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Pairwise likelihood ratio tests and model selection
criteria for structural equation models with

ordinal variables

Myrsini Katsikatsou∗, Irini Moustaki

Abstract

Correlated multivariate ordinal data can be analysed with structural
equation models. Parameter estimation has been tackled in the litera-
ture using limited-information methods including three-stage least squares
and pseudo-likelihood estimation methods such as pairwise maximum like-
lihood estimation. In this paper, two likelihood ratio test statistics and
their asymptotic distributions are derived for testing overall goodness-of-fit
and nested models respectively under the estimation framework of pairwise
maximum likelihood estimation. Simulation results show a satisfactory per-
formance of type I error and power for the proposed test statistics and also
suggest that the performance of the proposed test statistics is similar to that
of the test statistics derived under the three-stage diagonally weighted and
unweighted least squares. Furthermore, the corresponding, under the pair-
wise framework, model selection criteria, AIC and BIC, show satisfactory
results in selecting the right model in our simulation examples. The deriva-
tion of the likelihood ratio test statistics and model selection criteria under
the pairwise framework together with pairwise estimation provide a flexible
framework for fitting and testing structural equation models for ordinal as
well as for other types of data. The test statistics derived and the model
selection criteria are used on data on ‘trust in the police’ selected from the
2010 European Social Survey. The proposed test statistics and the model
selection criteria have been implemented in the R package lavaan1.

Keywords: latent variable modelling; composite likelihood; underlying
variable approach.
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1 Introduction

Ordinal scales are widely used in social sciences for measuring attitudes and be-
haviour. A variable with an ordered categorical scale is called an ordinal vari-
able (Agresti, 2010). There are two main approaches for modelling categorical
(binary and ordinal) observed variables with latent variables, namely the full in-
formation maximum likelihood approach (FIML) used in item response theory
(e.g. Skrondal & Rabe-Hesketh, 2004; Bartholomew et al., 2011) and the limited-
information approach used in structural equation modelling (SEM) (e.g. Jöreskog,
1990, 1994; Muthén, 1984). The latter uses first and second order statistics in-
cluded in the univariate and bivariate likelihood functions. The limited information
approach is adopted here. The general framework of structural equation modelling
includes models for continuous variables, categorical variables, and mixtures of
variables (Arminger & Küsters, 1988; Muthén, 1984), confirmatory factor analy-
sis (Jöreskog, 1969), mixed effects analysis (Fan & Hancock, 2012), multi-group
analysis (Jöreskog, 1971; Muthén, 1989), latent growth curve analysis (Bollen &
Curran, 2006), and non-linear models (Jöreskog & Yang, 1996; Wall & Amemiya,
2000) as special cases. Estimation and testing remain important research topics
when models involve non-normally distributed observed variables such as ordinal
variables. Taking into account the ordinal nature of a variable can result in a
more accurate and powerful analysis as is pointed out by Agresti (2010). Jöreskog
(2002) also recommends that ordinal variables should be analysed as such since
they do not have origins or measurement units and consequently, means, variances,
and covariances of ordinal variables do not have meaning.

In SEM, each observed ordinal variable is generated by an underlying continu-
ous variable assumed to be normally distributed. Thus, FIML estimation requires
the evaluation of normal probabilities of dimension equal to the number of the ob-
served ordinal variables (Lee et al., 1990a; Poon & Lee, 1987). This renders FIML
computationally infeasible when the number of ordinal variables is large. As a
result, two- and three-stage limited-information least squares (3S-LS) estimation
and testing theory have been proposed in the literature (Jöreskog, 1990, 1994;
Jöreskog & Sörbom, 1996; Lee et al., 1990b, 1992; Muthén, 1984; Satorra, 2000;
Satorra & Bentler, 2010, 1988; Asparouhov & Muthén, 2006, 2010) and imple-
mented in software such as LISREL (Jöreskog & Sörbom, 1996), Mplus (Muthén
& Muthén, 2010), EQS (Bentler, 2006), and the R package lavaan (Rosseel, 2012;
Rosseel et al., 2012). Bayesian estimation methods of estimation, testing and
model selection have also been developed (see e.g. Ansari & Jedidi, 2000, 2002;
Lee, 2007; Palomo et al., 2007; Raftery, 1993, and references therein).

A competitive limited information estimation method is the pairwise maximum
likelihood (PML) (Jöreskog & Moustaki 2001; De Leon 2005; Liu 2007; Katsikatsou
et al. 2012; Katsikatsou 2013; Xi 2011). PML, similarly to 3S-LS, utilizes informa-
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tion from lower order margins (bivariate). It is a limited information estimation
method that has been developed within the maximum likelihood (ML) estimation
framework. Although PML estimation has been well developed in the literature
of SEM for ordinal data, test statistics and model selection criteria have not yet
been fully studied. This paper aims to derive likelihood ratio test statistics and
model selection criteria under PML for SEM with ordinal variables. In particular,
the mean-and-variance adjusted pairwise likelihood ratio test (PLRT) statistic for
testing nested models and for testing overall goodness-of-fit together with their
asymptotic distributions are derived. PLRT is the equivalent of the standard like-
lihood ratio test (LRT) under PML. Simulation examples study the performance
of the proposed PLRT statistics for type I error and power and compare them
to the mean-and-variance adjusted test statistics derived under the 3S-LS estima-
tion methods. The performance of the pairwise likelihood model selection criteria,
AICPL and BICPL, is also studied.

PML belongs to the family of composite likelihood (CL) estimation methods
(Besag, 1974; Lindsay, 1988; Varin, 2008; Varin et al., 2011). The ML theory of
inference has been extended to CL using the theory for misspecified likelihood
functions. CL methods yield asymptotically consistent, and normally distributed
estimators. Pace et al. (2011) present a Wald test, score test, and adjusted like-
lihood ratio test statistic for testing the hypothesis that a subset of parameters
is equal to a specific value. Moreover, the model selection criteria AIC and the
BIC are appropriately adjusted to hold under CL (Gao & Song, 2010; Varin et al.,
2011; Varin & Vidoni, 2005). CL has gained attention because of its low compu-
tational complexity, which is not affected by model size. The advantage of CL is
that it requires distributional assumptions about the lower-order margins and not
for the complete variable vector as FIML does. Therefore, modelling assumptions
are more straightforward, have less risk of misspecification, and are easier to test
statistically. For example, Jöreskog (2002) discusses how the assumption of bi-
variate normality of two underlying continuous variables can be tested. The main
argument against PML could be its loss of efficiency compared to FIML but simu-
lation studies comparing the two methods, whenever FIML is practically feasible,
indicate that this loss is minimal (Joe & Lee, 2009; Katsikatsou et al., 2012; Lele,
2006; Vasdekis et al., 2012; Zhao & Joe, 2005).

In SEM, De Leon (2005) proposes PML to estimate simultaneously the thresh-
olds and polychoric correlations of ordinal variables. Liu (2007) extends the
method to ordinal and continuous variables and proposes a two-stage estimation
method in which thresholds and polychoric correlations are estimated using PML
in the first stage, and the parameters of the factor model are estimated using gen-
eralised least squares in the second stage. The weight matrix is the PML estimate
of the asymptotic covariance matrix of the estimated correlations. Furthermore,
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Liu (2007) derives a PML ratio test statistic for testing a hypothesis related to the
parameters of the first stage (thresholds and polychoric correlations) and proposes
a test statistic based on the generalised least squares fit function for testing the
factor structure imposed on the polychoric correlations. Xi (2011), drawing on
ideas from Jöreskog & Moustaki (2001), suggests a fit function composed of both
the univariate and bivariate log-likelihood functions to fit a SEM. Xi (2011) notes
that the test statistics developed under FIML cannot be directly applied under CL
methods and proposes the implementation of a test statistic for overall fit based
on bivariate residuals originally proposed by (Maydeu-Olivares & Joe, 2005, 2006).
A pairwise likelihood estimation, where the likelihood function is defined as the
product of the bivariate likelihoods, is proposed in Katsikatsou et al. (2012) for
SEM for ordinal variables and in Katsikatsou (2013) for continuous and ranking
data. PML estimation has been developed for panel models of ordered-responses
(Bhat et al., 2010), latent variable models for ordinal longitudinal responses (Vas-
dekis et al., 2012), autoregressive ordered probit models (Varin & Vidoni, 2006),
longitudinal mixed Rasch models (Feddag & Bacci, 2009), mixed models for joint
modelling of multivariate longitudinal profiles (Fieuws & Verbeke, 2006), analysis
of variance models (Lele & Taper, 2002), generalized linear models with crossed
random effects (Bellio & Varin, 2005), spatial models with binary data (Heagerty
& Lele, 1998), and spatial generalized linear mixed models (Varin et al., 2005)
(see also the special issue of Statistica Sinica, Vol 21(1), 2011, for more areas of
application).

