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Abstract 

 

 

We present an integrated model of the direct consequences of climate change on land use, 

and the indirect effects of induced land use change upon the natural environment. The model 

predicts climate-driven shifts in the profitability of alternative uses of agricultural land.  Both 

the direct impact of climate change and the induced shift in land use patterns will cause 

secondary effects on the water environment, for which agriculture is the major source of 

diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems 

showing that these will be spatially heterogeneous. Moreover, we consider further knock-on 

effects upon the recreational benefits derived from water environments, which we assess 

using revealed preference methods. This analysis permits a multi-layered examination of the 

economic consequences of climate change, assessing the sequence of impacts from climate 

change through farm gross margins, land use, water quality and recreation, both at the 

individual and catchment scale. 
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1. Introduction 

 

The ecosystem services paradigm (de Groot, et al. 2002; Boyd and Banzhaf, 2007; Wallace, 

2007; Fisher et al., 2008; Fisher and Turner, 2008) underpins a rapidly improving and 

expanding body of research linking environmental change to human welfare (e.g. Goldstein 

et al 2012; Jackson et al., 2013; Lawler et al., 2014; Guerry et al., 2015). An important and 

promising avenue of work examines the direct impacts of changes, considering multiple 

ecosystem services (e.g. Nelson et al., 2009; Rockström et al., 2009) and at varying spatial 

scales (van Delden et al., 2011). However, even when multiple ecosystem services are 

considered, relatively few studies manage to capture the knock-on effects arising along a 

chain of interconnected ecosystem processes (Milne et al., 2009; Bennett et al., 2009). 

Inherent complexity and myriad interdependencies within the natural world mean that any 

change, whether driven by environmental processes or human behavior, is likely to have a 

‘domino’ effect, acting upon a long chain of ecosystem services. For instance, considering 

livestock production in the Central French Alps, Lamarque et al., (2014) show that the direct 

impact of climate change on plant functional traits (see de Bello et al., 2010) drives a 

secondary, indirect impact upon agricultural land management, with implications for 

ecosystem service provision. Focusing on the United Kingdom (UK), Fezzi et al., (2015) go 

further by examining the direct consequences of climate change on land use and farm 

incomes, and the subsequent, indirect effects on fresh water quality providing a cost-

effectiveness analysis of climate change adaptation strategies. Other studies link predictions 

of future environmental change with cost-effectiveness analyses of alternative mitigation 

measures (e.g. Whitehead et al 2013), but studies which complete the chain of effects in a 

cost-benefit framework are rare. This poses challenges for investment and policy decisions, 

since options that maximize net benefits cannot be robustly identified when the full range of 

impacts is unknown. 

 

This paper contributes towards filling this research gap by using a spatially explicit,  

integrated modeling approach to examine a chain of related impacts arising from a simple 

climate change scenario applied to a selected river catchment and, crucially, valuing these 

impacts in economic terms. Using the UK’s River Aire as a case study, we first examine the 

direct effect of climate change on agricultural land use, as mediated through changes in 

farming behavior. Resulting land use change (LUC) has repercussions on freshwater quality, 

as crop selection and livestock intensities impact nutrient run-off into rivers. Finally, we 

examine how changes in water quality will impact upon outdoor recreation. The integrated 

analysis elicits economic values throughout the chain of impacts, reporting recreation values 

at both the individual and catchment level (where our spatially explicit approach delivers a 

further contribution by revealing the key role which location plays when aggregating from 

individual to catchment level benefits). Including these secondary (often non-market) impacts 

is especially important in environmental management as their value can outweigh that of 

direct impacts, possibly by a large margin (Bateman et al., 2014). Furthermore, the spatially 

explicit nature of our analysis provides decision makers with the information necessary to 

permit locational targeting of interventions, enhancing the efficiency of policies to mitigate 

climate change effects or improve distributional equity. 
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This paper is organized as follows. The next section introduces the spatially sensitive 

agricultural land use model that underpins our initial analysis. Section 3 uses this model to 

examine the likely impact of a stylized climate change scenario (a uniform temperature 

increase by 1
o
C throughout the country) on land use and farm incomes. Section 4 develops a 

spatially explicit, transferable model for predicting changes in river water quality arising 

from agricultural LUC within a world of altering climates. These predictions are then refined 

for use within the UK’s River Aire catchment, for which we hold data on recreational 

demand and associated value. Section 5 develops a revealed preference model, encompassing 

the changes in the ecological quality of rivers derived previously, to predict the impact of our 

climate change scenario on recreational values. Section 6 presents the results of our 

integrated analysis, reporting recreational values at the individual and catchment scales. 

Section 7 concludes.  

 

 

2. Land use modelling 

 

This section briefly introduces the agricultural land use model, the data used for its estimation 

and provides a summary of the main results. For further details, see the supplementary 

materials and Fezzi and Bateman (2011). 

 

2.1 Specification 

 

Adapting the agricultural land use model developed by Fezzi and Bateman (2011) and 

expressing the farmer’s objective in terms of  profit maximization per unit of land, the 

optimal land use allocation problem can be written as:  

 

,       (1) 

 

where L
(.) indicates profits per unit (ha) of land, p the vector of strictly positive output 

prices, w the vector of strictly positive input prices, L the total land available (which is kept 

constant for all analyses), s the vector of land use shares (with land allocated across h 

potential land uses), and z the vector of k other fixed factors (e.g. physical and environmental 

characteristics, policy incentives and constraints, etc.).  

 

Since the profit per unit of land function is positively linearly homogenous and strictly 

convex in input and output prices, applying Hotelling’s lemma yields output supply (y
L
) and 

input demand (r
L
) per area (hereafter referred to as input and output intensities) as: 
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,    (2.b) 

where �̅�1, … , �̅�ℎ indicates optimal shares.  

 

Since land is allocated optimally when shadow prices (i.e. marginal rents) are equalized 

across all land uses, optimal land use shares are described by: 

 

, for i = 1,..., h.       (3) 

 

When these equations are linear in the optimal land allocations (as per Fezzi and Bateman, 

2011), including the constraint that the sum of shares must equal unity leads to a linear 

system of h equations in h unknowns, which can be solved to obtain the optimal land 

allocation as a function of p, w, z and L (see ibid.). 

 

We specify the empirical profit function per hectare as a Normalized Quadratic (NQ) 

function. Defining wn as the numeraire good, indicating with x = (p/wn, w/wn) the vector of 

normalized input and output (netput) prices and with z
*
=(z, L) the vector of fixed factors 

including policy and environmental drivers and also the total land available L, the NQ profit 

function can be written as: 

 

 

, (4) 

 

where = /wn is the normalized profit per unit of land. This profit function is linearly 

homogeneous by construction, and symmetry can be ensured by imposing ij = ji, ij = ji 

and ij = ji. Only h–1 land use shares appear in the profit function as the residual can be 

computed by difference and is therefore redundant. Input and output intensities can be 

derived as in (2), whereas optimal land use shares can be derived by solving the system (3) of 

h–1 equations with the land additivity constraint . The resulting equations are 

linear functions of output prices, input prices, and fixed factors. 

