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WHAT IS THE EXPECTED RETURN ON THE MARKET?∗

IAN MARTIN

I derive a lower bound on the equity premium in terms of a volatility index,
SVIX, that can be calculated from index option prices. The bound implies that the
equity premium is extremely volatile and that it rose above 20% at the height of the
crisis in 2008. The time-series average of the lower bound is about 5%, suggesting
that the bound may be approximately tight. I run predictive regressions and find
that this hypothesis is not rejected by the data, so I use the SVIX index as a proxy
for the equity premium and argue that the high equity premia available at times of
stress largely reflect high expected returns over the very short run. I also provide
a measure of the probability of a market crash, and introduce simple variance
swaps, tradable contracts based on SVIX that are robust alternatives to variance
swaps. JEL Codes: E44, G1.

I. INTRODUCTION

The expected excess return on the market, or equity premium,
is one of the central quantities of finance and macroeconomics.
Aside from its obvious intrinsic interest, the equity premium is a
key determinant of the risk premium required for arbitrary assets
in the capital asset pricing model (CAPM) and its descendants,
and time variation in the equity premium lies at the heart of the
literature on excess volatility.
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The starting point of this article is an identity that relates
the market’s expected return to its risk-neutral variance. Under
the weak assumption of no arbitrage, the latter can be measured
unambiguously from index option prices. I call the associated
volatility index SVIX and use the identity (coupled with a mini-
mal assumption, the negative correlation condition, introduced in
Section II) to derive a lower bound on the equity premium in terms
of the SVIX index. The bound implies that the equity premium is
extremely volatile, and that it rose above 21% at the height of the
crisis in 2008. At horizons of less than a year, the equity premium
fluctuates even more wildly: the lower bound on the monthly eq-
uity premium exceeded 4.5% (unannualized) in November 2008.

I go on to argue, more aggressively, that the lower bound
appears empirically to be approximately tight, so that the SVIX
index provides a direct measure of the equity premium. While it
is now well understood that the equity premium is time-varying,
this article deviates from the literature in its basic aim, which is to
use theory to motivate a signal of expected returns that is based
directly on asset prices. The distinctive features of the article,
relative to the literature, are that (i) the predictor variable, SVIX2,
is motivated by asset pricing theory; (ii) no parameter estimation
is required, so concerns over in-sample/out-of-sample fit do not
arise; and (iii) since the SVIX2 index is an asset price, I avoid the
need to use infrequently updated accounting data. My approach
therefore allows the equity premium to be measured in real time.

The SVIX2 index can be interpreted as the equity premium
perceived by an unconstrained rational investor with log utility
who is fully invested in the market. This is a sensible benchmark
even if there are many investors who are constrained and many
investors who are irrational, and it makes for a natural compari-
son with survey evidence on investor expectations, as studied by
Shiller (1987) and Ben-David, Graham, and Harvey (2013), among
others. In particular, Greenwood and Shleifer (2014) emphasize
the unsettling fact that the “expectations of returns” extracted
from surveys are negatively correlated with subsequent realized
returns. Greenwood and Shleifer also document the closely related
fact that a range of survey measures of return expectations are
negatively correlated with the leading predictor variables used
in the literature to forecast expected returns. I show that the
SVIX-based equity premium forecast is also negatively correlated
with the survey measures of return expectations. But the SVIX
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FIGURE I

Equity Premium Forecasts Based on Campbell and Thompson (2008) and on
SVIX (Annual Horizon)

forecast is positively correlated with subsequent returns—a min-
imal requirement for a measure of rationally expected returns.

The view of the equity premium that emerges from
the SVIX measure deviates in several interesting ways
from the conventional view based on valuation ratios.
Figure I plots the SVIX equity premium measure on the same
axes as the smoothed earnings yield predictor of Campbell and
Thompson (2008), whose work I take as representative of the vast
predictability literature because their approach, like mine, avoids
the in-sample/out-of-sample critique of Goyal and Welch (2008).1

The figure illustrates the results of the article: I argue that the
equity premium is more volatile, is more right-skewed, and fluctu-
ates at a higher frequency than the literature has acknowledged.