The rest of the paper is organized as follows: Section 2 presents the SEM
framework adopted here followed by a brief overview of the 3S-LS estimation and
testing in Section 3. Section 4 describes the PML estimation for SEM and in Sec-
tion 5, the formulae of PLRT statistics for overall goodness-of-fit and for testing
nested models are derived. Section 6 provides the formulae of the model selection
criteria AICPL and BICPL. Section 7 reports the results of the simulation study
while Section 8 illustrates the proposed PLRT statistics using data from the Eu-
ropean Social Survey. Conclusions and discussion are in Section 9. The proofs for
the proposed test statistics are detailed in the Appendix and the R commands (R
Development Core Team, 2008) used to obtain the presented results are given in
the supplementary material. Our R code has been incorporated in the R package
lavaan (Rosseel, 2012).

2 The Structural Equation Modelling framework

We follow the SEM framework discussed in Muthén (1984). Let y be an observed
p-dimensional vector of ordinal variables. Let y? be the corresponding vector of
underlying continuous variables. The connection between an ordinal variable yi
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and its underlying continuous variable y?i is: yi = a ⇐⇒ τi,a−1 < y?i < τi,a, where
a is the a-th response category of variable yi, a = 1, . . . , ci, i = 1, . . . , p, τi,a is the
a-th threshold of variable yi, and −∞ = τi,0 < τi,1 < . . . < τi,ci−1 < τi,ci = +∞.
Since only ordinal information is available, the distribution of y?i is determined
only up to a monotonic transformation. It is typically assumed that y?i follows a
standard normal distribution or a normal distribution with the mean and variance
free to be estimated (e.g. Jöreskog, 2002). The measurement part of a SEM is:

y? = ν + Λη + ε (1)

and the structural part is:
η = α+ Bη + ζ , (2)

where η is a q-dimensional vector of continuous latent variables, ε and ζ are the
vectors of error terms, and ν and α are the vectors of intercepts.

The standard basic assumptions of the model are that: y? ∼ Np (µ,Σ), η fol-
lows a multivariate normal distribution, ε ∼ Np (0,Θ), ζ ∼ Nq (0,Ψ), Cov (η, ε) =
Cov (η, ζ) = Cov (ε, ζ) = 0, and I−B is non-singular with I being the identity ma-

trix. From (2), it follows thatE (η) = (I − B)−1α and Cov (η) = (I − B)−1 Ψ
[
(I − B)−1

]′
.

Thus, the model-implied mean vector µ and covariance matrix Σ of y? are:

µ = E (y?) = ν + Λ (I − B)−1α ,

Σ = Cov (y?) = Λ (I − B)−1 Ψ
[
(I − B)−1

]′
Λ′ + Θ .

Depending on the specific model, further constraints including those for identifi-
cation may be required. The scale of all underlying variables y? and the latent
variables need to be defined. In the case of multi-group analysis, a minimum set
of restrictions is needed so that the model is identified and a common scale for
each latent variable is defined across groups (Millsap & Yun-Tein, 2004; Muthén
& Asparouhov, 2002).

3 Three-stage least squares approach

Under a 3S-LS estimation, in the first stage, first order statistics such as thresh-
olds, means and variances are estimated by maximum likelihood. In the second
stage, second order statistics such as polychoric correlations are estimated by con-
ditional maximum likelihood for given first stage estimates. In the third stage, the
parameters of the structural part of the model are estimated using a generalized
or weighted least squares method. The fit function to be minimized is of the form:

F (θ) = (r− ρ (θ))′W−1 (r− ρ (θ)) , (3)
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where r is the vector of sample statistics (e.g. thresholds, polychoric correlations),
ρ is the vector of their model-implied counterparts, and θ is the model parameter
vector. The weight matrix W is either the estimated asymptotic covariance matrix
of the sample statistics (weighted least squares (WLS)), or a diagonal matrix
(diagonally weighted least squares (DWLS)), or the identity matrix (unweighted
least squares (ULS)). Under all three estimation methods (WLS, DWLS, ULS),
the full estimated asymptotic covariance matrix is used to compute the standard
errors and goodness-of-fit test statistics.

Under both DWLS and ULS, the test statistic for overall fit is written as

T = (N − 1)F
(
θ̂
)

, where F is the fit function in Equation (3) evaluated at θ̂

and N is the sample size. Various adjusted versions of T have been proposed
in the literature (Asparouhov & Muthén, 2010; Muthén, 1993; Muthén et al.,
1997; Satorra & Bentler, 1994). Savalei & Rhemtulla (2013) compare the different
versions of the test statistics through an extensive simulation study. They found
that the mean-and-variance adjusted T following the Satterthwaite approximation
has the best performance in terms of type I error and power. The exact formulae
of mean-and-variance adjusted T derived under DWLS, TDWLS−MV , and under
ULS, TULS−MV , are provided in Equations (2) and (3) of their paper, respectively.

For the testing of nested models under the 3S-LS methods, Satorra (2000) pro-
poses a test statistic given by the difference of the estimated fit functions adjusted
in mean and variance using the Satterthwaite approximation. The obtained test
statistic is asymptotically chi-squared distributed. Asparouhov & Muthén (2006)
show that this statistic works well for categorical data too. The same statistic,
but only adjusted in mean, has also been discussed by Satorra & Bentler (2001);
Asparouhov & Muthén (2006); Satorra & Bentler (2010). However, it is well
known that mean-and-variance adjusted chi-squared statistics perform better in
smaller sample sizes and converge faster to their asymptotic properties than the
corresponding mean-adjusted ones.

4 Pairwise likelihood estimation

The PML function to be maximized for estimating a factor analysis model with
ordinal variables is given in Katsikatsou et al. (2012). Let θ be the parameter
vector that includes the free thresholds and parameters: ν, α, Λ, B, Γ, Ψ, and
Θ defined in Section 2. For a random sample of N observations the pairwise
log-likelihood (pl) is defined as follows:

pl (θ; y) = pl (θ; (y1, . . . ,yN)) =
N∑
n=1

∑
i<i′

lnL (θ; (yin, yi′n)) . (4)
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The specific form of the bivariate log-likelihood lnL (θ; (yin, yi′n)) for a single ob-
servation is:

lnL (θ; (yi, yi′)) =

ci∑
a=1

ci′∑
a′=1

I (yi = a, yi′ = a′) lnπ (yi = a, yi′ = a′;θ) ,

where I (yi = a, yi′ = a′) is an indicator variable taking the value 1 if yi and yi′ fall
into categories a and a′, respectively, and 0 otherwise,

π (yi = a, yi′ = a′;θ) =

ˆ τi,a

τi,a−1

ˆ τi′,a′

τi′,a′−1

f (y?i , y
?
i′) dy

?
i dy

?
i′ , (5)

and f (y?i , y
?
i′) is the density of the corresponding underlying variables y?i and y?i′

taken to be a bivariate normal distribution with mean vector (µi, µi′)
′ and co-

variance matrix with elements: σii, σii′ , σi′i′ . The means, the variances, and the
covariances of the underlying variables are functions of the parameter vector θ.
The value of θ that maximizes the pl function given the data at hand (Equation
(4)) is defined to be the PML estimator, θ̂PL. Since PML estimation assumes
bivariate normality for all pairs of variables in y? it requires the evaluation of
two-dimensional normal probabilities (Equation (5)) regardless of the number of
observed variables. In practice, the maximization is carried out numerically and
for this the analytical form of the gradient of the pl function is required (given in
Sections A.2. and A.3. in Katsikatsou, 2013).