 

 

2.2. Data and descriptive statistics 

 

In order to model the financial, policy and environmental drivers of LUC, we develop a 

unique database of land use drivers. Integrating multiple sources of information dating back 

to the late 1960s we identify six land use types (cereals, oilseed rape, root crops, temporary 

grassland, permanent grassland and rough grazing) which together cover 88% of UK 
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agricultural land. The remaining 12% is included as a combined ‘other’ category.  Summary 

information regarding the land use data is provided in the supplementary materials. Further 

data were extracted for each 2km Ordnance Survey National Grid square.  Data on  average 

annual rainfall, autumn machinery working days, mean potential evapotranspiration, median 

duration of field capacity, total number of degree days in the growing season and mean 

elevation were taken from the National Soil Resources Institute LandIS database. We also 

include the share of agricultural land with slope greater than 6 degrees derived via 

Geographic Information System (GIS) analysis of the Ordnance Survey Digital Terrain 

Model (DTM). The model also includes policy determinants, such as the share of each grid 

square designated as National Park, Nitrate Vulnerable Zone (NVZ) and Environmentally 

Sensitive Area (ESA). Further spatial control variables such as the distance to the closest 

sugar beet factory (to capture transportation costs) and the share of urban area are also 

included. Finally, regional output prices are included, using the agricultural output regional 

price statistics extracted from the UK Farm Business Survey for years 1982-2000, whereas 

input prices are available at the national level. 

 

2.3 Results 

 

Equation (4) can be estimated via maximum likelihood. Since not all farms cultivate all crops 

the model is specified as a multivariate Tobit (Tobin, 1958). Fezzi and Bateman (2011) 

illustrate a computationally-efficient Quasi Maximum Likelihood (QLM) approach which 

can be used when the number of Tobit equations is high, as in our case (details provided in 

supplementary materials). We estimate two censored Tobit systems: the 3 livestock intensity 

(dairy cattle, beef cattle, sheep) equation system; and the 6 land use shares (cereal, oilseed 

rape, root crops, temporary grassland, permanent grassland, rough grazing) system. These are 

the main determinants of the impact of agriculture on the environment. In fact, in a relatively 

small country such England, there is little variation in fertilizer inputs for a given arable crop, 

and therefore a single national set of surplus values for such crops is appropriate (Lord, 

Anthony, and Goodlass 2002). However, nutrient inputs to grassland can vary substantially 

depending upon the livestock intensity. Therefore, a more accurate approach is to assume that 

predicted changes in stocking rates indicate changes in fertilizer applications.  

 

Table 1 reports the final parameter estimates of the land use share equations. The sign and 

magnitude of the coefficients are consistent with our expectations and the model fit is 

satisfactory. Focusing on the economic determinants, in the upper part of the table, as 

expected the own output price effects are always positive and the cross-price effects negative. 

Considering the environmental determinants of land use, reported in the lower part of Table 

1, favorable conditions for crop growth (e.g. more machinery working days, flatter land, etc.) 

increase the share of arable land, in particular of root crops. However, effects are highly non-

linear. The coefficients of the livestock equations are not reported here to preserve space, but 

the results are in line with those of the land use. Model results are contrasted with the 

established land use share model (e.g. Wu and Segerson, 1995) in Fezzi et al. (2014) and 

found to provide superior in and out of sample performance. 
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Table 1. Land use share equations parameter estimates 

 Description Cereals Oilseed rape Root crops Temp. 

Grassland 

Perm. 

Grassland 

Rough grazing 

Pcereals   0.134 *** a a -0.044 ** a a 

Prape  a  0.148 **** a a a a 

Prootcrops  a a  0.027 * a a a 

Pfertilizer  -0.111 *** -0.283 **** -0.017 *  0.067 ***  -0.018  0.036 * 

        

Set aside rate  -0.425 **** -0.114 ***  0.003 -0.009 -0.030 -0.025 * 

ESA share  -0.033 **** -0.008 ***  0.000  0.000  0.031 ***  0.032 *** 

Park share  -0.019 *** -0.006 -0.003 *** -0.018 *** -0.067 ***  0.041 *** 

Urban share  -0.028 ** -0.003 -0.002  0.000  0.061 ***  0.010 * 

        

Environmental determinants 

smore6 Slope greater than 6 degrees -0.087 *** -0.018 ***  0.000 -0.005  0.131 ***  0.052 **** 

Coast  -0.357 -0.505 * -0.156  1.316 *** -0.536  1.473 *** 

Alt Altitude 

- 

- 

- 

- 

 14.170 ****  3.048 *** -2.693 **** -0.787 b b 

atl2  6.333 ***  1.337 ** -0.494 ** -0.834 * b b 

alt < 200m b b b b -0.057 ****  0.004 

alt > 200m b b b b  0.085 ** -0.156 *** 

I(alt > 200m) b b b b -25.55 ***  21.96 ** 

Mwd Machinery working days 

- 

 4.174 ****  0.079  1.619 ****  0.956 *** -8.455 **** -0.582 

mwd2 -1.283 *** -0.416 ***  0.681 ****  0.147 -1.346 ***  0.271 ** 

Pt Potential evapotranspiration 

- 

 6.727 ***  1.594 *  0.331 * -3.419 *** -23.95 ***  12.46 *** 

pt2 -2.773 ** -1.919 **  0.720 **  3.401 ***  3.969 * -7.191 *** 

Fc Field capacity 

- 

-4.794 * -7.374 *** -1.856 ***  0.482  7.165 *  4.394 * 

fc2  16.670 *** -6.521 ***  2.896 *** -7.498 *** -22.22 ***  5.000 *** 

Dd Degree days in growing season 

- 

-4.228 ***  1.653 *** -4.801 ****  4.271 ***  35.45 **** -6.285 *** 

dd2  2.571 ** -0.233  1.592 **** -1.506 ** -3.071 * -1.179 * 

Aar  Average annual rainfall 

- 

-3.726 -11.57 ****  6.056 ****  3.950 *** -5.000  9.738 *** 

aar2 -1.269 -7.177 ***  1.701 ****  3.935 *** -4.537 *  7.246 *** 

        

Trend   0.015  0.282 **** -0.015 *** -0.155 **** -0.101 ***  0.045 *** 

Const Constant  38.04 **** -17.61 ****  6.677 ****  13.34 ****  36.18 **** -0.884 

Notes: to preserve space the residual correlations, the parameters corresponding to the variance equations, to the interactions of the environmental factors are not reported in the Table, but are 

available under request from the Authors. Footnotes: a = parameters non-significant and therefore removed; b = parameter not included in the equation, * = t-stat > 2, ** = t-stat > 3, *** = t-

stat > 4, **** = t-stat > 10. 
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3. From climate change to agricultural land use change 

 

The model estimated in the previous section can be used to predict agricultural land use in 

England and Wales under a variety of conditions. Clearly numerous scenarios could be 

considered using such a model but in the present analysis we restrict ourselves to 

consideration of the effects of a climate change induced increase in temperature and hold 

other determinants constant (an assumption that could be relaxed to examine related effects 

such as shifts in precipitation; see Fezzi and Bateman 2015). We first construct a baseline 

scenario keeping all land use determinants fixed at the level of the last year for which we 

have observations for the entire case study area (2004). Then we simulate the LUC arising 

from a simple climate change scenario obtained by holding all land use determinants (prices, 

policy, urbanization, etc.) constant and increasing average daily temperatures by 1
o
C (an 

increase expected to occur in the UK by about 2030; UKCP, 2009).  We can translate the 

predicted changes in land use into variations in farm income. Profit data are not available at 

the highly disaggregated spatial resolution used throughout our analysis. Instead we use the 

related and commonly adopted measure of Farm Gross Margin (FGM), defined as the 

difference between revenues from agricultural activities and associated variable costs. For 

illustrative purposes predicted changes can be reported in terms of income by simply 

applying the average FGM for each activity calculated from the 2004 Farm Business Survey 

(source: Fezzi et al., 2010) to the land use and livestock data in each 2 km
2
 grid cell. Results 

are reported in Table 2.  

