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Fabricating Votes for Putin: New Tests of Fraud and Electoral Manipulations from Russia 

 

1. Introduction
1
 

In the winter months of 2011-2012, tens of thousands of citizens across Russia took to the streets to engage in 

anti-regime protests. One of their central concerns had been electoral fraud allegedly perpetrated in the 

December elections to the State Duma (Smyth, Sobolev et al. 2013). By many accounts, the extent of the 

mass uprising took the Putin-Medvedev tandem by surprise. Consequently, every effort was made to indicate 

to the electorate that the March 2012 presidential elections that followed the State Duma race would not be 

tainted with fraud. The regime’s protestations notwithstanding, Golos, Russia’s highly respected election 

monitoring NGO, as indeed many other observers, reported substantial violations of electoral integrity 

(Gel'man 2013; Kynev, Vahshtain et al. 2012). As with Russia’s previous elections, pronounced regional 

heterogeneity had been apparent in the prevalence of misconduct.  

 In this paper, we extend the rich “fraud forensics” research that relies on statistical procedures to 

detect fraud, to systematically explain both precinct-level and regional variations in electoral manipulations 

in the March 2012 presidential elections. One such “forensic” procedure is the last-digit test which allows us 

to ascertain, based on the prevalence of specific numbers on precinct aggregate vote records—notably last-

digit zeroes—whether votes had been systematically falsified. The assumption behind this analysis is that any 

systematic heterogeneity in last digits of numbers entered on electoral precinct return sheets, such as 

systematic deviation in last-digit frequencies from a uniform benchmark, is inconsistent with clean elections 

and signals shortcomings in electoral integrity (Beber and Scacco 2012; Mebane and Kalinin 2009; 

Myagkov, Ordeshook et al. 2009). We contribute to the literature on fraud heterogeneity by using last-digit 

frequency regression analysis (a multivariate extension of last-digit tests) to capture potential regional co-

variates of fraud—notably, those related to regional ethnic composition; education; geographical distance 

                                                 
1
 We are grateful to the Editor and reviewers for very helpful suggestions for improving the paper and 

analysis. We also thank Alexander Libman for kindly sharing regional socio-economic data for select 

variables. Michael Wahman and Carolien van Ham provided useful comments on earlier drafts of this paper. 

Any errors are of course solely those of the authors.  
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from Moscow; and fiscal dependence on the federal centre. We find in particular that education encourages 

exposure of electoral malpractice, yet we also observe that higher regional education levels may incentivise 

regional officials to channel misconduct towards election-day fraud—perhaps because pre-electoral 

manipulations would be more visible to the public than tampering with ballots, and thus, more vulnerable to 

exposure. To our knowledge, earlier research has not featured the last-digit fraud measure to capture such 

potential regional co-variates of fraud or of fraud substitution. In concurrent analysis, most recently, Rundlett 

and Svolik (2016) have pointed to an alternative mechanism of election-day fraud—the rounding of vote 

shares for the winner Putin to a higher multiple of five. Evidence suggests that the rounding of vote shares 

appeared to be more widespread in precincts with higher vote for Putin. Unlike the analysis presented in our 

paper, Rundlett and Svolik (2016) do not investigate regional correlates of fraud that could make fraud more 

or less likely, nor do they investigate whether instances of election-day fraud are concentrated in a few 

individual regions or, alternatively, if fraud has “metastasised” (Lukinova et al., 2011) across the country. 

Our paper therefore nuances our understanding of why fraud is more likely in some regions and not in others 

while also contributing to the growing literature on electoral malpractice in other settings. Employing 

electoral data for over 95,000 precincts, we identify the presence of at least three operationally-distinct last-

digit fraud types: (a) fake turnout counts; (b) fake votes that disproportionally benefitted the winning 

candidate, in our case Vladimir Putin; and (c) vote “re-distribution” where votes cast for some candidates—

notably the pro-Kremlin contender Sergey Mironov—had been systematically miscounted. 

The last-digit measure however does not allow us to test whether other types of irregularities had been 

occurring in particular regions, perhaps substituting for election-day last-digit type fraud (or vice versa). 

Manipulations going beyond the crude writing in of made-up numbers on election return sheets, which may 

be detected by applying the last-digit tests, are however notoriously difficult to capture in statistical analysis.  

Fortunately, we possess additional data that we leverage for these purposes. On the eve of the elections, 

Golos set up a hotline encouraging citizens to report misconduct occurring both prior to elections and on 

election-day.  These reports were then aggregated to create a geographical map of electoral violations.  We 

utilize author-assembled data that we harvested from these Golos records to explore the co-variance of last-

digit fraud with other irregularities going beyond the falsification of electoral records. To this end, we 
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propose a simple deviance-based measure of region-specific last-digit fraud that can be used as an 

explanatory variable in regression analyses of fraud reports. We are not aware of other researchers utilizing 

Golos-type data in this way to augment “forensic” data on fraud in Russian elections. We find that citizen 

reporting of election-day misconduct co-varies with last-digit fraud. These findings have important 

comparative, theoretical and policy implications. In vast countries like Russia, Brazil, Mexico, Nigeria, or 

India, the logistics of securing monitors for each and every polling station may present significant challenges. 

As Ichino and Sheundeln (2012) find, spreading the monitors thinly—and sending them to only select polling 

stations—might only encourage fraud displacement to localities were monitors are not present.  Our analysis 

does not allow us to establish whether citizen vigilance in fact serves to dis-incentivise electoral malpractice.  

Nevertheless, our paper suggests that local eyewitness accounts of misconduct filed by ordinary citizens can 

be quite accurate in establishing broader territorial patterns of irregularities and could be utilized alongside 

other data to ascertain the incidence of misconduct in Russia and other settings. 

Our paper is structured as follows. In Section 2, we outline our analytical framework and generate 

hypotheses. In Sections 3-5, we discuss our measures and data and perform statistical analysis. Section 6 

concludes with some reflections on the wider implications of our findings for understanding political regime 

dynamics in Russia and for comparative theorizing on electoral misconduct. 

 

2. Theoretical Framework and Hypotheses  

 

Our analysis builds on the growing body of “fraud forensics” scholarship, which develops statistical 

procedures for analysing fraud and specifically for spotting the “fingerprints” of fraud (Argersinger 1985; 

Beber and Scacco 2012; Deckert and Myagkov 2010; Deckert, Myagkov et al. 2011; Lukinova, Myagkov et 

al. 2011; Mebane 2004, 2010, 2011; Mebane and Kalinin 2009; Myagkov, Ordeshook et al. 2005; Myagkov, 

Ordeshook et al. 2009). Since irregularities can take many different forms,
2
 the statistical methodology 

employed by these studies varies, and is often conditional upon prior assumptions that researchers choose to 

adopt with respect to the distribution of results in hypothetical “clean” elections. For instance, Mebane 

                                                 
2
 Wahman (2015) identifies at least thirteen types of manipulations in the 2014 Malawi general election. 
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(2010) applies multinomial regression analysis to vote counts—that is, vote counts reported by electoral 

officials— from Iran’s 2009 presidential elections and uses the results of the earlier 2005 presidential 

elections to calibrate the baseline outcomes and to flag individual unexpected—and potentially fraudulent—

outcomes. Mebane (2010) also employs the analysis that is based on second-digit Benford’s Law—a 

prediction as to the observed frequency of numbers in the second digits of official vote counts—that suggests 

that reported vote counts often deviate from their baseline expected outcomes. One shortcoming of the above 

vote count regressions as fraud tests, as Mebane readily admits, lies in their sensitivity to cases of strategic 

voting which can be mistaken for vote count fraud. Vote count regressions work well only if we are prepared 

to assume that the effect of political processes on voter preferences in the interim years could not in itself 

produce significant heterogeneity in electoral results. Similarly, the robustness of the second-digit Benford’s 

Law as a forensic tool when applied to election outcomes has been contested and is hotly debated (Deckert, 

Myagkov et al. 2011; Mebane 2011; Medzihorsky 2015). In another application of regression analysis that 

uses Russian precinct-level data, Myagkov, Ordeshook and Shakin (2009) and Lukinova, Myagkov and 

Ordeshook (2011) run region-by-region univariate regressions that help identify regions where, as turnout 

increases, the opposition party or candidate loses votes in absolute terms. While suggestive of fraud, this 

analysis has two limitations. First, the region-specific results cannot be generalized beyond the immediate 

region. Second, and most importantly, fraud is not the only likely explanation of the observed negative 

correlation between turnout and votes for the opposition candidate or parties. If voter preferences and 

mobilization potential are correlated—that is, if the proportion of potential pro-opposition voters who do not 

vote is higher in precincts dominated by pro-incumbent voters—these results can be explained by strategic 

voting. Finally, while fraud in vote counts is more easily distinguished from the effects of unobserved 

heterogeneity and strategic voting in natural and field experimental settings (Enikolopov, Korovkin et al. 

2013; Fukumoto and Horiuchi 2011), experimental studies may require substantial research resources to set 

up, and remain relatively rare.  

