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How certain are we about the certainty-equivalent long
term social discount rate?

Mark C. Freeman and Ben Groom1

Abstract

Theoretical arguments for using a term structure of social discount rates (SDR)

that declines with the time horizon have influenced Government guidelines in

the US and Europe. The certainty equivalent discount rate that often underpins

this guidance embodies uncertainty in the primitives of the SDR, such as growth.

For distant time horizons the probability distributions of these primitives are

ambiguous and the certainty equivalent itself is uncertain. Yet, if a limited set

of characteristics of the unknown probability distributions can be agreed upon,

‘sharp’upper and lower bounds can be defined for the certainty-equivalent SDR.

Unfortunately, even with considerable agreement on these features, these bounds

are widely spread for horizons beyond 75 years. So while estimates of the present

value of intergenerational impacts, including the social cost of carbon, can be

bounded in the presence of this ambiguity, they typically remain so imprecise as

to provide little practical guidance.

Key Words Declining discount rates, Distribution uncertainty, Social Cost of Carbon.

JEL classification H43, Q51.

1 Introduction

The outcome of cost-benefit analysis of public projects with intergenerational consequences

is notoriously sensitive to the social discount rate (SDR) employed. Small variations in

1Mark C. Freeman (Corresponding Author), School of Business and Economics, Loughborough University,
Leicestershire LE11 3TU, United Kingdom. Email: M.C.Freeman@lboro.ac.uk. Ben Groom, School of
Geography and Environment, London School of Economics, Houghton Street, London, WC2A 2AE, United
Kingdom. Email: b.groom@lse.ac.uk.
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assumptions about the appropriate SDR can therefore lead to very different policy recom-

mendations for the preservation of natural resources and environmental quality, including

the retention of biodiversity (Freeman and Groom (2013)) and the case for mitigating against

greenhouse gas emissions (e.g. Nordhaus (2007), Stern (2008)).

This policy-sensitivity is particularly problematic because the primitives that underlie

the long-term discount rate are diffi cult to determine. For example, the growth rate of

aggregate consumption and the rate of return to capital over the next four centuries are

essentially unknown today, since they depend on a number of unpredictable events including

technological advances, political and social unrest, environmental change and even pandemics

(e.g. Almond (2006)).

A typical way to approach long-term discounting is to calculate a ‘certainty equivalent’

social discount rate, a single rate which embodies uncertainty in the SDR primitives. Yet

even though uncertainty is taken into account, such calculations assume a fanciful level of

predictive power, since they assume perfect knowledge of the relevant probability distri-

butions. In the context of intergenerational decision-making, the probabilities associated

with different future states of the world are thought to be ambiguous at best, and at worst

unknown.2 Consequently, the certainty equivalent discount rate is itself uncertain.

In this paper we make a contribution to the literature on social discounting under uncer-

tainty by calculating empirical ‘sharp’upper and lower bounds for the certainty-equivalent

social discount rate when we have imperfect knowledge of probability distributions of SDR

primitives. Such bounds can be calculated if decision-makers are willing to assume partial,

but not complete, agreement on some characteristics of these distributions. The existence of

sharp bounds is the good news. The bad news is that these bounds are typically very wide

and fail to provide precise calculations of present values.

These findings are important because the burgeoning literature on the term structure of

2We use the term ‘ambiguous’ in this paper in the sense of (Klibanoff et al. 2011, p.400) “that this
definition is characterized by, roughly, disagreement in the probability assigned to an event by the various
probability measures that are subjectively relevant.”
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social discount rates, expertly reviewed by Gollier (2012) and Arrow et al. (2014), has been

highly influential at a policy level. The message coming from these contributions is that, for

risk free projects, the term structure should be declining with the time horizon. This view

is exemplified by a recent Policy Forum article in Science, in which it is argued that where

we are uncertain about the future “there are compelling arguments for using a declining

discount rate schedule”(Arrow et al. 2013, p. 350). As a consequence of these theoretical

advances, declining discount rates (DDRs) can now be found in government guidelines in

the UK and France, influence recommendations in the US (Cropper et al. (2014)), and lie

behind recent advice given to the Norwegian, Danish and Dutch governments. In the UK,

DDRs have been used in the governmental economic analysis of the High Speed 2 (HS2) rail

link and for capital budgeting purposes by the Nuclear Decommissioning Authority. DDRs

have already had policy impact.

The DDRs that appear in government guidelines are typically based on certainty-equivalent

discount rates which reflect uncertainty in the future or disagreement among experts on the

appropriate discount rate, perhaps for ethical reasons. An influential set of arguments sup-

poses that for some x, the different definitions of which are reviewed in subsequent sections,

the present value, pH , of a certain $1 arriving at time H is given by pH = E [exp (−Hx)].

The H−period certainty-equivalent discount rate, RH , is then defined through the relation-

ship exp(−HRH) = pH . Exponential functions are convex, and so, by Jensen’s inequality,

E [exp (−Hx)] ≥ exp (−HE [x]): uncertainty over x raises the present value, pH , and lowers

the discount rate, RH . The magnitude of this effect becomes greater the more uncertain

we are about x, and the more convex the exponential function, the latter being determined

by the parameter value H. As a consequence RH declines with the time horizon until in

the limit, as H →∞, it approaches the lowest possible outcome for x.3

3A numerical example illustrates the mechanics of the result. Suppose that, with equal probability, x will
either take the value of 2% or 6%. The social value of $1 delivered at time H with certainty is then given by
the expected present value under these two outcomes, pH = 0.5 (exp (−0.02H) + exp (−0.06H)), resulting
in R1 = 3.98%, R50 = 3.13%, R100 = 2.67% and R400 = 2.17%. The x = 6% outcome is, through the power
of exponential discounting, given increasingly less voice in the social valuation pH as H gets larger. For
horizons of a century or more, to good approximation, its contribution to pH becomes so small that it can
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While this may seem like a narrowly-defined structure, it has several different interpre-

tations depending on the approach taken to social discounting and DDRs. Its most famous

use stems from Weitzman’s (2001) ‘Gamma Discounting’paper. Here, x was interpreted as

reflecting different expert opinions on the value of the discount rate itself. In this context,

the justification for using the formula pH = E [exp (−Hx)] remains controversial. This is

partly because its connection with utility theory was not made clear at the time, and partly

that more recent theoretical motivations rely on quite restrictive assumptions. We discuss

this point in detail in Sections 2 and 3. Less well known is that x can also be interpreted

through the Social Rate of Time Preference (SRTP) in a more standard consumption-based

Ramsey asset pricing framework. A proof of this proposition is given in Section 3. A third

interpretation of x, also discussed in Section 3, is that it represents the average return to

risk-free capital over the horizon of the cash flow. Since they all have a similar expecta-

tions structure, the methods that we describe for deriving the sharp bounds for the certainty

equivalent discount rate can be equally well applied to any of these interpretations.