 

 
Table 2. Changes in land use, livestock numbers and FGM/ha as predicted by the land use model 

 
FGM/ha 

(1) 

Under present 

climate 

(2) 

Under climate 

change 

(3) 

Climate induced 

change in area or 

livestock  

(4) 

 £/ha (‘0000 ha) (‘0000 ha) % 

Cereals 290 298.8 285.4 -4.5 

Oilseed Rape 310 41.1 46.6 13.3 

Root crops 2400 22.4 16.8 -25.0 

T. grassland 0 78.5 83.9 6.9 

P. grassland 0 415.4 697.3 67.8 

Rough grazing 0 131.4 82.1 -37.5 

Other 0 226.7 2.2 -99.0 

 £/head (‘0000 head) (‘0000 head)  % 

Dairy 570 194.5 219.6 12.9 

Beef 70 462.5 506.5 9.5 

Sheep 9 2194.2 2632.3 20.0 

Notes: The table shows, for each land use and livestock type, the predicted impact of a 1oC increase in mean daily 

temperature. Column (1) reports FGM values in £/ha and £/head, with predicted total agricultural land use areas and 

livestock heads for England and Wales (under present climate) reported in Column (2). Column (3) reports total areas and 

livestock numbers after the 1oC temperature change, as predicted by our land use model. Column (4) reports percentage 

changes. 
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Considering arable production, the climate scenario induces a shift away from cereals and 

root crops towards more heat tolerant crops such as oilseed rape. There is an apparent 

increase in permanent grassland; however, we have some reservations about the estimated 

size of this effect, which may have been inflated by a decision to not directly model the 

‘other’ land category, leaving it as a residual from which permanent grassland may have 

overly drawn (for a detailed discussion, see Fezzi and Bateman, 2011).  

 

A key advantage of our modeling framework is its high spatial sensitivity. The left hand 

panel of Figure 1 illustrates the highly spatially heterogeneous nature of changes to the area 

of cereals. This area increases substantially in northern parts of the country, where warmer 

temperatures raise cereal yields. Conversely in the south of the country, cereal area decreases 

as farms substitute into other activities. As illustrated in the right hand panel of Figure 1, and 

in line with previous research (e.g. Fezzi et al., 2014, Fezzi and Bateman, 2015), our results 

confirm that climate change will generally increase farm incomes. This is in line with 

expectations given that the increase in temperature is likely to boost yields in the relatively 

cold and wet UK climate. However, some localized negative effects may be expected, mainly 

in the East, where higher temperatures limit high-revenue root crops. 

 

Figure 1: Change in the spatial distribution of cereals and FGM as a result of climate change (a 1oC 

increase in mean daily temperature) 
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4. From land use change to water quality impact 

 

Agricultural LUC alters the flow and quantity of diffuse pollution into rivers. Evaluating the 

impact of these changes in terms of water quality (the biological status of rivers) requires an 

understanding of the ecological response induced by LUC. Prior work relates land use change 

to spatially sensitive patterns of nutrient leaching, taking account of in-stream mixing 

processes to estimate the nutrient concentrations which in part determine ecological effect 

(Fezzi et al., 2008, 2010; Hutchins et al., 2009, 2010b). Here we directly model the 

relationship between land use and its ecological impact on the water environment through the 

commonly adopted measure of chlorophyll-a concentrations. This allows us to assess the 

overall impact of particular changes in land use rather than relying purely on nutrient models. 

 

We use panel data observations, provided by the Centre for Ecology and Hydrology (CEH) 

(Davies and Neal, 2007), on the concentration of chlorophyll-a at individual monitoring 

points in rivers across England and Wales. The incidence of chlorophyll-a, as represented by 

summer mean concentration, is a measure of the rate of algal production in a water body, and 

is a commonly used indicator of water quality in both natural and social science research 

because it can both identify the risk of eutrophication of aquatic ecosystems and is directly 

perceived by the general public as a measure of water quality (e.g. Cullen 1982; Boyer et al. 

2009).  

 

As potential predictors of chlorophyll-a concentration we consider variables detailing 

catchment area and land use allocations, climatic and hydrological variables. Land use affects 

many of the physical and chemical properties of rivers, such as the quantity of suspended 

sediment, levels of dissolved oxygen and concentrations of nutrients such as nitrate and 

phosphate. Therefore, we expect land use variables to be very important in determining 

chlorophyll-a concentration and overall river ecological quality. Climatic variables 

considered here include temperature, solar radiation and average annual rainfall levels. Lower 

temperatures are expected to be associated with lower concentrations of chlorophyll-a as 

lower thermal energy inhibits algal production. Solar radiation levels are also an important 

contributing factor reflecting the intensity of light, which is required for algal production. 

Hydrological variables include suspended sediment, representing the presence of particulate 

matter in the water, and the base flow index, which indicates the speed and the volume of 

river flow. A higher base flow index typically suggests a lower residence time in the river 

channel environment and is generally associated with lower observed concentrations of 

chlorophyll-a, as faster flow rates inhibit algal production and dilute nutrients. 

 

Land use and chlorophyll modeling was undertaken for river basins contributing runoff and 

leached nutrients at 83 Environment Agency monitoring points along river networks 

throughout England and Wales during 2006, thus enabling modeled data to be evaluated 

against observed chlorophyll concentrations. This data also includes river characteristics such 

as water temperature, base flow index etc. The spatial extent of each contributing river basin 

was derived using a digital elevation map from the Ordnance Survey Land-Form 

PANORAMA DTM (www.edina.ac.uk). Using data from the June Agricultural Census 
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(www.edina.ac.uk) and MAGIC Agricultural Land Classification (www.magic.gov.uk) we 

derived a set of land use variables representing livestock head counts and total areas of land 

under various agricultural and non-agricultural uses at the basin level.  

