i) the price moves in the LP’s favour and the

deal request is accepted (green area), (ii) the price moves against the LP but within the defined tolerance levelδ and

the deal request is accepted (blue area), and (iii) the price moves against the LP by more than δ and the deal request

is rejected (red area).

How does the last-look mechanism impact the effective spread paid by the trader? Starting with the valuation

of a trade, as before, the LP stands to earn the nominal half-spread at trade inception and its long-term valuation

is obtained by adding any systematic post-deal price movements. The difference here is that instead of needing to

only condition on winning the deal request, we now also need to condition on the request to successfully pass the

trade acceptance rule in Eq. (9), i.e.

Vh = E
� s

2
+ (p (i )t+h −p (i )t ) | b

(i )
t > b (6=i )

t , b (i )t+n > b (i )t −δ
�

= E
� s

2
− (p (i )t+h −p (i )t ) | a

(i )
t < a (6=i )

t , a (i )t+n < a (i )t +δ
�

. (12)

Following the same logic as above, the effective spread is defined as S= 2V∞.

Proposition 4 For a panel of N homogenous liquidity providers competing for a trader’s uninformed flow, and a trade

acceptance rule as defined by Eq. (9), a lower bound for the effective spread is:

S> s −2ω
p

1−ρψN +2
nσ2

nσ2+ (1−β2n )ω2
G ((1−βn )ω

p

1−ρψN −δ, nσ2+ (1−β2n )ω2). (13)

where G (µx ,σ2
x ) = σxφ(µx /σx )/(1−Φ(µx /σx )), and φ(·) and Φ(·) denote the density and distribution of a standard

normal random variable.

Proof See Appendix B. �

Eq. (13) shows that the effective spread can be decomposed into three separable and intuitive components, namely

the nominal spread (+), the gross adverse selection costs (-), plus any recovered adverse selection costs via the

trade acceptance rule (+). With similar intuition to the discussion of the reject rate, the effective spread increases

with an increase in the latency buffer n (more protection for the LP), cross-sectional correlation of p ∗-deviations

ρ (less diversity amongst LPs), efficient price volatility σ (more likely to breach trade acceptance threshold), and

of course the nominal spread s . The effective spread also increases with a decrease in the tolerance level δ (more

protection for the LP), number of liquidity providers N (less competition amongst LPs), magnitude of p ∗-deviations

ω (more accurate pricing), and persistence of p ∗-deviations β (quicker reversion to true price). It is worth noting
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Figure 4: Trade valuation and effective spread with last-look trade acceptance

Panel A : trade valuation and effective spread Panel B : indifference curves for effective spread
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Note. Panel A draws the marked-to-mid valuations Vh of accepted and rejected deal requests, together with the effective half-spread ap-

proximation given by Eq. (13). The model parameters are set as s = 1,σ = 0.5,ω = 0.35,β = 0.75,ρ = 0.5, N = 25, n = 1,δ = s/2. Pre-deal

dynamics are added to the chart for h < 0. Panel B draws a few indifference curves where the same effective spread is attained by different

combinations of number of liquidity providers N (x-axis) and the accept rate 1−R controlled by δ (y-axis). The grey area marks the region

where the trade acceptance tolerance level δ is set to impermissible (negative) values.

that while the observed spread in the aggregator is invariant to the efficient price volatilityσ, or the persistence of the

measurement error β , the effective spread is impacted by these parameters : in turbulent markets characterised by

elevated market volatility or erratic measurement error /price skews the effective spread paid by the trader increases

despite her crossing the same spread in the aggregator.

Figure 4 provides an illustration of the trade valuation and effective spread with last-look. In the example of Panel

A, the effective spread is composed of a nominal spread of s = 1 minus an adverse selection component of 0.97 plus

recovered adverse selection costs via the trade acceptance process of 0.38 resulting in an effective half-spread of 0.20

(the crosses in the chart). Panel B draws indifference curves where the same effective spread is attained by different

combinations of the number of LPs N and the accept rate 1−R as controlled by δ. For instance, an effective spread

of S= 0.7 can be achieved – in this example – with three LPs accepting about 95% of the deal requests or with twenty

LPs accepting about 60% of deal requests (note that the observed spread in the aggregator is 0.581 with three LPs and

0.076, or about a tenth of the effective spread, with twenty LPs). This underlines a fundamental point: for a trader
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to fully understand the transaction costs associated with trading in a defined aggregator setup (i.e. N ,ω,β ,ρ andσ

are fixed) she can’t merely look at the nominal spread the LPs charge, or the observed spread that she crosses in the

aggregator, but she needs to consider the triplet of choice variables (s , n ,δ) and the effective spread that translates

into.

To conclude the discussion, consider a trading setup without last-look. The equity market provides a good exam-

ple, where so-called smart-order-routers (SORs) are routinely used to aggregate fragmented exchange liquidity and

subsequently make decisions on where to route orders. A trader using an SOR to access this firm non-last-look ex-

change liquidity, however, still faces execution risk simply because of the physical distances and information trans-

mission times between the competing venues and the trader location. For instance, by the time the SOR presents

the trader with the latest liquidity available from a particular venue – or later still, by the time a resulting trader’s

order arrives at the venue attempting to access that liquidity – the price may have changed, the quote cancelled, or

the liquidity removed by another trader.5 The further the trader is located from the trading venues, or the greater

the geographic dispersion of venues, the higher the execution risk will be. Co-location doesn’t eliminate the issue

either, because it can only get the trader close to one (or a few) venue but not all, and moreover, she will still need

to compete with other traders in that same co-location. This last point highlights a key distinction between public

exchange liquidity and the OTC liquidity: the former is available on a first-come-first-serve basis whereas the lat-

ter is typically available to many traders simultaneously and the liquidity demand of one trader doesn’t necessarily

impact the liquidity available to another trader.

4 Heterogenous liquidity providers

Up to now, the LPs each produce distinct prices but the processes that govern their liquidity dynamics and their

trade acceptance settings are assumed to be identical. As a result, all LPs are exposed to the same degree of adverse

selection, are equally likely to be top-of-book in the aggregator and to win a trader’s request to deal, have the same

market share, and each earn the same revenues. In this section I will study the properties of execution in an aggre-

gator when the participating LPs have different characteristics. The case where N = 2 provides the key insights and

retains analytic tractability so I’ll limit the discussion to this.

5For example, see http://www.iextrading.com/insight/stats/, for monthly statistics on the fill ratios of the IEX SOR.

For July 2015, it ranges from 69% for orders routed to CHI-X, to 88% for NYSE, to 99% for BATS.
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4.1 Differences in liquidity characteristics and trade acceptance criteria

Proposition 5 Consider two heterogenous liquidity providers competing for a trader’s uninformed flow, and a trade

acceptance rule as defined by Eq. (9). The expected observed spread in the aggregator is:

S = s2− (s2− s1)Φ
�

s2− s1

2σ∆m

�

−2σ∆mφ

�

s2− s1

2σ∆m

�

, (14)

where σ2
∆m =ω

2
1+ω

2
2−2ρmω1ω2, and ρm =ρ

Æ

(1−β2
1 )(1−β

2
2 )/(1−β1β2). The probability of LP-i having the best

price and winning a request to deal is:

Ti = Pr(b (i )t > b (6=i )
t ) = Pr(a (i )t < a (6=i )

t ) =Φ
� s6=i − si

2σ∆m

�

. (15)

The probability of a deal request getting rejected by LP-i is approximately:

Ri ≈Φ





(1−βni
i )

ω2
i −ρmω6=iωi

σ2
∆m

G ( 12 (si − s6=i ),σ2
∆m )−δi

Ç

niσ2+ (1−β2ni
i )ω2

i



 . (16)

A lower bound for the effective spread charged by LP-i is:

Si > si −2
ω2

i −ρmω6=iωi

σ2
∆m

G
�

1

2
(si − s6=i ),σ

2
∆m

�

,

+2
niσ

2

niσ2+ (1−β2ni
i )ω2

i

G

�

(1−βni
i )
ω2

i −ρmω6=iωi

σ2
∆m

G (
1

2
(si − s6=i ),σ

2
∆m )−δi , niσ

2+ (1−β2ni
i )ω2

i

�

. (17)

Proof See Appendix B. �

There are a few additional execution metrics that can be derived from the above: the expected market share of LP-i ,

Mi =Ti (1−Ri )/
∑

j T j (1−R j ), the expected gross revenues of LP-i ,Wi =
1
2SiMi , and the effective spread the trader

pays for execution within the aggregator, ST =
∑

iMiSi .