From the theory of CL estimators, it holds that
√
N
(
θ̂PL − θ

)
d→ N (0, G−1(θ)) ,

where G(θ) is the Godambe information matrix (also known as the sandwich in-

formation matrix), G(θ) = H(θ)J−1(θ)H(θ), H(θ) = E
{
− ∂2

∂θ′∂θ
pl(θ; y)

}
, and

J(θ) = V ar
{

∂
∂θ′
pl(θ; y)

}
(Lindsay, 1988; Varin et al., 2011). In general, the

identity H(θ) = −J(θ) does not hold under CL because the assumed indepen-
dence among the likelihood components forming the CL is not valid when the full
likelihood is considered. H(θ) and J(θ) can be estimated by:

Ĥ(θ̂PL) = − 1

N

∂2

∂θ′∂θ
pl
(
θ;
(
y1, . . . ,yNg

))∣∣∣∣
θ=θ̂PL

, (6)

Ĵ(θ̂PL) =
1

N

N∑
n=1

(
∂

∂θ′
pl (θ; yn)

∣∣∣∣
θ=θ̂PL

) (
∂

∂θ′
pl (θ; yn)

∣∣∣∣
θ=θ̂PL

)′
. (7)

5 Pairwise likelihood ratio test statistic

The pairwise likelihood ratio test is derived under PML estimation for testing the
overall fit of a model and for comparing nested models. We show that asymptoti-
cally the PLRT statistic, both for the overall fit and for testing nested models, is a
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weighted sum of independent chi-squared variables. To determine the asymptotic
distribution of PLRT the Satterthwaite approximation is used which leads to the
mean-and-variance adjusted PLRT. This requires computing the asymptotic mean
and variance of the test statistic under H0. The proofs, given in Appendices A.1
and A.2, use Taylor series expansions, the asymptotic normality of the pairwise
likelihood estimator, and the standard assumption that the null hypothesis is true.

5.1 Pairwise likelihood ratio test statistic for nested mod-
els

Let θ be the parameter vector of dimension d under H1 and g (θ) be a function of
θ, where g : Rd → Rr, and r is the number of constraints. Let the hypothesis of
interest be H0 : g (θ) = 0 versus H1 : g (θ) 6= 0. The PLRT statistic is

PLRT (g (θ)) = 2
(
pl
(
θ̂
)
− pl

(
θ̃
))

, (8)

where θ̂ and θ̃ are the PML estimates under H1 and H0, respectively. Let θ0 be
the true value of θ. It can be shown (the proof is given in Appendix A.1) that:

PLRT (g (θ)) → z̃′z̃ ,

where z̃ =
√
N [A (θ0)]

−1/2g
(
θ̂
)

,
√
Ng
(
θ̂
)
→ N (0, B(θ0)),

A (θ0) = M (θ0)H
−1 (θ0) [M (θ0)]

′, B(θ0) = M (θ0)G
−1 (θ0) [M (θ0)]

′, and
M (θ0) = ∂

∂θ′
g (θ)

∣∣
θ=θ0

is an r×d matrix of the gradient of function g with respect

to θ evaluated at θ0. Hence, z̃ → N
(
0, [A (θ0)]

−1/2B(θ0){[A (θ0)]
−1/2}′

)
and

PLRT (g (θ))→
∑r

i=1 κiui, where κi is the ith eigenvalue of [A (θ0)]
−1/2B(θ0){[A (θ0)]

−1/2}′
and ui’s are independent χ2

1-distributed variables. To determine the asymptotic
distribution of PLRT (g (θ)) we apply the Satterthwaite approximation. Under
H0, the asymptotic mean and variance of PLRT (g (θ)) are:

E [PLRT (g (θ))]→ tr
(
B(θ0)[A (θ0)]

−1) , and (9)

V ar [PLRT (g (θ))]→ 2tr
(
B(θ0)[A (θ0)]

−1B(θ0)[A (θ0)]
−1) . (10)

Let PLRTMV (g (θ)) denote the mean-and-variance adjusted PLRT (g (θ)). Under
H0, it holds that:

PLRTMV (g (θ)) = α (θ0)PLRT (g (θ))
app→ χ2

df(θ0)
,

where α (θ0) =
tr(B(θ0)[A(θ0)]−1)

tr(B(θ0)[A(θ0)]−1B(θ0)[A(θ0)]−1)
and df (θ0) =

[tr(B(θ0)[A(θ0)]−1)]
2

tr(B(θ0)[A(θ0)]−1B(θ0)[A(θ0)]−1)
.

In practice, since θ0 is unknown, α
(
θ̃
)

and df
(
θ̃
)

are used instead. This is why

the degrees of freedom in the application will be subject to sample variability.
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A special case is the hypothesis H0 : ψ = ψ0 versus H1 : ψ 6= ψ0, where θ
is partitioned as θ = (ψ′,ω′)′, ψ is the vector of parameters of interest, ω is the
vector of nuisance parameters, and ψ0 is a vector of real values. Then, the results
for the asymptotic mean and variance of PLRT given in expressions (9) and (10)
simplify to:

E [PLRT (ψ)]→ tr
(
Gψψ (θ0)

[
Hψψ (θ0)

]−1)
, and

V ar [PLRT (ψ)]→ 2tr
(
Gψψ (θ0)

[
Hψψ (θ0)

]−1
Gψψ (θ0)

[
Hψψ (θ0)

]−1)
,

where Gψψ (θ0) and Hψψ (θ0) are, respectively, the parts of the inverse of G (θ0)
and H (θ0) matrices that refer to the parameter vector ψ. The simplification
occurs because the matrix M (θ0) becomes an indicator matrix that consists of 0’s
and only one 1 in each row where the 1’s are in the columns that correspond to the
parameters constrained under H0. The role of matrix M (θ0) in the calculation
of matrices B(θ0) and A (θ0) is to pick the right parts of G−1 (θ0) and H−1 (θ0),
respectively.

The proposed PLRTMV (g (θ)) statistic for the hypothesis H0 : g (θ) = 0
versus H1 : g (θ) 6= 0 holds when g (θ) includes both equality constraints among
parameters and constraints where some parameters are set equal to specific values.