Putting any of these interpretations into practice requires assumptions about the uncer-

tainty surrounding the primitives of the SDR that are contained in x, through its probability

density function (pdf), f (x) . The main approach taken so far is to parameterize f (x) and

treat this distribution as if it is perfectly identified. Yet, because our knowledge of the future

is nowhere near as precise as this approach would suggest, a more realistic starting point

would be to admit that we do not, perhaps cannot, know the true nature of f (x) over time

horizons of many decades or centuries. For very long-term decisions the context is one of

uncertainty and ambiguity. We are not alone in thinking this. Pindyck (2015) recently made

a similar point in relation to social discounting, while Iverson (2013) and Traeger (2014) both

take ambiguity as their starting points. Yet the approach that we take assumes far more

knowledge about the future than Knight (1921), who would maintain that true uncertainty

is immeasurable. To reduce the problem we imagine a situation where the social planner

be ignored altogether with pH ≈ 0.5 exp (−0.02H) and RH ≈ 0.02− ln (0.5) /H. In the limit, as H −→∞,
RH → 2%.
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gathers a panel of economists who, while accepting that it will be impossible to agree on the

precise distribution of x, are nonetheless tasked with identifying the set of density functions

such that all members agree that f (x) is a member of this set.4 Agreement in this context

takes the form of agreeing characteristics shared by all distributions within a set. For in-

stance, the set may contain probability distributions which share the same first K moments,

or alternatively the same values for particular quantiles.5 They might, instead, be members

of a family of distributions, such as the gamma or Wald (Inverse Gaussian) distribution. Of

course, the number of pdfs which share the basic information that defines the set is infinite,

and so there is significant room left for disagreement. Yet, as we show, given some level of

agreement on shared characteristics, the social planner can determine the highest and lowest

certainty equivalent social discount rate that is consistent with the agreed set of pdfs, for

each horizon H. In contrast to Iverson (2013) and Traeger (2014), therefore, our focus is on

proving a range of potential values for RH which the social planner cannot easily dismiss,

rather than determining a single precise schedule of discount rates for an ambiguity averse

decision maker.

Our central conclusion is that, despite limiting the ambiguity over the future by requiring

significant agreement on some characteristics of f (x), the range of values that RH might

reasonably take remains extremely wide for horizons of three-quarters of a century or more

irrespective of the theoretical interpretation of x. This result is primarily driven by uncer-

tainty over the properties of the extreme left-hand tail of f (x) even when there is widespread

consensus on other characteristics of the distribution. While clearly distinct, this finding

echoes the substantial existing literature explaining the key role played by extreme outcomes

in the economics of climate change.6

4While it is possible that these assumptions will be falsified with the benefit of hindsight, we assume that
the social planner is willing to make decisions on the basis of assumptions about f (x) that are suffi ciently
uncontroversial for reasonable people to be able to agree upon them today. O’Hagan et al. (2006) provides
a detailed review of how experts’probability judgements might be assessed for this purpose.

5To avoid issues around infinities, as famously discussed in a related context through the ‘dismal theorem’
of Weitzman (2009), we assume throughout that the first K moments of f (x) are finite and that, more
generally, its moment generating function is defined.

6See, for example, papers published by Professors Weitzman, Nordhaus and Pindyck summarizing a
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Three policy applications are then presented in which the present values of long-term cash

flow schedules are calculated: (i) the damages caused by carbon emissions; (ii) the estimated

benefits of Phase 1 of the HS2 rail link; and (iii) the costs of decommissioning the previous

generation of nuclear power stations within the UK. As is to be expected, the less we agree

upon about the future, the wider are the bounds of the certainty equivalent discount rate

and the more uncertain we are about the ‘true’present value. For example, using gamma

discounting (Weitzman (2001)) as our underlying DDR model, even if there is agreement on

the first four moments of f (x), then the social cost of carbon (SCC) can lie anywhere within

the interval $13.6 per ton of carbon (/tC) and $46.1/tC. This is a sobering result when one

considers that even agreement on the first moment is likely to be an optimistic assumption.

In this latter position of relative ignorance, the SCC can be anywhere between $5/tC and

$190/tC.

The obvious conclusion for policy, therefore, is that social planners should be extremely

cautious when making decisions on intergenerational matters based on calculating Net Present

Values. Even if we make the bold claim that we know some minimal summary statistics of

the uncertainty surrounding future growth or interest rates, and ignore broader issues such

as true Knightian uncertainty, we can still only be sure that the appropriate discount rate

will lie within very wide bounds. In such cases spot estimates of, say, the SCC will give a

false impression of precision. So, while on the up-side our method provides a concrete way

in which to set the range for sensitivity analysis in cost-benefit analysis, the broader message

is that additional decision-making criteria are likely to be required for long-term projects.

2 DDRs under gamma discounting

Consider a social planner who has decided to implement a schedule of declining discount rates

for calculating the present value of the certainty-equivalent cash flows that will arise from

symposium on “Fat tails and the economics of climate change”published in the Review of Environmental
Economics and Policy, 5(2), 2011.
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intergenerational investment projects. As discussed in the introduction such a policy can be

motivated by an H−period certainty equivalent discount rate with the following structure:

RH = −H−1 ln (E [exp (−Hx)]) (1)

for some x whose probability or frequency distribution, f (x) , might be H−dependent.

While the next section will go into detail about the theoretical justifications for this structure

and the different associated interpretations of x, at this point it is helpful to briefly mention

the main interpretations of x that appear in the literature. In one strand, x is interpreted

as the average long-term risk-free rate of interest, for another it is the Social Rate of Time

Preference (SRTP) from the standard Ramsey model, SRTP = ρ+ γg, where ρ is the pure

rate of time preference, γ is the elasticity of marginal utility, and g is the real growth of

per capita consumption. Given these different possibilities, the data on x could be elicited

from survey responses, as in Weitzman (2001) and Drupp et al. (2015). Alternatively it

might be derived from revealed preference, such as in Groom and Maddison (2013) for γ.

The data could reflect normative views for ρ and γ or could represent forecasts of market

interest rates and growth, perhaps based on historical data. Consequently, the expectations

operator, E [·], can act either (as usual) as a probability weighted aggregator of the possible

future realizations of a stochastic random variable, or as a weighted average across different

opinions or characteristics. In the broader literature these distinct sources of data determine

the way in which the expectation in equation 1 is calculated (Freeman and Groom (2015)).

In this section we view equation 1 through the lens of the ‘gamma discounting’framework

of Weitzman (2001). Here, x represents different expert opinions on the discount rate and

f (x) is the frequency distribution of those opinions. This framework is selected to explain

our main point not because we believe that it is necessarily the best for determining the

schedule of social discount rates, but instead because of its simplicity. This choice allows us

to make our central point with minimal extraneous complexity before we extend the analysis
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to other interpretations of equation 1 and x in Sections 3 and 4.

Gamma discounting used a survey of N = 2160 PhD level economists who were asked the

question ‘Taking all relevant considerations into account, what real interest rate do you think

should be used to discount over time the (expected) benefits and (expected) costs of projects

being proposed to mitigate the possible effects of global climate change?’. Weitzman (2001)

then argued that the social value, pH , of $1 that will arrive at time H with certainty should

be determined by an average of the individual discount factors. If the response of expert i

is denoted by xi, the SDR is given by:

RH = − 1

H
ln

(
N∑
i=1

wi exp (−Hxi)
)

(2)

where wi is the weight placed on expert i by the social planner.7

Rather than applying this framework directly, Professor Weitzman instead noticed that

the sample frequency distribution of responses was approximately gamma distributed, Γ (α, β),

for rate parameter α and shape parameter β. Under this approximation, if equal weight is

given to each expert, wi = 1/N for all i, equation 2 becomes:

RH = − 1

H
ln

(∫ ∞
0

e−Hx
βα

Γ (α)
xα−1e−βxdx

)
=
α

H
ln

(
1 +

H

β

)
(3)

This gives a convenient closed-form solution for the term structure of the social discount rate

that depends only on the two parameters of the gamma distribution. For the purposes of

this paper, ‘gamma discounting’is defined as determining the SDR through equation 3.

Now assume that the social planner has decided to use equation 2 to determine the

SDR, and then chosen to calibrate this equation using Weitzman’s survey data.8 However,

7A similar approach can also be applied when a social planner is constructing a global discount rate that
reflects the potentially conflicting positions of different social groups or geographical regions. Similar to
the case of expert opinion, f (x) represents the weighted population frequency distribution of the different
discount rates that would be applied by either a specific sub-group of society or international governments.
See, for example, (Gollier 2012, Chapter 9).