Differences in nominal spread To start, consider the scenario where both LPs have identical liquidity dynamics

and trade acceptance settings except that LP-2 charges a different nominal spread to LP-1, i.e. s1 6= s2 with all other

parameters equal. In this case, the observed spread S is bounded by min(s1, s2) and the probability for LP-i to have

the best price in the aggregator, Ti , diminishes the wider the spread is in relation to that of its competitor. Turning

to Ri , note that the LP that widens its nominal spread will – ceteris paribus – reject a larger fraction of the deal

requests but it also leads to a decrease in the reject rate of its competitor (Figure 5, Panel A). With a wider spread,

the p ∗-deviation needs to be stronger for the LP to win deal requests, but in those instances the adverse selection

will also be stronger making it more likely for the LP to reject the deal request. The reject rate for the other LP
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Table 1: Execution metrics with heterogenous liquidity providers

observed effective reject market gross

Two otherwise identical LPs spread spread rate share revenues

with LP-2 incrementally . . . S S1 S2 ST R1 R2 M1 M2 W1 W2

wider nominal spread (s ) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓↑↑↑

more volatile p ∗-deviations (ω) ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓ ↓↓↓ ↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓

more persistent p ∗-deviations (β ) === === ↓↓↓ ↓↓↓ === ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

more generous tolerance (δ) === === ↓↓↓ ↓↓↓ === ↓↓↓ ↓↓↓ ↑↑↑ ↓↓↓ ↓↓↓

longer latency buffer (n) === === ↑↑↑ ↑↑↑ === ↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↑↑↑
Note. For two identical LPs, this table reports how the various execution metrics change when LP-2 marginally increases one of the

parameters governing the liquidity dynamics or trade acceptance process, e.g. for the impact of a widening of s2 on effective spread for

LP-2, the table reports the sign of ∂ S1/∂ s2 | s2=s1
.

decreases because the diminishing competition for flow reduces the adverse selection. Next, the LP that widens its

nominal spread, will increase its effective spread St but also raise the effective spread of its competitor (Figure 5,

Panel B). Intuitively, the LP that leaves its spread unchanged will face less competition and receive deal requests

on less aggressive prices, thereby increasing its effective spread. As expected, the market share decreases with a

widening of the spread (Figure 5, Panel C) but note from the example that when s2 = 0 (and s1 = 1) the market share

of LP-2 is still not 100%: on very strong p ∗-deviation, LP-1 can still win deal requests despite the choice pricing of

LP-2.

Perhaps the most interesting aspect here is that in a region of the parameter space, the LP that widens its spread

will see its gross revenuesWi fall whilst its competitor will enjoy higher revenues (Figure 5, Panel C): a widening of

nominal spread increases the effective spread, but this can be more than offset by a drop in market share leading

to lower overall revenues. Correspondingly, in this situation, the LP can raise its revenues by tightening its nominal

spread and undercutting its competitor. There is a limit to this: at some point, with further tightening, the reduction

in effective spread is no longer compensated by larger gains in market share and the gross revenues will drop. In the

limit, when s2 = 0 (and s1 = 1), LP-1’s revenues dominate those of LP-2 although the latter are still positive because

of the last-look mechanism.

The above discussion naturally leads to the question whether there is an equilibrium spread the LPs would

charge. In an iterative process where conditional on the spread of one LP the other will set its spread to maximise

gross revenues, will the spread converge, and if so to what value? This is a hard question to answer analytically, but
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Figure 5: Execution metrics with two liquidity providers charging a different nominal spread

Panel A : reject probability R vs s2 Panel B : effective spread S vs s2
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Panel C : market shareM vs s2 Panel D : gross revenuesW vs s2
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Note. This figure draws the effective spread (Panel A), reject rate (Panel B), market share (Panel C), and gross revenues (Panel D) as a function

of LP-2 nominal spread s2 with s1 = 1,σ= 0.5,ω1 =ω2 = 0.25,β1 =β2 = 0.75,ρ = 0.5, N = 2, n1 = n2 = 1,δ1 =δ2 = s/2. The solid lines are based

on simulations whereas the markers (×) are, or follow directly from, the analytical approximations given in Proposition 5.

using the expressions in Proposition 5 it is easy to consider a numerical example, see Figure 6. Panel A shows the

nominal spread the LPs set in every round when the starting point is s1 = s2 = 1. The spread converges to s1 = s2 ≈ 0.3
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and Panel B shows that an equilibrium is attained because neither LP can increase its revenues by changing spreads.

What happens if, for instance, the trade acceptance criteria differ between LPs? Panel C considers the case where

n1 = 1 and n2 = 2: LP-2 imposes more stringent criteria than LP-1. Again the spreads converge, but now to different

values, i.e. s1 → 0.25 and s2 → 0.09. Note from Panel D that while s2 is less than half s1 in steady state, the gross

revenues that LP-2 earns are more than double those of LP-1 : the tighter spread earns LP-2 a larger market share

while the stricter trade acceptance settings aid spread retention, resulting in higher revenues.

Differences in price dynamics and trade acceptance settings Table 1 summarises the trading metric properties by

considering the impact of an incremental change in one of the liquidity or trade acceptance parameters, assuming

all other model parameters are identical and unchanged (see also Figure 9 in the Appendix). Consider the param-

eters governing the price dynamics. A difference inω between LPs can be interpreted as a difference in the quality

of their price discovery. With higher ω, the LP’s prices will be less accurate and more volatile, and this leads to a

compression of the effective spread, an increase in the LP’s reject rate, and a decrease in its market share and gross

revenues. The lost revenues for this LP are effectively redistributed between the trader and competitor LP in some

proportion defined by the exact model parameters: the trader will benefit from a tighter observed and effective

spread and the competitor LP will be able to accept more deals, and enjoy higher market share and gross revenues.

This emphasises that – despite the uninformedness of the trader’s flow – there is a greater importance put on the

quality of price discovery to meet the need for commercial viability when N > 1. A higher β implies more persistent

skewing, or measurement errors that die down more slowly: the unconditional variance of m (and hence the ob-

served spread S ) is unchanged due to the scaling of the variance of η in Eq. 4, but over short horizons the process is

less erratic. As a result, deal requests are less likely to be rejected as the variability of the LP’s prices over the latency

buffer is reduced. But because the adverse selection in the aggregator is of equal magnitude, with lower reject rate,

the effective spread for the LP is also reduced. The competitor LP’s reject rate and effective spread is unaffected by

the increase inβ , but because its market share drops, so do its gross revenues. Put simply, an increase inβ increases

competition in the aggregator, it leads to a higher market share for the LP with the higher β and the trader benefits

from a reduction in effective spread.

The impact of an increase in trade acceptance tolerance level δ is qualitatively equal to that of a decrease in

latency buffer n and so I will limit discussion to δ. As expected, the effective spread and reject rate are reduced for

the LP that loosens the tolerance levels whilst these metrics are unchanged for its competitor. The drop in reject

rate leads to an increase in market share at the expense of the other LP but the increased competition leads to a

reduction of revenues for both LPs. Intuitively, under-pricing of liquidity by one LP affects the viability of all other
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Figure 6: Convergence to equilibrium spreads with homogenous and heterogenous liquidity providers

Panel A : spread convergence with homogenous LPs Panel B : revenue profiles across iterations
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Panel C : spread convergence with heterogenous LPs Panel D : revenue profiles across iterations
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β2 = 0.75,ρ = 0.5, N = 2,δ1 =δ2 = s/2.
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LPs as they will need to price more aggressively to win the deal requests.