In contrast to the above approaches, last-digit tests are both feasible wherever precinct-specific vote 

counts are publicly available, and are robust to the presence of arbitrary levels of strategic voting and 

unobserved heterogeneity in voter preferences (Beber and Scacco 2012; Deckert, Myagkov et al. 2011; 
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Lukinova, Myagkov et al. 2011). If election results are not manipulated, then the last digits in the reported 

election results should be randomly distributed. That is, there should be an (almost) equal proportion of 0s, 

1s, 2s … 9s. However, numerous studies have documented electoral fraud by identifying systematic 

deviations from these predictions. For instance, when applied to turnout counts in four consecutive Russian 

national elections (2003–2008), the last-digit test typically rejects the null hypothesis of uniformly distributed 

lasts digits (Mebane and Kalinin, 2009). A similar test applied to Sweden’s 2002 Parliamentary elections 

reveals no deviations from uniform distribution (Beber and Scacco 2012). Widely used non-parametric last 

digit fraud tests on pooled data, such as a Chi2 test are, however, silent on whether instances of fraud are 

concentrated in one or two regions or, alternatively, if fraud is spread across regions. Equally, these tests do 

not tell us whether last-digit fraud co-varies with region-specific developmental and political variations—for 

instance those related to regional education levels of fiscal dependence on the centre. We contribute to the 

literature, inter alia, by using last-digit frequency regression analysis as a multivariate extension of last-digit 

tests.  Our strategy would help scholars test sharp and well-defined predictions firmly rooted in the micro-

logic of fraud and that we are going to discuss next. 

While fraud can be perpetrated under a variety of political regimes (Argersinger 1985; Leemann and 

Bochsler 2014), recent research suggests that it is particularly widespread in autocracies, and, specifically, 

that autocrats are often keen to inflate turnout figures and votes for the winning candidate (Rundlett and 

Svolik 2016; Simpser 2013; Sjoberg 2014). Myagkov et al. (2009) and Lukinova et al. (2011) report 

suspicious turnout distributions in some of Russia’s regions and smaller rayony (sub-regional districts) where 

turnout is suspicously high and/or turnout distribution is double peaked, that is, it appears as having two 

different modes or local maxima. Consistent with Russia’s slide into authoritarianism over the last decade, 

they find evidence that these observed empirical irregularities have gradually “metastasised” across regions 

in successive elections. Turnout- and vote-inflating electoral fraud may serve a number of related purposes. 

First, inflated turnout numbers may be used to signal to the regime’s supporters the regime’s legitimacy and 

strength. Second, inflated margins of victory can discourage the opposition and deter future challengers 

(Magaloni 2006; Simpser 2013). The literature on electoral clientelism suggests that the loyalties of a 

national regime’s clients could be fragile if the regime appears weak (Hale 2007; Kitschelt and Wilkinson 
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2007; Rigger 2007). National officials therefore often expect grotesquely high—fraudulent—results to be 

delivered by their sub-national clients even if fraud is likely to be exposed. In fact, Simpser (2013) suggests 

that the ability to perpetrate blatant electoral fraud—and get away with it—may be intended deliberately as a 

signal to the autocrat’s clients that the regime is invincible.  

The literature on sub-national politics however also points to significant heterogeneity in sub-national 

development and regime types within one national setting and, relatedly, in the propensity of regional and 

local officials to perpetrate electoral misconduct (Gibson 2013; Giraudy 2013; Kitschelt and Wilkinson 2007; 

Lankina 2004; Lehoucq and Molina Jiménez 2002; Magaloni, Diaz-Cayeros et al. 2007; Stokes 2007; 

Wahman 2015). Variables related to local socio-economic development (Lehoucq 2003; Lehoucq and Molina 

Jiménez 2002; Stokes 2007); the degree of fiscal dependence of a locality on the national purse (Gervasoni 

2010); regional machine politics (Eisenstadt 2004; Gel'man 2013; Gibson 2013); or media freedom (Birch 

and Ham 2014), could all affect the probability of manipulations in individual regions, or the likelihood that 

electoral results are marred with fraud rather than being products of voter choice or strategic voting. In our 

analysis, it is therefore important to perform fully parametric tests, such as multivariate regressions, that 

would control for these region-specific variations; non-parametric and univariate analyses of sub-national 

fraud heterogeneity are most likely affected by omitted variable bias and may generate spurious results. 

To illustrate the above point, let us assume that precincts with characteristics 𝑥1,𝑖, … , 𝑥𝐾,𝑖 report 

fraudulent results with probability 𝛼𝑓 = 𝛼𝑓(𝑥1,𝑖, … , 𝑥𝐾,𝑖). Factors 𝑋1, … , 𝑋𝐾 can both include precinct-

specific variables (for instance, reported turnout) and region-specific (for instance, socio-economic) 

variables. Assume further that the probability of last-digit zeros across precincts that report clean results is 

0.1, whereas in precincts that report fraudulent results this probability is 𝑝𝑓 ≠ 0.1. Then the overall expected 

probability of last-digit zeros 0.1 + (𝑝𝑓 − 0.1) 𝛼𝑓(𝑥1,𝑖, … , 𝑥𝐾,𝑖) is a function of factors 𝑋1, … , 𝑋𝐾 and 

generally deviates from the ten percent benchmark. The goal of our parametric analysis, then, is to test 

whether we observe systematic deviation from uniform distribution of last digits across precincts and across 

regions and whether the relative probabilities of last digits and, hence, the likelihood and magnitude of last-

digit fraud, co-vary with a pre-determined set of explanatory variables. 

Accordingly, and with reference to the micro-logic of fraud discussed above, we propose: 
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H1: Sub-national last digit heterogeneity in the March 2012 Presidential elections is, in part, systematic. Last-

digit fraud will be observed across multiple regions. 

 

H2: Sub-national last-digit fraud will co-vary with reported turnout and with the share of votes cast for 

individual candidates including the winner Putin. This effect would be observed even when we control for 

political and socio-economic variables that have been conventionally identified as increasing or reducing the 

support for national incumbents or otherwise affecting the propensity for fraud.   

 

 Election-day fraud usually refers to ballot-stuffing, tampering with vote tallies, and other forms of 

interference with voting results (Argersinger 1985; Calingaert 2006; Cox and Kousser 1981; Gerring and 

Thacker 2004; Lehoucq 2003). Researchers have therefore pointed to limited specificity of last-digit tests as a 

forensic tool  because last-digit tests target a specific type of fraud mostly consisting of the writing in of 

made-up numbers on precinct return sheets and may not detect cases of forced voting, multiple voting, and 

ballot stuffing (Enikolopov, Korovkin et al. 2013). Furthermore, a new generation of fraud literature is 

beginning to systematically analyse not just whether a particular fraud type is perpetrated, but whether it 

occurs in conjunction with, or in lieu of, other types of irregularities (Beaulieu and Hyde 2009; Ichino and 

Schuendeln 2012; Simpser 2013; Simpser and Donno 2012; Sjoberg 2014). Research into the “menu[s] of 

manipulation” (Schedler 2002) conventionally distinguishes between pre-electoral manipulations and 

election-day fraud. Pre-electoral manipulations are widespread in settings where the electorate is dependent 

on the public sector for welfare payments, subsidies, or contracts; in backward rural settings; or those reliant 

on national fiscal transfers. Under such conditions, political machine bosses or enterprise managers routinely 

pressurise the electorate to agree to vote for particular candidates in exchange for jobs, promises of job 

security, salaries, or public contracts (Frye, Reuter et al. 2014; Gervasoni 2010; Gibson 2013; Hale 2007; 

Rigger 2007; Sharafutdinova 2011; Stokes 2007; Wilkinson 2007). In clientelistic settings, voters are often 

compliant, knowing that private rewards will accrue to them if they vote as instructed. Compliance is less 

likely in wealthier urban areas where the electorate might be more enlightened about the public goods 
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advantages of fair elections, or prosperous enough not to be seduced by small cash hand-outs (Kitschelt and 

Wilkinson 2007; Lehoucq and Molina Jiménez 2002; Magaloni, Diaz-Cayeros et al. 2007; Stokes 2007). We 

contribute to this literature by including in our analysis the Golos reports of pre-electoral manipulations and 

of election-day irregularities (discussed in Section 4). In employing Golos election-day reports of 

misconduct, we opt for the term “reporting election-day misconduct” because our aggregate Golos counts of 

citizen witness accounts of misconduct that occurred on March 4
th

 do not allow us to distinguish between 

what would be conventionally defined as fraud—for instance, tampering with vote tallies—versus, for 

example, election-day voter intimidation, which would be conventionally labelled as “manipulations.” We 

believe that the term “election-day misconduct” best captures the plethora of fraudulent and manipulative 

activities that are detailed in the Golos report of the 2012 election (Kynev, Vahshtain et al. 2012). Prior 

literature suggests that sub-national authorities in Russia tend to resort to a variety of complementary 

strategies of misconduct that often include both citizen manipulations (like busing factory workers to the 

polling booths) and conventional election-day ballot-stuffing and other types of fraud (Hale 2007; Reisinger 

and Moraski 2009). Our analysis would help us more systematically ascertain the probability of resort to 

manipulations going beyond the writing in of made-up numbers on electoral return sheets.  

 

Accordingly, we propose : 

 

H3: Citizen reports of election-day misconduct will be positively correlated with last-digit fraud.  

 

 Since reports of election-day misconduct are aggregated by region, we test H3 by proposing two new 

(yet straightforward) measures of region-specific last-digit heterogeneity that are based on the concept of 

likelihood ratio (deviance) and are explained in detail in Section 3. 
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3. Methodology 

 

3.1 Last Digit Frequencies 

 

We start by observing that, in clean elections, last digits in turnout counts reported by individual precincts 

with at least 100 registered voters can be regarded as outcomes of identical and independent multinomial 

trials where individual digits 𝑗 ∈ {0,1, … ,9} are observed with uniform probability 𝑃𝑗 = 𝑃 = 0.1 (Beber and 

Scacco 2012). The parametric analysis of last-digit fraud in this paper is based, therefore, on the multinomial 

logistic regression model specified for a categorical dependent variable 𝑗𝑖 ∈ {0,1, … ,9} that records last digits 

in turnout counts reported by individual precincts 𝑖 with at least 100 registered voters. If uniform distribution 

of last digits is a property shared by all precincts across the country, it follows that the observed probabilities 

of individual last digits should be equal and, in particular, should co-vary neither with precinct-level 

variables, nor with regional political and socio-economic factors. We build on prior research that identifies 

precinct-specific and region-specific factors 𝑋1, … , 𝑋𝐾, for which we observe realizations 𝑥1,𝑖, … , 𝑥𝐾,𝑖, that 

could affect the likelihood of election fraud and hence could “skew” the relative probabilities of individual 

last digits from the uniform benchmark.  