8We delay discussion of the theoretical arguments for and against using equation 2 to the next section.
Choosing to calibrate with Weitzman’s data is also controversial. Dasgupta (2008), for example, argues
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she has serious reservations about applying equation 3 because she remains unconvinced

that setting wi = 1/N is a natural choice. Her views here are influenced by Gollier and

Zeckhauser (2005), Jouini et al. (2010), Heal and Millner (2014), Jouini and Napp (2014)

and Freeman and Groom (2015), all of whom argue that experts should only be weighted

equally under very restrictive assumptions – we will return to this issue in the next section.

To seek further guidance, she brings together a panel of J economists to reach consensus

on which properties of wi, and hence f (x) are suffi ciently uncontroversial so as to provide

a solid ground for policy decisions. The panel quickly agrees that all experts should be

given non-negative weight, wi ≥ 0 for all i, and that the weights should sum to one. These

choices ensure that equation 2 can be interpreted within the context of equation 1 when, for

mathematical convenience, each xi is treated as if it were a possible realization of a random

variable that has probability wi of occurring. In this context f (x) has the interpretation of

being a weighted sample frequency distribution.

Unfortunately, being economists, panel members fail to agree on the choice of weightings,

wi, so each of them proposes their own weighted distribution, fj (x) for j ∈ [1, J ], to the

social planner. Disagreement in this case could reflect variations in the way that each panel

member perceives the professional standing of each expert. Alternatively it might be that

panel members have different preferences for the specific approaches to social discounting

that are advocated by different groups of the sampled population.9 Finally, the proposed

fj (x) could reflect the panel member’s position on how independent the expert opinions are

from one another (Freeman and Groom (2015)). Deciding on these weights is ultimately a

subjective professional choice, and there is no strong reason for the social planner to believe

that the values selected by one panel member are in any sense better than those of another.

Therefore, in a spirit of open-mindedness, she views all panel members’weighting choices

that a more democratic approach should be taken to social discounting than just canvassing the opinions
of ‘experts’. Furthermore, a recent survey by Drupp et al. (2015) reports a very different spread of expert
views on the SDR to Weitzman (2001).

9Drupp et al. (2015) provides a lengthy discussion of the underlying reasons why experts give conflicting
advice on RH , and presents detailed evidence concerning the spread of opinions on each of these matters.
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as equally plausible, and will not look to further aggregate these conflicting opinions into a

single discount rate schedule.

In order to provide useful input to policy further consensus is needed to stop cases of

extreme disagreement.10 Specifically, the social planner asks that weights are chosen to

ensure that certain statistical properties of fj (x) are the same across all panel members,

j. While not exhaustive, these might relate to agreeing on some combination of: (i) the

support of f (x), [a, b], which corresponds to the lowest and highest expert opinions that can

be given non-zero weight; (ii) the moments of f (x); (iii) the quantiles of f (x); and/or (iv)

whether a specific family of distributions can be used to describe f (x). In this set-up, our

central question becomes: given agreement between panel members on some, but not all, of

the properties of f (x), what are the maximum and minimum values that RH can take that

are consistent with this level of agreement? Following on from this, has the panel reached

suffi cient consensus so that the remaining disagreement over RH does not ‘matter’from a

policy perspective? These questions are answered in the following subsections.

2.1 Agreement on the moments of x

Initially, the panel are willing to accept that some features of the spread of weighted expert

opinions on the discount rate, f (x) , can be derived from the Γ (α, β) distribution that

approximates the equally-weighted sample frequency distribution of Weitzman’s survey data.

The panel also agree that parameter values, α = 1.90 and β = 47.23, can be estimated using

a methods of moments approach. From this framework, agreement is reached that a = 0%,

the lower bound of the gamma distribution, and b = 19.11%, which is the 99.9th percentile

of the same distribution. While the raw survey data of Weitzman have responses below a

and above b, the panel reaches agreement that the extreme outliers lie suffi ciently far from

the mean as to be given zero weight. Our results are much more sensitive to the choice of

the former than the latter as RH → a as H →∞. We return to this issue in Subsection 2.3.
10Such as one panel member placing all weight on the expert with the highest response and another placing

all weight on the one with the lowest response.
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The panel is also willing to estimate some or all of the mean, standard deviation, skewness,

and excess kurtosis of f (x) from this distribution. These values are respectively 4.03%,

2.92%, 1.45 and 3.15. However, this is the limit of the agreement that the panel members

can reach.

Suppose first that the panel can only reach agreement that the mean of x =
∑

iwixi

equals 4.03%, together with a and b. Then, at one extreme, one panel member might

wish to place all weight on the expert whose opinion matches the agreed mean value of

Γ (α, β), 4.03%.11 This results in RH = 4.03% for all H. At the other extreme, another

panel member might think that the two most informed experts lie at the opposite far ends

of the support, a = 0% and b = 19.11% and chooses weights on each expert so as to

match the agreed mean. These weights turn out to be 78.9% and 21.1% respectively. In

this case, the social value is the weighted average of the expert discount factors; pH =

0.789 + 0.211 exp (−0.1911H), resulting in R50 = 0.5% and R100 = 0.2%. Taking together

the views of the two panel members, for cash flows one century from now, the social planner

cannot discard the possibility that the appropriate discount rate might be as low as 0.2% or

as high as 4%.

Given this wide range of possible values for RH , the social planner asks the panel whether

they might also be willing to accept the estimate of the standard deviation of x from Γ (α, β).

If so, the following two extreme distributions each meet this new consensus. For the first,

the weighting is 96.4% at x = 3.47%, with the remaining 3.6% at b. For the second,

the weighting is 34.4% at a and 65.6% at 6.15%. Now R100 is equal to 3.5% for the first

distribution and 1.1% for the second.

Again, the social planner feels that this does not provide a suffi ciently narrow range to

make important policy choices, so now asks the panel to agree on the skewness as well. In

this case, R100 can lie in the range 1.3% to 2.7%. With kurtosis added, the range narrows

11While Weitzman (2001) reports integer values for xi, we assume that these round a continuum of
responses over [a, b]. Placing all weight on one response, the median (not the mean), has been proved
to be the optimal choice of SDR for a social planner who wishes to choose a democratic voting policy over
optimal consumption paths (Millner and Heal (2014)).
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further to 1.7% to 2.5%.12

The examples we have described of the extremes of disagreement that can persist over

the weights may seem arbitrary, but they are not. As shown by Karlin and Studden (1966),

in each case they represent the distributions which, while maintaining agreement on both the

support and K ∈ [1, 4] moments of f (x), give the absolute upper and lower ‘sharp’bounds

of RH .13 A detailed discussion of this method is provided in Appendix A. The top graph

in Figure 1 shows these sharp bound values of RH for H ∈ [1, 400] and K ∈ [1, 4]:

[Insert Figure 1 around here]

For K ≤ 2, there is a wide potential range of RH for all but the shortest horizons. For

higher values of K, which correspond to greater levels of agreement amongst the panel, the

bounds remain relatively close together for approximately the first 75 years. After that,

however, the differences become clear, even for K = 4.

Our central point follows from Figure 1. The social planner has extracted very high levels

of agreement out of the panel of economists advising her, more than is perhaps realistic. The

panel must estimate the social discount rate using equation 2, agree that the highest and

lowest possible values of x are 0% and 19.11% respectively, and then further agree on several

moments of f (x). Yet, despite this fanciful level of consensus, the sharp bounds for RH

remain widely spread, particularly for long time horizons.

2.2 Agreement on the quantiles

Given the top graph in Figure 1, the social planner is dissatisfied with the levels of uncer-

tainty that remain over RH when discussions focus around the moments of the distribution.