4.2 Differences in latency or speed of price discovery

One aspect not explicitly captured by the model in Eqs. (1 – 4) is that of latency differentials. In the globally frag-

mented FX market with its numerous price sources, trading locations, and news sources, it is a substantial challenge

to obtain the relevant information on a continuous basis and in a timely fashion. Demand for fast data transmission

has led to significant investments in state-of-the-art network links between the major financial centres (or perhaps

the causality is the other way around). But in an aggregator setup, it is relative and not absolute speed that matters.

So with differences in transmission latencies and speed of price discovery amongst LPs, what can be said about its

impact on the execution metrics for both the trader and the LPs providing liquidity into the aggregator? To study

this, I make a simple modification in the model and introduce a “slow” LP that prices at a time-lag of one period

compared to a “fast” LP, i.e.

p fast
t = p ∗t +m fast

t and p slow
t = p ∗t−1+m slow

t−1 . (18)

Proposition 6 Consider two liquidity providers – one fast and one slow as in Eq. (18), but otherwise identical – com-

peting for a trader’s uninformed flow, and a trade acceptance rule as defined by Eq. (9). The expected observed spread

in an aggregator is

S = s −2ω
Æ

1−ρβ +ω−2σ2/2ψ2. (19)

The probability of LP-fast/slow having the best price and winning a request to deal isTfast =Tslow =
1
2 . The probability

of a deal request getting rejected by LP-fast/slow for n > 1 is approximately:

Rfast ≈Φ







(1−βn )(1−ρβ)ω2
q

(1−ρβ)ω2+σ2/2
ψ2−δ

q

nσ2+
�

1−β2n
�

ω2






and Rslow ≈Φ







(1−βn )(1−ρβ)ω2+µslowp
(1−ρβ )ω2+σ2/2

ψ2−δ
q

nσ2+ (1−β2n )ω2−σ2
slow






. (20)

where µslow = σ2 +ρ(βn−1 − βn+1)ω2 and σ2
slow = σ

2 + β2n (β−2 − 1)ρ2ω2. A lower bound for the effective spread

charged by LP-fast/slow for n > 1 is:

Sfast > s −2
(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2

+2
nσ2

nσ2+ (1−β2n )ω2
G

�

(1−βn )(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2−δ, nσ2+ (1−β2n )ω2

�

, (21)

Sslow > s −2
(1−ρβ )ω2+σ2

p

(1−ρβ )ω2+σ2/2
ψ2

+2
(n −1)σ2

nσ2+ (1−β2n )ω2−σ2
slow

G

�

(1−βn )(1−ρβ )ω2+µslow
p

(1−ρβ )ω2+σ2/2
ψ2−δ, nσ2+ (1−β2n )ω2−σ2

slow

�

. (22)
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Figure 7: Execution metrics when speed of price discovery differs between LPs

Panel A : observed spread S vsσ and ρ Panel B : reject probability R vs δ
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Panel C : effective spread S vs δ Panel D : gross revenuesW vs δ
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Note. Panel A draws the observed spread as a function ofσ and ρ, and Panels B–D draw the reject rate, effective spread, and gross revenues

as a function of tolerance level δ. The baseline model parameters are set at s = 1,σ= 0.5,ω= 0.25,β = 0.75,ρ = 0.5, N = 2, n = 2,δ= s/2. The

solid lines are based on simulations whereas the markers (×) are, or follow directly from, the analytical approximations given in Proposition

6.
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Proof See Appendix B. �

Comparing Propositions 1 and 6 it is clear that the observed spread S is always tighter when there are latency differ-

entials between LPs than when there are not, and this effect increases with the efficient price volatility (σ) and the

persistence of p ∗-deviations (β ). LP-slow is lagging behind in price discovery and so in turbulent markets its pricing

error will increase in magnitude and any corrections take longer with higher β . In isolation this would be inconse-

quential as the trader’s flow is random, but when LP-slow is aggregated alongside LP-fast the discrepancies between

their prices is larger than it would be without latency differentials, hence the stated impact on observed spread. As

an aside, note that even when ρ = 1 and the LPs stream identical prices, the observed spread is still tighter than the

nominal spread charged by the LPs because of the time lag in LP-slow’s prices (Figure 7, Panel A). Recognising that

LP-slow essentially has less accurate and more noisy prices than LP-fast, it is intuitive that its reject rate is higher,

effective spread lower, and gross revenues suffer (Figure 7, Panels B-D).

Because the differences in trading metrics across LPs diminish as n grows, the latency buffer can be used to

mitigate the “handicap” of LP-slow (trading costs need not be affected by this as δ and/or s can be adjusted ac-

cordingly). It is this kind of observation that has motivated the deliberate introduction of artificial latencies into

numerous trading platforms (e.g. currency platforms ParFX, EBS, Reuters, and equity venue IEX) with the aim to

level the playing field and to stop the technology arms race where participants seek to exploit technological anoma-

lies of the platform to gain an advantage.

5 Full-amount versus stack-sweep execution

In the analysis above, the trader is assumed to require a standard amount of liquidity – i.e. the amount that each

LP provides individually – and it is therefore feasible that she executes with a single LP that has the best price in

the aggregator. I now consider the execution of larger amounts and focus in particular on how execution style and

hedging strategy of the participating LPs impacts on transaction costs.

For larger amounts, there are two primary execution styles that the trader can adopt. She can divide up the order

into a multiple of standard amounts and spread execution of these across as many providers at their best prices.

This is so-called “stack-sweep” execution. Alternatively, she can request all LPs to provide additional liquidity up

to the required amount and then execute the entire order with the single LP that provides the best price in the that

amount. This is typically referred to as “full-amount” execution. Which of these two strategies is best? In practice

that clearly depends on a variety of factors, including trader preferences and objective function, the agreed terms

of liquidity provision, and specific pricing at the time of execution. Another important consideration is the impact
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that execution style may have on the LPs’ hedging behaviour. I will explore this last point in some detail using a

stylised model for hedging costs, market impact, and speed-to-market.

Let ci = c X
i − c I

i denote the cost for LP-i to hedge an accepted trader’s deal request via externalisation minus

the cost of hedging via internalisation. For the purposes of this discussion, externalisation refers to the process of

instantaneously hedging the trade one-for-one in external (inter-bank or public) markets. A (relatively) low cost of

externalisation can be due to the LP’s superior technology, speed to market, access to a diversified set of liquidity

venues, smart order routing logic, and scale of trading operation for lower unit trading costs. Internalisation, on

the other hand, refers to the process of absorbing the trade into the LP’s inventory to then gradually reduce the risk

position by attracting opposing interest from the LP’s (private) client-base. Internalisation costs are driven by risk

bearing capacity, scale of franchise operation for increased risk netting opportunities, and smart risk management

logic.6

To simplify exposition, I do not explicitly link the LP’s hedging costs to the liquidity it is able to offer, although

in practice these are of course tightly coupled. Instead, I only consider the relative costs of hedging because this

is what determines their hedging strategies. Specifically, if ci > 0 then LP−i is naturally inclined to internalise and

if c j < 0 then LP- j will prefer to externalise. Note that it is possible for the LPs to have different relative costs (i.e.

ci 6= c j ) while the absolute costs of their preferred hedging strategy are the same (e.g. c I
i = c X

j ) and both can offer

equally competitive pricing to the trader.