I sharpen the distinction between the SVIX and valuation-
ratio views of the world by focusing on two periods in which their
predictions diverge. Valuation ratio-based measures of the equity
premium were famously bearish throughout the late 1990s (and

1. Early papers in this literature include Keim and Stambaugh (1986),
Campbell and Shiller (1988), and Fama and French (1988). A more recent pa-
per that also argues for volatile discount rates is Kelly and Pruitt (2013). I thank
John Campbell for sharing an updated version of the data set used in Campbell
and Thompson (2008).
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as noted by Ang and Bekaert 2007 and Goyal and Welch 2008,
that prediction is partially responsible for the poor performance
of valuation-ratio predictors in recent years); in contrast, the SVIX
index suggests that at horizons up to one year, expected returns
were high in the late 1990s. I suggest that this distinction reflects
the fact that valuation ratios should be thought of as predictors
of very long-run returns, whereas the SVIX index aims to mea-
sure short-run expected returns. The most striking divergence in
predictions, however, occurs on one of the most dramatic days in
stock market history, the great crash of October 1987, when op-
tion prices soared as the market collapsed.2 On the valuation-ratio
view of the world, the equity premium barely changed on Black
Monday; on the SVIX view, it exploded.

II. EXPECTED RETURNS AND RISK-NEUTRAL VARIANCE

If we use asterisks to denote quantities calculated with risk-
neutral probabilities, and MT to denote the stochastic discount
factor (SDF) that prices time T payoffs from the perspective of
time t, then we can price any time T payoff XT either via the SDF
or by computing expectations with risk-neutral probabilities and
discounting at the (gross) riskless rate, Rf,t, which is known at
time t. The SDF notation,

(1) time t price of a claim to XT at time T = Et(MT XT ),

is commonly used in equilibrium models or, more generally, when-
ever there is an emphasis on the real-world distribution (whether
from the subjective perspective of an agent within a model or from
the “objective” perspective of the econometrician).

The risk-neutral notation,

(2) time t price of a claim to XT at time T = 1
Rf,t

E
∗
t XT ,

is commonly used in derivative pricing or, more generally, when-
ever the underlying logic is that of no arbitrage. The choice of
whether to use SDF or risk-neutral notation is largely a matter

2. Appendix Figure A.2, Panel A shows that implied volatility rose even more
sharply on October 19, 1987, than it did in 2008–2009. As it turned out, the
annualized return on the S&P 500 index was 81.2% over the month, and 23.2%
over the year, following Black Monday.
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of taste; I will tend to follow convention by using the risk-neutral
notation when no-arbitrage logic is emphasized.

Equations (1) and (2) can be used to translate between the two
notations; thus, for example, the conditional risk-neutral variance
of a gross return RT is

(3) var∗
t RT = E

∗
t R2

T − (
E

∗
t RT

)2 = Rf,t Et
(
MT R2

T

)− R2
f,t.

Expected returns and risk-neutral variance are linked by the
following identity:

Et RT − Rf,t = [
Et(MT R2

T ) − Rf,t
]− [

Et
(
MT R2

T

)− Et RT
]

= 1
Rf,t

var∗
t RT − covt(MT RT , RT ).(4)

The first equality adds and subtracts Et(MT R2
T ); the second ex-

ploits equation (3) and the fact that Et MT RT = 1.
The identity (4) decomposes the asset’s risk premium into two

components. It applies to any asset return RT, but in this article I
focus on the case in which RT is the return on the S&P 500 index.
In this case the first component, risk-neutral variance, can be
computed directly given time t prices of S&P 500 index options, as
will be shown in Section IV. The second component is a covariance
term that can be controlled: under a weak condition (discussed in
detail in Section III), it is negative.

DEFINITION 1. Given a gross return RT and stochastic discount
factor MT, the negative correlation condition (NCC) holds if
covt (MT RT , RT ) � 0.

Together, the identity (4) and the NCC imply the following
inequality, from which the results of the article flow:

(5) Et RT − Rf,t � 1
Rf,t

var∗
t RT .

This inequality can be compared to the bound of Hansen and
Jagannathan (1991). The two inequalities place opposing bounds
on the equity premium:

1
Rf,t

var∗
t RT � Et RT − Rf,t � Rf,t · σt(MT ) · σt(RT ),
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where σ t(·) denotes conditional (real-world) standard devia-
tion. The left-hand inequality is (5). It has the advantage
that it relates the unobservable equity premium to a directly
observable quantity, risk-neutral variance; but the disadvantage
that it requires the NCC to hold. In contrast, the right-hand
inequality, the Hansen–Jagannathan bound, has the advantage
of holding completely generally; but the disadvantage (noted by
Hansen and Jagannathan) that it relates two quantities neither
of which can be directly observed. Time-series averages must
therefore be used as proxies for the true quantities of interest,
forward-looking means and variances. This procedure requires
assumptions about the stationarity and ergodicity of returns over
appropriate sample periods and at the appropriate frequency.
Such assumptions are not completely uncontroversial: see, for ex-
ample, Malmendier and Nagel (2011).