12For skewness, the upper bound is given when the probability density function has mass of 79.3% and
20.7% at x = 2.54% and 9.76% respectively. The lower bound is given when the probability density function
has mass of 25.8%, 72.7% and 1.54% at x = a, 5.14% and b. When kurtosis is included the weights are
66.7%, 32.5% and 0.8% at x = 2.08%, 7.68% and b for the upper bound and 17.6%, 74.4% and 8.0% for
x = a, 4.08% and 12.45% for the lower bound.
13This relies on the observation that the set of functions

{
1, x, ..., xK , (−1)K+1 exp (−Hx)

}
for H > 0 and

positive integer K is a Tchebycheff system.
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She therefore returns to the panel of economists and asks instead that they consider the

quantiles of f (x), as well as its supports, a = 0% and b = 19.11%. This decision might be

motivated by the observation in (O’Hagan 2012, p.37) that “The quantitative judgements

that are used in elicitation are almost invariably evaluations of probabilities. Although we

might ask the expert to assess quantities such as means and variances, the evidence from

the experimental literature is generally that these are evaluated less accurately than prob-

abilities... Moments are cognitively more complex constructs and highly sensitive to the

thickness of a distribution’s tails”.

In the first instance, she asks that the panel agrees on the terciles (Q = 3) of the distri-

bution. With the panel again basing their estimates of the quantiles on Γ (α, β) estimated

using Weitzman’s (2001) sample data, consensus is reached that weighting summing to 1/3

should be applied to expert opinions that lie within each of the following three ranges:

x < 2.35%, 2.35% < x < 4.61%, and x > 4.61%.

The sharp lower and upper bounds for RH contingent on this level of agreement are now

straightforward to derive. They respectively correspond to cases when all permissible weight

is placed at the lower and upper bounds of each quantile range. In the example to hand,

this is one-third weightings at a = 0%, 2.35% and 4.61% for the lower bound and the same

weighting at 2.35%, 4.61% and b = 19.11% for the upper bound. The social value is given

by the weighted average discount factor, so the bounds for pH at H =100 years are:

1 + exp(−2.35) + exp(−4.61)

3
> p100 >

exp(−2.35) + exp(−4.61) + exp(−19.11)

3
(4)

resulting in 1.00% < R100 < 3.35%.

The social planner again asks the panel to increase its level of agreement by raising the

value of Q to first five and then seven. In the former case, the top and bottom deciles are

included (1.02% and 7.93% for Γ (α, β)). For the latter, the first and 99th percentiles are

also captured (0.27% and 13.67% for Γ (α, β)).14 When Q = 5, R100 ∈ [1.52%, 2.79%], while

14These quantile levels are chosen to match the Intergovernmental Panel on Climate Change Fifth As-
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when Q = 7, R100 ∈ [1.63%, 2.72%]. The bottom graph in Figure 1 plots the strict upper

and lower bounds for RH for Q ∈ {3, 5, 7} and H ∈ [1, 400].

In contrast to the top graph of Figure 1, for short time horizons, the bounds remain clearly

distinct. This is because agreement on quantiles does not necessarily lead to agreement on

the moments of the distribution. The individual f (x) that create the bounds have different

mean values. Since RH → E [x] as H → 0, this leads to wide bounds for short horizons.

Crucially though, the term structures remain widely separated for all horizons. This makes

it clear that while focussing on quantiles may be cognitively easier for the members of the

expert panel than focussing on the moments, it provides no decision-making advantage from

the perspective of the social planner.

2.3 Families of f (x)

In the analysis described so far, the sharp bounds for RH are derived from distributions that

place non-zero weight on only a very limited number of experts. The social planner may,

though, agree with Weitzman (2001) that all experts should be heard in the social discount

rate, and that setting wi = 1/N for all i is a sensible choice. However she still seeks guidance

from the panel on how f (x) should be estimated in this case.

One subset of the panel is willing to accept that f (x) is best described by a gamma

distribution, but would prefer that α and β are estimated through a maximum likelihood

method. Based on the strictly positive responses to Weitzman’s survey, this gives α =2.54

and β =63.08. The implied mean and standard deviation of this distribution are 4.03% and

2.53% respectively, giving a lower spread than when the parameter values are estimated by

method of moments.

The second subset of the panel argue instead that Weitzman’s data is better fitted by a

Wald (Inverse Gaussian) distribution than a gamma distribution. This is also supported on

the interval [0,∞) and is positively skewed, and a Kolmogorov-Smirnov test weakly indicates

sessment Report’s (IPCC AR5) probabilisitic definitions of the terms “Virtually certain”, “Very likely”,
“Likely”, “About as likely as not”, “Unlikely”, “Very unlikely”and “Exceptionally unlikely”.
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that it fits Weitzman’s survey data better than a gamma distribution. Based on a method

of moments approach, the distribution is calibrated with shape parameter λ = 0.0767 and

mean φ = 0.0403. Analogous to equation 3, from the moment generating function of this

distribution:

RH = − 1

H
ln

(∫ ∞
0

e−Hx
√

λ

2πx3
exp

(
−λ (x− φ)2

2φ2x

)
dx

)
=

λ

Hφ

√1 +
2φ2H

λ
− 1

 (5)

Again, the term structure of discount rates can be simply derived in closed form based on

the two parameter values of the underlying distribution.

A third subgroup of the panel disagrees with both of these choices of distribution for f (x)

since they are supported on the positive real line. Selecting these distributions effectively

places zero weight on the three respondents to Weitzman’s survey who gave negative values,

the lowest of which was -3%, as well as the additional 46 who expressed their opinion that

the social discount rate should be zero. This subgroup of the panel argues that more

attention should be paid to the lower bound, a, particularly as Weitzman (1998) proves that

limH→∞RH = a. They believe that f (x) is best approximated by the raw sample frequency

distribution of responses and that equation 2 should be applied directly to the data with

wi = 1/N for all i. The top graph in Figure 2 displays the cumulative distribution functions

for these different choices, and from this it is clear that they are highly similar and there is

no obvious a priori reason why the social planner should have a strong preference for one

over the others.

[Insert Figure 2 around here]

The bottom graph in this figure presents the term structure of discount rates in each

case. For the gamma and Wald distributions, the term structures are closer together than

those shown in Figure 1. However, for long time horizons they are clearly distinct. Using

the sample frequency distribution leads to a very different term structure to any of the

others reported in this paper. Beyond 250 years, RH becomes negative, which implies
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that the social planner should compound the cash flows received after this horizon.15 This

illustrates the sensitivity of the analysis to the lower support, a, for f (x), since this is the

only distribution that is considered in this section that allows x to take negative values.

While clearly distinct, this analysis draws parallels with the literature that discusses

the role played by extreme events in the economics of climate change. In particular, when

explaining his ‘dismal theorem’, (Weitzman 2011, p.287) argues that if the probability density

function of the natural logarithm of disutility is upper fat-tailed, then “the willingness to

pay (WTP) to avoid extreme climate changes (is) very large, indeed arbitrarily large if

the coeffi cient of relative risk aversion is bounded above one.” In such cases it is vital to

understand the possible extremes of climate change damage, the worst case scenarios for

consumption, and the characteristics of utility in the event of an environmental disaster in

order to best inform policy. In our framework, there is no uncertainty over the damages

as the analysis is being undertaken on a certainty-equivalent basis, and, in this section, no

explicit consideration of consumption and utility. However, the wide bounds for RH that we

report at long horizons are largely driven by the different weights placed on the experts who

gave the lowest value responses to the gamma discounting survey. Forcing agreement on

the first four moments, seven quantiles, or broad families of distribution does not suffi ciently

constrain these weights to precisely define the certainty equivalent discount rate. It is

uncertainty over the extreme left-hand tail of f (x) that is primarily driving the results in

this paper.