5.2 Pairwise likelihood ratio test statistic for overall fit

We first consider the case where a model imposes a parametric structure on the
covariance matrix Σ and not on thresholds. Let ϕ be a d-dimensional vector of
all model parameters but the thresholds. Let τ be the vector of thresholds. Let
θ be the complete parameter vector, thus, θ = (ϕ′, τ ′)′. Let σ = vech (Σ), where
vech is the vectorization function of the elements of Σ being on and below the
main diagonal, and σ is of dimension p̃ which is the number of free non-redundant
elements of Σ. The null hypothesis for overall model fit is written as H0 : σ = g(ϕ)
versus H1 : σ unconstrained, where g is a model-dependent function, g : Rd → Rp̃.
Note that H0 does not include the threshold vector τ , hence, it is a nuisance
parameter. Under H0, it holds that pl (θ) = pl (ϑ), where ϑ is the complete
parameter vector under H1, and ϑ = (σ′, τ ′)′. If θ0 = (ϕ′0, τ

′
0)
′ is the true value of

the parameter, then ϑ0 =
(
g (ϕ0)

′ , τ ′0
)′

= (σ′0, τ
′
0)
′. The PLRT statistic is defined

as before:
PLRTSEM = 2

(
pl
(
ϑ̂
)
− pl

(
θ̂
))

, (11)

where ϑ̂ = (σ̂′, τ̂ ′)′ and θ̂ = (ϕ̂′, τ̂ ′)′ are the PML estimates under H1 and H0,
respectively. It can be shown that under H0 (the proof is given in Appendix A.2.):

PLRTSEM → z′z − v′v , (12)
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where z =
√
N [Hσσ (ϑ0)]

−1/2 (σ̂ − σ0), v =
√
N [Hϕϕ (θ0)]

−1/2 (ϕ̂−ϕ0),

z → Np̃
(
0, [Hσσ (ϑ0)]

−1/2Gσσ (ϑ0) [Hσσ (ϑ0)]
−1/2

)
, and (13)

v → Nd
(
0, [Hϕϕ (θ0)]

−1/2Gϕϕ (θ0) [Hϕϕ (θ0)]
−1/2

)
. (14)

The matrices Hϕϕ (θ0), G
ϕϕ (θ0), H

σσ(ϑ0), and Gσσ(ϑ0) are defined similarly to
Hψψ(θ0) and Gψψ (θ0) above. From (12), (13), and (14) it follows that PLRTSEM
is asymptotically the difference of two weighted sums of independent chi-squared
variables. To apply the Satterthwaite approximation we compute the asymptotic
mean and variance of PLRTSEM given by:

E (PLRTSEM)→ tr
(
Gσσ (ϑ0) [Hσσ (ϑ0)]

−1)− tr
(
Gϕϕ (θ0) [Hϕϕ (θ0)]

−1) , (15)

V ar (PLRTSEM)→ 2tr
(
Gσσ (ϑ0) [Hσσ (ϑ0)]

−1Gσσ (ϑ0) [Hσσ (ϑ0)]
−1)

+ 2tr
(
Gϕϕ (θ0) [Hϕϕ (θ0)]

−1Gϕϕ (θ0) [Hϕϕ (θ0)]
−1)

− 4tr
(
M ′ [Hσσ (ϑ0)]

−1MGϕϕ (θ0) [Hϕϕ (θ0)]
−1Gϕϕ (θ0)

)
,
(16)

where M = ∂
∂ϕ
g (ϕ)

∣∣∣
ϕ=ϕ0

. The computation of the asymptotic V ar (PLRTSEM)

is given in Appendix A.3. Let α1 (θ0) and α2 (θ0) denote the right hand side of
expressions (15) and (16), respectively. Let PLRTSEM−MV denote the mean-and-
variance adjusted PLRTSEM . Under H0, it holds that:

PLRTSEM−MV = α (θ0)PLRTSEM
app→ χ2

df(θ0)
,

where α (θ0) = α1(θ0)
0.5∗α2(θ0)

, df (θ0) = [α1(θ0)]
2

0.5∗α2(θ0)
. Observe that, as before, both the

adjustment coefficient α (θ0) and the adjusted degrees of freedom df (θ0) are func-
tions of the true value θ0 which, in practice, is substituted by its PML estimate
under H0, θ̂. Hence, both quantities are subject to sample variability.

In the case of a model which imposes a parametric structure both on the
covariance matrix Σ and on thresholds, the hypothesis is modified to H0 : ϑ = g(θ)
versus H1 : ϑ unconstrained. All the above results remain the same with the
only difference being that in expressions (15) and (16), Gσσ (ϑ0), [Hσσ (ϑ0)]

−1,
Gϕϕ (θ0), and [Hϕϕ (θ0)]

−1 are substituted with G−1 (ϑ0), H (ϑ0), G
−1 (θ0), and

H (θ0), respectively, and M = ∂
∂θ
g (θ)

∣∣
θ=θ0

.
The PLRT for overall fit is of the same nature as the test statistics derived

under 3S-LS in the sense that the parametric structure imposed by the model on
the thresholds and the covariance matrix is being tested.

10



6 Pairwise likelihood model selection criteria

This section discusses the AIC and BIC model selection criteria for SEM under
PML estimation. Based on the results of Varin & Vidoni (2005), the Akaike PML
information criterion, AICPL, is defined as:

AICPL = −pl
(
θ̂PL; y

)
+ tr(Ĵ(θ̂PL)Ĥ−1(θ̂PL)), (17)

and, based on the results of Gao & Song (2010), the PML Bayesian information
criterion, BICPL, is defined as:

BICPL = −2pl
(
θ̂PL; y

)
+ tr(Ĵ(θ̂PL)Ĥ−1(θ̂PL))× logN , (18)

where θ̂PL is the PML estimate under the hypothesized model, and tr(Ĵ(θ̂PL)Ĥ−1(θ̂PL))
defines the number of effective parameters. The model with the smallest AICPL
or BICPL is selected.

7 Simulation study

The type I error and power of the proposed mean-and-variance PLRT statistics
for overall fit and for testing nested models are assessed using simulations studies.
The data were simulated on the basis of combinations of sample size, number of
response categories, and model complexity.

The empirical rejection rates of the null hypothesis are computed as follows:
let t(r) and df (r) be the rth replicated values of a test statistic and its associ-
ated estimated degrees of freedom. Then, the p-value from the rth replication is
p-value(r) = Pr

(
w > t(r)

)
where w ∼ χ2

df (r)
and the rejection rate is the percentage

of p-value(r)’s out of the total replications that are smaller than or equal to the
nominal significance level 5% and 1%. Note that in each replication, the adjust-
ment coefficient α (θ0) and the adjusted degrees of freedom df (θ0) are computed

by substituting θ0 with the rth replicated PML estimate under H0, θ̂
(r)

PL, and by
using the sample estimates of H(θ) and J(θ) matrices given in expressions (6)
and (7), respectively. The computation of these sample estimates involves the
complete rth replicated sample. The sample estimate of J(θ) is preferred here
to the theoretical one as the latter is complicated to compute. Also, the use of
the observed information matrix has been often proposed against the expected
information matrix (e.g. Efron & Hinkley, 1978; Kenward & Molenberghs, 1998).

The performance of PLRT is also compared with that of the corresponding test
statistics derived under DWLS and ULS, TDWLS−MV and TULS−MV . For overall
fit, we compute the formulae of TDWLS−MV and TULS−MV given in expressions

11



(2) and (3) in Savalei & Rhemtulla (2013), respectively, and for comparing nested
models, the formulae given in Satorra (2000) (page 243, end of Section 3). The
performance of AICPL and BICPL is also studied. For all computations including
those under the PML method, we use the R package lavaan.

7.1 On the performance of PLRT for overall fit

The performance of PLRTSEM−MV for overall fit is studied for type I error and
power. For type I error, nine experimental conditions are considered. We study
three sample sizes, 200, 500, and 1000, and three different numbers of response
categories namely two, four, and seven. Within each experimental condition, 1000
replications are carried out. The data are generated by a confirmatory two-factor
model with 20 ordinal variables where each factor is measured by 10 indicators
(Model 0). The loadings of each set of variables are 0.3, 0.4, 0.4, 0.5, 0.5, 0.6,
0.6, 0.7, 0.8, and 0.9. The correlation between the two factors is 0.4. The values
of the thresholds are: 0 when the indicators are binary; -1.25, 0, and 1.25 when
they have four response categories; and -1.79, -1.07, -0.36, 0.36, 1.07, 1.79 when
they have seven response categories. This way, the theoretical distribution of each
ordinal variable is assumed to be symmetric.

For all conditions, except for sample size 200 and 2 response categories, all
three methods (PL, DWLS, ULS) show 100% convergence rate and 100% rate of
proper solutions (i.e. all estimated variances are positive and all correlations are
between -1 and 1). For sample size 200 and 2 response categories, despite the
convergence rate being 100% for all three methods, the rate of proper solutions
is 97.8% for PML and DWLS and 94.9% for ULS. The results regarding the test
statistics reported below are based on the total number of replications because
the full output is produced for all of them and improper solutions are expected to
happen in small sample sizes and do not necessarily represent a statistical anomaly
(Savalei & Kolenikov, 2008; Savalei & Rhemtulla, 2013).

