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Abstract. Excellent Customer Experience (CE) is a strategic priority for many 

large service organisations in a competitive marketplace. CE should be seamless, 

and in most cases it is, with customers ordering, paying for and receiving services 

that align with their expectations.  However, in rare cases, an exceptional process 

event leads to service delivery delay or failure, and both the customer and organ-

isation end up in complex recovery situations as a result.  Unless this recovery is 

handled effectively inefficiency, avoidable costs and brand damage can result. So 

how can organisations sense when these problems are occurring and how can 

they respond to avoid these negative consequences?  Our paper proposes a 

blended methodology where process mining and qualitative user research com-

bine to give a holistic picture of customer experience issues, derived from a par-

ticular customer case study. We propose a theoretical model for detecting and 

responding to customer issues, and discuss the challenges and opportunities of 

such a model when applied in practice in large service organisations. 

Keywords: Customer Experience, Process Mining, HCI  

1 Introduction –Why is this approach different to other 

Customer Experience Research? 

Customer Experience (CE) research covers a wide variety of angles, all worthy 

but often not brought together for maximum impact.  For example UI design 

testing on ecommerce sites is often concerned with optimising ordering se-

quences, but may not address the user journey when these orders go wrong.  

Similarly CE research in larger groups, via focus groups may give generic is-

sues retrospectively – not reflecting “here and now” issues.  The related field 

of Customer Relationship Management (CRM) research often involves pro-

cesses and systems use in call centres [e.g. 1] – but  how often is that tied into 

customer experience? At a macro level, text analysis of social media can pro-

vide hot issues in customer experience, and Net-Promoter Score surveys [2] 
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provide quantitative clues to the same but lack specificity of findings.  In the 

back- end, process mining and mapping gives information that describes what 

has gone wrong and how badly but doesn’t say what the effect on the customer 

actually is. 

 

Given Duncan et al (2013) argue that “most companies perform fairly well on 

touchpoints, but performance on journeys can set a company apart.” [3], there 

seems a paucity of methods able to connect qualitative process perspectives 

with quantitative process mining data on customer experience to help improve 

such customer “journeys”. Indeed Duncan et al (2013) [3] sensibly recommend 

that “a company should draw on customer and employee surveys along with 

operational data across functions at each touchpoint, to assess performance”, 

though they acknowledge that this is a difficult endeavour as it requires the 

acquisition and integration of a large range of different types of empirical ma-

terial, both qualitative and quantitative.  

 

Our work seeks to achieve this by combining process mining with HCI, some-

thing discussed by Holziger [4], and Shneidermann [5] who underline the im-

portance of integrating data mining with effective, usable data visualisation. In 

a business context, this would enable business managers and company strate-

gists to control what data they are seeking so they can make decisions effi-

ciently and adaptively. 

 

Although a detailed analysis of the customer experience case study is detailed 

elsewhere (forthcoming) we here concentrate on documenting the adopted 

methodology as a novel way of enabling large service organisations to detect 

customer distress episodes and respond to them in a timely fashion, thereby 

minimising potential brand damage and maximising customer advocacy. Our 

contribution is thus methodological and practice, providing HCI researchers 

with a means of linking process mining and HCI, and providing practitioners 

with a means of detecting, addressing, and better understanding customer dis-

tress. We demonstrate our novel combination of process mining and qualitative 

research through the analysis of a case study of a problematic customer experi-

ence journey, and thus demonstrate the benefit of this combined approach. We 

first look at the approach to the case study which inspired our thinking. 

2 Background  

The authors of this paper were made aware of a particular customer’s journey 

via family contacts.  It involved the customer’s problematic delivery of a super-

fast broadband connection from a telecommunications provider. In the vast ma-

jority of these types of orders, such connections are provided with no problems 



whatsoever.  However in this one exceptional case, a process event occurred in 

the organisation’s back-end, effectively cancelling the customer’s order – 

which the customer could not know about. When he was made aware of the 

situation, he struggled to get his service delivery back on track.  Problems will 

always occur in large complex organisations but it is the customer’s experience 

of how the recovery is dealt with which is a key issue.  Due to the duration  and 