2.4 Impact on Net Present Values

Having determined a range of possible paths for declining discount rates based on gamma

discounting, we now turn to how sensitive intergenerational valuations are to the schedule

chosen. Table 1 reports the present value of $1 million that is to be received with certainty
15From equation 2, RH < −H−1 ln (exp(0.03H)/2160), where the right-hand side represents the contri-

bution of the single expert who gave a response of -3% for the social discount rate. The right-hand side is
negative if H > ln(2160)/0.03 = 256. This corresponds closely to the point where RH crosses the x−axis
in the bottom graph of Figure 2. One expert alone, therefore, explains a key characteristic of this figure.
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in either 100, 200 or 400 years under each different scenario.

[Insert Table 1 around here]

Panel A presents each valuation under the baseline model. Panels B and C show that,

as is to be expected, the range that pH can take becomes more widely spread the longer the

time horizon, H, and the less the level of agreement, K or Q, that is reached by the panel of

economists. Even at 100 years, and with the greatest levels of agreement considered, there is

more than a twofold difference between the highest and lowest valuation whether discussion

focusses on moments or quantiles. For horizons of four centuries, there is a potential order

of magnitude difference in valuation when Q = 7, and two orders of magnitude difference

when K = 4. This illustrates the sensitivity of cost-benefit analysis to small differences in

the choice of assumptions about the primitives of the discounting problem.

Panel D of Table 1 considers instead different families of distributions for f (x). Com-

pared to Panels B and C, at H = 100 years, valuations are relatively insensitive to the choice

made. However, at H = 200 years, the valuation under the Wald distribution is less than

half that of the baseline model, with the raw sample frequency distribution giving a valuation

that is an order of magnitude larger. At 400 years, the differences are stark. Of particular

note, as the discount rate for the sample frequency distribution is negative for such long time

horizons, the $1 million gets compounded under this model to a present value of $76.8m.

By contrast, the Wald distribution values the same cash flow at only two thousand dollars.

Table 2 is similar to Table 1, but now for the social cost of carbon (SCC) in US dollars

per ton of carbon ($/tC) calculated using each of the term structures reported in Figures

1 and 2, and based on the schedule of marginal carbon damages provided by Newell and

Pizer (2003). These cash flows have a horizon of 400 years, with 50% of the undiscounted

costs arising by year 170. This table also reports the present values calculated for an

infrastructure project; the offi cial estimates of benefits from Phase 1 of the HS2 rail link

(London to Birmingham) that is currently being planned in the UK. The cash flows are
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taken directly from the HS2 offi cial website. These arise over a 75 year period to 2085, with

50% of the undiscounted benefits occurring by year 53. Finally, the table gives the present

values of the estimated costs of decommissioning nineteen nuclear power stations in the UK

as given in the Nuclear Decommissioning Authority (NDA) report and account 2012/13.

While these span over a longer time horizon than HS2 (125 years), the ‘half-life’is shorter,

with 50% of the undiscounted costs occurring by year 29. Further details on these cash flow

estimates are described in the technical online appendices of Freeman and Groom (2015).

[Insert Table 2 around here]

As the damages caused by greenhouse gas emissions are spread over such long time hori-

zons, it is perhaps unsurprising that the estimated SCC is highly sensitive to the schedule of

RH that is deployed. For the greatest considered level of agreements over both moments and

quantiles, K = 4 and Q = 7, the maximum value is three times the minimum value. When

there is agreement over either two moments or three quantiles, the difference is more than

ten-fold. Even when f (x) is restricted to come from either a Wald or gamma distribution

with parameters estimated through a method of moments approach, the latter valuation is

more than 35% greater than the former. The sample frequency distribution gives the highest

valuation at almost $1,000/tC.

As a consequence of the shorter time periods covered by the HS2 rail link and nuclear

decommissioning, the potential range of valuations are narrower in these cases than for the

SCC. When consensus is on the quantiles, the bounds for RH are widely spread even for

low H; see Figure 2. Given this, more precise valuations can be given for these examples

when discussion is focussed around the moments instead. Agreement on the distributional

family reduces the range of possible values even further, even when the sample frequency

distribution is included as a viable characterization of f (x).
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3 The theoretical basis for DDRs

In the previous section, equation 1 was viewed through the lens of gamma discounting so as

to make our central point as simply as possible. In this section we explain the theoretical

underpinnings of this approach and some of the criticisms that have been raised in relation

to it. We then show that other more conventional theoretical frameworks have the same

structure as equation 1, with x interpreted differently in each case.

Gamma discounting stems from using the average expert discount factor to determine the

certainty equivalent social discount rate. Yet the link between equation 1 and expected social

welfare optimization is not immediately clear. As a consequence, it does not obviously follow

that this approach is superior to using either the mean or median of x, the Expected Net

Future Value criterion of Gollier (2009), or some other aggregation method or social choice

criterion. In addition, recent evidence by Drupp et al. (2015) shows that such expert opinions

on the SDR contain a mix of subjective normative judgements on matters of ethics, and

positivist forecasts of verifiable quantities such as future interest rates or growth. As shown

by Freeman and Groom (2015), and discussed below, the theory that lies behind aggregating

these two types of opinion are very different. Nevertheless, theoretical justifications do

exist for the aggregation of expert opinions using equation 1, although these are not entirely

general and the assumptions are often restrictive.

3.1 Aggregating normative expert opinions

First consider the situation in which differences in expert opinion reflect heterogeneous values

of the normative parameters of the Ramsey rule and associated SRTP: xi = ρi + γig. In

this case, equation 1 generally emerges from frameworks where all experts have identical

time separable and stationary logarithmic preferences (γi = 1 for all i) and beliefs about

future consumption growth, g. Where experts differ is in their preferred pure rates of time

preference, ρi.
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In this context Jouini et al. (2010) and Jouini and Napp (2014) imagine heterogeneous

agents each with individual endowments wi. They assume that these agents are experts and

show that if these experts were committed to trade inter-temporally within such an economy

on the basis of these preferences and endowments, the equilibrium consumption path would

be characterized by a social discount rate of the following form:

RJMN
H = − 1

H
ln

[
N∑
i=1

wiρi∑n
j=1wjρj

exp (−Hxi)
]

(6)

This aggregation of agents preferences and beliefs has a similar form to equation 2, and

equation 3 emerges when wiρi = 1/N for all agents and the sample frequency of opinions is

gamma distributed.

While equation 6 reflects the equilibrium social discount rate, Heal and Millner (2014)

consider instead the social optimal in an economy with heterogeneous agents each with their

own pure time preference, ρi, and Pareto weight wi. A representative agent is sought

that would choose the social optimal and in some sense reconcile the disagreement on ρi.

Assuming again that each agent has logarithmic preferences (γi = 1 for all i), the social

optimal can be implemented by a representative agent whose pure rate of time preference

for aggregate utility for the time horizon H is given by:16

ρ∗H = − 1

H
ln

[
N∑
i=1

wi exp (−ρiH)

]
(7)

with associated social Ramsey rule, x∗H = ρ∗H + g. The price of a claim on $1 at time H, pH
16This equation differs from the one in Heal and Millner (2014) because they give instantaneous (forward)

discount rates, while ρ∗H here represents the (spot) discount rate between time zero and H. We use spot
rates to be consistent with the rest of this paper. Further details of this distinction are available on request
from the authors.
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is therefore given by:

pH = exp (−Hx∗H) = exp (−Hρ∗H) exp (−Hg)

=

N∑
i=1

wi exp (−ρiH) exp (−Hg) (8)

=

N∑
i=1

wi exp (−xiH)

This has the same functional form as equation 2 and yields equation 3 when wi = 1/N for

all i.