Figure 1 gives the empirical type I error rates for each method and experimental
condition. In each subfigure, the bold horizontal line represents the nominal signif-
icance level set at 5% and 1%. The empirical Type I rates for the PLRTSEM−MV

are satisfactory for half of the experimental conditions studied, mainly when the
sample size is larger and the nominal significance level is 1%. The number of re-
sponse categories do not seem to have a clear effect on the empirical rates. It is
noted that whenever PLRTSEM−MV fails to reach the nominal significance level,
it under-rejects the null hypothesis. The performance of TDWLS−MV and TULS−MV

is slightly better than the PLRTSEM−MV , except for the case of 7 response cate-
gories where both statistics over-reject the model. The performance of TDWLS−MV

does not seem to improve with the increase in sample size and is particularly un-
satisfactory for sample size 200. Similar results about TDWLS−MV and TULS−MV

12



Figure 1: Empirical type I error rates for the three overall-fit test statistics,
PLRTSEM−MV, TDWLS−MV, TULS−MV, for data with 2, 4 and 7 response categories
and samples sizes 200, 500 and 1000; the bold horizontal lines represent the nomi-
nal significance level; the vertical lines joining the symbols (circle, triangle, cross)
are used to distinguish among the three test statistics and do not represent a range
of values
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are reported in Savalei & Rhemtulla (2013).
The empirical type I error rates along with their 95% confidence interval for the

three test statistics, and the average of the replicated degrees of freedom for each
method and experimental condition are reported in Table 1 that can be found in
the supplementary material. The medians of the replicated degrees of freedom are
not reported because they are found to be very close to the corresponding means
in all experimental conditions (absolute differences less than 0.6). The Q-Q plots
for PLRTSEM−MV for all nine experimental conditions are also provided in the
supplementary material. In these plots the interest lies on the higher quantiles
(for example, 90% or higher) as PLRTSEM−MV is a test statistic for overall fit.

The power for the three test statistics for overall fit is investigated under three
model misspecifications. Under misspecifications 1 and 2, the fitted model is simi-
lar to the data-generating model (Model 0) with the only difference that the factor
correlation is fixed to 0.3 (Model 1a) and 0 (Model 1b), respectively. The exper-
imental conditions remain the same as above. Under misspecification 3, the data
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generating model is a confirmatory two-factor model in which variables 1 to 10
load on the first factor with corresponding loadings 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6,
0.7, 0.8, 0.8, while variables 8 to 20 load on the second factor with corresponding
loadings 0.2, 0.2, 0.2, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.8, 0.9. The factor
correlation is set to 0.4, and all variables have four response categories with the
thresholds being equal to -1.25, 0, 1.25. The fitted model misspecifies the loadings
on the second factor for variables 8-10 by fixing them to zero. Three sample sizes,
200, 500, 1000, are considered.

The convergence rate is 100% for all three methods and all simulation con-
ditions. The rate of proper solutions is 100% except for the case of 2 response
categories and 200 sample size, where the rates for PML, DWLS, and ULS, re-
spectively, are 96.7%, 96%, and 89% when Model 1a is fitted; and 98.5%, 98.5%,
and 97.5% when Model 1b is fitted. In addition to this, the ULS rate of proper
solution, when Model 1a is fitted, is: 98.8% for 2 response categories and 500
sample size, 98.9% for 4 response categories and 200 sample size, and 99.6% for 7
response categories and 200 sample size. Moreover, under Misspecification 3, the
rate for ULS is 99% and 99.9% for sample sizes 200 and 500, respectively.

Figure 2 and Table 2 (in the supplementary material) show the results for
Misspecification 1. For all three test statistics, the power increases with the sample
size and with the number of response categories at both nominal significance levels.
In all experimental conditions, TDWLS−MV and TULS−MV perform slightly better
than PLRTSEM−MV but the differences decrease as the sample size increases. The
slightly lower power of PLRTSEM−MV is expected as it tends to under-reject a
true null hypothesis. Figure 3 and Table 3 (in the supplementary material) show
the results for Misspecification 2. For this larger misspecification, the power of all
three statistics is close to 1 for sample size 200 and is exactly 1 for sample size
500 for all three different numbers of response categories. For sample size 200, the
differences among the three test statistics are negligible.

Figure 4 and Table 4 (in the supplementary material) and show the results
under Misspecification 3. The power for all three test statistics is rather low for
sample size 200 but improves substantially with the increase of sample size. It
gets close to 1 for sample size 1000. Among the three test statistics, TDWLS−MV

performs slightly better, while TULS−MV and PLRTSEM−MV perform similarly.
The differences become negligible as the sample size increases.

7.2 On the performance of PLRT, AICPL, and BICPL for
nested models

The performance of PLRTMV , AICPL, and BICPL for nested models with re-
spect to type I error is studied under two different settings: a) in a single-group
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Figure 2: Empirical power rates for the overall-fit test statistics, PLRTSEM−MV,
TDWLS−MV, TULS−MV, for data with 2, 4, and 7 response categories, sample sizes
200, 500, 1000, and nominal significance levels 5% and 1%; the fitted model (Model
1a) misspecifies the factor correlation by fixing it equal to 0.3 while the true value
is 0.4; the vertical lines joining the symbols (circle, triangle, cross) are used to
distinguish among the three test statistics and do not represent a range of values
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Figure 3: Empirical power rates for the overall-fit test statistics, PLRTSEM−MV,
TDWLS−MV, TULS−MV, for data with 2, 4, and 7 response categories, sample sizes
200, 500, and nominal significance levels 5% and 1%; the fitted model (Model 1b)
misspecifies the factor correlation by fixing it equal to 0 while the true value is 0.4;
the vertical lines joining the symbols (circle, triangle, cross) are used to distinguish
among the three test statistics and do not represent a range of values
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Figure 4: Empirical power rates for the overall-fit test statistics, PLRTSEM−MV,
TDWLS−MV, TULS−MV, for data with 4 response categories, sample sizes 200, 500,
1000, and significance levels 5% and 1%; the fitted model (Model 0) misspecifies
three loadings by fixing them equal to 0 while their true value is 0.2
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analysis where models are nested due to parameter constraints (some parame-
ters are set equal to zero), and b) in a multi-group analysis where measurement
equivalence across groups translates statistically into a series of comparisons of
nested models due to cross-group equality constraints on the measurement model
parameters. In particular, the model in Equations (1) and (2) can be extended
to multi-group analysis by adding a superscript g to all variables and parameters
with g denoting the group membership, g = 1, . . . , G, and G is the number of
independent groups. This way, the pl log-likelihood in Equation (4) is modified to

pl (θ; y) =
∑G

g=1 pl
(
θ;
(
y
(g)
1 , . . . ,y

(g)
Ng

))
=
∑G

g=1

∑Ng

n=1

∑
i<i′ lnL

(
θ; (y

(g)
in , y

(g)
i′n)
)

(Muthén, 1989).
In the single-group setting, the data-generating model (Model 0) is tested

against a model similar to Model 0 with the additional specification that the first
three indicators of the second factor load on the first factor as well (Model 2).
Variables are taken to have four response categories and two sample sizes, 200 and
500, are being considered. The empirical rates of Type I error are given in Figure
5 and in Table 5 (in the supplementary material). All three test statistics perform
according to their asymptotic distribution at both significance levels except for
PLRTMV which slightly under-rejects the null hypothesis at the 5% significance
level when the sample size is 200. Furthermore, for both sample sizes, BICPL
selects the right model with 100% success and performs better than AICPL. The
percentage of the latter though is also relatively high; 88.9% and 89.7% for sample
sizes 200 and 500, respectively.