number of different representatives of the organisation who were involved in 

dealing with this customer’s journey  it was clear that this case study was wor-

thy of investigation, to understand how the interfaces between the customer and 

the company, the underlying delivery process, and the recovery process were 

sub-optimal and where they could be improved. 1 

The researchers had access to the company systems and the customer himself 

to accumulate a significant data corpus to analyse.  The blended skills of the 

researchers (Information Systems and HCI/ethnography) were then fully de-

ployed to analyse the case. Our theoretical approach reflected a process philos-

ophy [6],and draws heavily upon Langley’s [7] strategies for theorising process 

data. Langley argues that “process research that incorporate narrative, inter-

pretive and qualitative data are more immediately appealing for the richness 

of process detail they provide”. We drew upon this argument to believe that 

linking the often hidden process-data within the company’s data-warehouse 

with such narrative qualitative data would provide additional insight and ad-

dress the arguably neglected process dimension of Customer Experience re-

search.   

 

 

 

 

 

 

 

3 Data Corpus for the Case Study 

The data corpus for the case study comprised quantitative and qualitative 

sources and analysis techniques as outlined Table 1 below: 

                                                           

1 The customer case was finally resolved to the customer’s satisfaction.  The customer remains 

a customer of the organisation some 18 months after the case was closed. 



 

Table 1.  

The richness and detail of the data corpus for this one case study allowed the 

researchers to understand a) the structured, process-driven recovery path 

(which was seen to fall onto a failure path on numerous occasions) against b) 

how the process failures manifested themselves to the customer, and indeed 

Data source Analysis technique Data Format 

Customer 1. Semi-structured interview to discuss experiences of 

the customer’s interactions with the organisation.   

2. Full transcription of recorded interview, coding of 

key themes [8], core issues identified and prioritised.  

Highest priority issues presented as 

text data (derived from transcription 

and coding sequence).  

 1. Mapping of sequence and content of interactions 

*from the customer’s perspective*.  

2. Qualitative analysis of content of interactions. 

Records of interactions with the 

company as recorded by the cus-

tomer, i.e. prints of emails, detailed 

records of phone conversations, 

SMS messages, hard copy letters, 

social media posts etc. 

Customer Care 

advisors (first line 

and High-Level 

case handlers) and 

their managers 

1. “Sit-along”, non-participant observations: observing 

advisors managing in-bound calls similar in context 

to our case study via a “splitter” from the advisor’s 

headset. These were conducted in situ in the call 

centre to give contextual data (e.g. environmental, 

system use etc.). 

2. 9 x Semi-structured interviews to explore the pro-

cess and subjective experiences of handling calls of 

this nature.   

3. Interviews recorded, transcribed, coded [8], with 

core issues identified and prioritised. 

High-level themes presented as text 

data (derived from transcription of 

interviews and observation notes 

during calls, followed by coding se-

quence).   

Company systems 1. Manual analysis of customer’s journey from the or-

ganisations’ perspective.  

Customer records and advisor notes 

from CRM system, presented in Ex-

cel and Word Table format. 

 1. Expert evaluation [9] and high-level user evaluation 

of UI of advisors’ KM and CRM systems. 

Text capture of issues, presented in 

PowerPoint format. 

Process mining 1. Causal factor analysis of customer case.   

2. Cross-check of process mining “map” against sub-

jective customer experience and CRM notes. 

3. Analysis of automated messaging sequence to the 

customer. 

Process “map” generated to indicate 

location of significant causal factors 

and subsequent attempted recovery 

path through automatic and manual 

processes within the organisation. 



how the various interfaces between the customer and organisation throughout 

the recovery process affected customer experience over time.  It also informed 

the initial understanding of the data sources that would be needed in the model 

for detecting and responding to customer distress more generically. With the 

data sources in place we started to consider some preliminary questions before 

creating the model.  

4. Using CRM notes and Customer Feedback to identify Distress Indica-

tors. 

While creating the model, one of the questions we considered was: what indi-

cates customer distress? To approach this we combined CRM system analysis 

with direct customer experiences (expressed through the customer interview 

and his own notes) to identify system and process-related issues which manifest 

themselves in customer distress.  For example, drawing lessons from our case 

study, relevant Distress Indicators included: 

 The length of time an order has been delayed exceeding an acceptable 

threshold (taking the original scheduled delivery date as a start-point). 

 The number of times the customer has had to call the organisation beyond 

an acceptable range (e.g. between 0 and 1).  

 The number of different reference numbers given for a customer case, 

(causing distress by provoking confusion) above an acceptable range (e.g. 1 

is acceptable, 2 causes confusion etc.,) 

 The number of different phone numbers given to a customer for different 

departments throughout a customer journey (again causing distress by pro-

voking confusion) above an acceptable range.   