3.2 Aggregating positivist expert opinion

Alternatively, the responses xi might reflect different expert forecasts of a positive return to

capital over the horizon of the cash flow. Define ptH to be the price at time t of a claim on

$1 at time H (so that p0H = pH and pHH = 1), and xtH as the per-period discount rate:

pt−1H = Et−1 [ptH ] exp (−xtH) (9)

Then by repeated iteration of this single-period present value equation (see, for example Ang

and Liu (2004)):

p0H = E0 [p1H ] exp (−x0H)

= E0 [E1 [p2H exp (−x1H) exp (−x0H)]] (10)

= ... = E0 [exp(−HxH)]

where xH = H−1
∑H−1

t=0
xtH is the average single-period expected rate of return to the claim

over the horizon of the project. This has the same functional form as equation 1. For

the purposes of this paper, we refer to equation 10 as the “Expected Net Present Value”

condition, followingWeitzman (1998). More detailed theoretical discussions of the derivation
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of this approach have been given in Traeger (2013), Gollier and Weitzman (2010), Freeman

(2010) and Gollier (2009).

Freeman and Groom (2015) consider the situation when the response of each expert, xi

is their own personal forecast of xH : xi = Ei [xH ]. In this case, the social planner can

aggregate the individual expectations and produce a significantly more accurate assessment

of the true value of xH than any of the individual experts. If individual forecast errors

are identically and independently normally distributed, then it is the standard error of the

distribution of responses that is the appropriate measure of remaining uncertainty, not the

standard deviation. As a consequence, the social planner’s pdf, f (x), is much more heavily

centered around the mean value than the sample frequency distribution of responses, ef-

fectively placing less weight on the individuals who have outlying opinions. This positivist

interpretation of expert judgements therefore does not lead to the equal weighting of discount

factors that underlies the gamma discounting approach that is represented by equation 3,

and the resulting term structures of discount rates only decline slowly with the time horizon.

3.3 The econometric ENPV approach

Rather than seeking opinions, the pdf of xH in equation 10 can instead be estimated using

an econometric approach. In order to do this it is necessary to associate xtH with the return

on a specific financial asset. The standard choice is to set xtH = rft, the yield on a risk-free

Treasury bond. Yet this choice is, in itself, controversial and only follows under certain

restrictive assumptions. This is because, even though the final payoff is known to be $1,

the interim price of the claim on this cash flow, ptH for t ∈ [1, H − 1] is unknown in the

previous period. Therefore the one period discount rate, xtH , will, in general, incorporate a

risk premium reflecting this uncertainty over ptH . Applying a single period risk-free rate is

only appropriate under conditions that endogenize a zero risk premium. Most notably Cox

et al. (1981) argue that “locally certainty” in consumption (ct+1 being perfectly known at

time t) justifies this choice. Gollier (2014), in particular, has argued that this assumption
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is highly unrealistic.

Despite its theoretical limitations, the econometric ENPV approach has been employed

in a number of highly-cited studies on long-term discount rates; see, for example, Newell

and Pizer (2003), Groom et al. (2007), Gollier et al. (2008), Hepburn et al. (2009), and

Freeman et al. (2015). These, in turn, have been highly influential in shaping international

governmental policy. We return to this framework in the next section.

3.4 Consumption-based asset pricing

Equation 1 can alternatively be interpreted through consumption-based approaches to social

discount rates. Suppose utility u (ct, t) is gained from consuming ct units of the single

consumption good at time t. From a standard Euler equation, if a project makes a future

payment of $1 at time H and nothing at any other time, then its present value is given by:

pH =
E [u′(cH , H)]

E [u′ (c0, 0)]
(11)

Proposition 1 describes how equation 1 can be generalized to the consumption-based ap-

proach.

Proposition 1: Assuming current consumption, c0, is non-stochastic and that there is

a time-separable power utility function of the form, u′(cH , H) = e−ρHc−γH , with pure time

preference rate ρ and coeffi cient of relative risk aversion γ, then:

pH = E [exp (−HxH)] (12)

xH = ρ+
γ

H
ln (cH/c0)

and this also takes the same functional form as equation 1.

Proof: See Appendix B
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In summary, there are a number of different theoretical justifications for equation 1, and

while each requires that x is interpreted in different ways, the essential mathematical struc-

ture remains the same. Showing that this structure has a range of theoretical interpretations

gives our results broader relevance and the potential for more applications. Much, but not

all, of the remaining theoretical contention reflects either (i) the choice to weight all discount

factors equally when deriving equation 3, and this explains why these weights were the focus

of our attention in the previous section, or (ii) associating xtH with a yield on a risk-free

Treasury bond.

4 Other sharp bounds term structures

In this section, we take the econometric ENPV and consumption-based asset pricing ap-

proaches to equation 1, which have both been influential in policy circles, and create sharp

bounds for the certainty-equivalent social discount rate in each case.

4.1 The econometric ENPV approach

We follow the state-space model of Groom et al. (2007) within the econometric ENPV

approach. Let θft = ln (100rft), and assume that this evolves according to:

θft = η + λtθft−1 + et (13)

λt = η1λt−1 + ut

which is an AR(1) process with time-varying autoregressive parameter, λt. The error terms

are independently and identically normally distributed (i.i.n.d.) with variance σ2e and σ
2
u

respectively and zero means. Parameter calibrations are taken directly from Groom et al.

(2007), and the properties of fH (xH), which are now H−dependent, are then determined by
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simulation.17

The top graph in Figure 3 presents values of RH under this econometric ENPV interpre-

tation of equation 1, with the solid line being directly comparable against Figure 3 in Groom

et al. (2007). The graph also presents sharp upper and lower bounds for RH when there is

agreement on the upper and lower supports of fH (xH) as well as the first K moments, once

more determined using the technique in Karlin and Studden (1966). Again it is clear that,

for long time horizons, RH can potentially lie within a wide range, although the bounds are

not as spread as in Figure 1.

[Insert Figure 3 around here]

Panel A of Table 3 mimics Panels A—C of Table 2 when xH is interpreted within the

framework of Groom et al. (2007). It reports the SCC and the present values of HS2 and

nuclear decommissioning under the baseline model, and the sharp upper and lower bounds

of RH for different moments (K) and quantiles (Q).

[Insert Table 3 around here]

The ranges of possible values are narrower now than in Table 2 because the upper and

lower bounds for RH are tighter in Figure 3 than Figure 1. For decision making purposes,

there is still considerable uncertainty over the SCC; ranging from $16.2/tC to $22.6/tC when

K = 3 and $14.8/tC to $20.4/tC when Q = 7.

4.2 Consumption-based asset pricing

To derive declining discount rates in the consumption-based asset pricing setting, suppose

ln (ct/ct−1) = µ + εt, where εt ∼ N (0, σ2), but that the value of µ is unknown. This

17The parameter estimates (with associated standard errors) are rf0 = 4%, η = 0.510 (0.0082), η1 = 0.990
(0.002), ln(σ2e) = −9.158 (1.324), ln

(
σ2u
)
= −6.730 (0.144). Further details of the simulation process are

available on request from the authors. Unreported results are also available for a parameterization of the
econometric ENPV model that is based on a calibration reported in Newell and Pizer (2003). Again, our
central conclusion holds in this case.
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approach is used as a justification for the French government’s position on long-term social

discounting, although the arguments are based on a simple numerical example rather than

an empirical analysis; see (Lebegue 2005, p.102).18 To calibrate this model we follow Gollier

(2012), and assume µ takes one of two values, µu = 3% or µl = 1% with equal probability,

making fH (xH) a mixture normal distribution with properties that depend on H.

In the bottom graph of Figure 3, we again present RH under the baseline model, which

can be compared against Figure 6.2 of Gollier (2012), as well as upper and lower bounds

of RH contingent on agreement over the support and first K moments of fH (xH).19 When

K = 4, the bounds in this case are quite tight at all horizons, but are then much more widely

spread for lower values of K.