 Multinomial logistic regression models the relative probabilities (relative risks) of last digits as 

follows:  

 

𝑃𝑟𝑖(𝐿𝑎𝑠𝑡 𝐷𝑖𝑔𝑖𝑡 = 𝑗)

𝑃𝑟𝑖(𝐿𝑎𝑠𝑡 𝐷𝑖𝑔𝑖𝑡 = 𝑏𝑎𝑠𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒)
= 𝑒𝑥𝑝 (𝛼(𝑗) + ∑ 𝛽𝑘

(𝑗)
𝑥𝑘,𝑖

𝐾

𝑘=1
).                             (1)    

 

The choice of the base outcome or base category affects the interpretation of the estimated coefficients 

𝛼(𝑗) and 𝛽𝑘
(𝑗)

, yet it does not affect the predicted probabilities for individual last digits. In clean elections, 

regardless of the choice of the base outcome, the estimated coefficients 𝛼(𝑗) and 𝛽𝑘
(𝑗)

 should be (mostly) 

statistically insignificant. Strictly speaking, after fitting regression (1) using clean elections data we can 

expect about 5 percent of coefficients to show “false positive” findings and p-values of 5 percent and lower 
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due to Type I error—that is, the incorrect rejection of a true null hypothesis of clean elections. Higher 

proportions than this of statistically significant coefficients in clean elections are increasingly unlikely. 

 In fraudulent elections, where the magnitude and the exact nature of last-digit fraud generally vary 

with contextual variables, the proportion of statistically significant coefficients (1) generally depends on the 

choice of the base outcome. In these circumstances, the joint significance tests on linear hypotheses that are 

invariant to the choice of the base outcome can be particularly useful. Accordingly, for all individual 𝑋𝑘, we 

test the null hypothesis that 𝛽𝑘
(𝑗)

 are jointly equal to zero for all 𝑗 ∈ {0,1, … ,9}. This tests whether there is an 

association between the corresponding independent variable 𝑋𝑘 and the ten categories of last digits and their 

relative probabilities. In addition to being invariant to the choice of the base outcome, this test is agnostic to 

the exact nature of the last-digit fraud. In other words, this test is equally good at spotting a potential 

overabundance of last digit zeros as it is good at spotting a relative scarcity of, say, 3’s.  

 The second post-estimation test after the multinomial regression (1) draws on the results of Beber and 

Scacco (2012) and Mebane and Kalinin (2009) who specifically report an overabundance of zeros in last-

digit frequencies in election results. The tests are focused on last-digit zeros, which may constitute a 

particularly “sensitive” category, and could provide statistical inference that is, potentially, sharper than the 

joint significance tests on all 𝛽𝑘
(𝑗)

. Accordingly, our next step is to test whether there is an association 

between explanatory factors and the relative probabilities of last-digit categories 1 to 9, excluding last-digit 

zeros. The null hypothesis in this test assumes that the true population effects 𝛽𝑘
(𝑗)

 are equal across 

categories 𝑗 = 1, . . ,9. If, for a particular predictor 𝑋𝑘, the first of the joint hypotheses 𝛽𝑘
(𝑗)

= 0, for all 

𝑗 ∈ {0,1, … ,9} is rejected and the second hypothesis 𝛽𝑘
(𝑗1)

= 𝛽𝑘
(𝑗2)

, for all 𝑗1, 𝑗2 ∈ {1, … ,9} is accepted, this 

would suggest that the corresponding 𝑋𝑘 has a differential effect on last-digit categories and that last-digit 

zeros, in particular, is the category that is affected disproportionally.  

 The final leg of the last digit analysis, therefore, relies on (binomial) logistic regressions that 

investigate the prevalence of last-digit zeros in more detail. The dependent variable equals to one if the last 

digit in the reported turnout is zero; and it is equal to zero otherwise. Considering that last-digit zeros in 

turnout counts are found to be over-reported in precincts that report particularly large (top quartile) turnout 
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figures, we investigate whether the prevalence of last-digit zeros co-varies with vote counts cast for 

individual candidates. For this analysis, we use the ratio of the vote counts for individual candidates, as 

reported by precincts, to the total number of registered voters who are eligible to vote in the reporting 

precinct. This specification helps to distinguish among three alternative scenarios. First, if last-digit fraud is 

driven exclusively by the need to show higher turnout figures, which is unlikely, there is going to be no 

significant association between vote counts for individual candidates and last-digit zeros. Second, if fake 

votes that are added to the turnout figures disproportionally benefit one or two candidates, the vote counts for 

these candidates are likely to be positively correlated with last-digit turnout zeros. Finally, if last-digit zeros 

are negatively correlated with vote counts reported for some of the candidates, this would indicate that some 

of their votes have been (mis-) counted as if cast for other candidates. 

 An alternative specification to the multinomial logistic regression (1) could analyse last-digit 

frequencies aggregated by region using Poisson regressions with a panel-like analysis where cross-sectional 

index 𝑖 indicates individual regions and last-digit categories 𝑗 ∈ {0,1, … ,9} treated as individual “panels” 

collected across the regions. Even though the analysis based on Poisson-type count models could be 

informative and could potentially offer some additional insights, it can only handle voting data aggregated by 

region and cannot be used to analyse intra-regional fraud heterogeneity.  

 

3.2 Citizen Reports of Election-Day Misconduct  

 

The second part of our analysis focuses on citizen reports of election-day misconduct tallied by the NGO 

Golos. The report counts are available for individual regions. The aim is to test whether citizen reports of 

misconduct co-vary with last-digit fraud. Here, the dependent count variable, the number of Golos reports of 

election-day misconduct, is regressed on the variables of interest while controlling for the number of Golos 

reports of pre-electoral manipulations occurring during the electoral campaign in the same region. This 

specification allows us to control for the unobserved factors common to election-day and pre-electoral 

manipulations, such as region-specific propensity to report. As the count-dependent variable is characterised 

by overdispersion (or extra-Poisson variation), we use negative binomial regressions. We also control for the 
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total number of polling stations in the region, as election-day reports are likely to pertain to individual polling 

stations where individual instances of fraud are taking place. A region with a relatively higher rate of 

election-day fraud, but with fewer polling stations (lower n) might have fewer total instances of reported 

irregularities.  

 Our measure of region-specific last-digit fraud—the key explanatory factor in this analysis—is based 

on the likelihood ratio statistic 𝐿2 that is defined as 

𝐿𝑖
2 = 2 ∑ (𝑂𝑖𝑗𝑙𝑜𝑔 (

𝑂𝑖𝑗

𝐸𝑖𝑗
)),  

where 𝑂𝑖𝑗 is the observed frequency of digit 𝑗 in region 𝑖, 𝐸𝑖𝑗 = 𝑛𝑖/10 is the expected frequency of digit 𝑗, 

and 𝑛𝑖 is the total number of polling stations in the region. Relatively larger values of 𝐿2, for a fixed 𝑛, 

indicate that last digits are distributed relatively less evenly and hence are consistent with more widespread 

last-digit fraud. The likelihood ratio statistic 𝐿2 relates to the concept of deviance in the theory of Generalized 

Linear Models and this statistic and Pearson’s Chi2 represent the two most commonly used measures of 

“goodness of fit” between the observed and the expected outcomes of categorical data (Agresti 1990). The 

two measures both converge to a 𝜒2 (in our case, 𝜒2(9)) distribution and give very close answers in large 

samples where the expected frequencies 𝐸𝑖𝑗 in all categories have values of 5 or greater (our data 

comfortably satisfy this requirement). Between deviance 𝐿2 and Pearson’s Chi2 we prefer to use 𝐿2 as this 

measure has an attractive additivity property and can be easily partitioned into independent chi-squares. 

Specifically, we define  

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0,𝑖 = 2 (𝑂𝑖0𝑙𝑜𝑔 (
𝑂𝑖0

0.1𝑛𝑖
) + (𝑛𝑖 − 𝑂𝑖0)𝑙𝑜𝑔 (

𝑛𝑖 − 𝑂𝑖0

0.9𝑛𝑖
)) 

, and 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9,𝑖 = 2 (𝑂𝑖1𝑙𝑜𝑔 (
𝑂𝑖1

(𝑛𝑖 − 𝑂𝑖0)/9
) + ⋯ + 𝑂𝑖9𝑙𝑜𝑔 (

𝑂𝑖9

(𝑛𝑖 − 𝑂𝑖0)/9
)).               (2) 

It is easy to see that 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0,𝑖 + 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9,𝑖 = 𝐿𝑖
2 and that the total deviance (that is, heterogeneity) in 

last-digit frequencies is split into two parts. While 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0  is approximately 𝜒2(1) and measures the part 

of the total heterogeneity that is due to under- or over-reported last digit zeros, 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9 is 
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approximately 𝜒2(8) and measures the heterogeneity across digits 1 to 9. This allows us to test the 

independent effect of excess zeros on election-day misconduct reports, while controlling for last-digit 

heterogeneity that comes from digits 1 to 9. 