Regarding market impact, I assume that externalisation creates an instantaneous and permanent price impact

in the direction traded of θ per unit amount. Internalisation attracts negligible impact. This is a simplification

of course: there is an extensive literature that distinguishes permanent from temporary impact, and similarly, it

is natural to expect that internalisation will – over time – incur some market impact as the LP seeks to reduce its

risk position. However, over short time scales and considering that the trader’s liquidity demand is exogenously

6The use of internalisation as a risk management methodology is highlighted in Bank of England, H.M. Treasury, and Financial Conduct

Authority (2014, p. 59): “This has led to an increase in “internalisation” in the spot FX markets where banks are able to match off client

orders internally without having to go to the inter-dealer market to hedge their risk. Market participants have indicated that some dealers

with large enough market share can now internalise up to 90% of their client orders in major currency pairs.” In contrast, an example of

a business model centred around externalisation is Virtu’s: “Our strategies are also designed to lock in returns through precise and nearly

instantaneous hedging, as we seek to eliminate the price risk in any positions held.” (see Virtu Financial, Inc, 2014, p. 2). It is important to

point out that the internalisation/externalisation classification is not simply one of bank versus non-bank LPs because there are banks that

externalise significant portions of their flow and funds that actively internalise. In practice, the hedging approach adopted by any LP will lie

somewhere along the spectrum from pure externaliser to pure internaliser, and may also vary by – for instance – market conditions and flow

characteristics.
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Table 2: Speed-to-market in a race amongst 3 LPs

LP−1 LP−2 LP−3

1st to market
λ1

λ1+λ2+λ3

λ2

λ1+λ2+λ3

λ3

λ1+λ2+λ3

2nd to market
λ2

1(λ2+λ3) +λ1(λ2
2+λ

2
3)

(λ1+λ2+λ3) (λ1+λ2) (λ1+λ3)
λ2

2(λ1+λ3) +λ2(λ2
1+λ

2
3)

(λ1+λ2+λ3) (λ2+λ3) (λ1+λ2)
λ2

3(λ1+λ2) +λ3(λ2
1+λ

2
2)

(λ1+λ2+λ3) (λ1+λ3) (λ2+λ3)

3rd to market
λ2λ3(λ2+λ3) +2λ1λ2λ3

(λ1+λ2+λ3) (λ1+λ2) (λ1+λ3)
λ1λ3(λ1+λ3) +2λ1λ2λ3

(λ1+λ2+λ3) (λ2+λ3) (λ1+λ2)
λ1λ2(λ1+λ2) +2λ1λ2λ3

(λ1+λ2+λ3) (λ1+λ3) (λ2+λ3)

Note. This table reports the probability of LP-i reaching the external market in first, second, or third place in a race amongst three com-

peting liquidity providers. The distribution of speed-to-market is given by Eq. (23).

motivated, the assumption is justifiable.7

The third and final piece of the model specifies τi : the time it takes for LP-i to access the market when it decides

to externalise. I assume this is an i.i.d. random variable with distribution:

Pr(τi <τ) = 1− e −λiτ. (23)

The expected time-to-market for LP-i is 1/λi and so the higher the λ the quicker the LP. The purpose of this com-

ponent of the model is to introduce a time-ordering amongst competing LPs when several want to externalise at

the same time, for instance in response to a stack-sweep execution. It is only the relative values of τi (and λi ) that

matter, not their absolute values (in practice, differences inτi are typically of the order of milli-seconds, if not micro-

seconds). The analysis below will require calculation of the probability that LP-i arrives to market in j t h place in

a race to externalise with N LPs. I denote this probability by P (N )i , j and Table 2 provides explicit expressions for the

case where N = 3.

5.1 Equilibrium hedging strategy

The optimal hedging strategy for full-amount execution is trivial: the LP that wins the deal request knows that it

is for the full amount and the cost-minimising strategy is to internalise if ci > 0 and externalise otherwise. The

7Externalisation – as defined here – involves instantaneous hedging. Of course it is also possible to externalise via gradual hedging in a

way that minimises market impact and makes it observationally indistinguishable from internalisation. Consequently, LPs that follow such

a strategy should be considered internalisers in the context of this paper.
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stack-sweep scenario is more interesting. To simplify exposition, I assume that N = 3 and c1 > 0, c2 > 0, c3 < 0.

This provides all the key insights and avoids any unnecessary complexity. The LPs need to decide on their preferred

hedging approach and they do so simultaneously by aiming to minimise their costs while taking the actions of the

other LPs as given. A Nash equilibrium is reached when none of the LPs have an incentive to – unilaterally – change

their hedging decision.

Let’s start by assuming that LP-3 will externalise (c3 is negative after all). LP-1&2’s intention is to internalise

but they may change their approach conditional on LP-3’s strategy. Individually, they will evaluate the following

condition and decide to externalise if:

ci +θP (2)i ,2 <θ for i ∈ {1, 2}. (24)

The right-hand side of Eq. (24) measures the cost associated with an internalisation strategy: a guaranteed market

impact cost of θ imposed on LP-i by the externalisation strategy of LP-3. The left-hand side measures the costs

associated with switching to externalisation: LP-i incurs a cost of ci but will now avoid the market impact cost with

probability 1−P (2)i ,2 when he reaches the external market ahead of LP-3. If neither LP-1 or LP-2 decide to externalise

then an equilibrium is reached. If only one of LP-1 or LP-2 decide to externalise, then the other needs to re-consider

his strategy as he now faces 2θ of market impact costs. Conditional on the other two LPs externalising, LP-i will

now also externalise if the below condition is satisfied:

ci +θP (3)i ,2 +2θP (3)i ,3 < 2θ for i = 1 or 2. (25)

See Appendix C for explicit expressions of Eqs. (24 – 25).

Using the above conditions, the equilibrium strategies can be mapped out in the parameter space of λ1 and λ2,

for given {c1, c2, c3,λ3,θ }. Panel A of Figure 8 and Table 3 provides an illustration, setting c1 = 0.100, c2 = 0.075, c3 =

−0.250,λ3 = 10 and θ = 0.2.

In scenario I of Table 3 (contained in the � region of Figure 8), both LP-1 and LP-2 are slower than LP-3 with

λ1 = λ2 = 5: in a race with LP-3 alone LP-i will come second with probability λ3/(λi +λ3) =
2
3 . LP-1’s choice is to

(i) internalise and incur θ = 0.2 of impact costs or (ii) pay c1 = 0.100 to externalise and save θ with probability 1
3 .

Because 0.2< 0.1+0.2× 2
3 = 0.233, LP-1 decides to internalise. The same applies to LP-2. Because LP-3 is better off

by −c3 compared to internalisation, no LP is inclined to change its hedging decision and equilibrium is reached.

In scenario II (contained in the � region of Figure 8), LP-1 is sufficiently quick to make him want to join the

race to externalise: with a probability of 71% he’ll reach the market before LP-3. The equilibrium is one where LP-1

reduces his impact costs to less than θ , LP-3 is still better off compared to internalisation. LP-2 now incurs 2θ of

market impact but his costs would increase further were he to join the race to externalise.
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Table 3: Incremental hedging costs associated with stack-sweep execution

all externalise all externalise

internalise LP-3 LP-1/3 LP-2/3 all internalise LP-3 LP-1/3 LP-2/3 all

Scenario I: λ1 = 5,λ2 = 5 (λ3 = 10) Scenario IV: λ1 = 15,λ2 = 10 (λ3 = 10)

LP-1 0.000 0.200 0.233 0.400 0.333 0.000 0.200 0.180 0.400 0.260

LP-2 0.000 0.200 0.400 0.208 0.308 0.000 0.200 0.400 0.175 0.295

LP-3 0.250 0.000 0.067 0.067 0.133 0.250 0.000 0.120 0.100 0.220

Scenario II: λ1 = 25,λ2 = 2 (λ3 = 10) Scenario V: λ1 = 8,λ2 = 10 (λ3 = 10)