Panel B of Table 3 gives the present values under this model. Generally, except forK = 4,

the potential range of values is more dispersed than under the econometric ENPV model

reported in Panel A, but narrower than for the gamma discounting calibrations reported

in Table 2. Strong agreement on the moments continues to give a more precise valuation

than when consensus is over the quantiles. But in all cases, it is not possible to precisely

determine the SCC.

5 Conclusion

There are a number of theoretical and empirical arguments for using a declining term struc-

ture of social discount rates for intergenerational projects. These largely stem from incor-

porating uncertainty in future consumption growth or interest rates into the analysis, or

dealing with disagreement between experts on the discount rate. So persuasive have these

18It is well known that DDRs require persistence in the growth diffusion process in this setting. If,
alternatively, growth is independently and identically distributed the term structure will be flat. See, for
example, (Gollier 2012, Ch 3).
19This graph is based on parameter values ρ = 0, γ = 2 and σ = 3.6%. Further details of the calculations

are available on request for the authors. Unreported results are also available for the sharp upper and lower
bounds of RH in the Markov regime switching models which underlie Figures 5.2 and 5.3 in Gollier (2012)
in this consumption based asset pricing setting framework. Again, the main conclusions of this paper hold
within this setting.

26



arguments been that they are now recognized in government policies and recommendations

in the UK, France, Norway and Denmark. The practical question that necessarily follows

is: how can the theory be operationalized?

So far policy makers have sought a range of expert economists’advice on the best route

forward, and the experts have provided them with empirical estimates of the certainty-

equivalent term structure of social discount rates based on specific theories and characteri-

zations of the future (e.g. Gollier (2012), Arrow et al. (2014)). The fact of the matter is,

though, that we know far less about what lies ahead than the complete characterizations of

risk that many of these models suggest. This raises the question, how certain are we about

the certainty-equivalent social discount rate?

This paper shows that, even if there are strongly overlapping views on the primitives of

social discounting, the empirical term structure of the certainty-equivalent social discount

rate emerging from many theoretical models cannot be positioned within anything but very

wide bounds. This is particularly true for long time horizons. The obvious implication of this

is that policy prescriptions become less crisp for all but the highest (or lowest) return public

projects. For instance, viable estimates for the social cost of carbon and the net present

values of other intergenerational project become alarmingly dispersed from this position

of ignorance. Apparently trivial disagreements over parameterization choices can lead to

significant differences in policy recommendations.

While not quite a dismal theorem, overall this paper presents a depressing finding for

practitioners of cost-benefit analysis. Even if we are willing to put issues of Knightian

uncertainty to one side, we must accept that we know little about the true nature of what

the distant future might hold. This admission of ignorance means that estimated present

values are likely to be so imprecise as to provide only minimal guidance to policy makers

on intergenerational projects. One positive outcome of the paper is the formal mechanism

for determining the range over which sensitivity analysis might be undertaken when doubt

exists over the appropriate choice of discount rate. However, the broader message is that
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we may have to look towards additional decision-making criteria, beyond the mechanical

calculation of Net Present Values, to shed more light on the social value of intergenerational

projects.

Appendix A: Generating the sharp bounds

In this appendix, we describe in more detail the method that we use for determining the

upper and lower bounds of RH when there is agreement on the supports and moments of

fH (xH). The H−subscripts in this appendix reflect the fact that xH may be horizon

dependent in some interpretations of equation 1, although not gamma discounting.

Consider the set of all well-defined probability density functions, =H , with elements gH ,

which are supported on a common interval [aH , bH ].20 We assume that there is consensus

that the ‘true’fH (xH) is an element of this set, but we do not know which element it is.

Next we suppose that we only know the first K (non-central) moments of fH (xH);

Ef
[
xkH
]

= MkH for k ≤ K where Ef [·] is the expectation operator conditional on the

pdf of xH being fH . The smaller is K, the more ignorant we are about fH (xH) , but claim-

ing any knowledge of the moments of the pdf allows us to narrow our search to the subset

=KH ⊂ =H that contains all elements gH with first K moments Eg
[
xkH
]

= MkH for k ≤ K.

We then define strict upper and lower bounds for RH , RuH and RlH , by:

RuH = − 1

H
ln (inf [Eg [exp(−HxH)] |gH ∈ =KH ]) (14)

RlH = − 1

H
ln (sup [Eg [exp(−HxH)] |gH ∈ =KH ])

As expressions of the form E [exp (−HxH)] are moment generating functions (mgf), or

Laplace-Stieltjes transformations, we can invoke a powerful result from Karlin and Stud-

den (1966) to find RuH and RlH . These are derived by establishing two separate, discrete

20There is a restriction that aH is finite. For all the examples we consider we also take finite bH , but the
extension to infinite bH is straightforward given the results in Eckberg (1977).
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pdfs which are, loosely speaking, ‘at opposite ends’of the support and yet share the first K

moments. The upper bound for the mgf is found by calculating the most extreme discrete

distribution to place as much mass as possible in the left hand tail (lower values of the dis-

count rate), while still satisfying the K moment conditions. The lower bound is found by

minimizing the mass in the left hand tail.

More concretely, the extreme discrete distributions place non-zero probability mass at

$ points on the interval [aH , bH ] where the number of mass points depends on the number

of moments, K, of the distribution of xH that we are willing to assume we agree upon:

$ ∈ [(K + 1)/2, (K + 3) /2]. We denote these points by VqlH (vqlH) for the lower bound

of the mgf and VquH (vquH) for the upper bound when aH = 0 (aH 6= 0), with associated

probabilities πqlH and πquH , where q indexes the mass points from smaller to larger values

of xH .

A.1 aH = 0

First, consider the restricted case when aH = 0 and bH = BH ; we broaden the dis-

cussion to more general values of aH and bH in the next subsection. The method of

Karlin and Studden (1966) now follows from the observation that the set of functions{
1, xH , ..., x

K
H , (−1)K+1 exp (−HxH)

}
for H > 0 and positive integer K is a Tchebycheff

system. This allows us to identify the properties of the discrete distributions that give

sharp bounds for the mgf (see, for example, Eckberg (1977)):
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VqlH VquH

K even

$ = (K + 2) /2

K/2 points in (0, BH)

One point at BH

$ = (K + 2) /2

K/2 points in (0, BH)

One point at 0

K odd
$ = (K + 1) /2

(K + 1) /2 points in (0, BH)

$ = (K + 3) /2

(K − 1) /2 points in (0, BH)

One point at 0

One point at BH

Each extreme discrete distribution is uniquely identified since the number of degrees of

freedom equals the number of moment constraints. For example, for even K, there are K/2

degrees of freedom on location and (K + 2) /2 − 1 degrees of freedom for the probabilities,

giving a total number of degrees of freedom of K. It is also straightforward to verify that

there are K degrees of freedom in parameter choice when K is odd. Therefore the extreme

density functions are uniquely defined by the K moment conditions in all cases.

Closed form solutions for VqlH , VquH , πqlH and πquH are available for K ≤ 3. When

K = 1, the lower bound has only one mass point which is on the mean value; V1lH = M1H .