 When 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0 and 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9 are used in regression analysis as measures of fraud, we ought to 

control for (region-specific) sample size 𝑛𝑖 —the total number of polling stations in the region. This is due to 

the fact that deviance measures of fit both reflect the amount of region-specific fraud and the (region-

specific) power of the statistical tests at the same time. This is easy to see: if the sample size 𝑛𝑖 and all 

frequencies 𝑂𝑖𝑗 are multiplied by a factor 𝑘, so are 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0,𝑖 and 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9,𝑖. Clearly, a region with 

relatively less fraud, but with more polling stations (larger n) might end up having higher deviance statistics 

than a region with more fraud and fewer polling stations (smaller n). As a result, if sample size 𝑛𝑖 is omitted 

from the regression specification and if 𝑛𝑖 varies systematically with any of the regressors, the estimates are 

likely to be biased. Accordingly, we model the expected number of citizen reports of election-day 

irregularities as follows: 

 

𝐸𝑖(Reporting election − day fraud)

= exp(𝛼 + 𝛽1𝑙𝑜𝑔(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0,𝑖) + 𝛽2𝑙𝑜𝑔(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9,𝑖) + 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠),           (3) 

  

where control variables include, among others, 𝑙𝑜𝑔 (1 + 𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑟𝑒 − 𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝑎𝑙 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖), and 

𝑙𝑜𝑔(𝑛𝑖). In this specification, a 1% increase in 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0 is assosiated with a 𝛽1% increase in the rate of 

citizen reports of misconduct on election day, controlling for other factors, that is, “as if” all regions had 

equal numbers of polling stations and “as if” all regions had similar propensities to report irregularities. A 1% 

increase in 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9 results in a 𝛽2% increase in the rate of citizen and election monitor complaints.  

 The two parts of the analysis (the multinomial/logit analysis of last-digit frequencies on the one hand 

and the analysis of citizen reports of irregularities, on the other) are closely linked and should be interpreted 

together. If last-digit tests reveal that the frequencies of last-digit zeros are relatively more sensitive to factors 

such as turnout and that the frequencies of digits 1 to 9 are relatively less sensitive, hypothesis H3 would 

expect election-day misconduct reports to be relatively stronger correlated with the systematic part of last-
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digit heterogeneity, namely 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0,𝑖, and not nessesarily correlated with its relatively less systematic and 

more random 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9,𝑖. 

 

4. Data and measures 

 

Outcome variables. We employ precinct data for the 2012 Presidential elections obtained from the Russian 

Electoral Commission website. The election featured five contenders (several others had been excluded from 

the race). Aside from the Prime Minister Vladimir Putin, there were two seasoned contenders with a long 

history of participation in Russia’s presidential races—Gennadiy Zyuganov, the candidate from the 

established Communist Party of the Russian Federation (CPRF); and Vladimir Zhirinovsky, the candidate 

from the Liberal-Democratic Party of Russia (LDPR). The two other candidates were Sergey Mironov, 

representing the pro-Kremlin Just Russia Party; and Mikhail Prokhorov, an independent, party-unaffiliated, 

candidate and one of Russia’s leading industrialists, whom some analysts considered a “Kremlin project” 

despite his criticism of the politics of the Putin-Medvedev tandem. Putin obtained 63.6 of the total vote; 

while Zyuganov, Zhirinovsky, Mironov, and Prokhorov obtained 17.2; 6.2; 3.9; and 8 percent of the vote, 

respectively. In our analysis, we employ turnout and vote count statistics for each candidate that cover 95,415 

precinct-level (uchastkovye) polling stations subordinated to the regional Territorial Electoral Commissions 

(territorial’nye izbiratel’nye komissii).    

 The first outcome variable is Fraud. The measures for this variable are last digits 𝑗𝑖 ∈ {0,1, … ,9} in 

turnout counts reported by individual precincts 𝑖 with at least 100 registered voters. The second (regional-

level) outcome variable, Reporting election-day misconduct, is the number of election-day reports of 

irregularities filed by citizens and election monitors and tallied by the NGO Golos  (Kynev, Vahshtain et al. 

2012). In September 2011, Golos created a special “hotline” inviting citizens to post reports of observed pre-

electoral and election-day misconduct. Subsequently, these reports served as the basis for constructing a 

regularly updated geographic “map of irregularities” (karta narusheniy). The portal also has a search engine 

that enables analysts to obtain quantitative data on electoral misconduct by region. An example of election-

day fraud reports would be election monitors or ordinary citizens supplying video footage of electoral 
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officials tampering with ballots. An example of other types of irregularities observed on election-day would 

be election monitors being forced out of a polling station by a police officer. 

 

Key independent variables. Our key independent variables are Turnout; vote counts for individual 

Presidential candidates (Putin’s vote, Zyuganov’s vote, Zhirinovsky’s vote, Mironov’s vote, and 

Prokhorov’s Vote) taken as ratios to the total number of registered voters who are eligible to vote in the 

reporting precinct; and the two measures of last-digit heterogeneity in turnout counts 𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟎,𝒊 and 

𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟏−𝟗,𝒊. 

  

Control variables. As noted above, we use the region-level measure for Reporting pre-electoral 

manipulations to control for the general propensity to report manipulations. Examples of reported pre-

electoral manipulations would be complaints that enterprise managers pressurise employees to cast a vote for 

Putin; or a student reporting being threatened with expulsion from university for canvassing for opposition 

candidates. Conventionally, regional variations in electoral misconduct have been explained in terms of 

differences in regional socio-economic conditions; education; the degree to which regions are fiscally 

dependent on the federal centre; ethnic structure; and strength of regional political machines. By explicitly 

controlling for these variables in the regression analysis, we test if Putin’s vote is independently associated 

with last-digit fraud over and above the effects associated with regional political and socio-economic factors. 

It is also important to note that, to the extent that Reporting election-day misconduct may proxy for factors 

not directly related to fraud such as citizen propensity to report manipulations and fraud, the explanatory 

power of last-digit fraud (deviance) measures is likely to be weakened by the inclusion of a comprehensive 

set of the relevant control variables. Furthermore, some scholars have suggested that pre-electoral 

manipulations make election-day irregularities superfluous. We therefore employ data available from 

Russia’s yearly official statistical compilations to incorporate the variables of Income per capita; 

geographical Distance from Moscow (in ‘000s km); the proportion of population with University degree;  

and Fiscal transfers as a share of regional budgets, to capture citizen socio-economic vulnerabilities (and 
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corresponding propensity to succumb to pressures to deliver a pro-incumbent vote or to challenge electoral 

misconduct); the potential effect of geographic proximity to the national centre of power; regional 

developmental variations, notably citizen education levels which could capture propensity to tolerate and 

report misconduct; and degree of regional financial dependence on the federal centre. In addition, we employ 

two variables that capture variations in regional ethnic composition and that had been in previous research 

linked to sub-national electoral clientelism and machine politics. Specifically, regions with the status of 

ethnically-defined republics and those with substantial non-ethnically Russian populations tend to be more 

likely to produce anomalously high voting in favour of pro-Kremlin candidates and parties in national 

elections. These patterns have been explained with reference to Soviet-era ethno-patronage networks 

whereby non-Russian groups received material transfers from the federal centre in exchange for loyalty. To 

capture these “correlates of clientelism” (Hale 2007), we employ the variables of the share of ethnic 

Russians in regional populations; and regional status (Oblast). Further robustness tests control for 

Urbanisation, which tends to co-vary with our Fiscal Transfers and with University degree variables; and 

Media freedom, a variable employed in other studies of electoral malpractice (Birch and Ham 2014; 

Wilkinson 2007) and which we capture by employing an index developed by scholars at the Moscow 

Carnegie Centre, a respected think tank (Petrov and Titkov 2013). The index encompasses regional media 

pluralism, censorship, and independence of media sources from municipal and regional authorities.  

 

5. Analysis 

 

We begin with non-parametric last-digit tests in turnout counts, valid vote counts, and votes cast for the 

winner Vladimir Putin in the March 2012 Presidential elections ignoring the differences across individual 

regions for now. In accordance with prior literature that applied last-digit tests to electoral fraud, we exclude 

polling stations with less than one hundred registered voters; this reduces the sample size from 95,415 to 

91,114 precincts. Table 1 reports that, based on the likelihood ratio L
2
 statistics, the null hypothesis of 

uniformly distributed last digits is rejected for turnout counts and valid vote counts. The test results for the 

sub-sample of precincts that exclude ethnic republics are only marginally weaker than those for the full 
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sample. This suggests that instances of fraud are not limited to ethnic republics. Secondly, Beber and Scacco 

(2012) suggest that deviations from uniform distribution in last-digit frequencies are often caused by an 

overabundance of zeros. The hypothesis that assumes that the probability of last-digit zeros is 10 percent is 

tested against the sample statistics Deviance0 and is rejected for turnout counts, valid vote counts, and votes 

cast for the winner Putin (in the full sample). Thirdly, the hypothesis of uniform distribution of digits 1 to 9 

(excluding last digit zeros) is tested against the sample statistics Deviance1-9 and is rejected for turnout 

counts. Figure 1 plots the proportions of last digits in turnout counts and their 95% confidence intervals 

estimated after a univariate multinomial logistic regression. Overall, these results confirm the presence of 

last-digit fraud in the elections and reveal the fact of marked over-reporting of last-digit zeros in particular.   

 Though informative, these non-parametric fraud tests mask important heterogeneity across regions. 

