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Abstract Timothy Williamson has claimed to prove that regularity must fail even in a
nonstandard setting, with a counterexample based on tossing a fair coin infinitely many
times. I argue that Williamson’s argument is mistaken, and that a corrected version
shows that it is not regularity which fails in the non-standard setting but a fundamental
property of shifts in Bernoulli processes.
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1 Introduction

As is well-known, the expansion of the real line by the addition of infinitesimals1 is no
longer a Leibnizean pipe-dream: halfway through the last century Abraham Robinson
showed that there exists an embedding of the first-order structure of the ordered
field of real numbers into an extension containing infinitesimal and infinitely large
numbers, satisfying all the first-order properties of real numbers, and of which the
infinitely small and infinitely large numbers form completely ordered subrings. The
members of such a nonstandard extension, of which there are infinitely many, are known
as hyperreals. 2

One of the more persuasive arguments for probabilistic regularity, i.e. the principle
that only the impossible event should receive zero unconditional probability, involves an
appeal to probability functions whose domain is a standard algebra of events but whose
range is the nonstandard unit interval in a hyperreal extension. Probably the most
powerful objection to regularity is the mathematical fact that in uncountable outcome
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1Infinitesimals are numbers with absolute value smaller than every positive real number.
2The hyperreals can also be constructed as members of an ultrapower of the real numbers. Łos’s Theorem shows
that the embedding is elementary, justifying the so-called Transfer Principle.
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spaces, for example that of a fair coin tossed infinitely often (it has the cardinality of the
real numbers) in which all singletons are assigned a probability, all but a countable
number must have zero probability. Once the range of a probability function
consists of hyperreals, however, the objection no longer has force because all
those outcomes can be assigned a positive infinitesimal probability, even the same
infinitesimal probability.3

Thus may - and often does - the up-to-date defender of regularity argue. But the
defence has been challenged by Timothy Williamson (2007), who used the model of a
fair coin tossed infinitely many times to argue that at least one outcome sequence must
have probability 0, and hence that regularity must fail. What is most striking about
Williamson’s argument is his claim that it is valid even in the context of hyperreal
probabilities themselves. In what follows I will argue that it is not valid. 4 That is the
programme. I will start by reviewing Williamson’s argument.

2 The argument

A coin is flipped infinitely many times. Suppose H(1 …) represents the event ‘all the
outcomes are heads’, and H(2…) ‘all the outcomes after the first are heads’ (2007, p.4).
Then according to Williamson,

H(1…) and H(2…) are isomorphic events. More precisely, we can map the
constituent single-toss events of H(1…) one-one onto the constituent single-
toss events of H(2…) in a natural way that preserves the physical structure of
the set-up just by mapping each toss to its successor. H(1…) and H(2…) are
events of exactly the same qualitative type; they differ only in the inconsequential
respect that H(2…) starts one second after H(1…). That H(2…) is preceded by
another toss is irrelevant, given the independence of the tosses. Thus H(1…) and
H(2…) should have the same probability. (2007, p.5)

But if we assume that the singleton sequences of possible outcomes are assigned the
same probability, we quickly infer that that probability must be 0. For

P H 1…ð Þð Þ ¼ P H 2…ð ÞjH 1ð Þð ÞP H 1ð Þð Þ ð1Þ

where H(1) is the event ‘the first toss lands heads’. So by independence

P H 1…ð Þð Þ ¼ P H 2…ð Þð ÞP H 1ð Þð Þ

3 Bernstein and Wattenberg 1969. How useful such assignments are in practice when not used simply to elicit
results about standard mathematics is of course another question.
4 Williamson is not the only one to argue that appealing to hyperreals fails to save regularity. Pruss (2013) has
a cardinality-based argument (but see Hofweber 2014), and another (2012) claiming that since infinitesimally-
valued probabilities are non-conglomerable in some countable partition, one can know beforehand with near-
certainty that one’s updated hyperreal-valued probability of a suitable event Awill differ from the current one.
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i.e.

P H 1…ð Þð Þ ¼ P H 2…ð Þð Þ=2:

But because of the presumed isomorphism of H(1 … ) and H(2 … ), we have

P H 1…ð Þð Þ ¼ P H 2…ð Þð Þ;

whence

2P H 1…ð Þð Þ ¼ P H 1…ð Þð Þ;

and so, noting that infinitesimals obey the same field rules as the real numbers
themselves, we must have P(H(1 …))= 0, contradicting regularity.