 The subjective record of the emotional state of the customer, as recorded 

after an interaction with an advisor and sometimes (but not always) cap-

tured in the advisor notes.  

The advantage of deriving Distress Indicators quantitatively from the CRM sys-

tem notes alone, is that they are easily accessible for analysis.  However, when 

they are combined with post-interaction survey results and advisor notes, they 

can give a more powerful indication – from the system, the advisor and the 

customer himself - that a distressful episode is taking place and a response is 

needed.   



5. Using Process Mining to Understand Causal Factors for 

Distress 

Again, while creating the model we asked: what can we analyse from the pro-

cess records to help us locate what causes customer distress?  For this, we 

looked at Process Mining, because, according to Aalst [10], it provides “com-

prehensive sets of tools to provide fact-based insights and to support process 

improvements”. It is used to reflect actual events, taken from log files – often 

across disparate systems - so that comparisons can be made with the process 

model (i.e. the model of the process in its ideal state) [11].  Our case study, 

which concerns the recovery of an order which has deviated from the “happy 

path” of a standard delivery process, gave us an example where process mining 

enabled the researchers to make this comparison, plus compare where subjec-

tive customer experience issues occurred in parallel. 

We used a process mining tool developed in-house (called “Aperture” [12]) to 

generate a process “map” from a number of data sources (events from the CRM 

system, for example) for the case study (see Fig 1).  We referred to this when 

determining the process-related distress-inducing causal factors. From doing 

this, we found the process event which represented a “turning point” in the 

journey, resulting in the order falling from the happy path into a recovery path.   

 



Fig. 1. Process Map of Customer Journey to identify process events - excerpt 

Fig. 1 shows the results of the “turning point”, as derived from the system logs 

at this early stage in the customer journey.  Note the repeated inbound calls 

from the customer (indicated by stars in Fig 1.) and re-work which follows.  

(This is only part of the entire process map, to give an example of the visuali-

sation and usage of the tool). 

In further analysis, the process map also showed us where some automated pro-

cesses were still continuing (automated communications to the customer for 

example) despite delivery processes being halted or delayed in the back-end.  

And it was also possible to see on the map where the customer was responding 

to these communications. Drawing parallels between this map, the CRM system 

notes and the customer’s subjective experiences of when these process events 

occurred gave a powerful and holistic picture of  customer experience episodes 

which caused distress – from the customer’s and the organisation’s perspective.  

Finally, in collaboration with our engineering teams, we could compare this 

“actual” state with an ideal process state to see where assumptions in the pro-

cess were incorrect and needed remedial action. 

6.  Introducing the Model for Detecting and Responding to 

Customer Distress 

 

Fig. 2. Proposed model for Detecting and Responding to Customer Distress 



The proposed model above summarises the data sources and steps involved in 

the Detecting Phase and proposes the outline areas for categorising the resulting 

responses identified (i.e. the recommendations) in the Responding Phase.  This 

categorisation of recommendations into “People”, “Process” and “System” can 

assist the organisation in prioritising interventions and applying resources to 

deliver the improvements suggested (whilst being aware that in some scenarios 

these three areas may need to be addressed together).     

Note also within the model the Feedback Loop, which can be used for cost-

benefit modelling of any interventions. This is especially true if investment is 

needed to make the improvements suggested.  The model could be used to pro-

ject likely reductions in the incidence of Distress Indicators, e.g. improved au-

tomated communications (Response) can lead to a reduction in number of calls 

a customer makes to chase the order (Distress Indicator).  Improvements can be 

tactical, or strategic, but all can and should be continually measured so that the 

Feedback Loop of improvement can be sustained. 

Equally, post-intervention success measures can be gained by taking measures 

of individual elements, but aggregated to give an entire picture of improved 

customer service and reduced customer distress by quantitative and qualitative 

means, e.g. 

1) From the Customer’s perspective: customer satisfaction scores im-

prove for individual customers and overall (using customer survey 

scores)  

2) From the Advisor’s perspective: subjective measures (“how easy is it 

to do your job?” etc.) and quantitative efficiency measures (throughput, 

productivity etc.). 

3) From the Process perspective: Using process mining, quantifying the 

reduction in causal factors, and quantifying the number of repeated ac-

tions throughout the process.  