 

 

4.1 The river water quality model 

 

The chlorophyll-a concentration (µg/l) model is specified as a function of land use, climatic 

and hydrological variables. Several functional forms were tested, beginning with a simple 

linear model and progressing through a variety of functional forms (including log-log, log-

square and log-square root forms) allowing for non-linear and interaction effects. The best 

fitting model which also conforms to hydrological theory was 

 

log(Chlorophyll)𝑖,𝑡 = 𝛼 +𝜷𝟏
′ 𝒔𝑖,𝑡 + 𝛽2

′𝑑𝑖,𝑡 +𝛽3𝐿𝑜𝑔(𝑡𝑒𝑚𝑝𝑖,𝑡) +𝛽4𝐿𝑜𝑔(𝐵𝐹𝐼𝑖,𝑡) + 𝛽5𝐴𝐴𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖,𝑡 +

𝛽6𝐿𝑜𝑔(𝑆𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑖,𝑡) + 𝛿𝑖 +𝑒𝑖,𝑡          (5) 

where i denotes the monitoring point and t indicates whether the observation relates to 

summer or winter; 𝒔𝑖,𝑡 is a vector of shares of different land uses, 𝑑𝑖,𝑡 is the number of dairy 

and beef cattle per square mile in the basin, 𝑡𝑒𝑚𝑝𝑖,𝑡 is the average atmospheric temperature, 

𝐵𝐹𝐼𝑖,𝑡 is the base flow index, 𝐴𝐴𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙𝑖,𝑡 is the annual average rainfall, 

𝑆𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑖,𝑡indicates the quantity of suspended sediments, 𝛿𝑖 is a residual error term specific 

to the monitoring point i (random effect) and 𝑒𝑖,𝑡 is a residual term. Both 𝛿𝑖 and 𝑒𝑖,𝑡 are 

assumed to be normally distributed.  

 

The parameters α,𝜷𝟏, 𝛽2, 𝛽3, 𝛽4, 𝛽5 and 𝛽6 are estimated via Generalized Least Squares 

(GLS) random effects model (see Green, 2002) with heteroscedasticity consistent standard 

errors obtained using the White (1980) correction. Results are reported in Table 3. After 

testing for parameter equivalence, urban and non-agricultural land shares were combined into 

a single category, while root crops were separated from arable land as they have a 

disproportionate impact on water quality due to the high levels of nutrient fertilizers used in 

their production. The share of rough grazing provides the baseline for comparison. The total 

area of the catchment was tested but consistently found to be an insignificant explanatory 

variable and was dropped from the model. The intensity of dairy cattle was included 

separately in the model as dairy farms make more intensive use of land and have higher 

nutrient inputs than other livestock farms whose effect on water quality is primarily captured 

by the grassland variables. The effect of stocking densities for other livestock, such as sheep, 

were examined and found to be insignificant; a finding which is echoed in studies examining 

other water quality measures (Crowther et al., 2011). 
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Table 3: Random effects (GLS) estimates of chlorophyll-a concentration (µg/l) 

 

 Coefficient Standard Error t-stat 
 

Constant 

Share of root crops 

Share of non-agricultural land 

Share of other arable land 

Share of temporary grassland 

Number of dairy cattle per square mile 

Log(Temperature) 

Annual average rainfall / 1000 

Log(BFI) 

Log(Suspended sediment) 

 

-3.44*** 

 6.00* 

 0.12 

 0.49 

-3.97* 

 0.009** 

 1.97**** 

-0.77* 

-0.46 

 0.44*** 

 

0.78 

2.82 

0.54 

0.56 

1.71 

0.02 

0.13 

0.29 

0.28 

0.096 

 

-4.41 

2.13 

0.23 

0.88 

-2.32 

3.73 

15.64 

-2.68 

-1.67 

4.56 

 

R-squared: 

   within 

   between 

   overall  

 

 

0.79 

0.70 

0.73 

 

Number of observations 

Number of groups 

 

156 

  78 

 “*” = t-stat > 2, “**” = t-stat > 3, “***” = t-stat > 4, “****” = t-stat > 10. 

 

The land use share results in Table 3 are as expected. Relative to the rough grazing baseline, 

the share of root crops has the largest positive association with chlorophyll-a concentration 

while the share of temporary grassland has the largest negative association reflecting the fact 

that it is the land use which is most typically used for dairy cattle. Once we account for the 

intensity of dairy cattle the overall impact on chlorophyll-a concentration becomes even 

higher than that of rough grazing. Effects of the shares of non-agricultural and arable land are 

not statistically significant, although the signs are consistent with our expectations that a 

greater share of arable land is associated with a rise in chlorophyll-a concentrations.  

 

The climate variables temperature and precipitation are both significant. The positive 

coefficient on temperature is consistent with the expectation that higher temperatures 

stimulate algal production, raising the concentration of chlorophyll-a. As temperature enters 

the equation in log form, its coefficient represents an elasticity. As its values is greater than 

one this indicates that chlorophyll concentration is elastic with respect to temperature. The 

negative coefficients on rainfall and the hydrological variable base flow index (the latter 

being just insignificant) are consistent with the expectation that a faster flowing river, in 

which nutrients are flushed through more quickly, leaves less time for algal growth. 

Conversely a positive, significant but inelastic, relationship is observed with respect to the 

level of suspended sediment in the river as this assists the transport of nutrients from field to 

waterway (Ebbert et al., 2005).  

 

4.2 Predicting the ecological impact of climate change: A case study  

 

As noted, the land use and ecological quality models draw upon datasets covering large areas 

and are both characterized by a high level of spatial accuracy. Derived models therefore 
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encompass a wide degree of data variability and should be generally transferable following 

standard out-of-sample validation tests (the methodology for which is described, for instance, 

in Bateman et al., 2002, 2003). As the model predictor variables are typically held for the 

entire coverage of the country, both land use and ecological quality estimates can be obtained 

for any decision-relevant area. For illustration, we consider an area for which we also hold 

revealed preference data for the recreational value of the freshwater environment; namely the 

catchment of the River Aire in Yorkshire, shown in Figure 2. This river basin covers 

86,000ha and encompasses highly heterogeneous land uses, water qualities and 

socioeconomic characteristics. The western half of the catchment is sparsely populated, with 

the upland areas being dominated by rough grazing and pastoral agriculture. The remainder 

of the catchment includes mixed and arable farming, and some high density urban areas, 

including the large conurbations of Bradford and Leeds. While these urban areas are 

obviously unavailable for agriculture, their location is both a major determinant of river 

ecology and of the recreational values generated by any change in water quality.   

 
Figure 2: Land use in the River Aire catchment 

 

 
 

 

Data for the land use model are available at 2km grid resolution covering the entirety of 

England and Wales. In contrast data for the water quality ecological impact model are only 

available for an irregular network of river monitoring points administered by the UK 

Environment Agency (EA). The EA maintain three water quality monitoring points on the 

River Aire. These are used as points to transfer our ecological impact model to estimate likely 

changes in chlorophyll-a concentration, and hence water quality, arising from a 1
o
C rise in 

temperature. These monitoring points allow for analysis at the catchment and sub-catchment 

scale, and their locations (one upstream of the urban areas, one in central Leeds and one at 

the catchment outlet; indicated as points A, B and C, illustrated in Figure 3) permit 
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differentiation between the agricultural and urban impacts. The monitoring points are sited 

according to the physical characteristics of the catchment, taking account of hydrological 

response units (HRUs) corresponding to areas of land that drain into discrete river stretches 

(Posen et al., 2011). Aggregations of these HRUs can be thought as sub-catchments, with 

monitoring stations located at their outlets. 

 

Figure 3: Three sub-catchments of the River Aire corresponding to monitoring points A, B and C. 