We illustrate this heterogeneity, first, by performing region-specific last-digit Chi2(9) tests on turnout counts 

reported by precincts in individual regions. The region-specific tests are based on L
2
 statistics (see section 

3.2) and each yields a p-value. Figure 2 reports the p-values histogram that shows significant degree of p-

values heterogeneity. In individual tests, we usually reject the null hypothesis of no fraud if the 

corresponding p-value is below the 5 or 10 percent cut-off level. This approach would not be adequate here, 

however. With seventy-nine tests corresponding to seventy-nine regions for which data are available (out of 

Russia’s eighty-three constituent regions),
3
 we can expect a number of regions to fall into the rejection area 

purely by chance. Indeed, if turnout counts across individual regions had been generated by a fair vote count, 

the p-values would be distributed uniformly. Similarly, if last-digit fraud affects only a small number of 

regions, the distribution of p-values would be near uniform. In contrast, any significant deviation from 

uniform distribution would signal that last-digit fraud affects a significant proportion of individual regions. 

We test whether the p-values come from uniform distribution by performing the Kolmogorov-Smirnov (K-S) 

test which ascertains the extent of equality of distributions. The test weakly rejects the hypothesis that the p-

values are uniformly distributed (K-S p-value 0.053), suggesting that (a) regions differ in their propensity to 

                                                 
3
 Chechnya and regions with autonomous okrug status are conventionally excluded from cross-regional 

statistical analyses because of missing data.  
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generate statistically unlikely last digits in turnout counts; and that (b) last-digit fraud seems to be affecting a 

significant proportion of individual regions. 

 If deviations from uniform distribution in last-digit frequencies are caused by an overabundance of 

zeros (Beber and Scacco 2012), the Chi2(1) tests against sample statistics Deviance0, focused on last-digit 

zeros, should be sharper than Chi2(9) tests against L
2
. Accordingly, Figure 3 shows the histogram of p-values 

after region-specific Chi2(1) tests based on Deviance0. Again, the results show considerable variation in the 

p-values, with lower p-values favouring the fraud hypothesis. In particular, the probability of last-digit zeros 

in turnout counts appears to be significantly different from 10 percent in Bashkortostan, Dagestan, 

Kabardino-Balkaria, Karachay-Cherkessia, Kemerovo, Magadan, North-Ossetia, Sakhalin, Stavropol, and 

Tatarstan. As before, we employ the Kolmogorov-Smirnov test that, this time, strongly rejects the hypothesis 

of uniform distribution (K-S p-value 0.001), confirming that the p-value heterogeneity is, in part, systematic. 

Since fraud is the most likely causal mechanism that could generate the systematic component in the p-value 

heterogeneity, our analysis confirms hypothesis H1 about the incidence of fraud in the elections. The strong 

results of the Kolmogorov-Smirnov test also suggest that last-digit fraud was not a problem specific to one or 

two individual regions (if this were the case, the K-S statistics would not have picked that up). The results 

suggest instead that the number of regions across Russia that were affected by last-digit fraud was 

sufficiently high for the test to reject the joint hypothesis of uniform distribution. 

 

5.1 Regression Analysis of Last Digits: Fake Votes and Vote “Re-distribution”   

 

We now proceed with regression analysis. In this section, we test whether last-digit fraud co-varies with 

turnout and with vote counts for individual candidates (hypothesis H2) controlling for conventional correlates 

of electoral misconduct. The Dagestan region comes out as a statistical “outlier” in terms of last-digit fraud. 

The expected number of last-digit zeros in Dagestan under uniform distribution is 170.7 against the observed 

322 that yields a remarkable Chi2(1) statistic of 121.53. We therefore exclude Dagestan from the regression 

analysis and report results for the remaining seventy-eight regions. Including Dagestan strengthens the key 

results of our regression analysis, and yet, on balance, we do not want the results to be influenced by this 
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idiosyncratically fraudulent region. Descriptive statistics for all variables used in the regression analysis and 

the correlation matrix are presented in the Supplemental Appendix (SA Tables 1 and 2). 

 Table 2 reports results of the multivariate logit regression where we regress last-digit categories in 

turnout counts on four quartiles of Turnout, and on the control variables University degree, Distance from 

Moscow, Fiscal transfers, and Russians. Turnout quartiles control for possible effect of non-linearity. 

Cluster-robust standard errors are used to allow for intragroup correlations in seventy-eight regions. Figure 4 

plots predicted probabilities of last-digits across turnout quartiles and illustrates the key result that last-digit 

zeros are significantly over-reported in precincts reporting turnout levels in the fourth quartile (that is, 

Turnout of at least 79 percent or greater). The graph illustrates that the Turnout effect on over-reported zeros 

is mostly concentrated in the fourth quartile, although the overall linear effect, when Turnout is entered as a 

continuous variable, is positive and statistically significant (unreported). Tables 3 and 4 report post-

estimation tests. Table 3 reports that the 4
th

 Quartile turnout dummy is jointly statistically significant in all 

categories of last digits, rejecting the hypothesis of no association between last-digit frequencies and the 4
th

 

Quartile (versus the 1
st
 Quartile) turnout. Among other effects, University degree and Distance from Moscow 

are statistically significant, further suggesting that last-digit heterogeneity is partly systematic and non-

random. Based on the results in Table 4, on the other hand, we cannot reject the hypothesis of no association 

between last-digit frequencies 1 to 9 (excluding last-digit zeros) and the 4
th

 Quartile (vs. 1
st
 Quartile) turnout, 

which suggests that a systematic component associated with Turnout is mostly carried by last-digit zeros. 

Last-digit zeros also seem to be carrying a systematic component associated with Distance from Moscow. 

These results are robust to the use of alternative control variables and do not change when Oblast, Income, 

and Media freedom are included (Russians and Fiscal transfers are excluded due to potential 

multicollinearity issues). Oblast, Income, and Media freedom do not emerge as statistically significant.  

 Table 5 reports the results of a (binomial) logit model which explores last-digit zeros in detail. The 

dependent variable in Table 5 is a dummy variable where last-digit zeros in turnout counts are coded as ‘1’s 

and the other last-digit categories are coded as ‘0’s. While model M2, Table 5, uses the specification identical 

to the one used earlier in Table 2 and reports similar results, model M3 introduces vote counts for individual 

candidates (Putin’s vote, Zyuganov’s vote, Zhirinovsky’s vote, Mironov’s vote, and Prokhorov’s vote) as 
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new explanatory variables in place of Turnout. Vote counts for individual candidates are taken as a ratio to 

the number of registered voters and are split into quartiles to control for possible effects of non-linearity. 

Putin’s vote yields statistically significant results—we observe a 0.138 increase in predicted log-odds of last-

digit zeros in the 4
th

 Quartile of Putin’s vote (that is, Putin’s vote is at least 56 percent of registered voters or 

greater) relative to the 1
st
 Quartile (Putin’s vote is 33.5 percent of registered voters or less). This, together 

with the earlier results for turnout strongly suggests that turnout counts include fake votes that produce over-

reported last-digit zeros, and that fake votes disproportionally benefit Putin. Figure 5 illustrates this by 

plotting the predicted probabilities of last-digit zeros across four quartiles of Putin’s vote. Controlling for the 

effect of Putin’s vote, vote counts reported for candidate Mironov are negatively correlated with over-

reported last-digit zeros in turnout counts. This suggests that fraud activities involved a number of strategies. 

In addition to propping up Putin’s vote and turnout counts with fake votes, some election officials were 

actively stealing and re-distributing the actual votes. The evidence suggests that Mironov’s vote (a pro-

Kremlin candidate) was particularly badly affected by this vote “re-distribution.” Figure 6 illustrates this by 

plotting the predicted probabilities of last-digit zeros across four quartiles of Mironov’s vote, holding other 

variables at their means. University degree and Distance from Moscow are positively associated with last-

digit fraud and emerge as statistically significant, while Fiscal transfers and Russians do not seem to have 

an independent effect on fraud. The result for the University degree variable may be interpreted as follows. 

In regions with educated populations, regional officials may opt for election-day fraud in lieu of pre-electoral 

manipulations—like pressurising citizens to cast a vote for a particular party or candidate—because better-

educated voters are less likely to succumb to such pressures.  The Distance from Moscow variable may 

capture the effects of fraud in, for instance, the North Caucasus regions, which are notoriously associated 

with delivering implausibly high results for Kremlin-supported parties and presidential candidates. It could 

also capture distance from the West and from diffusion processes associated with proximity to democratic 

countries and the EU, which, in previous studies have been found to positively affect regional democracy 

(Lankina and Getachew 2006, 2008; Obydenkova and Libman 2012, 2015). Overall, the evidence supports 

Hypothesis 2. The results are robust to the inclusion of alternative control variables Oblast, Media freedom, 

Urbanization, and Income. 
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5.2 Reports of Election-Day Misconduct 

 

In this section, we investigate if our measures of last-digit fraud co-vary with Golos’s regional reports of 

misconduct (H3). Models M4-M11, Table 6, report the results of a series of negative binomial regressions. 

Dagestan is excluded as an outlier. In the benchmark model M4, the dependent variable Reporting election-

day misconduct is regressed on a set of control variables excluding our measures of fraud. As expected, 

Reporting election-day misconduct is found to be larger in those regions which reported more pre-electoral 

manipulations (Reporting pre-electoral manipulations), which, in part, controls for unobserved 

heterogeneity in general propensity to report across individual regions. Pre-electoral manipulation reports 

both are likely to proxy for the electorate that values fair elections and also for the pressure on regional 

authorities to deliver the desired result on the election-day. The observed positive correlation between pre-

electoral and election-day reports is consistent with both of these effects. Second, as expected, regions with 

more polling stations tend to generate more reports of election-day irregularities. Finally, as expected, 

education (University degree) is positively and significantly associated with election-day reports ceteris 

paribus, while Distance from Moscow is negatively associated with election-day reports. Russians emerge 

as only weakly statistically significant, suggesting, counter-intuitively, that regions with a higher proportion 

of ethnically-Russian populations tend to show a lower likelihood of exposing election-day misconduct than 

do those with larger non-ethnically Russian populations. This effect however disappears when we include the 

last-digit fraud variable into the regression. 