The inequality (5) is reminiscent of the approach of Merton
(1980) based on the equation

(6) instantaneous risk premium = γ σ 2,

where γ is a measure of aggregate risk aversion and σ 2 is the
instantaneous variance of the market return, and of a closely
related calculation carried out by Cochrane (2011, p. 1082).

There are some important differences between the two ap-
proaches, however. The first is that Merton assumes that the level
of the stock index follows a geometric Brownian motion, thereby
ruling out the effects of skewness and of higher cumulants by con-
struction.3 In contrast, we need no such assumption. Related to
this, there is no distinction between risk-neutral and real-world
(instantaneous) variance in a diffusion-based model: the two are
identical by Girsanov’s theorem. Once we move beyond geometric
Brownian motion, however, the appropriate generalization relates
the risk premium to risk-neutral variance. As a bonus, this will
have the considerable benefit that—unlike forward-looking real-
world variance—forward-looking risk-neutral variance at time t
can be directly and unambiguously computed from asset prices at
time t, as I show in Section IV.

A second difference is that equation (6) requires that there
is a representative agent with constant relative risk aversion γ .

3. Cochrane’s calculation also implicitly makes this assumption; I show in
Section VII.A that it is inconsistent with the data.
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The NCC holds under considerably more general circumstances,
as shown in Section III.

Third, Merton implements equation (6) using realized histor-
ical volatility rather than by exploiting option price data, though
he notes that volatility measures can be calculated “by ‘invert-
ing’ the Black–Scholes option pricing formula.” However, Black–
Scholes implied volatility would only provide the correct measure
of σ if we really lived in the world of Black and Scholes (1973) in
which prices follow geometric Brownian motions. The results of
this article show how to compute the right measure of variance in
a more general environment.

III. THE NEGATIVE CORRELATION CONDITION

This section examines the NCC more closely in the case in
which RT is the return on the market; it is independent of the rest
of the article. I start by laying out various sufficient conditions for
the NCC to hold. It is worth emphasizing that these conditions are
not necessary: the NCC may hold even if none of the conditions
below apply. The sufficient conditions cover many of the leading
macro-finance models, including Campbell and Cochrane (1999),
Bansal and Yaron (2004), Bansal et al. (2014), Campbell et al.
(2016), Barro (2006), and Wachter (2013).4

The NCC is a convenient and flexible way to restrict the
set of stochastic discount factors under consideration. It may
be helpful to note that the NCC would fail badly in a risk-
neutral economy—that is, if MT were deterministic. We will need
the SDF to be volatile, as is the case empirically (Hansen and
Jagannathan 1991). We will also need the SDF to be negatively
correlated with the return RT; this will be the case for any asset
that even roughly approximates the idealized notion of the market
in economic models.5

The first example of this section indicates, in a conditionally
log-normal setting, why the NCC is likely to hold in practice. It
shows in particular that the NCC holds in several leading macro-
finance models. All proofs for this section are in the Appendix.

4. In fact, I am not aware of any model that attempts to match the data
quantitatively in which the NCC does not hold.

5. The NCC would fail for hedge assets (such as gold or, in recent years, U.S.
Treasury bonds) whose returns tend to be high at times when the marginal value
of wealth is high—that is, for assets whose returns are positively correlated with
the SDF. Indeed, it may be possible to exploit this fact to derive upper bounds on
the expected returns on such assets.
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Example 1. Suppose that the SDF MT and return RT are
conditionally log-normal and write rf,t = log Rf,t, μR,t = log Et RT ,
and σ 2

R,t = vart log RT . Then the NCC is equivalent to the assump-

tion that the conditional Sharpe ratio of the asset, λt ≡ (μR,t−r f,t)
σR,t

,
exceeds its conditional volatility, σR,t.

The NCC therefore holds in any conditionally log-normal
model in which the market’s conditional Sharpe ratio is higher
than its conditional volatility. Empirically, the Sharpe ratio of the
market is on the order of 50% while its volatility is on the or-
der of 16%, so it is unsurprising that this property holds in the
calibrated models of Campbell and Cochrane (1999), Bansal and
Yaron (2004), Bansal et al. (2014), and Campbell et al. (2016),
among many others.

The special feature of the log-normal setting is that real-world
volatility and risk-neutral volatility are one and the same thing.6

So if an asset’s Sharpe ratio is larger than its (real-world or risk-
neutral) volatility, then its expected excess return is larger than
its (real-world or risk-neutral) variance. That is, by (4), the NCC
holds.

Unfortunately, the log-normality assumption is inconsistent
with well-known properties of index option prices. The most di-
rect way to see this is to note that equity index options exhibit
a volatility smile: Black–Scholes implied volatility varies across
strikes, holding option maturity constant. (See also Result 4 be-
low.) This concern motivates the next example, which provides an
interpretation of the NCC that is not dependent on a log-normality
assumption.