7. Detecting and Responding to Customer Distress - The Case 

Study  

In this section we demonstrate how the model contributed to a set of recom-

mended improvements resulting from the detection of one particular core issue.  

(Incidentally, it was evident in this case study that causal factors often acted 

together to cause overall customer distress.  Similarly, the responses identified 

were inter-related and interventions needed to be considered collectively). 



Figures 3 and 4 demonstrate how the sequence of activities and data sources 

were used to identify a core issue, how the causal factors of the issue were 

identified and what responses (recommendations for improvements) were iden-

tified as a result: 

 

Fig. 3 Detecting Phase - Core Issue and Causal Factor Identification 

 

Fig. 4. Responding Phase (Recommendations) 



8. Next Steps 

The application of the model to the case study is still in its infancy at the time 

of writing – some short-term tactical changes (e.g. html content and UI im-

provements on advisor KM tools) have been implemented, with longer-term 

interventions in the pipeline.  The next immediate step therefore is to test the 

efficiency of the model against other individual problematic customer journeys.  

We also consider approaching the concept of detecting and responding to cus-

tomer distress within different dimensions, namely time and scale. 

Time. Our analysis revealed the significance of time as an actor within the case 

study, and suggests a need for temporality to be considered in greater detail 

(reflecting a call of [13, 14]): in this case study, the customer became distressed 

at various points, with the longevity of the case itself being a cause of distress.  

Further, polychronicity [15] (the doing of multiple things at the same time) 

within the CRM system was, through our process analysis, revealed as signifi-

cant in creating distress as the customer received conflicting messages from 

different systems which were effectively out of sync with the evolving situa-

tion. The “time-map” of the customer journey to demonstrate distress episodes 

is worthy of further investigation. 

Scale. In this case study we analysed one distressed customer’s journey among 

a base of orders that are being case-managed or are going through the com-

plaints procedure. Rather than seeking to capture a quantitative representation 

of these large numbers of orders, we adopted a single case study approach 

which allowed much richer analysis and revealed lessons for wider cases.  Alt-

hough this approach was valuable, there may be possibilities in increasing the 

scale, i.e. to make the model apply across a larger customer base.  For this more 

automated approaches (such as text analytics) will need to be considered (see 

Discussion).   

For our case study, we were fortunate to have a customer who was willing and 

able to share his experiences with us in great detail.  For the current model, we 

propose the use of surveys and advisor notes where very detailed qualitative 

customer research is not practical due to the effort involved in collecting and 

analysing data.  But a next step may be to supplement the surveys and notes 

data via qualitative in-depth interviews with a smaller number of specific cus-

tomers after problematic cases.  In addition, where Distress Indicators are 

flagged in particular journeys it may be possible (with privacy considerations) 

to identify customers with problems early on and engage researchers into the 



system with the same conditions/problems who must then follow the same jour-

ney, documenting it as they progress to provide insight into the customer’s ex-

perience of that journey. 

9. Discussion  

Our model is intended to provide a framework for organisations with a means 

of linking process mining and HCI techniques, to enable better detection and 

response to customer distress episodes.  We accept that this is not without its 

challenges, however.  For instance, use of the model depends on the skills and 

availabilities of the practitioners to carry it out, leading to questions such as: Is 

it better to deploy one researcher with passable knowledge of process mining 

and qualitative interviewing (for example) to carry out as many steps as they 

can, or deploy many more researchers who are experts in their individual areas?  

Would time and resources allow for the latter?  Would they be able to work 

together effectively to provide effective output? For the former, would the out-

put be deep enough to produce valuable insight?  But would this approach be 

cheaper and quicker? 

Similarly, engagement with the development community, tasked with deploy-

ing recommendations from use of the model, should be done at an early stage, 

to provide governance and balance the recommendations with business objec-

tives, especially if the recommendations are costly. 

In the future, technology developments may be deployed to relieve the work-

load experienced by the researchers in carrying out the manual steps in this 

particular case study.   Text analytics for example can used to summarise core 

issues from the vast quantities of free-text in customer communications, inter-

view verbatims and advisor notes.  Additionally, data visualisation techniques 

can be deployed such that business decision makers can decide how to respond 

to customer distress episodes via an intuitive interface which gives them what 

they need to respond in shorter time-frames.  We hope that our model can 

evolve to incorporate these developments over time, and that other organisa-

tions can use it as a baseline for their own business needs.   
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