LP-1 0.000 0.200 0.157 0.400 0.172 0.000 0.200 0.211 0.400 0.322

LP-2 0.000 0.200 0.400 0.242 0.427 0.000 0.200 0.400 0.175 0.264

LP-3 0.250 0.000 0.143 0.033 0.176 0.250 0.000 0.089 0.100 0.189

Scenario III: λ1 = 2,λ2 = 10 (λ3 = 10) Scenario VI: λ1 = 20,λ2 = 25 (λ3 = 10)

LP-1 0.000 0.200 0.267 0.400 0.433 0.000 0.200 0.167 0.400 0.278

LP-2 0.000 0.200 0.400 0.175 0.208 0.000 0.200 0.400 0.132 0.221

LP-3 0.250 0.000 0.033 0.100 0.133 0.250 0.000 0.133 0.143 0.276
Note. This table reports the additional hedging costs incurred by the LPs when the trader uses stack-sweep execution and the LPs

hedging decisions are as indicated in the table. The scenarios vary λ1 and λ2 while keeping fixed λ3 = 10 and c1 = 0.100, c2 = 0.075, c3 =

−0.250,θ = 0.2. The equilibrium states are highlighted in bold with colour coding consistent with Figure 8.

In scenario IV (contained in the� region of Figure 8), both LP-1 and LP-2 individually decide to join the race. The

equilibrium is reached with all three LPs externalising the trader’s flow. In the related scenario V, the condition in

Eq. (24) is not satisfied for LP-1, i.e. the actions of LP-3 in isolation are not sufficient to make LP-1 change his default

hedging strategy. However, the condition is satisfied for LP-2 which leads LP-1 to re-evaluate and externalise. This

nicely illustrates the cascading nature of the hedging decisions: LP-2 only externalises because LP-3 does, and LP-1

only externalises because LP-2 and LP-3 do, ending up in a state where all LPs externalise when only one of them is

naturally inclined to do so.

5.2 Discussion

Are the equilibrium hedging strategies described above “optimal”? The simple answer is that in some instances

they are clearly not. Consider for instance Scenario IV where all LPs decide to externalise. Here the costs incurred
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Figure 8: Equilibrium hedging strategies with stack-sweep execution
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Note. This chart maps out the equilibrium hedging strategies as a function of λ1 and λ2 while

keeping fixed λ3 = 10 and c1 = 0.100, c2 = 0.075, c3 =−0.250,θ = 0.2.

by every LP are higher compared to the situation where only LP-3 externalises. Similarly, Scenario VI (contained in

the � region of Figure 8) illustrates the case where LP-3 triggers a race to externalise amongst all participating LPs

but given the speed of its competitors everyone ends up worse off compared to the situation where all internalise.

The region defined by the equation below is one where LP-3 ends up bearing higher costs – due to LP-1 and LP-2

imposing significant market impact on him when they reach the market first – than if he had been able to commit

to internalise and not forced LP-1&2 to externalise.

θP (3)3,2 +2θP (3)3,3 >−c3. (26)

The equilibrium states described above, even those that are clearly inferior, are stable because no LP is incentivised

to unilaterally change its decision. An agreement amongst the LPs to all internalise in Scenario VI won’t hold because

LP-3 can reduce its costs by non-compliance: he is incentivised to break the agreement short of any commitment

device. This is the classical Prisoner’s dilemma. The optimal “all-internalise” state in the � region in Figure 8 may

28



be reached in a repeated game with tit for tat strategies. This is beyond the scope of the current paper.

Turning to the choice of execution style, what is the trader advised to do? It is instructive to consider a baseline

setup where the trader aggregates liquidity only from LP-1 and LP-2. In that case, the flow will be fully internalised

irrespective of whether she executes on a full-amount basis or via stack-sweep. Now suppose the trader adds LP-3

into the aggregator. If she executes full amount, then LP-1 and LP-2 can continue to internalise and so any deals

they win will attract minimal price impact. LP-3 will externalise and create market impact, but because the other LPs

don’t participate in the deal request they are unaffected. If, on the other hand, the trader executes via stack-sweep,

after adding LP-3, a race amongst all participating LPs to externalise the flow may ensue – the highest aggregate

cost equilibrium state (0.775 in the example in Table 3, compared to 0.250 for all-internalise or 0.400 for only LP-3

externalises). The trader therefore maximises its footprint and spreads are likely to widen due to the increased costs

imposed on the LPs.

Taking this one step further, if the trader’s flow is genuinely uninformed, it is unlikely she will want to inter-

act with an externalising LP. Because trading in public venues is anonymous (the matching parties face a central

clearing house), the externalising LP will pay a premium on any aggressive executions in the form of an adverse

selection component embedded in the spread. Despite the LP hedging uninformed flow, the maker cannot distin-

guish between informed and uninformed aggressors due to the venue enforced anonymity of counterparts. The

LP that internalises the flow avoids this premium and can reflect that in the nominal and effective spread charged.

This reasoning then suggests that the trader should only include externalising LPs into the aggregator if her flow is

informed and the value of the information content exceeds the adverse selection premium charged on-exchange.

The LP becomes a route to market for the trader and the liquidity it offers is of no intrinsic value. Uninformed flow

therefore gravitates towards over-the-counter markets with pre-deal counterparty transparency (where the trader

can reveal it’s “type”) and flow that is sufficiently informed ends up on anonymous public markets.

Finally, consider the impact of one LP’s hedging decision on the reject rate of another. If LP3 is the only one to

externalise, then the instantaneous market impact θ created translates into an effective lowering of the other LPs’

trade acceptance tolerance levels from δ to δ−θ . An example with conservative parameters illustrates the impact

can be significant: with s = 1,ω = 0.25,σ = 0.50,β = 0.75,ρ = 0.50, N = 3,δ = 0.5, n = 1 the baseline reject rate is

19%, but with one externalising LP the reject rate of the other LPs will jump to 31%. If two LPs externalise and create

a combined impact of 2θ , the reject rate of the other LP further increases to 45%.
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6 Conclusion

This paper studies the properties of execution in an aggregator where multiple liquidity providers (LPs) compete on

price for a trader’s uninformed flow. Within the context of a simple model, I analyse the effective spread as a repre-

sentative measure of the trader’s all-in transaction costs and show how it is determined by a combination of factors,

including (i) the number of LPs included in the aggregator, (ii) the type of LPs selected, (iii) the trader’s execution

style, (iv) the nominal spread charged by each LP, (v) the LPs’ trade acceptance criteria as well as (vi) intrinsic char-

acteristics of the LPs such as the quality of price discovery and (vii) market volatility. The results highlight intricate

dependencies amongst the LPs’ liquidity provision (e.g. a spread tightening by one LP can impact the reject rate

and revenues of another) and the fragility of execution costs to the type of LPs included in the aggregator (e.g. the

addition of a single LP reluctant to internalise the trader’s flow, can lead to an equilibrium where all LPs externalise

and market impact and collective hedging costs are maximised). The paper makes explicit that best-price execution

doesn’t necessarily lead to the lowest all-in transaction costs and provides traders with a framework to analyse and

evaluate their aggregator design.

How do the theoretical predictions made in this paper translate into practice? A key message of the paper is

that transaction costs are not necessarily lowered by increasing the number of LPs included in the aggregator: with

many competing LPs the observed spread in the aggregator will certainly be tighter (and can even go negative)

than with fewer LPs, but then the nominal spread and trade acceptance criteria will counterbalance this. So from

a theoretical perspective, the number of LPs can be entirely inconsequential in that the same transaction costs can

be achieved with many or with few LPs. In practice, there will be additional considerations. For instance, individual

LPs may have particular strengths and weaknesses and the nature of their liquidity offering may vary (e.g. in terms

of instrument coverage, service levels, platform functionality, amount of liquidity it can offer, etc) so combining a

few can have benefits. Also, a trader may want a minimum number of LPs to participate in the aggregator to ensure

resiliency or to satisfy internal execution guidelines. At the same time, a large number of LPs may be undesirable

as relationship management can get costly, the economic incentives for individual LPs are reduced, and with the

trader less reliant on an individual LP their liquidity provision may become less consistent.