In the multi-group setting, we follow the set-up of the example presented in
Section 7 below. We generate two-group data from a five-factor model with 15
ordinal variables. Each factor is measured by a distinct set of three variables,
the loadings of which are 0.6, 0.7, and 0.8 for all factors in both groups. Each
indicator has four response categories and the thresholds are -1.25, 0, and 1.25 for
all indicators in both groups. The mean vector and the covariance matrix of the
factors, denoted respectively by α(g) and Ψ(g) in Section 2, differ in the two groups.
Their values are given in Table 1. The covariance matrix of the measurement error
terms is set equal across the groups, namely Θ(2) = Θ(1) = diag

(
I − ΛΨ(1)Λ′

)
.

This means that the covariance matrix of the underlying variables Σ(1) in the first
group is actually a correlation matrix while this is not the case for Σ(2) in the second
group. The differences between Σ(1) and Σ(2) are due solely to the differences
between Ψ(1) and Ψ(2). The mean vector of the underlying variables is µ(1) =
Λα(1) = 0 for the first group and µ(2) = Λα(2) for the second group. The sample
sizes of the groups are selected to be equal and three sizes are considered, 200, 500,
and 1000 giving, in total, six experimental conditions. They are derived by crossing
the three different sizes with two different tests of measurement invariance, loading-
invariance and threshold-invariance given loading-invariance. Three models are
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Figure 5: Empirical type I error rates for the test statistics, PLRTMV, TDWLS−MV,
TULS−MV, testing nested models (Model 2 vs Model 0) for data with 4 response
categories, sample sizes 200, 500, and significance levels 5% and 1%; Model 2
allows three loadings to be estimated which are correctly fixed to 0 in Model 0;
the bold horizontal lines represent the nominal significance level
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Table 1: The true values of the factor mean vectors and factor covariance matrices
for the two-group generated data

Group 1 Group 2

α(1) = 0 α(2) =
(

0.5 0.5 0.5 0.5 0.5
)′

Ψ(1) =


1
0.3 1
0.3 0.4 1
0.3 0.4 0.5 1
0.3 0.4 0.5 0.6 1

 Ψ(2) =


1.5
0.6 1.5
0.6 0.8 1.5
0.6 0.8 0.9 1.5
0.6 0.8 0.9 1.2 1.5


fitted. Model A is the model with the minimum number of constraints needed for
the model to be identified. As detailed in Millsap & Yun-Tein (2004), we have set:
a) the mean and variance of the underlying variables equal to 0 and 1, respectively,
in the first group; b) the loading and the first two thresholds of the first indicator
of each latent variable equal between the groups; c) the first threshold of the
rest of the indicators equal between the groups; and d) the factor means and
variances of the first group equal to 0 and 1, respectively. Model B is the loading-
invariant model which is actually Model A with cross-group equality constraints
on all loadings (i.e. parameters in Λ matrix of Equation (1)). Model C is the
loading and threshold invariant model which is Model B with cross-group equality
constraints on all thresholds. For the loading-invariance test, Model B is compared
to Model A, and for the threshold-invariance test given loading-invariance, Model
C is compared to Model A.

Figure 6 and Table 6 (in the supplementary material) report the results for
the test statistics. For the smallest group size, 200, PLRTMV under-rejects both
hypotheses at both significance levels while the other two test statistics perform
according to their asymptotic distribution. However, the performance of PLRTMV

improves with the group size. In Table 2 we see that for all group sizes and model
comparisons, AICPL selects the correct model with success close to 100% while
BICPL always selects the right model.

7.3 Conclusions based on the simulation results

The simulation results for both PLRTMV for nested models and PLRTSEM−MV for
overall fit show acceptable levels of type I error and power. With respect to type I
error, in most experimental conditions, the 95% confidence interval of the empirical
rejection rates includes the nominal level (1% or 5%). If this is not the case,
most probably in smaller sample sizes, the PLRT tests tend to under-reject a true
null hypothesis which is preferable to over-rejection. However, their performance
clearly improves with sample size. The power of PLRTSEM−MV depends on the
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Table 2: Rates of AICPL and BICPL selecting the right model in two-group
analysis for sample sizes 200, 500, 1000; Model A is the unconstrained model,
Model B is the loading-invariant one, and Model C is the threshold- and loading-
invariant model

N 200 500 1000
AICPL BICPL AICPL BICPL AICPL BICPL

Model B vs A 96.6 100 96.6 100 97.0 100
Model C vs B 99.5 100 99.6 100 99.5 100
Model C vs A 99.8 100 99.6 100 99.6 100

Figure 6: Empirical type I error rates for the test statistics, PLRTMV, TDWLS−MV,
TULS−MV, testing two-group nested models (Models A, B, and C) for variables with
4 response categories, sample sizes 200, 500, 1000, and significance levels 5% and
1%; Model A is the unconstrained model, Model B is the loading-invariant one,
and Model C is the threshold- and loading-invariant model; the bold horizontal
lines represent the nominal significance level; the vertical lines joining the symbols
(circle, triangle) are used to distinguish among the three test statistics and do not
represent a range of values
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sample size and the size of misspecification; when either or both of them increase,
the power improves substantially with a tendency to reach 1. With respect to both
criteria, type I error and power, the performance of the PLRT tests is competitive
to that of the tests derived under DWLS and ULS. The differences in performance
of the three methods become negligible as the sample size increases. Finally, in
our simulation results the model selection criteria AICPL and BICPL select the
right model at least in 96% of the cases with BICPL always performing better
than AICPL.

8 Application on trust in the police from the Eu-

ropean Social Survey

We analyze fifteen questions from the UK and Ireland (sample sizes 2422 and 2576
respectively) from the European Social Survey (ESS), Round 5 (2010), section
“Trust in the Police and Courts” (Section D in the questionnaire) (ESS Round 5,
2014; 2010). The data can be downloaded from the ESS webpage. The analysis
consists of five latent variables measuring: “Trust in police effectiveness” (η1),
“Trust in police procedural fairness” (η2), “Felt obligation to obey the police”
(η3), “Moral alignment with the police” (η4) and, “Willingness to cooperate with
the police” (η5). Each latent variable is measured by three ordinal variables, the
wording of which, along with the response categories, are given in Appendix A.4.
The hypothesized model in each country is discussed in Jackson et al. (2012) and
the relationships among the five constructs of interest are given below:

η3 = β31η1 + β32η2 + ζ3

η4 = β41η1 + β42η2 + ζ4

η5 = β51η1 + β53η3 + β54η4 + ζ5 .

The two-group SEM is fitted in lavaan. In principle, for valid cross-country
comparisons, measurement invariance needs to hold. Three two-group models are
fitted: Model A is the model with the minimum number of constraints needed to
identify the two-group model (for details see Millsap & Yun-Tein, 2004); Model
B is the loading-invariant model, which is Model A with cross-country equality
constraints on all loadings; Model C is Model B with cross-country equality con-
straints on the thresholds of the first indicator of η1 (namely, question D12). Model
A is compared to Model B and Model B is compared to Model C. Table 3 presents
the p-values of the three test statistics, PLRTMV , TULS−MV , and TDWLS−MV . All
three test statistics fail to reject Model B (p-value>0.25). Model C is rejected
at the 1% significance level by TULS−MV and TDWLS−MV (their p-values are less
than 0.001) and at 5% by PLRTMV (p-value = 0.028). The table also reports
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Table 3: Two-group analysis of ESS data: p-value of test statistics for nested
models; AICPL, and BICPL

Model B vs A Model C vs B Model A Model B Model C
PLRTMV 0.48 0.028 AICPL 2209526 2209491 2209824
TULS−MV 0.31 0.000 BICPL 2226159 2225908 2225554
TDWLS−MV 0.27 0.000

Table 4: Two-group analysis of ESS data: values and p-values of overall-fit test
statistics

Model A Model B Model C
value (p-value) value (p-value) value (p-value)

PLRTMV 291.9 (0.000) 148.9 (0.000) 109.6 (0.000)
TULS−MV 735.0 (0.000) 670.8 (0.000) 740.0 (0.000)
TDWLS−MV 1209.2 (0.000) 1255.4 (0.000) 1331.8 (0.000)

the AICPL and BICPL values of the three models. AICPL selects Model B while
BICPL selects Model C. All test statistics including the PLRT for overall fit reject
all three models (p-value<0.001). The values of test statistics for each model are
given in Table 4.