 

 
 

 

While climate change is expected to increase the market value of agricultural production it 

also generates non-market costs. The induced LUC is associated with increased nutrient 

application, higher river pollution and lower ecological quality. This in turn generates a 

potentially major non-market externality in terms of impacts upon the recreational value of 

rivers (EPA, 2015). To estimate this value within our revealed preference analysis we need to 

understand the link between the ecological quality of rivers and the recreational behavior and 

associated values of visitors. Here we have to allow that there may well not be a simple linear 

relation between chlorophyll-a concentrations and the water quality perceived by recreational 

visitors (Hunter et al. 2012). To bridge this objective-subjective gap we use a tried and tested 

‘water quality ladder’ (WQL), as developed by Hime et al. (2009). This links μg/l measures 

of chlorophyll-a concentrations and corresponding flora and fauna to a simple four level 

description of water quality (similar to the scale proposed by UKTAG (2008) for which Hime 

et al. (2009) provide a conversion table). This scale has been shown to significantly 

determine individuals’ preferences and willingness to pay for river quality in separate stated 

preference studies of the Aire and various European rivers (Bateman et al., 2011). Table 4 
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provides ecological quality descriptions for the WQL and a summary of related recreational 

activities.   

 

Table 4: Water quality classifications 

WQL 

quality 

Ecological 

Description 

Chlorophyll-a 

Threshold (μg/l) 

Recreational 

activities 
Flora and fauna 

Pristine Oligotrophic <4 

Fishing, 

boating & 

swimming 

No algae, all species of fish (game 

and coarse), water plants and birds, 

no water turbidity. 

Good Mesotrophic 4-10 

Fishing, 

boating & 

swimming 

No algae, no game fish, many species 

of coarse fish, water plants and birds, 

some water turbidity. 

Mixed Eutrophic 10-25 
Fishing and 

boating 

Some algae, no game fish, fewer 

species of coarse fish, water plants 

and birds. High water turbidity.  

Poor Hyper-eutrophic >25 None 

High levels of algae, no fish, no or 

few water plants or birds. Highest 

levels of water turbidity. 

 

Source: Hime et al. (2009). 

 

We applied our ecological quality model (Table 3) to predict water quality under the present 

and future climate scenario. Information on likely changes to predictor variables under our 

stylized climate scenario was gathered through personal communications with staff at CEH, 

Wallingford. This suggested that a 1
o
C rise in air temperature may cause a greater than 

proportional increase in water temperature. Note that we assume rainfall to remain fixed at 

the annual average level and, therefore, the base flow index remains unaltered. Finally, the 

levels of suspended sediment are assumed to increase by 10%. 

 

Table 5 details predicted water quality under the present and future climate scenario. 

Comparison of chlorophyll-a measures shows that at all three monitoring points we project a 

decline in future ecological quality arising from both the direct effect of water temperature 

increases and higher levels of nutrient loading arising from the climate-induced shift in land 

use. In relative terms this decline is greatest at the upper levels of water quality, where we see 

a downward shift from pristine to good quality on the WQL scale. In absolute terms, the 

increase in chlorophyll-a is greatest at lower levels of water quality. However, these are less 

marked in relative terms and do not breech the boundaries of respective WQL classes.  
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Table 5: Predicted reductions in water quality as a consequence of climate change.  

 

Sub-

catchment 

Present climate Climate change scenario (+1
o
C) 

%  increase in 

predicted 

Chlorophyll-a 

Predicted 

Chlorophyll-a 

(μg/l) 

Corresponding 

WQL 

classification 

Predicted 

Chlorophyll-a 

(μg/l) 

Corresponding 

WQL 

classification 

A 3.39 Pristine 5.10 Good 50% 

B 5.63 Good 7.81 Good 39% 

C 11.95 Mixed 15.13 Mixed 27% 

 

 

5. Recreation value impacts 

 

The output of our ecological quality analysis forms an input to our assessment of the 

responsiveness of recreational values to the impacts induced by climate change. The key 

issue here is how the water quality changes predicted in Table 5 will affect visitation at sites 

which are available for recreational access.  

 

5.1 Sample survey and GIS data generation 

 

A large sample survey of households was undertaken to estimate the recreational impact of 

changes in ecological quality. To capture the distance decay of values away from an 

improvement site (Bateman et al., 2006), a survey area was defined spanning a 70 km 

diameter centered on the River Aire, thereby embracing its catchment and surrounding areas. 

This helped to capture likely substitution effects generated by competing resources such as 

alternative rivers sites and other outdoor recreational opportunities. 

 

The survey was explicitly designed to capture large quantities of spatially explicit data from 

respondents through a highly accessible custom built computer aided personal interview 

(CAPI) system. During the interview, respondents were shown an interactive map on a 

computer screen indicating the respondent’s home location and all of the surrounding rivers 

within an area the same size as the full survey area. Respondents indicated on the map the 

river locations they visit for recreation and the frequency of their visits to each site. We also 

collected information regarding the total number of all outdoor trips taken in the last 12 

months, within this the total number of visits to water bodies and detailed information about 

the river sites. 

 

Once the interviews were completed, a GIS was used to match site visit locations to real 

world recreational sites using the four-step process described in the supplementary materials. 

In total, 531 recreational sites were identified along the studied rivers, which span 

approximately 230 km in length. The home location of each respondent was identified by 

linking Ordnance Survey Address Point data to the detailed geographical location 

information given by the full postcode provided by the respondent. Distance by road (as 
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opposed to straight line) and travel time by car (adjusting for road quality, urban congestion, 

etc. using the methodology detailed by Bateman et al., 1996), from each respondent’s home 

to each recreational site, including those not visited by the respondent, were calculated. This 

allowed us to examine the influence of the availability of substitute sites on the location and 

number of visits. Information on the environmental characteristics of the recreational sites 

was identified in the GIS using Ordnance Survey MasterMap and CEH Land Cover Map 

datasets. These provided details of the predominant land use around each of the recreational 

sites (e.g. urban). The current water quality at each of the river recreational sites was 

calculated from Environment Agency long-term water quality monitoring data and 

categorized into the four-point scale given in Hime et al. (2009), as illustrated in Figure 4.  

 

Figure 4: Sampling area and the quality of river recreational access sites 

 
 

 

After removing 2% of respondents due to missing address information or other item non-

response from the survey sample, 1782 face-to-face at-home household interviews remained 

for analysis. Sample characteristics closely matched census data for the study catchment, with 

44% of respondents being male, an average household size of 2.6 and average net income of 

£21,317 per annum (s.d. £11,700). In terms of occupation, 26% of respondents were in full 

time employment, 13% part-time employed, 33% retired and 7% self-employed with the 

remaining 21% not in employment. 

 

The purpose of economic analyses of recreation choices is to reveal trade-offs between 

money and the availability and quality of natural resources. The random utility model (RUM) 

provides a standard approach for analyzing recreational behavior (Freeman et al., 2014). In 
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the simplest multi-site model the only relevant information required is the site choice made 

by respondents. However, a change in natural resource quality will affect not only the choice 

of sites but also the frequency of visits. To address this issue we implement a simplified 

version of the Morey et al. (1993) approach, as described below. Although there are 

numerous discrete formulations for modeling site choice, we use a specification which is 

widely adopted in the literature: the Conditional Logit Model (CLM) with alternative specific 

constant, based on McFadden (1974). 