The results presented throughout assume the trader to be entirely uninformed. Despite this, strong adverse

selection effects can arise: competition for flow by the LPs combined with a best-price execution strategy on the

trader’s behalf means that the LP that wins the deal request will suffer from the Winner’s curse. In practice, there

will be traders that execute for exogenous liquidity reasons, but equally there will be those that act opportunistically

based on short-term price predictions and those that seek to exploit temporary mis-pricing or pursue latency arbi-
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trage opportunities. Depending on the nature of the trader’s activity, the adverse selection effects described in the

paper may be magnified and increase the importance of the last-look trade acceptance process as a defensive mea-

sure. The paper also shows that stack-sweep execution in an aggregator with participating LPs keen to externalise

is unambiguously detrimental to transaction costs for an uninformed trader. For informed traders this conclusion

may change, but such an analysis is beyond the scope of this paper and left for future research.
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A Preliminaries

I first state some results on conditional expectations of normal random variables that will be used below. Let (x , y )be bi-variate

normal with mean zero, variances σ2
x ,σ2

y , and correlation ρ. Let φ(·) and Φ(·) denote the density and distribution function of

a standard normal random variable. Forσx = 1, we have

E (x | x >δ) =
E (X I(x>δ))
E (I(x>δ))

=

∫∞
δ

xφ(x )d x

1−Φ(δ)
=
−φ(x ) |∞δ

1−Φ(δ)
=

φ(δ)
1−Φ(δ)

.

And so for arbitraryσx we have

E (x | x >δ) =σx E
�

xσ−1
x | xσ−1

x >δσ
−1
x

�

=σx
φ(δ/σx )

1−Φ(δ/σx )
≡G (δ,σ2

x ), (27)

where the function G is defined for notational convenience. Note that G (0,σ2) =σ
p

2/π= E ( | x | ).

E ( | a + x | ) = E (a + x | a + x > 0)Pr(a + x > 0)−E (a + x | a + x < 0)Pr(a + x < 0) = 2aΦ(a/σx ) +2σxφ(a/σx )−a . (28)

For a bi-variate normal,

E (x | y >δ) = E
�

Ey (x | y ) | y >δ
�

=
ρσxσy

σ2
y

E (y | y >δ) =
ρσxσy

σy

φ(δ/σy )

1−Φ(δ/σy )
. (29)

Using a change of variables and Eq. (29),

E (x | x > y ) = E (x | z > 0) = 2φ(0)
σ2

x −ρσxσy
q

σ2
x +σ2

y −2ρσxσy

=
p

2/π
σ2

x −ρσxσy
q

σ2
x +σ2

y −2ρσxσy

, (30)

where z = x − y and noting that x , z are jointly normal, with E (x z ) =σ2
x −ρσxσy and E (z 2) =σ2

x +σ
2
y −2ρσxσy .

E (max(x , y )) = E
�

x + y

2
+
| x − y |

2

�

=
1

2
E ( | x − y | ) = (2π)−1/2

q

σ2
x +σ2

y −2ρσxσy . (31)

Also note that E (max(x , y )) = −E (min(x , y )) and so E (max(x , y )−min(x , y )) = 2E (max(x , y )). For tri-variate normal (x , y , z )

we have

E (max(x , y , z )−min(x , y , z )) =
1

2
E
�

| x − y | + | x − z | + | y − z |
�

,

=
1
p

2π

q

σ2
x +σ2

y −2ρx ,yσxσy +
1
p

2π

Æ

σ2
x +σ2

z −2ρx ,zσxσz

+
1
p

2π

q

σ2
y +σ2

z −2ρy ,zσyσz . (32)

B Proofs

Proof of Proposition 1. From si = s it follows that S = E (a t −b t ) = s+E (mini {m
(i )
t }Ni=1−maxi {m

(i )
t }Ni=1) = s−2E (maxi {m

(i )
t }Ni=1).

The unconditional variance of the measurement error is V (m (i )
t ) = ω2 and independent of β by specification of the process.

Because βi = β , the correlation amongst the measurement error processes is ρ and also independent of β . Now note that
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{m (i )
t }Ni=1

d={xi }Ni=1 where xi = ω(ρu0 +
p

1−ρui ) and u are independent standard normal. Therefore, E (maxi {m
(i )
t }Ni=1) =

E (maxi {xi }Ni=1) = ω
p

1−ρE (maxi {ui }Ni=1). See Aksomaitis and Burauskaitė-Harju (2009) for more details. Berman (1964)

shows that for large N ,ψN ∝
p

log N , from which it follows that ∂ 2ψN /∂ N 2 < 0. �

Proof of Proposition 2. For the model defined by Eqs. (1 – 4), it is easy to see that Vh = s/2+E (m (i )
t+h −m (i )

t |m
(i )
t >m (6=i )

t ). The

expectation can be worked out as follows:

E (m (i )
t+h −m (i )

t |m
(i )
t >m (6=i )

t ) = E ((βh −1)m (i )
t +

h−1
∑

j=0

β jηt+h− j |m (i )
t >m ( 6=i )

t ),

= (βh −1)E (m (i )
t |m

(i )
t >m (6=i )

t ),

= (βh −1)E (max
i
{m (i )

t }
N
i=1),

= (βh −1)ω
p

1−ρψN . (33)

�

Proof of Proposition 3. Starting with the definition of the reject rate in Eq. (10), note that:

R = Pr(b (i )t+n − b (i )t <−δ | b (i )t > b (6=i )
t ),

= Pr
�

p ∗t+n −p ∗t +m (i )
t+n −m (i )

t <−δ |m
(i )
t >m (6=i )

t

�

,

= Pr

 

n
∑

j=1

εt+ j +
n−1
∑

j=0

β jη(i )t+n− j + (β
n −1)m (i )

t <−δ |m
(i )
t >m (6=i )

t

!

,

= Φ

�

(1−βn )m (i )
t −δ

p

nσ2+ (1−β 2n )ω2
|m (i )

t >m ( 6=i )
t

�

. (34)

To obtain the unconditional probability of a reject, one would need to integrate out the random variable m (i )
t conditioned on

m (i )
t >m (6=i )

t . This can be done numerically but it is not analytically tractable. An approximation can be obtained by replacing

the measurement error by its conditional expectation, i.e.

R≈Φ
�

(1−βn )ω
p

1−ρψN −δ
p

nσ2+ (1−β 2n )ω2

�

. (35)

Because the function Φ(x ) is convex for x < 0 and concave for x > 0, by Jensen’s inequality, the above approximation will

constitute an upper bound (lower bound) when the numerator is sufficiently positive (negative). �

Proof of Proposition 4. I first derive an expression for Vh , defined in Eq. (12). The effective spread then trivially follows from

S= 2V∞.

Vh =
s

2
+E

�

p (i )t+h −p (i )t | b
(i )
t > b (6=i )

t , b (i )t+n > b (i )t −δ
�

,

=
s

2
+E

 

(βh −1)m (i )
t +

h−1
∑

j=0

β jη(i )t+h− j +
h
∑

j=1

εt+ j |m (i )
t >m ( 6=i )

t , b (i )t+n > b (i )t −δ

!

. (36)
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The conditional expectation of m (i )
t in Eq. (36) can be expressed as:

E

 

m (i )
t |m

(i )
t >m (6=i )

t , (1−βn )m (i )
t <δ+

n−1
∑

j=0

β jη(i )t+n− j +
n
∑

j=1

εt+ j

!