 Model M5 introduces our preferred measure of fraud prevalence 𝑳𝒐𝒈(𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟎), which is found 

to be positively and significantly correlated with fraud reports in support of hypothesis H3. A 10% increase 

in 𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟎 is associated with a 1.10.140 − 1 ≈ 1.3% increase in fraud reports. This is an important 

finding. We show in the previous section that last-digit zeros are not entirely random and that variance in 

last-digit zeros is partly systematic. Fake turnout counts and over-reported zeros produce higher values of 

𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟎 statistics (“fingerprints of fraud”), which are found to be associated with fraud reports. Here, we 

do not claim that the empirical relationship between last-digit fraud and fraud reports is necessarily causal. 
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As we discussed earlier, last-digit fraud measures such as 𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟎 might not detect all instances of 

forced voting and ballot stuffing that could be more readily observed and reported by monitors. Our results, 

therefore, are consistent with the view that regional authorities, eager to “deliver,” resort to a variety of 

complementary election-day strategies. Models M6 and M7 report that the relatively less systematic and 

more random part of last-digit heterogeneity 𝑫𝒆𝒗𝒊𝒂𝒏𝒄𝒆𝟏−𝟗 measured across digits 1 to 9 is not associated 

with misconduct reports, neither on its own nor when the effect of last-digit zeros is being controlled for. The 

association between last-digit fraud and misconduct reports is robust to the inclusion of alternative controls. 

Models M8 to M11 report results that include Oblast and Income, while Fiscal transfers and Russians are 

excluded due to potential multicollinearity. The effect of last-digit fraud on misconduct reports is somewhat 

stronger in this specification. The Oblast and Income variables are not statistically significant.  

 

 

 

 

 

6. Discussion 

 

Our analysis of last-digit fraud in Russia’s presidential elections points to a significant degree of sub-national 

fraud heterogeneity. The evidence confirms that fraud tended to be higher in regions with a history of 

“deference” (Moraski and Reisinger 2010) to the Kremlin—for instance, the North Caucasus republics. Last-

digit fraud is associated with (a) fake turnout counts; (b) fake votes that disproportionally benefitted Vladimir 

Putin; and (c) vote “re-distribution” whereby votes cast for some candidates appear to have been 

systematically miscounted. We document further that Golos’s regional reports of election-day irregularities 

are correlated with last-digit fraud, suggesting that regional authorities use a menu of complementary 

strategies to produce the desired outcome. 

 The parametric last-digit frequency regressions employed in this paper could be extended to study 

fraud heterogeneity in further detail. For instance, we could ask questions such as: “Is the association 
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between turnout and over-reported last-digit zeros stronger/ weaker in relatively larger precincts with higher 

number of registered voters?” Consistent with recent analyses of strategic selection of fraud location in 

different settings (Sjoberg 2014), it could be argued that the most efficient way to use fraud to win a plurality 

of votes in direct elections would be to channel fraud efforts to larger, more consequential, precincts. 

Systematic resort to fraud would, then, produce stronger turnout-fraud links in larger precincts—this could be 

easily tested by including appropriate interaction terms in last-digit frequency regressions.        

 The systematic evidence that we present of election officials strategically re-allocating votes from one 

of the pro-Kremlin contenders in favour of the winner-apparent is also significant in terms of possibilities for 

further extensions and research. Specifically, we find that votes for Mironov, the pro-Kremlin candidate, had 

been particularly vulnerable to such manipulative tactics. These practices suggest that having a number of 

contenders ostensibly representing the political opposition serves a wider purpose beyond simply seeking to 

create the impression of a genuinely competitive political process.  In fact, we conjecture that such politicians 

may be deliberately planted into the electoral race to generate votes that could be reallocated to the winner-

apparent without the risk of being challenged by the “loser” in the courts, the media, etc. 

 Our findings, based on an analysis of Golos data, also tentatively suggest that last-digit fraud occurs 

even in settings where pre-electoral manipulations are widespread. Intuitively, one would expect that 

election-day fraud would be unnecessary where, for instance, manipulations like vote-buying would have 

ensured citizen commitment to vote for a particular candidate prior to the day of the election (Magaloni, 

Diaz-Cayeros et al. 2007; Stokes 2007). Thus, Susan Stokes, an expert on political clientelism in various 

national contexts, writes how after “a long day of handing out goods and favours at Children's Day 

celebrations” one Argentinian party activist boasted: “Votes will come. I don't have to go and look for them . 

. . votes will come anyway” (cited in Stokes 2007). Nevertheless, what we find is more in line with 

alternative arguments that the two types of misconduct co-vary—both are perpetrated to augment a pro-

regime result (Hale 2007).   

 The analysis presented in this paper has wider implications for understanding Russia’s centre-regional 

relations; regional electoral dynamics; and the effects of sub-national variations in socio-economic conditions 

and regime types on national electoral outcomes. Despite Putin’s recentralisation reforms—which had the 
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effect of undermining political pluralism in the hitherto more democratic regions—, we observe inter-

temporal continuity in the reproduction of regional patterns of electoral malpractice. In what dovetails with 

earlier research, we find that these variations are in turn to a certain extent conditioned by variables like 

levels of regional modernization and specifically education (Hale 2007; Lankina 2012, 2016; Lankina and 

Getachew 2008; Saikkonen 2015). Despite the Kremlin’s protestations to the effect that fawning governors in 

some regions are simply “trying too hard” to please the national regime in delivering implausibly high 

results, our analysis is more suggestive of the fact that fraud and other irregularities are perpetrated where 

regional authorities feel that they can get away with them and where they possess significant levers of 

influence over citizens. In other words, capacity to deliver, not so much the extent of loyalty to the Kremlin, 

is what drives the extent of electoral malpractice under a regime where in any case most of the regional 

assemblies and governorships are controlled by the Kremlin. Thus, during the December 2011 Parliamentary 

elections, a mere presence of independent observers at Moscow’s polling stations reportedly decreased the 

vote for the Kremlin-supported United Russia party by 11 percent (Enikolopov, Korovkin et al. 2013). True, 

on the eve of the 2012 presidential elections, Russia’s leaders made a conscious effort to give the impression 

of striving for electoral integrity, not least because of citizen anger at fraud perpetrated in the State Duma 

elections in December 2011.  Web-cameras were introduced in polling stations; and pronouncements were 

made encouraging citizens to show vigilance in exposing fraud. Yet, we also know that governors were 

punished for failing to deliver a robust result in favour of the Kremlin-supported parties in the 2011 elections, 

and that every effort was made to secure Putin’s victory in the first round of the Presidential elections that 

followed. A number of governors—in Vologda, Arkhangelsk, and Volgograd—had been arguably dismissed 

because of a “weak” result in December 2011. The Golos report contains evidence that regional governors, 

perhaps conscious of these pressures from above, are likely to have directed the process of securing the 

desired vote: they threatened to cut funding to the rayony (sub-regional districts) unless precinct officials 

deliver at least a 50, and as high as a 60-70 percent vote for Putin; fired officials who failed to deliver a high 

enough result for the United Russia “party of power” in December 2011; and promoted officials in the 

rayony in which allegations of fraud—and court cases—in the previous elections featured prominently, in 

other words, signalling that fraudsters would be rewarded rather than punished (Kynev, Vahshtain et al. 
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2012). There are also numerous cases of precinct officials resigning in protest against governor pressures to 

commit fraud. Furthermore, Golos had been subjected to state-sponsored harassment both before and after 

the March 2012 presidential elections. Against this background, and against the findings of our own 

statistical analysis, the Kremlin’s protestations about a desire to ensure a transparent vote ring hollow. 

 Our findings also dovetail with other, longer-term, analyses of electoral dynamics in Russia. 

Reisinger and Moraski find that high levels of regional “deference” to the Kremlin have in recent years 

tended to extend even to the traditionally less “deferential” regions (Reisinger and Moraski 2009), while 

Lukinova et al. use the metaphor of “metastesized” fraud to describe the cancer-like spread of electoral 

malpractice across Russia (Lukinova, Myagkov et al. 2011).  Generally, it is well-known that there has been 

a significant erosion of sub-national democratic institutions and electoral competition under Putin (Golosov 

2011; Panov and Ross 2013; Reddaway and Orttung 2005; Reuter and Remington 2009; Reuter and Buckley 

2015; Reuter and Robertson 2012; Rochlitz 2014). Yet, this unfavourable national context notwithstanding, 

in these various studies, some regions consistently feature as among the worst abusers of citizens’ right to 

cast a democratic vote, while others continue to feature greater levels of electoral integrity. Similar to other 

autocratic regimes, Putin’s Kremlin has shown remarkable ingenuity in skewing the electoral playing field in 

its favour—through blatant fraud and other, more “subtle” techniques like potential vote redistribution 

between pro-Kremlin candidates and the winner-apparent, that we uncovered.  Yet, the electorate in many 

regions continues to show a certain degree of vigilance in exposing both the pre-electoral and election-day 

misconduct. Likewise, NGOs like Golos and its regional activists, as indeed local election monitoring NGOs 

and other civil society groups continue to fulfil their civic duties despite the very difficult and hostile 

climates in which they operate. The reproduction of such spatial variations in democratic practices and 

processes despite authoritarian consolidation under Putin in turn suggests that longer-term sub-national 

developmental trajectories, which condition regional resilience to national autocracy, matter (Lankina, 

Libman et al. 2016, 2016). Careful attention to sub-national democratic practices, transcending the 

preoccupation with national-level authoritarian retrenchment, is therefore essential for nuancing our 

understanding of the nature of Russia’s current regime, and indeed for appreciating the potential for future 

political change in Russia.    
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Tables and Figures 

Table 1. Last-Digit Tests (Likelihood-ratio Chi2) for last-digit frequencies in turnout counts, valid vote 

counts, and votes cast for Putin; March 2012 Presidential elections. 