All three test statistics reject all three fitted models. All three test statistics
and model selection criteria for comparing models A and B suggest Model B.
Interestingly, in the comparison of Model B with Model C, PLRT at 1% significance
level agrees with BICPL in indicating Model C.

9 Conclusions

In this paper, we develop the pairwise likelihood ratio test (PLRT) for testing
the overall fit of a structural equation model (SEM) for ordinal variables and for
comparing nested models. Moreover, the composite likelihood versions of AIC and
BIC are studied in SEM for ordinal variables. All the developed test statistics and
model selection criteria are available in the R package lavaan. The type I error
and power of the derived test statistics are investigated via a simulation study for
models encountered in practice, such as a two-factor confirmatory model measured
by 20 ordinal variables and a two-group model with 5 factors and 15 ordinal
variables. The derived test statistics are also compared with test statistics derived
under the three-stage diagonally weighted least squares (DWLS) and unweighted
least squares (ULS). A real data example from the European Social Survey is used
to illustrate their use in a two-group five-factor model fitted to the UK and Ireland
data.
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The PLRT for comparing nested models covers the case of nested models due
to equality constraints among parameters and/or due to certain parameters being
fixed equal to specific values. The PLRT for overall fit can be applied to models
that do not only assume parametric structure on the polychoric correlations of the
underlying variables but on the thresholds as well. Although the paper focuses
on SEM for ordinal variables, the proposed methodology readily extends to SEM
with mixed type variables (continuous and ordinal) and covariates.

The type I error and power of the PLRT statistics is quite satisfactory for the
experimental conditions studied in this paper. The empirical type I error rates for
PLRT is never higher than the nominal one. In most experimental conditions the
95% confidence interval (CI) of the empirical rate includes the nominal value of the
significance level. It is mainly in the smaller sample size (200) that PLRT tends to
under-reject a true null hypothesis. However, the performance improves with the
sample size. The performance of the test statistics derived under DWLS and ULS
with respect to type I error seems a bit better in the sense that in more experimen-
tal conditions the 95% CI of the empirical type I error rate includes the nominal
significance level. However, whenever this is not the case, they tend to over-reject
the null hypothesis. The performance of PLRT with respect to power improves
substantially with the sample size and the misspecification size and is competitive
to that of DWLS and ULS test statistics. The differences in their performances
becomes negligible as the size of sample and/or misspecification increases. Fur-
thermore, the model selection criteria, AICPL and BICPL, are found to select
the right model with very high probability (at least 96% of the replications) with
BICPL always performing better.

The paper considers the standard approach of mean-and-variance adjustment
for the PLRT statistics. Further research should be conducted on studying other
adjustments such as the one proposed by Pace et al. (2011). Moreover, the results
regarding the overall fit PLRT statistic can be used in future research to derive
fit indices that inspect the fit of the model on a subset of the observed variables.
Such diagnostic tools are useful in practice since the overall fit test statistics often
reject the hypothesized models.

10 Appendix

A.1. Proof for PLRT (g (θ))

With θ̂ being a PML estimator, it holds that
√
N
(
θ̂ − θ0

)
→ N (0, G−1 (θ0)). Us-

ing the Delta method,
√
N
(
g
(
θ̂
)
− g (θ0)

)
→ N

(
0,M (θ0)G

−1 (θ0) [M (θ0)]
′),

where M (θ0) = ∂
∂θ′
g (θ)

∣∣
θ=θ0

. Under H0 : g (θ) = 0, it holds
√
Ng
(
θ̂
)
→
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N
(
0,M (θ0)G

−1 (θ0) [M (θ0)]
′). Taking the second order Taylor expansion of

pl(θ̃) around θ̂ and since ∂pl
∂θ′

∣∣
θ=θ̂

= 0 we get

2
(
pl(θ̂)− pl(θ̃)

)
' N(θ̃ − θ̂)′

(
− 1
N

∂2pl
∂θ′∂θ

∣∣∣
θ=θ̂

)
(θ̃ − θ̂).

Thus, PLRT (g (θ)) → N(θ̃ − θ̂)′H(θ0)(θ̃ − θ̂). Taking the first order Taylor
expansion of ∂pl

∂θ′

∣∣
θ=θ̃

around θ̂ and since ∂pl
∂θ′

∣∣
θ=θ̂

= 0 we get:

(θ̃ − θ̂)→ − 1

N
H−1(θ0)

∂pl

∂θ′

∣∣∣∣
θ=θ̃

. (19)

Taking the first order Taylor expansion of g
(
θ̃
)

around θ̂ and since, under H0,

g
(
θ̃
)

= 0, it holds g
(
θ̂
)
→ −M

(
θ̂
)

(θ̃− θ̂). In the latter we substitute
(
θ̃ − θ̂

)
with (19) to get g

(
θ̂
)
→ 1

N
M
(
θ̂
)
H−1(θ0)

∂pl
∂θ′

∣∣
θ=θ̃

.

It holds ∂pl
∂θ′

∣∣
θ=θ̃

=
[
M
(
θ̃
)]′
λ, where λ is an r×1 vector of Lagrange multipliers.

Hence, g
(
θ̂
)
→ 1

N
M
(
θ̂
)
H−1(θ0)

[
M
(
θ̃
)]′
λ and

λ→ N

{
M
(
θ̂
)
H−1(θ0)

[
M
(
θ̃
)]′}−1

g
(
θ̂
)

.

In expression (19), we substitute ∂pl
∂θ′

∣∣
θ=θ̃

and λ with the above results to get

(θ̃ − θ̂)→ −H−1(θ0)
[
M
(
θ̃
)]′{

M
(
θ̂
)
H−1(θ0)

[
M
(
θ̃
)]′}−1

g
(
θ̂
)

.

Under H0, (θ̃ − θ̂)→ −H−1(θ0) [M (θ0)]
′ [A (θ0)]

−1 g
(
θ̂
)

, where

A (θ0) = M (θ0)H
−1(θ0) [M (θ0)]

′. Thus, PLRT (g (θ)) can be written as follows

PLRT (g (θ))→
(√

N [A (θ0)]
−1/2g

(
θ̂
))′ (√

N [A (θ0)]
−1/2g

(
θ̂
))

, where
√
N [A (θ0)]

−1/2g
(
θ̂
)
→ N

(
0, [A (θ0)]

−1/2M (θ0)G
−1 (θ0) [M (θ0)]

′ [A (θ0)]
−1/2).

Therefore, PLRT (g (θ))→
∑r

i=1 κiui , where ui’s are independent χ2
1-distributed

variables, and κi is the ith eigenvalue of matrix [A (θ0)]
−1/2M (θ0)G

−1 (θ0) [M (θ0)]
′ [A (θ0)]

−1/2.

A.2. Proof for PLRTSEM

Before we consider the PLRTSEM , we need to consider the PLRT statistics for two
hypotheses of nested models. Firstly, consider the PLRT (ϕ0) for the hypothesis
H0 : ϕ = ϕ0 versus H1 : ϕ 6= ϕ0, where the SEM parameter θ is partitioned as
θ = (ϕ′,ω′)′, ϕ is the parameter vector of interest, ω is the vector of nuisance
parameters, and ϕ0 is a vector of real values. As we have already discussed in
Section 4.1, this hypothesis is a special case of the hypothesis H0 : g (θ) = 0, where
g (θ) = ϕ−ϕ0 and the matrices A (θ0) and B (θ0) are simplified to Hϕϕ (θ0) and

25



Gϕϕ (θ0), respectively. Using the result of the previous section, we conclude that

PLRT (ϕ0)→ v′v (20)

where v =
√
N [Hϕϕ (θ0)]

−1/2 (ϕ̂−ϕ0). Since
√
N (ϕ̂−ϕ0) → N (0, Gϕϕ (θ0)),

v → N
(
0, [Hϕϕ (θ0)]

−1/2Gϕϕ (θ0) [Hϕϕ (θ0)]
−1/2

)
.