. (37)

This is of the form E (x | y < x < z ) and analytically intractable. In order to still obtain a lower bound on S, an upper bound on

the conditional expectation of m (i )
t is required (because βh −1< 0 multiplying m (i )

t in Eq. 36):

E
�

m (i )
t |m

(i )
t >m (6=i )

t , b (i )t+n > b (i )t −δ
�

= E
�

m (i )
t |m

(i )
t >m (6=i )

t , m (i )
t <m (i )

t+n +δ
�

< E
�

m (i )
t |m

(i )
t >m ( 6=i )

t

�

=ω
p

1−ρψN . (38)

A lower bound on the second and third term in Eq. (36) for h ≥ n is given by:

E

 

E

 

h
∑

j=1

εt+ j +
h−1
∑

j=0

β jη(i )t+h− j |
n
∑

j=1

εt+ j +
n−1
∑

j=0

β jη(i )t+n− j > (1−β
n )m (i )

t −δ

!

|m (i )
t >m ( 6=i )

t

!

= E

 

E

 

n
∑

j=1

εt+ j +β
h−n

n−1
∑

j=0

β jη(i )t+n− j |
n
∑

j=1

εt+ j +
n−1
∑

j=0

β jη(i )t+n− j > (1−β
n )m (i )

t −δ

!

|m (i )
t >m (6=i )

t

!

,

=
nσ2+βh−n (1−β 2n )ω2

nσ2+ (1−β 2n )ω2
E
�

G ((1−βn )m (i )
t −δ, nσ2+ (1−β 2n )ω2) |m (i )

t >m ( 6=i )
t

�

,

>
nσ2+βh−n (1−β 2n )ω2

nσ2+ (1−β 2n )ω2
G ((1−βn )ω

p

1−ρψN −δ, nσ2+ (1−β 2n )ω2). (39)

In the first step, I use that the conditional expectation of εt+ j and ηt+ j is zero for j > n . In the second step I use the result in

Eq. (29), and the final step follows from Jensen’s inequality and the convexity of G . Collecting terms, yields a lower bound on

Vh and the associated expression for S. �

Proof of Proposition 5. The unconditional variance of the measurement error noise is V (m (i )
t ) =ω2

i and independent of β by

specification of the process. For N = 2, the unconditional correlation between the measurement error processes is:

ρm ≡
1

ω1ω2
lim

n→∞
E0(m

(1)
n m (2)

n ),

=
1

ω1ω2
lim

n→∞
E

 

βn
1 m (1)

0 +β
n
2 m (2)

0 +

 

n−1
∑

j=0

β
j

1 η
(1)
n− j

! 

n−1
∑

j=0

β
j

2 η
(2)
n− j

!!

,

=
1

ω1ω2
lim

n→∞
E

 

n−1
∑

j=0

(β1β2)
jη(1)n− jη

(2)
n− j

!

,

= ρ

Æ

(1−β 2
1 )(1−β 2

2 )
1−β1β2

. (40)

The observed spread S =−2E (max(m (1)
t −

s1
2 , m (2)

t −
s2
2 )) =

s1+s2
2 −E ( |m (1)

t −m (2)
t +

s2−s1
2 | ) from which it follows using Eq. (28) that

S = s2− (s2− s1)Φ
�

s2− s1

2σ∆m

�

−2σ∆mφ

�

s2− s1

2σ∆m

�

, (41)

whereσ2
∆m ≡ E ((m (2)

t −m (1)
t )2) =ω2

1+ω
2
2−2ρmω1ω2. To obtain the probability of reject for LP-2, I use the same approach as in

the proof of Proposition 3 by noting that:

R2 = Pr(b (2)t+n2
− b (2)t <−δ2 | b (2)t > b (1)t ) =Φ

 

(1−βn2
2 )m

(2)
t −δ2

q

n2σ2+ (1−β 2n2
2 )ω2

2

| b (2)t > b (1)t

!

. (42)
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From Eqs. (29) and (40) it follows that

E (m (2)
t | b

(2)
t > b (1)t ) = E (m (2)

t |m
(2)
t −m (1)

t >
1

2
(s2− s1)) =

ω2
2−ρmω1ω2

σ2
∆m

G (
1

2
(s2− s1),σ

2
∆m ). (43)

Replacing m (2)
t in Eq. (42) by the above expectation yields the required approximation. The reject rate for LP-1 follows by

symmetry.

Following the same approach as in the proof of Proposition 4, the value of a completed trade to LP-2 can be expressed as:

Vh ,2 =
s

2
+E

 

(βh
2 −1)m (2)

t +
h−1
∑

j=0

β
j

2 η
(2)
t+h− j +

h
∑

j=1

εt+ j | b (2)t > b (1)t , b (2)t+n2
> b (2)t −δ2

!

. (44)

An upper bound for the first term in Eq. (44) is:

E
�

m (2)
t | b

(2)
t > b (1)t , b (2)t+n2

> b (2)t −δ2

�

< E
�

m (2)
t | b

(2)
t > b (1)t

�

=
ω2

2−ρmω1ω2

σ2
∆m

G (
1

2
(s2− s1),σ

2
∆m ). (45)

A lower bound on the second and third term in Eq. (44) for h ≥ n2 is given by:

E

 

E

 

h−1
∑

j=0

β
j

2 η
(2)
t+h− j +

h
∑

j=1

εt+ j |
n2−1
∑

j=0

β
j

2 η
(2)
t+n2− j +

n2
∑

j=1

εt+ j > (1−β
n2
2 )m

(2)
t −δ2

!

|m (2)
t >m (1)

t +
s2− s1

2

!

=
n2σ

2+βh−n2 (1−β 2n2
2 )ω2

2

n2σ2+ (1−β 2n2
2 )ω2

2

E
�

G ((1−βn2
2 )m

(2)
t −δ2, n2σ

2+ (1−β 2n2
2 )ω2

2) |m
(2)
t >m (1)

t +
s2− s1

2

�

,

>
n2σ

2+βh−n2 (1−β 2n2
2 )ω2

2

n2σ2+ (1−β 2n2
2 )ω2

2

G

�

(1−βn2
2 )
ω2

2−ρmω1ω2

σ2
∆m

G (
1

2
(s2− s1),σ

2
∆m )−δ2, n2σ

2+ (1−β 2n2
2 )ω2

2

�

, (46)

Collecting terms, yields a lower bound on Vh ,2 and the associated expression for S2 (and S1 by symmetry). �

Proof of Proposition 6. For notational convenience, I assume throughout that LP-1 is “fast” and LP-2 is “slow”. The expression

for the observed spread directly follows from Eq. (31):

S =−2E (max(b (1)t , b (2)t )−p ∗t ) = s −E ( |m (1)
t −m (2)

t−1+εt | ) = s −E ( | βm (1)
t−1+η

(1)
t −m (2)

t−1+εt | ) = s −2ψ2

Æ

ω2(1−ρβ ) +σ2/2. (47)

An expression for the probability of reject for LP-slow for n > 1 is derived as follows:

Rslow = Pr
�

b (2)t+n − b (2)t <−δ | b (2)t > b (1)t

�

,

= Pr
�

p ∗t+n−1+m (2)
t+n−1−p ∗t−1−m (2)

t−1 <−δ | p
∗
t−1+m (2)

t−1 > p ∗t +m (1)
t

�

,

= Pr

 

n−1
∑

j=0

εt+ j +
n−1
∑

j=0

β jη(2)t+n−1− j +
�

βn −1
�

m (2)
t−1 <−δ |m

(2)
t−1 > εt +βm (1)

t−1+η
(1)
t

!

,

= Pr

 

n−1
∑

j=1

εt+ j +
n−2
∑

j=0

β jη(2)t+n−1− j +β
n−1

p

1−ρ2η∗t <
�

1−βn
�

m (2)
t−1−δ− εt −βn−1ρη(1)t |m

(2)
t−1 > εt +βm (1)

t−1+η
(1)
t

!