Example 2. Suppose that there is an unconstrained investor
who maximizes expected utility over next-period wealth, whose
wealth is fully invested in the market, and whose relative risk
aversion (which need not be constant) is at least one at all levels
of wealth. Then the NCC holds for the market return. Moreover, if
(but not only if) the investor has log utility, the covariance term in
(4) is identically zero; then, the inequality (5) holds with equality,
and Et RT − Rf,t = 1

Rf,t
var∗

t RT .
Example 2 does not require that the identity of the investor

whose wealth is fully invested in the market should be fixed over
time; thus it allows for the possibility that the portfolio holdings

6. More precisely, vart log RT = var∗
t log RT if MT and RT are conditionally

jointly log-normal under the real-world measure.
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and beliefs of (and constraints on) different investors are highly
heterogeneous over time. Nor does it require that all investors are
fully invested in the market, that all investors are unconstrained,
or that all investors are rational. In view of the evidence presented
by Greenwood and Shleifer (2014), this is an attractive feature.
Under the interpretation of Example 2, the question answered by
this article is this: what expected return must be perceived by an
unconstrained investor with log utility who chooses to hold the
market? This is a natural benchmark: there are many ways to
be constrained, but only one way to be unconstrained. For rea-
sons that will become clear in Sections V.B and VII.A, I prefer
to interpret the data from the perspective of a log investor who
holds the market, rather than the familiar representative investor
who consumes aggregate consumption. Under this interpretation,
my approach has nothing to say about—in particular, it does not
resolve—the equity premium puzzle. In fact, on the contrary, the
article documents yet another dimension on which existing equi-
librium models fail to fit the data; see Section VII.A.

By focusing on a one-period investor, Example 2 abstracts
from intertemporal issues and therefore from the presence of
state variables that affect the value function. To the extent that
we are interested in the behavior of long-lived utility-maximizing
investors, we may want to allow for the fact that investment op-
portunities vary over time, as in the framework of Merton (1973).
When will the NCC hold in (a discrete-time analog of) Merton’s
framework? Example 1 provided one answer to this question, but
we can also frame sufficient conditions directly in terms of the
properties of preferences and state variables, as in the next ex-
ample (in which the driving random variables are normal, as in
Example 1; this assumption will shortly be relaxed).

Example 3a. Suppose, in the notation of Cochrane (2005,
pp. 166–167), that the SDF takes the form

MT = β
VW (WT , z1,T , . . . , zN,T )
VW (Wt, z1,t, . . . , zN,t)

,

where WT is the time T wealth of a risk-averse investor whose
wealth is fully invested in the market, so that WT = (Wt − Ct)RT
(where Ct denotes the investor’s time t consumption and RT the re-
turn on the market); VW is the investor’s marginal value of wealth;
and z1, T, . . . , zN, T are state variables, with signs chosen so that
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VW is weakly decreasing in each (just as it is weakly decreasing
in WT). Suppose also that

(i) Risk aversion is sufficiently high: − WVWW
VW

� 1 at all levels
of wealth W and all values of the state variables.

(ii) The market return, RT, and state variables, z1, T, . . . , zN, T,
are increasing functions of conditionally normal random
variables with (weakly) positive pairwise correlations.

Then the NCC holds for the market return.
Condition (i) imposes an assumption that risk aversion is at

least 1, as in Example 2; again, risk aversion may be wealth- and
state-dependent. Condition (ii) ensures that the movements of
state variables do not undo the logic of Example 1. To get a feel for
it, consider a model with a single state variable, the price-dividend
ratio of the market (perhaps as a proxy for the equity premium,
as in Campbell and Viceira 1999).7 For consistency with the sign
convention on the state variables, we need the marginal value
of wealth to be weakly decreasing in the price-dividend ratio. It
is intuitively plausible that the marginal value of wealth should
indeed be high in times when valuation ratios are low; and this
holds in Campbell and Viceira’s setting, in the power utility case,
if risk aversion is at least 1.8 Then condition (ii) amounts to the
(empirically extremely plausible) requirement that the correla-
tion between the wealth of the representative investor and the
market price-dividend ratio is positive. Equivalently, we need the
return on the market and the market price-dividend ratio to be
positively correlated. Again, this holds in Campbell and Viceira’s
calibration.