 

We specify the utility associated with visiting a recreation site as a function of access costs, 

water quality levels and other site characteristics. Following Hynes et al. (2009) we derive the 

travel cost as out-of-pocket expenditure (at a rate of £0.25 per km travelled round trip) plus 

the opportunity costs of time calculated as a percentage of the respondent’s wage (Fezzi et 

al., 2014 suggests using 3/4 of the average wage rate). 

 

Given the relatively short distance of the recreation sites from the respondents’ houses, we 

assume that every day in a year might, in theory, provide a visit occasion (T=365). Within 

our sample, we observe the frequencies of visits to the 531 river access points, to other rivers 

in the sampling area, canals, lakes and other outdoor activities. Finally, we observe the 

number of times each individual decided not to take outdoor trips, giving that option the 

index j=0 (opt-out option). In this framework the individual i makes daily choices across the 

J options available (where j=0,1, 2,…, 535 within which j=532,…,535 represent visits to 

other rivers, canals, lakes and other outdoor trips). The individual chooses the option with the 

highest utility on each occasion. We define this utility 𝑈𝑖𝑗𝑡 that respondent i in period t 

receives from a visit at site j as the random function: 

 

𝑈𝑖𝑗𝑡 = 𝑣𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑡 = 𝑓(𝑭𝒋, 𝑮𝒊𝒋, 𝜽) + 𝜀𝑖𝑗𝑡        (6)
 

 

where Fj includes site characteristics that are constant across choice occasions and 

respondents, Gij includes respondents’ characteristics that change across sites,  is the 

parameter vector to be estimated, and ijt is a random component that is unobservable to the 

analyst. This model posits that, given J recreation site options and the possibility of an opt-

out, each respondent will choose either to recreate at the site that provides the highest random 

utility Uijt (or not to recreate if this yields higher utility). Specifying a linear in parameters 

utility function, Equation (6) can be rewritten for each choice occasion as: 

 

𝑈𝑖𝑗=1,…,531 = 𝛼𝑗 + 𝜼′𝑭𝒋 + 𝜷′𝑮𝒊𝒋, +𝜀𝑖𝑗, for each site within the sampling area  (6.1) 

  

𝑈𝑖𝑗>531𝑜𝑟𝑗=0 = 𝛼𝑗 + 𝜀𝑖𝑗, for the other recreation options and the opt-out   (6.2) 

 

where  =(). In this structure the utility of visiting sites other than the river stretches in 

our study area is captured by the alternative specific constant variables (j) and, for 

identification, the utility of not recreating is fixed to zero. Note, this latter choice also 
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captures the utility of leisure and recreation opportunities other than those provided by 

outdoor trips.  

 

Morey et al. (1993) formulate their repeated recreational choice model assuming that the 

error term is distributed as a Generalized Extreme Value random term. However, as 

demonstrated in Scarpa et al (2005) a similar approach is obtained using an Extreme Value 

type I error term with alternative specific constants: 
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The model presents a globally concave likelihood function. Table 6 reports the description of 

variables and the parameter estimates, obtained via Maximum Likelihood. Note that the two 

lowest water quality levels (from Table 4) are merged into the category ‘poor’ while the 

‘pristine’ level is set as the baseline. All variables in Table 6 are highly statistically 

significant and accord with prior expectations. The “travel cost” variable is significant and 

negatively signed as expected. The water quality variables are also significant and have 

expected negative signs indicating utility reductions from the baseline ‘pristine’ water 

quality. The positive sign on the “urban” parameter indicates that utility increases if the river 

site is in an urban area, suggesting that increasing the opportunity to utilize natural resources 

in highly populated areas might have a greater impact on welfare than in rural areas, possibly 

because of the lack of similar alternatives in everyday opportunities within cities. However, it 

is also possible that the positive sign on the urban parameter can be explained by correlations 

with other facilities available at river sites (e.g. car parks) and opportunities for 

complementing river recreation experiences with other types of outdoor recreation (e.g. 

taking children to playgrounds). All alternative specific constants present a negative sign, 

demonstrating the common sense finding that, over the year, respondents typically choose to 

spend their time on activities other than outdoor recreation. 
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Table 6: Estimated coefficients from travel cost model  

Variable Description  Coeff.  (Robust SE) 

Travel cost Two ways Travel cost defined as: out of  

pocket cost (0.25£ * km) + value of time 
-0.16 (0.018)

****
 

Good water quality 1=if site is good quality; 0 otherwise -0.92 (0.234)
 **

 

Poor water quality 1=if site is below good quality (mixed or 

poor quality); 0 otherwise 
-1.07 (0.221)

 ***
 

Urban 1=if the predominant land type around the 

site is urban; 0 otherwise 
0.60 (0.14)

 ***
 

CSite Alternative specific constant (ASC) river 

sites within the sampled area 
-7.43 (0.226)

 ****
 

COthRiv ASC for other river sites -4.41 (0.129)
 ****

 

CCanal ASC for canals -3.81 (0.079)
 ****

 

Clake ASC for lakes  -4.13 (0.093)
 ****

 

COthRe ASC for other outdoor recreational sites  -2.80 (0.071)
 ****

 

 

LL 

 

-488,258 

  

Note: “**” = t-stat > 3, “***” = t-stat > 4, “****” = t-stat > 10 

 

Taking the estimated parameters from Table 6 and following, for example, Small and Rosen 

(1982) or Hanemann (1999), it is possible to derive the welfare impact of changes in water 

quality across a range of alternative scenarios.  

 

6. Integrated Results 

 

Using a highly spatially explicit GIS framework, we have introduced models to track the 

connections between climate change and induced changes in agricultural land use, river water 

quality and recreation demand. The current section presents an analysis at both the individual 

and catchment-wide scales for a simple climate change scenario of 1
o
C warming. Here we 

illustrate how agricultural incomes and water quality are impacted and also how these 

changes in turn affect the value of river-based recreational activities within the case-study 

area. 

 

6.1. Estimating individual level values for changes in the ecological quality of rivers.  

 

The analyses developed above allow us to track how the direct effect of a 1
o
C temperature 

rise, combined with the indirect impact of induced LUC and consequent alterations in diffuse 

pollution, would result in a decrease in water quality throughout the case study area. The 

same analysis suggests that this will in turn reduce the number of good quality water 

recreation sites.   
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To estimate the consequences of the climate change scenario we apply the changes in water 

quality predicted from our ecological model (Table 3) to the parameter estimates given in our 

travel cost model (Table 6). Results indicate that the average disutility generated by the 

expected loss in recreational quality, expressed as compensation required per year (i.e. 

negative WTP; see discussions in Horowitz and McConnell, 2002 and Bateman et al., 2009) 

is equal to £10.44 per person per annum in the case-study area. For decision purposes we then 

aggregate these individual estimates up to assess losses for the entire study area.  

 

The Supplementary Materials to this paper assess the value of policy action to both mitigate 

these losses and attain pristine ecological and chemical status through full implementation of 

the EU Water Framework Directive (WFD) (European Commission, 2000). 

 

6.2 Estimating aggregate level values for changes in the ecological quality of rivers.  

 

In order to aggregate our recreation values we require distance calculations from all possible 

recreation sites to all households (not just those sampled in our survey) within the study area. 

