Library Header Image
LSE Research Online LSE Library Services

Equilbria of two-sided matching games

Alpern, Steve and Katrantzi, Ioanna (2007) Equilbria of two-sided matching games. . London School of Economics and Political Science, London, UK.

Full text not available from this repository.


Problems of matching have long been studied in the operations research literature (assignment problem, secretary problem, stable marriage problem). All of these consider a centralized mechanism whereby a single decision maker chooses a complete matching which optimizes some criterion. This paper analyzes a more realistic scenario in which members of the two groups (buyers-sellers, employers-workers, males-females) randomly meet each other in pairs (interviews, dates) over time and form couples if there is mutual agreement to do so. We assume members of each group have common preferences over members of the other group. Generalizing an earlier model of Alpern and Reyniers (2005), we assume that one group (called males) is r times larger than the other, r > 1. Thus all females, but only 1/r of the males, end up matched. Unmatched males have negative utility -c. We analyze equilbria of this matching game, depending on the parameters r and c. In a region of (r,c) space with multiple equilibria, we compare these, and analyze their `efficiency' in several respects. This analysis should prove useful for designers of matching mechanisms when information about individuals is not available centrally but only statistical properties of the groups are known.

Item Type: Monograph (Report)
Official URL:
Additional Information: © 2007 London school of economics and political science
Divisions: Mathematics
Subjects: H Social Sciences > H Social Sciences (General)
Date Deposited: 09 Jul 2008 08:37
Last Modified: 16 May 2024 13:12

Actions (login required)

View Item View Item