 Turnout Valid votes Vote count, winner 

 Full  

sample 

Excl. 

republics 

Full  

sample 

Excl. 

republics 

Full  

sample 

Excl. 

republics 

 

H0: Last digits are distributed uniformly 

𝐿2 statistics 

chi2(9) 
 

52.61** 23.98** 40.70** 16.22 14.84 9.67 

P-value 0.000 0.004 0.000 0.063 0.095 0.377 

 

H0: The probability of last-digit zeros is 10 % 

Deviance0  

chi2(1) 

 

33.13** 7.82** 27.74** 4.24* 4.09* 2.98 

P-value 0.000 0.005 0.000 0.040 0.043 0.084 

 

H0: Last digits 1 to 9 are distributed uniformly 

Deviance1-9  

chi2(8) 

 

19.48* 16.16* 12.97 11.98 10.75 6.69 

P-value 0.013 0.040 0.113 0.152 0.216 0.570 

       

N obs. 91,114 72,353 91,114 72,353 91,114 72,353 

 
Notes: ** - indicates the rejection of the corresponding H0 at the 1% level; * - at the 5% level. 
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Figure 1. Proportions of Last Digits in Turnout Counts (based on univariate multinomial logistic regression) 

with 95% Confidence Intervals. 

 
 

  

9
9
.5

1
0

1
0

.5
1
1

P
ro

b
a
b

ili
ty

 (
%

)

0 1 2 3 4 5 6 7 8 9
Last Digit



34 
 

Figure 2. Region-specific last-digit tests: the histogram of Chi2(9) p-values that correspond to region-

specific 𝐿2 statistics in voter turnout counts. 

 

Note: The Kolmogorov-Smirnov test weakly rejects the hypothesis that p-values are uniformly distributed 

(K-S p-value 0.053), suggesting that regions differ in their propensity to generate statistically unlikely last-

digits in turnout counts. 
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Figure 3. Region-specific last-digit zero tests: the histogram of Chi2(1) p-values that correspond to region-

specific Deviance0 statistics in voter turnout counts. 

 
Note: The Kolmogorov-Smirnov test strongly rejects the hypothesis that the p-values are uniformly 

distributed (K-S p-value 0.001), suggesting the incidence of, and considerable regional variation in, last digit 

fraud. 
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Table 2. Last-Digit Fraud in Turnout Counts, Multinomial Logistic Regression
 a
; Dagestan is excluded. 

 

Categories (Last Digits): 
0 

(base) 

1 vs 0 2 vs 0 3 vs 0 4 vs 0  5 vs 0 6 vs 0 7 vs 0 8 vs 0 9 vs 0 

Turnout 
b                

2
nd

 Quartile 

 

3
rd

 Quartile 

 

4
th

 Quartile 

 

 

-.018 

(.039) 

.001 

(.041) 

-.115** 

(.044) 

.028 

(.040) 

.015 

(.045) 

-.100* 

(.046) 

-.076 

(.042) 

-.071 

(.047) 

-.210** 

(.050) 

-.026 

(.040) 

-.021 

(.046) 

-.197** 

(.042) 

-.009 

(.032) 

-.022 

(.039) 

-.111** 

(.042) 

-.010 

(.029) 

-.047 

(.044) 

-.135** 

(.041) 

.002 

(.036) 

-.047 

(.040) 

-.124* 

(.050) 

-.028 

(.030) 

-.013 

(.036) 

-.142** 

(.044) 

-.016 

(.027) 

-.025 

(.039) 

-.090* 

(.042) 

University degree 

 
 

-.157 

(.208) 

-.536* 

(.261) 

-.698** 

(.234) 

-.539* 

(.230) 

-.583* 

(.265) 

-.537 

(.284) 

-.554* 

(.252) 

.047 

(.242) 

-.497 

(.379) 

Distance from Moscow 

 
 

-.023* 

(.011) 

-.038** 

(.010) 

-.030** 

(.011) 

-.020 

(.011) 

-.017 

(.011) 

-.025* 

(.011) 

-.020* 

(.009) 

-.018 

(.011) 

-.010 

(.010) 

Fiscal transfers 

 
 

.042 

(.152) 

-.023 

(.153) 

.080 

(.153) 

-.098 

(.142) 

.196 

(.148) 

-.036 

(.164) 

.084 

(.148) 

-.007 

(.150) 

-.053 

(.128) 

Russians 

 
 

.076 

(.085) 

-.019 

(.101) 

.152 

(.094) 

-.022 

(.118) 

.124 

(.108) 

.094 

(.082) 

.138 

(.118) 

-.002 

(.084) 

.072 

(.099) 

Constant 

 
 

-.024 

(.091) 

.131 

(.118) 

.055 

(.119) 

.197 

(.120) 

-.002 

(.130) 

.083 

(.115) 

.028 

(.150) 

.001 

(.078) 

.041 

(.107) 

Obs 87,720        

Wald chi2(63) 476.42        

Notes: 
a 
Cluster-robust standard errors in parentheses allow for intragroup correlations in 78 regions; ** - indicates significance at the 1% level; * - at the 5% level.  

b
 Quartile categories represent dummy variables where first quartile is treated as the reference outcome. 
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Figure 4. Predicted probabilities of turnout last digits by turnout quantiles (based on Table 2) 

with 95% confidence intervals. 

 

 
Notes: Other explanatory variables are taken at their means. 

Turnout Quartiles: 1
st
 — 58.7% of registered voters or less; 2

nd 
— between 58.7% and 66.0% ; 3

rd
 — 

between 66.0% and 79.3%; 4
th
 — 79.3% or greater. 
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Table 3. Wald tests of composite hypothesis (all digits) after multivariate logit reported in 

Table 2.  

 

H0: There is no association between the corresponding explanatory variable and the ten 

categories of last digits. H0 assumes that true population effects in categories 0 to 9 in Table 2 

are jointly equal to zero. 

 

Independent variables             Chi2 (9)                                      p-value 

Turnout
 

2
nd

 Quartile 

3
rd

 Quartile 

4
th
 Quartile 

7.51 

6.25 

31.63** 

.5839 

.7145 

.0002 

University degree 24.86** .0031 

Distance from Moscow 19.32* .0226 

Fiscal transfers 9.71 .3748 

Russians 6.23 .7162 

Notes: ** - indicates the rejection of the corresponding H0 at the 1% level; * - at the 5% level. 
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Table 4. Wald tests of composite hypotheses (digits 1 to 9) after multivariate logit reported in 

Table 2.  

 

H0: There is no association between the corresponding explanatory variable and the relative 

frequencies of last-digit categories 1 to 9 (that is, excluding last-digit zeros). H0 assumes that 

true population effects in categories 1 to 9 in Table 2 are equal. 

 

Independent variables             Chi2 (8)                                      p-value 

Turnout
 

2
nd

 Quartile 

3
rd

 Quartile 

4
th
 Quartile 

7.51 

5.57 

13.03 

.4825 

.6958 

.1109 

University degree 19.87* .0109 

Distance from Moscow 10.07 .2603 

Fiscal transfers 9.60 .2942 

Russians 5.52 .7007 

Notes: ** - indicates the rejection of the corresponding H0 at the 1% level; * - at the 5% level. 
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Table 5. Last-digit zeros in turnout counts, logistic regressions
 a
; Dagestan is excluded. 

 

Variables M2
 

St. Err. M3 St. Err. 

Turnout 
b
                       2

nd
 Quartile .017 (.025)   

3
rd

 Quartile .026 (.032)   

4
th
 Quartile .135** (.033)   

Putin’s vote 
b 
                 2

nd
 Quartile   .001 (.036) 

3
rd

 Quartile   .023 (.041) 

4
th
 Quartile .  .138** (.045) 

Zyuganov’s vote 
b
          

 
2

nd
 Quartile   -.002 (.041) 

3
rd

 Quartile   -.006 (.035) 

4
th
 Quartile .  .010 (.035) 

Zhirinovsky’s vote 
b 
        2

nd
 Quartile   .014 (.038) 

3
rd

 Quartile   .039 (.039) 

4
th
 Quartile .  .006 (.039) 

Mironov’s vote 
b 
            2

nd
 Quartile   -.032 (.036) 

3
rd

 Quartile   -.049 (.036) 

4
th
 Quartile .  -.115** (.036) 

Prokhorov’s vote 
b 
         2

nd
 Quartile   .006 (.041) 

3
rd

 Quartile   .047 (.043) 

4
th
 Quartile .  .044 (.049) 

University degree .448* (.211) .510* (.231) 

Distance from Moscow .022** (.007) .020** (.007) 

Fiscal transfers -.027 (.122) -.021 (.125) 

Russians -.068 (.081) -.063 (.084) 

Constant -2.25** (.091) -2.26** (.101) 

Obs 87,720  87,720  

Clusters (regions) 78  78  

Wald Chi2 45.15  69.62  

Notes:  
a
 Cluster-robust standard errors in parentheses allow for intragroup correlations in 78 regions; ** - indicates 

significance at the 1% level; * - at the 5% level.  
b
 Quartile categories represent dummy variables where first quartile is treated as the reference outcome. 
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Figure 5. Predicted probabilities of turnout last-digit zeros by quartiles of Putin’s vote (based 

on M3, Table 5) with 95% confidence intervals. 
 