Example 3a assumes that the investor is fully invested in
the market. Roll (1977) famously criticized empirical tests of the
CAPM by pointing out that stock market indexes are imperfect
proxies for the idealized notion of the market that may not fully
capture risks associated with labor or other sources of income.
Without denying the force of this observation, the implicit posi-
tion taken is that although the S&P 500 index is not the sum

7. The price-dividend ratio is positive, so evidently cannot be normally dis-
tributed; this is why condition (ii) allows the state variables to be arbitrary in-
creasing functions of normal random variables. For instance, we may want to
assume that the log price-dividend ratio is conditionally normal, as Campbell and
Viceira do.

8. Campbell and Viceira also allow for Epstein–Zin preferences, which I handle
separately below.
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total of all wealth, it is reasonable to ask, as a benchmark, what
equity premium would be perceived by someone fully invested in
the S&P 500. (In contrast, it would be much less reasonable to
assume that some investor holds all of his wealth in gold in order
to estimate the expected return on gold.)

Nonetheless, one may want to allow part of the investor’s
wealth to be held in assets other than the equity index. The
next example allows for this possibility and generalizes in an-
other direction by allowing the driving random variables to be
non-normal.

Example 3b. Modify Example 3a by assuming that only a
fraction αt of wealth net of consumption is invested in the market
(that is, in the equity index that is the focus of this article), with
the remainder invested in some other asset or portfolio of assets
that earns the gross return R(i)

T :

WT = αt(Wt − Ct)RT︸ ︷︷ ︸
market wealth,WM,T

+ (1 − αt)(Wt − Ct)R(i)
T︸ ︷︷ ︸

non-market wealth

.

If the signs of state variables are chosen as in Example 3a,
and if

(i) Risk aversion is sufficiently high: − WVWW
VW

� WT
WM,T

,

(ii) RT , R(i)
T , z1,T , . . . , zN,T are associated random variables,9

then the NCC holds for the market return.
Condition (i) shows that we can allow the investor’s wealth to

be less than fully invested in the market (for example, in bonds,
housing, and human capital), as long as he cares more about the
position he does have—that is, has higher risk aversion. If, say, at
least a third of the investor’s time T wealth is in the market, then
the NCC holds as long as risk aversion is at least 3.

The next example handles models, such as Wachter (2013),
that are neither conditionally log-normal nor feature investors
with time-separable utility.

9. The concept of associated random variables (Esary, Proschan, and Walkup
1967) extends the concept of nonnegative correlation in a manner that can be ex-
tended to the multivariate setting. In particular, jointly normal random variables
are associated if and only if they are nonnegatively correlated (Pitt 1982), and
increasing functions of associated random variables are associated; thus Example
3a is a special case of Example 3b.
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Example 4a. Suppose that there is a representative agent
with Epstein–Zin (1989) preferences. If (i) risk aversion γ � 1 and
elasticity of intertemporal substitution ψ � 1, and (ii) the market
return RT and wealth-consumption ratio WT

CT
are associated, then

the NCC holds for the market return.
As special cases, condition (ii) would hold if, say, the log return

log RT and log wealth-consumption ratio log WT
CT

are both normal
and nonnegatively correlated; or if the elasticity of intertemporal
substitution ψ = 1, since then the wealth-consumption ratio is
constant (and hence, trivially, associated with the market return).
This second case covers Wachter’s (2013) model with time-varying
disaster risk.

Example 4b. If there is a representative investor with
Epstein–Zin–Weil preferences (Epstein and Zin 1989; Weil 1990),
with risk aversion γ = 1 and arbitrary elasticity of intertemporal
substitution then the NCC holds with equality for the market re-
turn. This case was considered (and not rejected) by Epstein and
Zin (1991) and Hansen and Jagannathan (1991).

IV. RISK-NEUTRAL VARIANCE AND THE SVIX INDEX

We now turn to the question of measuring the risk-neutral
variance that appears on the right-hand side of (5). The punchline
will be that risk-neutral variance is uniquely pinned down by
European option prices, by a static no-arbitrage argument. To
streamline the exposition, I temporarily assume that the prices of
European call and put options expiring at time T on the asset with
return RT are perfectly observable at all strikes K; this unrealistic
assumption will be relaxed below.

Figure II plots a generic collection of time t prices of calls
expiring at time T with strike K (written callt,T (K)) and of puts
expiring at time T with strike K (written putt,T (K)). The figure
illustrates two well-known facts that will be useful. First, call and
put prices are convex functions of strike: any nonconvexity would
provide a static arbitrage opportunity. This property will allow us
to deal with the issue that option prices are only observable at a
limited set of strikes. Second, the forward price of the underlying
asset, Ft,T, which satisfies

(7) Ft,T = E
∗
t ST ,
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FIGURE II

The Prices, at Time t, of Call and Put Options Expiring at Time T

can be determined by observing the strike at which call and put
prices are equal, that is, Ft,T is the unique solution x of the equa-
tion callt,T (x) = putt,T (x). This fact follows from put-call parity; it
means that the forward price can be backed out from time t option
prices.