,

= Φ

� �

1−βn
�

m (2)
t−1−δ− εt −βn−1ρη(1)t

p

(n −1)σ2+ (1−β 2n )ω2−β 2n (β−2−1)ρ2ω2
|m (2)

t−1 > εt +βm (1)
t−1+η

(1)
t

�

,

≈ Φ







(1−βn )(1−ρβ)ω2+µslow

ψ−1
2

p
(1−ρβ )ω2+σ2/2

−δ
q

nσ2+ (1−β 2n )ω2−σ2
slow






, (48)
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where µslow = σ2 +ρ(βn−1 −βn+1)ω2 and σ2
slow = σ

2 +β 2n (β−2 − 1)ρ2ω2. In the third step, I use that η(2)t
d=
p

1−ρ2η∗t +ρη
(1)
t

with η∗t ∼ i.i.d.N (0, (1−β 2)ω2). The final step uses Eq. (30) to obtain the expressions below:

E
�

m (2)
t−1 |m

(2)
t−1 > εt +βm (1)

t−1+η
(1)
t

�

=
(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2,

E
�

εt | εt <m (2)
t−1−βm (1)

t−1−η
(1)
t

�

= −
σ2

p

(1−ρβ )ω2+σ2/2
ψ2,

E
�

η(1)t | η
(1)
t <m (2)

t−1− εt −βm (1)
t−1

�

= −

�

1−β 2
�

ω2

p

(1−ρβ )ω2+σ2/2
ψ2.

Similarly, an expression for the probability of reject for LP-fast is derived as follows:

Rfast = Pr
�

b (1)t+n − b (1)t <−δ | b (1)t > b (2)t

�

,

= Pr
�

p ∗t+n+1−p ∗t+1+m (1)
t+n+1+m (1)

t+1 <−δ | p
∗
t+1+m (1)

t+1 > p ∗t +m (2)
t

�

,

= Pr

 

n
∑

j=1

εt+ j+1+
n−1
∑

j=0

β jη(1)t+n− j+1 <
�

1−βn
�

m (1)
t+1−δ | βm (1)

t >m (2)
t − εt+1−η

(1)
t+1

!

,

= Φ

 �

1−βn
�

�

βm (1)
t +η

(1)
t+1

�

−δ
q

nσ2+
�

1−β 2n
�

ω2
| βm (1)

t +η
(1)
t+1 >m (2)

t − εt+1

!

,

≈ Φ







(1−βn )(1−ρβ)ω2

ψ−1
2

q

(1−ρβ)ω2+σ2/2
−δ

q

nσ2+
�

1−β 2n
�

ω2






. (49)

The value of a completed trade to LP-slow for n > 1 is:

Sslow = 2 lim
h→∞
Vh ,2,

= s +2 lim
h→∞

E
�

p (2)t+h −p (2)t | b
(2)
t > b (1)t , b (2)t+n > b (2)t −δ

�

,

= s +2 lim
h→∞

E

 

(βh −1)m (2)
t−1+

h−1
∑

j=0

β jη(2)t+h− j−1+
h
∑

j=1

εt+ j−1 | b (2)t > b (1)t , b (2)t+n > b (2)t −δ

!

,

= s +2E

 

n
∑

j=2

εt+ j−1 | b (2)t > b (1)t , b (2)t+n > b (2)t −δ

!

+2E
�

εt | b (2)t > b (1)t , b (2)t+n > b (2)t −δ
�

−2E
�

m (2)
t−1 | b

(2)
t > b (1)t , b (2)t+n > b (2)t −δ

�

.

Working through each term separately:

E

 

n
∑

j=2

εt+ j−1 | b (2)t > b (1)t , b (2)t+n > b (2)t −δ

!

= E

 

E

 

n
∑

j=2

εt+ j−1 | βn−1
p

1−ρ2η∗t +
n−2
∑

j=0

β jη(2)t+n− j−1+
n
∑

j=2

εt+ j−1 > (1−βn )m (2)
t−1−δ− εt −ρβn−1η(1)t

!

|m (2)
t−1 >βm (1)

t−1+η
(1)
t + εt

!

,

=
(n −1)σ2

nσ2+ (1−β 2n )ω2−σ2
slow

E
�

G ((1−βn )m (2)
t−1−δ− εt −ρβn−1η(1)t , nσ2+ (1−β 2n )ω2−σ2

slow |m
(2)
t−1 >βm (1)

t−1+η
(1)
t + εt

�

,

>
(n −1)σ2

nσ2+ (1−β 2n )ω2−σ2
slow

G

�

(1−βn )(1−ρβ )ω2+µslow
p

(1−ρβ )ω2+σ2/2
ψ2−δ, nσ2+ (1−β 2n )ω2−σ2

slow

�

.
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Next,

E
�

εt | b (2)t > b (1)t , b (2)t+n > b (2)t −δ
�

> E
�

εt | b (2)t > b (1)t

�

= E
�

εt |m
(2)
t−1 >βm (1)

t−1+η
(1)
t + εt

�

=−
σ2

p

(1−ρβ )ω2+σ2/2
ψ2.

Finally,

E
�

m (2)
t−1 | b

(2)
t > b (1)t , b (2)t+n > b (2)t −δ

�

< E
�

m (2)
t−1 |m

(2)
t−1 >βm (1)

t−1+η
(1)
t−1− εt

�

=
(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2.

To obtain the value of a completed trade for the fast LP:

Sfast = 2 lim
h→∞
Vfast

h ,1

= s +2 lim
h→∞

E
�

b (1)t+h − b (1)t | b
(1)
t > b (2)t , b (1)t+n > b (1)t −δ

�

,

= s +2E

 

−m (1)
t+1+

n
∑

j=1

εt+ j | b (1)t > b (2)t , b (1)t+n > b (1)t −δ

!

.

An upper bound for the first term is:

E
�

m (1)
t | b

(1)
t > b (2)t , b (1)t+n > b (1)t −δ

�

< E
�

m (1)
t |m

(1)
t >m (2)

t−1− εt

�

=
(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2. (50)

A lower bound for the second term is:

E

 

E

 

n
∑

j=1

εt+ j |
n−1
∑

j=0

β jη(1)t+n− j +
n
∑

j=1

εt+ j > (1−βn )m (1)
t −δ

!

| b (1)t > b (2)t

!

=
nσ2

nσ2+ (1−β 2n )ω2
E
�

G ((1−βn )m (1)
t −δ, nσ2+ (1−β 2n )ω2) |m (1)

t >m (2)
t−1− εt

�

,

>
nσ2

nσ2+ (1−β 2n )ω2
G

�

(1−βn )(1−ρβ )ω2

p

(1−ρβ )ω2+σ2/2
ψ2−δ, nσ2+ (1−β 2n )ω2

�

.

�

C Stack execution equilibrium boundaries

The condition in Eq. (24) where LP-i is better off externalising when LP-3 does so, can be expressed as:

λi > ci
λ3

θ − ci
for i ∈ {1, 2}

The condition in Eq. (25) where LP-i is better off externalising when LP- 6= i and LP-3 do so, can be expressed as:

λi >
(ci −θ )

�

λ3+λ6=i

�

+
Ç

ci

�

λ3−λ6=i

�2
(ci −2θ )+θ 2

�

λ3+λ6=i

�2

2 (2θ − ci )
for i ∈ {1, 2},

where (6= i ) = 1 if i = 2 and vice versa. Sometimes it is useful to translate the condition on λ1 in terms of λ2 into a condition on

λ2 for given λ1:

λ2 <−λ1
c1λ1−2θλ1−θλ3+ c1λ3

c1λ1+ c1λ3−θλ1

The no-regret condition for LP-3 in (26) can be expressed as:

λ2 >−λ3
c3λ1+ c3λ3+θλ1

c3λ1+2θλ1+θλ3+ c3λ3
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