We also require socioeconomic characteristics for all households to allow for variations in 

wage rate within the travel cost calculation. Our GIS-based methodology allows us to 

perform these calculations with minimal simplification, working, in this instance, with UK 

Census Super Output Areas (SOAs). 

 

The spatial distribution of changes in recreation values under the climate change scenario is 

illustrated in Figure 5. Here the left hand panel presents the distribution of changes in per 

person values while the SOA aggregated values are given in the right hand panel. The site 

colors illustrate the estimated quality in the baseline situation. The climate change scenario 

induces a reduction in water quality along the length of the River Aire although impacts are 

most marked in the western area of the catchment, where quality declines from Pristine (sites 

shown as blue in Figure 5) to Good quality. Aggregating across the entire case study area 

yields an estimate of the total loss in recreation value induced by climate change of 

approximately £26 million p.a. These losses, as one might expect, are concentrated in the 

western area of the catchment. Although population is relatively low here, this is the principal 

location where declines in water quality occur. The eastern area of the catchment does not 

suffer such an appreciable decline and, therefore, its aggregate values are relatively low.  
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Figure 5: The spatial distribution of per person (left hand panel) and SOA aggregate (right hand panel) 

changes in recreation value under the climate change scenario. 

  

Notes: Colors represent predicted site qualities in the baseline scenario where: blue = Pristine; green = 

Good; yellow = Mixed. Under the climate change scenario, water quality at all currently Pristine sites 

declines to Good quality. Water quality is as follows: blue = Pristine; green = Good; yellow = Mixed; 

red = Poor. Water quality definitions given in Table 4. 

 

Figure 5 suggests that climate change effects present spatially heterogeneous welfare impacts 

which should not be ignored if we wish to ensure efficient allocation of resources to mitigate 

impacts. However, policies, such as the WFD, tend to ignore the spatial distribution of 

benefits such that funds are spent in an untargeted and inefficient manner resulting in 

resources generating highly variable net benefits.  

 

7. Conclusions.  

 

We present a unified series of models examining the direct, secondary and further effects of a 

given driver acting upon natural capital resources. The specific case study concerns the 

impact of climate change upon agricultural profitability, inducing shifts in land use and 

consequent impacts upon diffuse pollution, water and ecological quality and the recreational 

value of affected waterways. We model each of these relationships and calculate the resultant 

impact upon non-market recreational values. In so doing we demonstrate the use of spatial 

analytic techniques for incorporating biophysical data within environmental economic 

analyses.  

 

In line with previous research (e.g. Fezzi et al., 2015; Fezzi and Bateman, 2015), results show 

that climate change is likely to generate spatially variable impacts upon both land use and 

resulting farm incomes. In some areas, it will generate income gains while other areas will 

experience losses. This pattern directly reflects the diverse and heterogeneous nature of UK 

agriculture. While acknowledging that the direct market impacts of climate change on UK 

agriculture may generally be positive, a central contribution of this research has been to 

demonstrate that focusing solely on these direct impacts paints a highly incomplete picture of 
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the net impact of climate change. In our case study of the UK’s River Aire, climate change 

both directly and via induced agricultural LUC yields a general decline in ecological quality 

which in turn reduces recreational values substantially.  

 

The complexity of human-environment relationships means that examining only direct 

impacts may well be insufficient in order to guide efficient policy making. Research needs to 

extend analyses to embrace all major consequences of change. Depending upon the case 

study in question, this may require substantial integration of data, modeling and analytical 

techniques as well as a willingness to combine natural science, social science and economic 

perspective. No single discipline is sufficient to tackle the challenge of integrated 

environmental-economic decision making.  

 

The modular nature of our methodology means that it can be readily extended. The 

agricultural, hydrological and recreation models presented here can easily be updated as 

improved versions become available. Moreover, the approach is highly suitable for extension 

to incorporate additional elements describing impacts on, say, greenhouse gases and 

biodiversity, or natural hazard and flood risk while expansion to cover alternative or wider 

geographic areas is straightforward (Bateman et al., 2013).  An interesting and timely 

extension would be to consider how recent policy changes (e.g. WFD or Common 

Agricultural Policy) interact with climate change to drive on-farm decision making and the 

subsequent impacts. While complex, we believe that such methodologies are vital to 

addressing the complexities of the real world and bring them within the remit of economic 

analysis. 

 

Finally, some caution is needed in interpreting our results. We used a simplified climate 

scenario for illustrative purposes. Future research should incorporate more sophisticated 

climate models and also account for seasonal variation. Moreover, timescale is an important 

element of the relationship between land use change and water quality. Given the interactions 

with groundwater reservoirs, there is some lag between land use change and impacts on water 

quality (Hutchins et al., 2010a; Stalnacke et al., 2004) and, therefore, the direct effect of 

climate on water environments may arise considerably later or last longer. Another important 

area for further development is considering measures of uncertainty. Our approach, being a 

fully statistical and econometric approach, can be used to produce confidence intervals for all 

the estimates and explore how uncertainty propagates throughout the models via Monte Carlo 

simulation. While this issue has not been explored in the present analysis, it is certainly a 

promising avenue for further research. 
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SM1: The agricultural land use model  
 

Table SM1 presents descriptive statistics of land uses and livestock numbers for three 

illustrative years and for the total dataset.  

 

Table SM1: Descriptive statistics, land uses (ha) and livestock numbers (head) per 2km
2
 grid 

square 

 1969 1988 2004  Total 

    
 

  Min Max 

Cereals 87.8 94.6 76.4  83.0 77.4 0 347 

Oilseed Rape 0.1 8.5 13.3  6.9 12.3 0 125 

Root crops 10.1 9.5 7.5  9.1 18.7 0 187 

Temp. grassland 41.1 28.8 22.6  29.3 28.7 0 349 

Perm. grassland 116.7 115.6 112.7  113.0 97.0 0 400 

Rough grazing 47.1 39.6 40.5  44.0 100.0 0 400 

Other 22.8 26.6 45.7  37.8 45.6 0 400 

Total land 325.6 323.2 318.7  323.1 96.9 1.25 400 

         

Dairy 87.1 71.5 62.0  74.1 99.1 0 1128 

Beef 151.4 149.8 89.9  144.9 123.8 0 1221 

Sheep 472.2 784.1 323.8  693.6 899.0 0 11289 

Notes: Only grid squares containing some agricultural land are considered, indicates the sample mean, 

the sample standard deviation. 

 

 
SM1.1: Data sources 

 

In order to correctly assess the financial, policy and environmental drivers of land use 

change, our agricultural land use analysis employs a unique database, which integrates 

multiple sources of information dating back to the late 1960s. The resulting data, collected at 

a 2 km
2
 grid square (400 ha) resolution, cover the whole of England and Wales and 

x x x x )(ˆ xs

x )(ˆ xs
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encompass, for the past 40 years: (a) land use shares and livestock numbers, (b) 

environmental and climatic determinants, (c) input and output prices, (d) policy and other 

drivers. However, we do not include yield and profits data, since the necessary information is 

not available at the disaggregated level required by this analysis.  