The upper bound has mass at V1uH = 0 and V2uH = BH only and the probability π1uH is set

to ensure that the mean is equal toM1H ; π1uH = (BH −M1H) / BH . Closed form solutions

for K = 2 and K = 3 are given in Eckberg (1977). For the case K = 2:

q = 1 q = 2 q = 1 q = 2

VqlH
M1HBH −M2H

BH −M1H

BH VquH 0
M2H

M1H

πqlH π1 1− π1 πquH
M2H −M2

1H

M2H

M2
1H

M2H
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where π1 = (BH −M1H)2 /
(
M2H −M2

1H + (BH −M1H)2
)
. For K = 3:

q = 1 q = 2 q = 1 q = 2 q = 3

VqlH
A1 − χ

2

A1 + χ

2
VquH 0 ζ BH

πqlH
χ+ A1 − 2M1H

2χ

χ− A1 + 2M1H

2χ
πquH 1− π∗1 − π∗2 π∗1 π∗2

where:

A1 =
M3H −M1HM2H

M2H −M2
1H

A2 =
M2
2H −M1HM3H

M2H −M2
1H

, χ =
√
A21 + 4A2

π∗2 =
M1HM3H −M2

2H

M1HB3
H − 2M2HB2

H +M3HBH

, π∗1 =
(M1H − π∗2BH)2

M2H − π∗2B2
H

, ζ =
M2H − π∗2B2

H

M1H − π∗2BH

As noted by (Johnson and Taaffe 1993, p.96), “less analytically tractable cases (e.g., four

or five non-central moments) call for use of symbolic or numerical methods for solving the

nonlinear equations”. We use numerical methods here.21

A.2 aH 6= 0

When fH (xH) is supported on the interval [aH , bH ] for aH 6= 0, we first undertake a change

of variables. Define yH = xH−aH , g∗H (yH) = gH (xH) and =∗KH as the set containing all ele-

ments g∗H (yH). The lower bounds for RH are derived from the bounds for Eg∗ [exp (−HyH)].

RlH = − 1

H
ln (exp (−HaH) sup [Eg∗ [exp(−HyH)] |g∗H ∈ =∗KH ])

and there is an analogous expression for RuH , with the supremum replaced by the infimum.

21Details available on request from the authors.
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Appendix B: Proof of Proposition 1

Equation 11 states that the price, pH , of a payoff of $1 at time H is given by:

pH =
E[u′(cH , H)]

u′(c0, 0)

assuming c0 is non-stochastic. With the utility function defined by u′(cH , H) = e−ρHc−γH :

pH = E

[
e−ρH

(
cH
c0

)−γ]

Using offsetting exponential and logarithm functions, the fact that γ ln (z) = ln (zγ) , and

then factoring out H yields:

pH = E

[
e−ρH exp

{
−γ ln

(
cH
c0

)}]
= E

[
exp

{
−ρH − γ ln

(
cH
c0

)}]
= E

[
exp

{
−H

(
ρ+

γ

H
ln

(
cH
c0

))}]
(15)

Then pH can be written as pH = E [exp (−HxH)] where xH = ρ+ γ
H

ln
(
cH
c0

)
, which can be

interpreted as the Social Rate of Time Preference for an annualized growth rate given by

H−1 ln
(
cH
c0

)
. This is equation 12. QED.
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Figure 1. This figure presents the term structure of social discount rates as given through
the gamma discounting schedule of Weitzman (2001). The solid line is the baseline param-
eterization from this model. We then present upper and lower bounds for RH conditional
on matching the first K moments of the distribution for K ∈ [1, 4] in the top graph, and
Q quantiles of the distribution, for Q ∈ {3, 5, 7} in the bottom graph. The support of the
probability density function in each case is [0%, 19.11%].
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Figure 2. The top graph presents the cumulative distribution function (cdf) for the raw
sample frequency distribution of Weitzman’s gamma discounting survey data. It also shows
cdfs of gamma distributions fitted to this data using method of moments (MM) and maximum
likelihood (MLE) techniques, as well as the cdf of a Wald (Inverse Gaussian) distribution
fitted by a method of moments approach to the same data. The bottom graph gives the
schedule of discount rates for each of these distributions.
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Figure 3. The top graph presents the term structure of social discount rates as given through
the ENPV setting by the state-space model of Groom et al. (2007), while the bottom graph is
derived from the parameter uncertainty model for logarithmic consumption growth described
by Gollier (2012). The solid lines are the baseline parameterization from the models, which
can be compared against Figure 3 in Groom et al. (2007) and Figure 6.2 of Gollier (2012).
The graphs also present upper and lower bounds for RH conditional on matching the first
K moments of the underlying distribution.
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H = 100 years H = 200 years H = 400 years
Min Max Min Max Min Max

Panel A: Gamma Method of Moments
Baseline Model 114,778 42,782 13,839

Panel B: Moments
K=1 17,752 789,125 315 789,125 0.10 789,125
K=2 30,128 345,754 942 344,356 0.92 344,353
K=3 62,556 261,809 4,930 257,593 30.6 257,569
K=4 83,094 188,953 10,311 176,622 159.4 176,410

Panel C: Quantiles
Q=3 35,117 368,450 3,067 336,400 27.6 333,361
Q=5 61,643 218,117 15,104 133,267 1,696 103,939
Q=7 65,672 196,761 19,627 95,628 4,913 44,402

Panel D: Distributional Family
Gamma MLE 89,360 26,489 6,290
Wald 86,130 19,168 2,114
Sample frequency 117,736 255,955 76,778,160

Table 1. The present value of $1m at horizons of 100, 200 and 400 years under different
discounting schedules.
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SCC HS2 NDA
Min Max Min Max Min Max

Panel A: Gamma Method of Moments
Baseline Model 20.0 23.1 46.8

Panel B: Moments
K=1 5.3 188.9 13.8 66.7 38.9 85.2
K=2 7.2 83.7 16.7 33.2 41.7 55.2
K=3 11.1 63.8 20.7 28.3 44.8 51.2
K=4 13.6 46.1 22.1 25.0 45.9 48.6

Panel C: Quantiles
Q=3 6.7 86.5 13.0 41.1 33.4 64.6
Q=5 10.8 43.1 16.1 32.6 38.5 56.4
Q=7 11.7 35.2 16.4 31.6 39.1 55.5

Panel D: Distributional Family
Gamma MLE 15.6 21.0 45.0
Wald 14.6 21.5 45.4
Sample frequency 979.8 22.9 46.9

Table 2. The present values, as calculated through the different discounting schedules
presented in Figures 1 and 2, of (i) the Social Cost of Carbon (SCC) in terms of dollars per
ton of carbon ($/tC), (ii) the costs of Phase 1 of the High Speed 2 (HS2) rail line in the UK;
London to Birmingham (£ bn), (iii) the costs of decommissioning the previous generation of
nuclear power stations in the UK (£ bn).
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SCC HS2 NDA
Min Max Min Max Min Max

Panel A: ENPV
K=1 14.8 39.8 25.5 42.3 50.7 64.8
K=2 15.4 25.8 25.8 29.9 51.0 54.1
K=3 16.2 22.6 26.3 28.3 51.4 52.9
K=4 16.6 19.9 26.7 27.6 51.6 52.3
Q=3 11.9 25.9 18.6 33.3 41.4 57.8
Q=5 14.6 21.5 23.3 30.3 47.7 55.0
Q=7 14.8 20.4 24.1 29.7 49.1 54.4
Model 17.5 27.0 51.9

Panel B: Parameter Uncertainty
K=1 5.4 89.2 13.9 74.1 39.1 94.1
K=2 8.6 38.9 18.0 31.3 42.9 53.8
K=3 12.9 27.3 21.3 25.4 45.5 49.0
K=4 13.6 16.5 21.7 22.3 45.9 46.4
Q=3 6.5 65.6 12.2 60.3 33.2 85.5
Q=5 8.7 32.5 15.0 37.2 37.6 62.2
Q=7 9.2 24.0 15.5 31.9 38.3 57.1
Model 14.4 21.9 46.1

Table 3. As Table 2, but with bounds now based on the ENPV model of Groom et al.
(2007) and the parameter uncertainty model for logarithmic consumption growth described
by Gollier (2012). The terms structures used are presented in Figure 3.
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