Secondly, consider the PLRT (σ0) for the hypothesis H0 : σ = σ0 versus
H1 : σ 6= σ0, where ϑ is the complete parameter vector of an unconstrained
model, partitioned as ϑ = (σ′, τ ′)′, and σ0 is a vector of real values. Following
the same reasoning as in PLRT (ϕ0), it follows that:

PLRT (σ0)→ z′z (21)

where z =
√
N [Hσσ (ϑ0)]

−1/2 (σ̂ − σ0), and thus

z → N
(
0, [Hσσ (ϑ0)]

−1/2Gσσ (ϑ0) [Hσσ (ϑ0)]
−1/2

)
.

Now we return to PLRTSEM . Let θ̃ = (ϕ′0, τ̃
′
ϕ0)
′. Under H0, it holds

σ0 = g(ϕ0) and thus pl

(
σ0

τ̃ σ0

)
= pl

(
ϕ0

τ̃ϕ0

)
, i.e. pl

(
ϑ̃
)

= pl
(
θ̃
)

. This

way, PLRTSEM can be written as

PLRTSEM = 2
(
pl
(
ϑ̂
)
− pl

(
θ̂
))

= 2
(
pl
(
ϑ̂
)
− pl

(
ϑ̃
))
−2
(
pl
(
θ̂
)
− pl

(
θ̃
))

=

PLRT (σ0)− PLRT (ϕ0). Based on (20) and (21), PLRTSEM → z′z − v′v.

A.3. Proof for V ar (PLRTSEM)

Since PLRTSEM → z′z − v′v where z =
√
N [Hσσ (ϑ0)]

−1/2 (σ̂ − σ0) and v =√
N [Hϕϕ (θ0)]

−1/2 (ϕ̂−ϕ0), it follows:

V ar (PLRTSEM)→ V ar (z′z) + V ar (v′v)− 2Cov (z′z,v′v)

with V ar (z′z) = 2tr
(
Gσσ

(
ϑ0

) [
Hσσ

(
ϑ0

)]−1
Gσσ

(
ϑ0

) [
Hσσ

(
ϑ0

)]−1)
, V ar (v′v) =

2tr
(
Gϕϕ

(
θ0
) [
Hϕϕ

(
θ0
)]−1

Gϕϕ
(
θ0
)

[Hϕϕ (θ0)]
−1
)

, and the calculations for

Cov (z′z,v′v) are shown below. Under H0, σ0 = g(ϕ0), so it can be written as

z′z = N (σ̂ − σ0)
′ [Hσσ

(
ϑ0

)]−1
(σ̂ − σ0) =

= N (g (ϕ̂)− g (ϕ0))
′ [Hσσ

(
ϑ0

)]−1
(g (ϕ̂)− g (ϕ0)). Therefore,

Cov (z′z,v′v) = Cov
[
N (g (ϕ̂)− g (ϕ0))

′A (g (ϕ̂)− g (ϕ0)) , N (ϕ̂−ϕ0)
′B (ϕ̂−ϕ0)

]
,

where A =
[
Hσσ

(
ϑ0

)]−1
and B =

[
Hϕϕ

(
θ0
)]−1

, both being symmetric ma-
trices. Based on the first-order Taylor expansion of g (ϕ̂) around g (ϕ0):

g (ϕ̂) ' g (ϕ0)+
∂
∂ϕ
g (ϕ)

∣∣∣
ϕ=ϕ0

(ϕ̂−ϕ0), where ∂
∂ϕ
g (ϕ)

∣∣∣
ϕ=ϕ0

. Let C = ∂
∂ϕ
g (ϕ)

∣∣∣
ϕ=ϕ0

.

26



Thus, g (ϕ̂) − g (ϕ0) ' C (ϕ̂−ϕ0) and (g (ϕ̂)− g (ϕ0))
′A (g (ϕ̂)− g (ϕ0)) '

(ϕ̂−ϕ0)
′D (ϕ̂−ϕ0), where D = C ′AC and is symmetric because A is symmetric.

The covariance expression can now be written as:

Cov (z′z,v′v) ' Cov
[
N (ϕ̂−ϕ0)

′D (ϕ̂−ϕ0) , N (ϕ̂−ϕ0)
′B (ϕ̂−ϕ0)

]
= 2tr (DGϕϕBGϕϕ)

= 2tr

((
∂

∂ϕ
g (ϕ)

∣∣∣∣
ϕ=ϕ0

)′
[Hσσ]−1

∂

∂ϕ
g (ϕ)

∣∣∣∣
ϕ=ϕ0

Gϕϕ [Hϕϕ]−1Gϕϕ

)
.

The expression of the first line is equal to that of the second line by using the
result, proved in Magnus (1978), that if t → N (0, V ), then Cov (t′Dt, t′Bt) =
2tr (DV BV ). (This result can also be used for the computations of V ar (z′z)
and V ar (v′v).) The expressions of the last two lines above are equal by simply
substituting the matrices D and B with their equivalence.

A.4. Questions on trust in the police, European Social Sur-
vey, Round 5.

Trust in police effectiveness
D12. Based on what you have heard or your own experience how successful do
you think the police are at preventing crimes in [country] where violence is used
or threatened?
D13. How successful do you think the police are at catching people who commit
house burglaries in [country]?
D14. If a violent crime were to occur near to where you live and the police were
called, how slowly or quickly do you think they would arrive at the scene?

Trust in police procedural fairness
D15. Based on what you have heard or your own experience how often would you
say the police generally treat people in [country] with respect?
D16. About how often would you say that the police make fair, impartial decisions
in the cases they deal with?
D17. When dealing with people in [country], how often would you say the police
generally explain their decisions and actions when asked to do so?

Felt obligation to obey the police
To what extent is it your duty to. . .
D18. . . . back the decisions made by the police even when you disagree with them?
D19. . . . do what the police tell you even if you don’t understand or agree with
the reasons?
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D20. . . . do what the police tell you to do, even if you don’t like how they treat
you?

Moral alignment with the police
D21. The police generally have the same sense of right and wrong as I do.
D22. The police stand up for values that are important to people like me.
D23. I generally support how the police usually act.

Willingness to cooperate with the police
D40. Imagine that you were out and saw someone push a man to the ground and
steal his wallet. How likely would you be to call the police?
D41. How willing would you be to identify the person who had done it?
D42. And how willing would you be to give evidence in court against the accused?

Response Scales
11-point for questions D12-D14, D18-D20; 0 denotes “Extremely Unsuccessful”/“Extremely
slowly”/“Not at all my duty”; 10 denotes “Extremely Successful”/“Extremely
quickly”/ “Completely my duty”.
4-point for questions D15-D17 and D40-D42. For D15-D17, 1 denotes “Not at all
often” and 4 “Very often”. For D40-D42, 1 denotes “Not at all likely” and 4 “Very
likely”.
5-point for questions D21-D23, 1 denotes “Agree strongly” and 5 “Disagree strongly”.
The extra response category: “Violent crimes never occur near to where I live” in
D14 is treated as missing in our analysis.
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Jöreskog, K., & Yang, F. (1996). Nonlinear structural equation models: The
Kenny-Judd model with interaction effects. In G. Marcoulides, & R. Schumacker
(Eds.) Advanced Structural Equation Modeling: Issues and Techniques , (pp. 57–
88). Mahwah, New Jersey: Lawrence Erlbaum Associates.
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