 

Agricultural land use and livestock values, collected by the Department for Environment, 

Food and Rural Affairs (Defra) and the Welsh Government (formerly Welsh Assembly 

Government), were derived from the June Agricultural Census (JAC) aggregated at a 2 km
2
 

resolution by EDINA (www.edina.ac.uk). These data are available for England and Wales for 

seventeen (non-consecutive) years between 1969 and 2006 (only Welsh data are available for 

2005 and 2006). This yields roughly 38,000 grid-square records each year. In terms of 

livestock numbers, we distinguish between dairy cattle, beef cattle and sheep. For agricultural 

land use types, we explicitly model cereals (including wheat, barley, oats, etc.), oilseed rape, 

root crops (potatoes and sugar beet), temporary grassland (grass sown every 3 to 5 years and 

typically part of an arable crop rotation), permanent grassland (grassland maintained 

perpetually without reseeding) and rough grazing. These six land use types together account 

for more than 88% of the total agricultural land in England and Wales. We include the 

remaining 12% in an “other” land category encompassing horticulture, other arable crops, on-

farm woodland, set-aside, bare fallow and all other land (ponds, paths, etc.). 

 

Environmental determinants are described in the main paper. Regarding price data, there was 

no unique source that supplied the necessary comprehensive database for the United 

Kingdom. Therefore, we compiled a new database by extracting time-series data from a 

variety of different sources, linked by data from common years. Cereals price is based on the 

simple average of wheat, barley, and oats prices, derived from DEFRA (2006), the Ministry 

of Agriculture, Fisheries and Food (MAFF, 1986), and Mitchell (1988). Root crops price is 

given by the average of potatoes and sugar beet prices, extracted from DEFRA (2006), 

MAFF (1986), and the Office of National Statistics (ONS; 1974–1985), the same sources 

being used for the oilseed rape price. Milk, dairy cattle, beef meat (per cow), and lamb meat 

(per sheep) prices are based on DEFRA (2006) and ONS (1974–1985). Fertilizer price is 

derived from DEFRA (2006) and ONS (1974–1985); oil price from the British Petroleum 

Statistical Review of World Energy; and milk quota (leased) prices from Ian Potter 

Associates (www.ipaquotas.com). Rather than using actual output prices in each year, we use 

expected output prices, defined as the predictions of an autoregressive model of order one, 

AR(1), with trend. 

  

 

SM1.2: Estimation procedure 

 

Since micro-data on land use are typically censored (farms are very unlikely to comprise 

some element of all possible land uses) assuming normal disturbances and implementing ML 

leads to inconsistent estimates of the land use shares and input and output intensity equations 

(Amemiya, 1973). We address this issue by specifying a Tobit system of equations (Tobin, 

1958) and, following Pudney (1989), treat one of the shares as a residual category, defined by 

the identity: 

 

(6) , 

 







1

1
1

h

j jh ss
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and estimating the remaining h – 1 equations as a joint system. When the number of 

equations is higher than three the ML estimation of a Tobit system requires the evaluation of 

multiple Gaussian integrals which is computationally extremely intensive. In this paper we 

follow the practical and computationally feasible solution proposed by Yen et al. (2003), who 

suggest approximating the multivariate Tobit with a sequence of bivariate models, deriving a 

consistent Quasi Maximum Likelihood (QML) estimator (detailed in Fezzi and Bateman, 

2011). We also account for possible heteroskedasticity in the error term allowing the standard 

errors to vary across observations as a function of a vector of exogenous variables. This QML 

estimator is consistent, allows the estimation of cross-equation correlations and the 

imposition of cross-equation restrictions. The model includes regional and annual fixed 

effects to capture the potential differences of technological and labor cost changes and other 

omitted variables. 

  

 

SM2: Identification of potential recreational visit sites.  

 

Recreational visit data were collected via a household survey using a highly accessible, 

custom built, computer-aided personal interview (CAPI) system. This considerably reduced 

the cognitive load on respondents when being asked about recreational activities by 

presenting an interactive map on which she/he could point and click to denote all visited river 

sites. For each site, details on number of visits, activities, etc., were collected. Demand for 

water related recreation was modeled using information on the total number of outdoor trips 

taken during the previous 12 months, frequency of trips to water bodies, facility and quality 

information about the river sites and respondent data on visits to other recreational sites.  

 

Visit site locations were matched to real world recreational sites using GIS software (ArcGIS 

v9.2, ESRI) as follows: 

 

1. River stretches that are accessible to the public (defined as those river stretches which 

have either a public footpath or minor road within 50 m) were identified.  

 

2. These publicly-accessible river stretches were assigned access points by identifying 

where the footpath or road first joined or met these stretches.  

 

3. Where access points were extremely close together (i.e. within 150 m of each other) 

and had similar environmental characteristics, they were grouped together to form a 

single recreational site.  

 

4. The locations of each of the recreational sites were verified using Ordnance Survey 

1:50,000 maps and aerial photographs.  

 

SM3: Analysis of a mitigation policy – Implementing the WFD  

 

The losses likely to occur under climate change will of course be mitigated to a smaller or 

greater extent by the degree of policy intervention undertaken. One possible mitigation 

strategy is provided by implementation of the Water Framework Directive (WFD) (European 

Commission, 2000) which requires member states of the European Union (EU) to avoid any 

reduction in water quality and instead act to raise freshwaters to pristine quality (European 

Commission, 2000). Starting from the current baseline, raising all sites along the length of the 
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River Aire to pristine quality would deliver average annual recreational benefits of £17.89 per 

person p.a. The spatial distribution of benefits is illustrated in Figure SM1 (with the per 

person values shown in the left hand panel and the per SOA aggregation given in the right 

hand panel) and is crucial in determining aggregate values. Those sites which would benefit 

most from implementation of the WFD are in the downstream (eastern) reaches of the river 

where water quality would be increased from Mixed (sites shown as yellow dots) or Good 

(sites shown as green dots) to Pristine quality, whereas in the upstream (western) stretches of 

the river implementation of the WFD holds the quality at Pristine (blue dots) rather than 

allowing it to decline. The aggregate value of these changes is considerably boosted by the 

fact that the eastern catchment not only gains the most in terms of water quality but is also far 

more densely populated than the west. These factors combine to generate total benefits from 

implementing the WFD of approximately £65 million p.a. These contrast with annual losses 

of £10.44 per person and £26 million in aggregate arising from the climate change scenario 

considered in the main paper.  

 

Figure SM1: The distribution of per person (left hand panel) and SOA aggregate (right hand panel) value 

changes for the WFD policy. 

 

  

Notes: Dots show observed water quality site in the baseline scenario (providing a contrast with 

predicted baseline quality as illustrated in Figure 5). Water quality is as follows: blue = Pristine; green 

= Good; yellow = Mixed; red = Poor (quality defined in Table 4). 

 

These case studies clearly demonstrate the importance of considering the spatial distribution 

of benefits in assessing the value of policy interventions. Equally importantly, while we do 

not consider the full costs of implementing the WFD, the substantial benefits it delivers 

suggests that it may well yield overall gains. Analyses of alternative approaches to reducing 

diffuse agricultural pollution suggest that there is no necessary correlation between the cost 

of measures and their effectiveness. For example simple buffer strips have been found to be 

highly effective in mitigating the transport of farm fecal matter into water courses (Hampson 

et al., 2010). 
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