We want to measure 1
Rf,t

var∗
t RT . I assume that the dividends

earned between times t and T are known at time t and paid at
time T,10 so that

(8)
1

Rf,t
var∗

t RT = 1
S2

t

[
1

Rf,t
E

∗
t S2

T − 1
Rf,t

(
E

∗
t ST

)2]
.

We can deal with the second term inside the square brackets using
equation (7), so the challenge is to calculate 1

Rf,t
E

∗
t S2

T . This is the

price of the “squared contract”—that is, the price of a claim to S2
T

paid at time T.
How can we price this contract, given put and call prices as

illustrated in Figure II? Suppose we buy two call options with a
strike of K = 0.5, two calls with a strike of K = 1.5, two calls with
a strike of K = 2.5, two calls with a strike of K = 3.5, and so on, up
to arbitrarily high strikes. The payoffs on the individual options
are shown as dashed lines in Figure III, and the payoff on the
portfolio of options is shown as a solid line. The idealized payoff
S2

T is shown as a dotted line. The solid and dotted lines almost

10. If dividends are not known ahead of time, it is enough to assume that prices
and dividends are (weakly) positively correlated, since then var∗

t RT � var∗
t
( ST

St

)
,

so that using 1
Rf,t

var∗
t
( ST

St

)
instead of the ideal lower bound, 1

Rf,t
var∗

t RT , is con-
servative.
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FIGURE III

Replicating the Squared Contract

The payoff S2
T (dotted line) and the payoff on a portfolio of options (solid line),

consisting of two calls with strike K = 0.5, two calls with K = 1.5, two calls with
K = 2.5, and so on. Individual option payoffs are indicated by dashed lines.

perfectly overlap, illustrating that the payoff on the portfolio is
almost exactly S2

T (and it is exactly S2
T at integer values of ST).

Therefore, the price of the squared contract is approximately the
price of the portfolio of options:

(9)
1

Rf,t
E

∗
t S2

T ≈ 2
∑

K=0.5,1.5,...

callt,T (K).

To derive an exact expression, note that x2 = 2
∫∞

0
max {0, x − K} dK for any x � 0. Setting x = ST, taking risk-
neutral expectations, and multiplying by 1

Rf,t
,

1
Rf,t

E
∗
t S2

T = 2
∫ ∞

0

1
Rf,t

E
∗
t max {0, ST − K} dK

= 2
∫ ∞

0
callt,T (K) dK.(10)
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In practice, option prices are not observable at all strikes
K, so we will need to approximate the idealized integral
(10) by a sum along the lines of (9). To see how this will affect
the results, notice that Figure III also demonstrates a subtler
point: the option portfolio payoff is not just equal to the squared
payoff at integers, it is tangent to it, so that the payoff on the
portfolio of options very closely approximates and is always less
than or equal to the ideal squared payoff. As a result, the sum over
call prices in (9) will be slightly less than the integral over call
prices in equation (10). This implies that the bounds presented
are robust to the fact that option prices are not observable at all
strikes: they would be even higher if all strikes were observable.
Section IV.A expands on this point.

Combining equations (7), (8), and (10), we find that

1
Rf,t

var∗
t RT = 1

S2
t

[
2
∫ ∞

0
callt,T (K) dK − F2

t,T

Rf,t

]
.

Since deep-in-the-money call options are typically illiquid, it is
convenient to split the range of integration into two and to replace
in-the-money call prices with out-of-the-money put prices via the
put-call parity formula callt,T (K) = putt,T (K) + 1

Rf,t
(Ft,T − K), giv-

ing∫ ∞

0
callt,T (K) dK =

∫ Ft,T

0
putt,T (K) + 1

Rf,t
(Ft,T − K) dK

+
∫ ∞

Ft,T

callt,T (K) dK

=
∫ Ft,T

0
putt,T (K) dK+ F2

t,T

2Rf,t
+
∫ ∞

Ft,T

callt,T (K) dK.

Substituting back into equation (8), we find that
(11)

1
Rf,t

var∗
t RT = 2

S2
t

[∫ Ft,T

0
putt,T (K) dK +

∫ ∞

Ft,T

callt,T (K) dK

]
.

The expression in the square brackets is the shaded area shown
in Figure II.