 
Notes: Other explanatory variables are taken at their means. 

Putin’s Vote Quartiles: 1
st
 — 33.5% of registered voters or less; 2

nd 
— between 33.5% and 41.8% ; 3

rd
 — 

between 41.8% and 56%; 4
th

 — 56% or greater. 
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Figure 6. Predicted probabilities of turnout last-digit zeros by quartiles of Mironov’s vote 

(based on M3, Table 5) with 95% confidence intervals. 

 
Notes: Other explanatory variables are taken at their means. 

Mironov’s Vote Quartiles: 1
st
 — 1.3% of registered voters or less; 2

nd 
— between 1.3% and 2.2% ; 3

rd
 — 

between 2.2% and 3.1%; 4
th

 — 3.1% or greater. 
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Table 6. Reports of election-day misconduct, Golos data, negative binomial regressions; 

Dagestan is excluded. 

 

 M4 M5 M6 M7 M8 M9 M10 M11 

Log (1+Reporting 

pre-electoral 

manipulations) 

.256** 

(.087) 

.257** 

(.080) 

.259** 

(.088) 

.259** 

(.081) 

.247** 

(.090) 

.251** 

(.081) 

.246** 

(.091) 

.251** 

(.081) 

Log total number of 

polling stations in the 

region 

.621** 

(.214) 

.579** 

(.200) 

.616** 

(.216) 

.575** 

(.201) 

.611** 

(.179) 

.561** 

(.166) 

.611** 

(.180) 

.561** 

(.166) 

𝐿𝑜𝑔(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0)  
(Last Digit Fraud Index 

based on observed 

frequencies of Last 

Digit Zeros) 

 
.140** 

(.041) 
 

.140** 

(.041) 
 

.155** 

(.040) 
 

.155** 

(.040) 

𝐿𝑜𝑔 (𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9)  
(Last-Digit Index based 

on relative frequencies 

of last digits 1 to 9) 

  
-.037 

(.191) 

-.034 

(.185) 
  

.017 

(.193) 

.009 

(.183) 

University degree 
8.33** 

(2.87) 

7.08** 

(2.59) 

8.27** 

(2.88) 

7.03** 

(2.61) 

9.00** 

(3.46) 

6.90* 

(3.25) 

9.01** 

(3.46) 

6.90* 

(3.25) 

Distance from 

Moscow 

-.137* 

(.056) 

-.165** 

(.054) 

-.139* 

(.057) 

-.167** 

(.055) 

-.150* 

(.068) 

-.189** 

(.061) 

-.149* 

(.069) 

-.188** 

(.062) 

Fiscal transfers 
-.681 

(.698) 

-.424 

(.679) 

-.710 

(.715) 

-.450 

(.695) 
    

Russians 
-1.04 

(.539) 

-.471 

(.540) 

-1.06 

(.546) 

-.487 

(.548) 
    

Oblast     
-.080 

(.254) 

.050 

(.249) 

-.078 

(.256) 

.051 

(.250) 

Income     
-.007 

(.022) 

.003 

(.020) 

-.007 

(.022) 

.003 

(.020) 

Constant 
-.837 

(1.65) 

-.750 

(1.53) 

-.698 

(1.80) 

-.624 

(1.67) 

-1.72 

(1.26) 

-1.12 

(1.15) 

-1.76 

(1.34) 

-1.14 

(1.23) 

Obs. 78 78 78 78 78 78 78 78 

LR Chi2 100.30 109.97 100.33 110.00 96.57 109.20 96.58 109.21 

Log pseudolikelihood -432.70 -427.87 -432.68 -427.85 -434.57 -428.25 -434.56 -428.25 

Pseudo R2 .1039 .1139 .1039 .1139 .1000 .1131 .1000 .1131 

Notes: Dependent variable is Reporting election-day misconduct (number of reports of election-day misconduct 

per region). Standard errors in parentheses; ** - indicates significance at the 1% level; * - at the 5% level. 
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Supplemental Appendix 
 

Table 1. Variables, definitions, and descriptive statistics; Dagestan is excluded. 

 Definition N Mean St. dev Min Median Max 
(1) Turnout The number of votes cast divided by the number of people    

eligible to vote (registered voters) 
87,720 0.68 0.14 0.05 0.65 1 

(2) Putin’s vote The number of votes cast for Putin divided by the number of 

registered voters 
87,720 0.46 0.17 0 0.41 1 

(3) Zyuganov’s vote The number of votes cast for Zyuganov divided by the number of 

registered voters 
87,720 0.11 0.05 0 0.11 0.55 

(4) Zhirinovsky’s vote The number of votes cast for Zhirinovsky divided by the number 

of registered voters 
87,720 0.04 0.02 0 0.04 0.52 

(5) Mironov’s vote The number of votes cast for Mironov divided by the number of 

registered voters 
87,720 0.02 0.01 0 0.02 0.69 

(6) Prokhorov’s vote The number of votes cast for Prokhorov divided by the number of 

registered voters 
87,720 0.04 0.03 0 0.03 0.35 

(7) Total number of 

polling stations 

Total number of polling stations in the region with at least 100 

registered voters 
78 1125 791 52 940 3390 

(8) University degree Share of people with university degree, 2010 78 0.21 0.04 0.15 0.20 0.41 

(9) Distance from 

Moscow 
Geographical distance from Moscow, ‘000s km 78 1.81 1.84 0 1.16 6.43 

(10) Income Income per capita, 2010 78 16.3 6.06 7.54 14.7 43.9 

(11) Fiscal transfers Share of fiscal transfers in regional public expenditures, 2009 78 0.34 0.20 0.04 0.28 1.35 

(12) Media freedom Index of regional media freedom for 2006-2010 78 2.91 0.96 1 3 5 

(13) Russians  Share of ethnic Russians in the regional populations 78 0.79 0.24 0.01 0.89 0.97 

(14) Oblast Regions with oblast status 78 0.74 0.44 0 1 1 

(15) Reporting 

election-day 

misconduct 

Number of reports of election-day misconduct in the region, 4 

March 2012 
78 204 396 0 58 2190 

(16) Reporting pre-

electoral 

manipulations 

Number of reports of pre-electoral manipulations in the region, 

September 2011–3 March 2012  
78 86.6 182 0 38.5 1185 

(17)𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0 Last-digit fraud index based on observed frequencies of last-digit 

zeros and the likelihood ratio statistics 
78 1.71 2.27 0.00 0.92 12.4 

(18)𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9 Last-digit index based on relative frequencies of last digits 1 to 9 

and the likelihood ratio statistics 
78 8.66 4.35 2.29 7.94 23.1 
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Table 2. Correlation matrix. 
      (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

(1) Turnout 1.00                 

(2) Putin’s vote 0.90 1.00                

(3) Zyuganov’s vote -0.06 -0.40 1.00               

(4) Zhirinovsky’s vote -0.06 -0.27 0.20 1.00              

(5) Mironov’s vote -0.17 -0.39 0.21 0.16 1.00             

(6) Prokhorov’s vote -0.26 -0.49 0.12 0.08 0.44 1.00            

(7) Total number of 

polling stations 
0.05 0.04 -0.07 -0.18 -0.05 0.22 1.00           

(8) University degree -0.13 -0.21 -0.01 -0.07 0.16 0.54 0.32 1.00          

(9) Distance from 

Moscow 
-0.04 -0.02 -0.04 0.19 -0.10 -0.10 -0.30 -0.07 1.00         

(10) Income 
-0.12 -0.18 -0.11 -0.06 0.14 0.52 0.21 0.58 0.32 1.00        

(11) Fiscal transfers 
0.12 0.14 0.05 0.02 -0.11 -0.28 -0.55 -0.21 0.34 -0.27 1.00       

(12) Media freedom 
-0.35 -0.35 -0.03 0.03 0.18 0.28 0.35 0.18 -0.14 0.12 -0.36 1.00      

(13) Russians  
-0.43 -0.49 0.15 0.33 0.19 0.24 0.24 0.06 -0.06 0.17 -0.59 0.39 1.00     

(14) Oblast -0.40 -0.46 0.16 0.29 0.17 0.20 0.29 0.07 -0.06 0.16 -0.48 0.38 0.85 1.00    

(15) Reporting 

election-day 

misconduct 

-0.11 -0.18 -0.03 -0.11 0.14 0.49 0.61 0.73 -0.27 0.41 -0.33 0.24 0.13 0.18 1.00   

(16) Reporting pre-

electoral manipulations 
-0.14 -0.21 0.00 -0.07 0.12 0.48 0.63 0.68 -0.25 0.45 -0.31 0.17 0.15 0.17 0.83 1.00  

(17)𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒0 0.29 0.35 -0.11 -0.22 -0.17 -0.18 0.07 0.09 0.05 -0.05 0.14 -0.24 -0.45 -0.29 0.11 -0.08 1.00 

(18)𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒1−9 0.02 0.01 0.03 0.01 0.05 -0.04 -0.01 -0.04 -0.01 -0.15 -0.06 0.05 -0.05 -0.10 0.07 0.09 0.05 
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