Williamson reinforces his claim that H(1… ) and H(2… ) are isomorphic (in a way
that demands their being assigned the same probability) by extending the example to
include a second coin, in all relevant physical respects identical to the first:

To make the point vivid, suppose that another fair coin, qualitatively identical
with the first, will also be tossed infinitely many times at one second intervals,
starting at the same time as the second toss of the first coin, all tosses being
independent. Let H*(1…) be the event that every toss of the second coin comes
up heads, and H*(2…) the event that every toss after the first of the second coin
comes up heads. Then H(1…) and H*(1…) should be equiprobable, because the
probability that a coin comes up heads on every toss does not depend on when
one starts tossing, and there is no qualitative difference between the coins. But
for the same reason H*(1…) and H(2…) should also be equiprobable. These
two infinite sequences of tosses proceed in parallel, synchronically, and there
is no qualitative difference between the coins; in particular, that the first coin will be
tossed once before the H(2…) sequence begins is irrelevant. By transitivity, H(1…)
and H(2…) should be equiprobable: [hence] Prob(H(1…)) = Prob(H(2…))
(2007, p.6)

The argument, notes Williamson, ‘is neutral between standard and non-standard
probabilities. Even when infinitesimal probabilities are allowed, the nature of the case
still yields the conclusion that the probability of an infinite sequence of heads is 0.’

Williamson’s argument sounds very plausible. Nevertheless I will argue that it is
mistaken, and that the mistake is not one about hyperreals but a confusion about what
he calls ‘isomorphic events’, assisted by an inadequate notation. That his argument is
indeed wrong is anyway strongly suggested by the fact that in the reference he himself
supplies to the classic paper by Bernstein and Wattenberg (cited above), it is shown that
there is a uniform positive infinitesimal probability distribution over the members of the
standard closed unit interval [0,1]. 5 It is well known that the real numbers in this

5 The authors show that there is a hyperreal-valued probability measure which assigns the same positive
infinitesimal probability to each point in the standard unit interval [0,1] and which is infinitely close to
Lebesgue measure on the Lebesgue-measurable subsets.
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interval are representable (mod equivalent sequences) by the infinite binary sequences
in {0,1}ℕ, ℕ = {1, 2, … , n, …},6 a set which can clearly also represent all possible
infinite sequences of heads and tails. It would be very strange indeed if as soon as one
interprets the set of sequences in this last way the positive infinitesimal distribution
over its members suddenly becomes impossible. So what is Williamson’s mistake
(if there is a mistake)?

3 The mistake

There is indeed a mistake, and it is a fairly elementary error in Williamson’s purely
probabilistic reasoning. To identify it clearly however a little more notation is required.
In the usual parlance of probabilists, a probability space is a triple (S, F, P), where S is
the outcome-set of some experiment (understood loosely), F is an algebra of subsets of
S containing S and the empty set, and P is a probability function on F. I shall follow
Williamson in assuming that P is hyperreal-valued. In his example of the single coin, S
is the set {0,1}ℕ of all possible infinite sequences of outcomes of tossing the coin (1 for
heads, 0 for tails). Here, F is generated by the cylinder sets, i.e. sets whose member-
sequences are identified by a finite number of indices, and is closed under set
difference, countable intersections and unions. Therefore F will also contain all the
singleton sequences, and Bernstein and Wattenberg’s result implies that we can assign
infinitesimal probabilities to each of these.

The stage is now set to recapitulateWilliamson’s argument. His H(1… ) is the singleton
of (1, 1, 1, … , 1, …). But in this space, a fact essential to step (1) of Williamson’s
derivation, H(2… ) unlike H(1… ) is a compound event, the pair-set whose members are
the two outcome-sequences (1, 1, 1, … , 1, …) and (0, 1, 1, … , 1, …) representing the
disjunction ‘a head occurred first followed by all heads or a tail occurred first followed by
all heads’. Clearly, however, it is strictly nonsensical to say that the singleton {(1, 1, 1,… ,
1, …)} is isomorphic to a pair (a necessary condition for isomorphism is cardinal
equivalence) and so the step to P(H(1 … )) = P(H(2 … )), supposedly justified by the
appeal to isomorphism, fails and with it Williamson’s argument.7

Similar considerations apply to his addition of the second coin to his example. We
can represent the two coin-tossing experiments in two probability spaces, all the
elements of the second of which, following Williamson’s example of H*(1… ), I shall

6 0 is sometimes included in ℕ.
7 Ruth Weintraub has also challenged Williamson’s argument, by arguing that the isomorphism to which he
thinks he is appealing does not preserve all the physical features of the situation:

Williamson’s example shows that isomorphism doesn’t preserve all basic physical properties. He
claims that the two ‘sequences of events are of exactly the same qualitative type’ … But although all
the physical properties of the constituent events are preserved by the mapping, as are the temporal
intervals between adjacent tosses, there is a global property (of the complex event) which is not
preserved. The second sequence is a proper subset of the first. (2008, p.249)