The right-hand side of equation (11) is strongly reminiscent
of the definition of the VIX index, and indeed there are links that
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will be explored in Section VII. To bring out the connection it will
be helpful to define an index, SVIXt→T , via the formula
(12)

SVIX2
t→T = 2

(T − t)Rf,tS2
t

[∫ Ft,T

0
putt,T (K) dK+

∫ ∞

Ft,T

callt,T (K) dK

]
.

The notation SVIXt→T emphasizes that the SVIX index is calcu-
lated at time t based on the prices of options that mature at time
T. It measures the annualized risk-neutral variance of the real-
ized excess return from t to T: comparing equations (11) and (12),
we see that

(13) SVIX2
t→T = 1

T − t
var∗

t

(
RT

Rf,t

)
.

Inserting equation (11) into inequality (5), we have a lower
bound on the expected excess return of any asset that obeys the
NCC:
(14)

Et RT − Rf,t � 2
S2

t

[∫ Ft,T

0
putt,T (K) dK +

∫ ∞

Ft,T

callt,T (K) dK

]
,

or, in terms of the SVIX index,

(15)
1

T − t

(
Et RT − Rf,t

)
� Rf,t · SVIX2

t→T .

The bound will be applied in the case of the S&P 500; from
now on, RT always refers to the gross return on the S&P 500
index. I use option price data from OptionMetrics to construct a
time series of the lower bound, at time horizons T − t = 1, 2, 3,
6, and 12 months, from January 4, 1996, to January 31, 2012; the
Appendix contains full details of the procedure. All results are
annualized.

Panel A of Figure IV plots the lower bound, annualized and
in percentage points, at the one-month horizon. Panels C and E of
Figure IV repeat the exercise at three-month and one-year hori-
zons. Table I reports the mean, standard deviation, and various
quantiles of the distribution of the lower bound in the daily data
for horizons between one month and one year.

The mean of the lower bound over the whole sample is 5.00%
at the monthly horizon. This number is close to typical estimates
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FIGURE IV

The Lower Bound on the Annualized Equity Premium at Different Horizons

The panels on the left use mid prices to calculate SVIX; those on the right use
bid prices.

of the unconditional equity premium, which suggests that the
bound may be fairly tight: that is, it seems that the inequality
(14) may approximately hold with equality. Later I provide further
tests of this possibility and develop some of its implications.

The time-series average of the lower bound is lower at the
annual horizon than it is at the monthly horizon where the data
quality is best (perhaps because of the existence of trades related
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to VIX, which is itself a monthly index). It is likely that this re-
flects a less liquid market in one-year options, with a relatively
smaller range of strikes traded, rather than an interesting eco-
nomic phenomenon. I discuss this further in Section IV.A.

The lower bound is volatile, right-skewed, and fat-tailed. At
the annual horizon the equity premium varies from a minimum
of 1.22% to a maximum of 21.5% over my sample period. But
variation at the one-year horizon masks even more dramatic vari-
ation over shorter horizons. The monthly lower bound averaged
only 1.86% (annualized) during the Great Moderation years 2004–
2006, but peaked at 55.0%—more than 10 standard deviations
above the mean—in November 2008, at the height of the sub-
prime crisis. Indeed, the lower bound hit peaks at all horizons
during the recent crisis, notably from late 2008 to early 2009 as
the credit crisis gathered steam and the stock market fell, but also
around May 2010, coinciding with the beginning of the European
sovereign debt crisis. Other peaks occur during the LTCM crisis
in late 1998; during the days following September 11, 2001; and
during a period in late 2002 when the stock market was hitting
new lows following the end of the dotcom boom.

Consider, finally, a thought experiment. Suppose you (an in-
vestor with preferences such that the NCC holds) find the lower
bound on the equity premium in November 2008 implausibly high.
What trade should you have done to implement this view? You
should have sold a portfolio of options, namely, an at-the-money-
forward straddle and (equally weighted) out-of-the-money calls
and puts. Such a position means that you end up short the mar-
ket if the market rallies and long if the market sells off: you are
taking a contrarian position, providing liquidity to the market. At
the height of the credit crisis, extraordinarily high risk premia
were available for investors who were willing and able to take on
this position.

IV.A. Robustness of the Lower Bound

Were option markets illiquid during the subprime crisis? One
potential concern is that option markets may have been illiquid
during periods of extreme stress. If so, one would expect to see
a significant disparity between bounds based on mid-market op-
tion prices, such as those shown in the left panels of Figure IV,
and bounds based on bid or offer prices, particularly in periods
such as November 2008. Thus it is possible in principle that
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the lower bounds would decrease significantly if bid prices were
used. To address this issue, Panels B, D, and F of Figure IV
show the corresponding bounds calculated from bid prices. Re-
assuringly, the results are very similar: the lower bound is high
at all horizons whether mid or bid prices are used. Moreover,
Appendix Figure A.1 shows that there was an increase in daily
volume and open interest in S&P 500 index options over my
sample period, and that the peaks in SVIX in 2008, 2010, and
2011 are associated with spikes in volume, rather than with the
market drying up.