But this is wrong: there are not two sequences of events (the quote is inaccurate on this point) but two
events, and far from the second, H(2…), being a proper subset of the first, H(1…), the reverse is actually the
case as we have seen.
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label with an asterisk (and the outcomes of the tosses are also recorded with an asterisk
appended).8 Other than the labelling-difference, the two spaces are identical, and so we
can agree with Williamson that P(H(1…)) = P*(H*(1…)) ‘because the probability that
a coin comes up heads on every toss does not depend on when one starts tossing, and
there is no qualitative difference between the coins.’ But when he continues ‘But for the
same reasonH*(1…) and H(2…) should also be equiprobable’ he is not correct: H(2… )
is not the original sequence truncated at the second toss but a set containing two
sequences, one the original sequence and the other the same sequence whose first
member is changed to 0. Hence there is no justification for equating P(H(1 … )) and
P(H(2… )) and Williamson’s argument fails.

It might be objected that Williamson has merely made an inappropriate choice of coin-
tossing model, since there is one (it is claimed) in which his argument clearly succeeds:
that of the same coin being tossed from minus infinity to plus infinity. Formally, this has
the outcome space W = {0,1}ℤ where ℤ is the set of integers,9 and where 1 stands for a
head and 0 for a tail. Let x = <xi> be a sequence in Wand suppose T is the so-called shift
transformation of W, i.e. the mapping of W into itself such that (Tx)i = xi+1. Williamson’s
argument can now go through straightforwardly (claims the objection) in the following
way. Consider the measurable event (set) S of sequences xwhere xi=1 for i≥1. The shift
transformation takes S to the set S’ of T-images of members of S, where each sequence in
S’ is the isomorphic image of one in S under T, and conversely since T is invertible. Hence
(the objection proceeds) S’ and S are isomorphic and so, if we follow the Williamson
doctrine about isomorphism, should receive the same positive infinitesimal probability p.
Now we just replicate Williamson’s argument making the appropriate changes.

Unfortunately the conclusion that regularity must fail here is as unwarranted as it was
in Williamson’s original argument, with the mistake again lying in the appeal to
isomorphism. For S and S’ are not themselves sequences but unordered sets of
sequences, and are isomorphic only in the trivial sense that any two cardinally-equal
unstructured sets are isomorphic (relations can of course be defined on them – e.g. the
full and empty n-ary relations for any n – relative to which the sets are isomorphic, but
that is beside the point). To use that fact to justify setting their probabilities equal would
however clearly be absurd. It cannot be objected that S and S' are physically indistin-
guishable, since they are different events, nor that they are indistinguishable with regard
to their probabilistic properties, for that would simply beg the question. Rather than
Williamson’s argument showing that regularity fails, which it does not, what it implicitly
does reveal is that a fundamental theorem of probabilistic dynamics, that shift transfor-
mations in Bernoulli processes are measure-preserving, can fail in this hyperreal context.
This will probably not worry those working in nonstandard probability theory over-
much, since the object there is not so much, or at all, to regard hyperreal probabilities as
on the same footing as real-valued ones10 but to use the nonstandard universe simply as
an aid to the standard theory by translating standard problems into nonstandard ones by
means of the Transfer Principle, where they are often more tractable – which is exactly
how Leibniz regarded his ‘ideal elements’, the infinitesimals and their reciprocals.

8 It is of course possible to represent the two experiments within one probability space, differentiating them by
means of appropriate random variables, but the device of two spaces is simpler.
9 Together with a binomial probability parameter, this set-up is called a two-sided Bernoulli process.
10 The real numbers are unique up to isomorphism in the standard model of set theory, but there are infinitely
many non-isomorphic fields of hyperreals.

Euro Jnl Phil Sci



Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Bernstein, A. R., & Wattenberg, F. (1969). Nonstandard measure theory. In W. A. J. Luxemburg (Ed.),
Applications of model theory to algebra, analysis and probability (pp. 171–186). New York: Holt,
Rinehart and Winston.

Hofweber, T. (2014). Cardinality arguments against regular probability measures (forthcoming in Thought).
Pruss, A. R. (2012). Infinite lotteries, perfectly thin darts and infinitesimals. Thought, 1, 81–89.
Pruss, A. R. (2013). Probability, regularity, and cardinality. Philosophy of Science, 80, 231–240.
Weintraub, R. (2008). How probable is an infinite sequence of heads? Analysis, 68, 247–250.
Williamson, T. (2007). How probable is an infinite sequence of heads? Analysis, 67, 173–180.

Euro Jnl Phil Sci


	Howson_Regularity and coins_2016_cover
	Howson_Regularity and coins_2016_author
	Regularity and infinitely tossed coins
	Abstract
	Introduction
	The argument
	The mistake
	References