Option prices are only observable at a discrete range of strikes.
Two issues arise when implementing the lower bound in practice.
Fortunately, both issues mean that the numbers presented in this
article are conservative: with perfect data, the lower bound would
be even higher.

First, we do not observe option prices at all strikes K between
0 and ∞. This means that the range of integration in the integral
we would ideally like to compute—the shaded area in Figure II—
is truncated. Obviously, this will cause us to underestimate the
integral in practice. This effect is likely to be strongest at the one-
year horizon, because (in my data set) one-year options are less
liquid than shorter-dated options.

Second, even within the range of observable strikes, prices are
only available at a discrete set of strikes. Thus the idealized lower
bound that emerges from the theory in the form of an integral
(over option prices at all strikes) must be approximated by a sum
(over option prices at observable strikes). What effect will this
have? In the discussion of Figure III, I showed that the price of
a particular portfolio of calls with a discrete set of strikes would
very slightly underestimate the idealized measure, and hence be
conservative. The general case, using out-of-the-money puts and
calls, is handled in the Appendix, with the same conclusion.

V. SVIX AS PREDICTOR VARIABLE

The time-series average of the lower bound in recent data is
approximately 5% in annualized terms, a number close to conven-
tional estimates of the equity premium. Over the period 1951–
2000, Fama and French (2002, Table IV) estimate the uncondi-
tional average equity premium to be 3.83% or 4.78%, based on
dividend and earnings growth, respectively. It is therefore natu-
ral to wonder whether the lower bound might in fact be tight—that



EXPECTED RETURN ON THE MARKET 387

TABLE II
COEFFICIENT ESTIMATES FOR REGRESSION (16)

Horizon α̂ Std. err. β̂ Std. err. R2 (%) R2
OS (%)

1 mo 0.012 0.064 0.779 1.386 0.34 0.42
2 mo −0.002 0.068 0.993 1.458 0.86 1.11
3 mo −0.003 0.075 1.013 1.631 1.10 1.49
6 mo −0.056 0.058 2.104 0.855 5.72 4.86
1 yr −0.029 0.093 1.665 1.263 4.20 4.73

is, whether the lower bound illustrated in Figure IV is in fact a
measure of the equity premium itself. We want to test the hypoth-
esis that 1

T −t

(
Et RT − Rf,t

) = Rf,t · SVIX2
t→T . Table II shows the

results of regressions

(16)
1

T − t

(
RT − Rf,t

) = α + β × Rf,t · SVIX2
t→T + εT ,

together with robust standard errors that account for het-
eroskedasticity and overlapping observations (Hansen and
Hodrick 1980). The null hypothesis that α = 0 and β = 1 is not
rejected at any horizon. The point estimates on β are close to 1
at all horizons, lending further support to the possibility that the
lower bound is tight. This is encouraging because, as Goyal and
Welch (2008) emphasize, this period is one in which conventional
predictive regressions fare poorly.

One might worry that these results are entirely driven by
the period in 2008 and 2009 in which volatility spiked and the
stock market crashed before recovering strongly. To address this
concern, Appendix Table A.1 shows the result of deleting all ob-
servations that overlap with the period August 1, 2008–July 31,
2009. Over horizons of one, two, and three months, deleting this
period in fact increases the forecastability of returns by SVIX, re-
flecting the fact that the market continued to drop for a time after
volatility spiked up in November 2008. On the other hand, the
subsequent strong recovery of the market means that this was a
period in which one-year options successfully predicted one-year
returns, so by removing the crash from the sample, the forecasting
power deteriorates at the one-year horizon.

We now have seen from two different angles that the lower
bound (14) may be approximately tight: (i) as shown in Table I
and Figure IV, the average level of the lower bound over my
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sample is close to conventional estimates of the average equity
premium; and (ii) Table II shows that the null hypothesis that
α = 0 and β = 1 in the forecasting regression (16) is not re-
jected at any horizon. These observations suggest that SVIX can
be used as a measure of the equity premium without estimating
any parameters—that is, imposing α = 0, β = 1 in equation (16),
so that

(17)
1

T − t

(
Et RT − Rf,t

) = Rf,t · SVIX2
t→T .

To assess the performance of the forecast (17), I follow Goyal
and Welch (2008) in computing an out-of-sample R2 measure

R2
OS = 1 −

∑
ε2

t∑
ν2

t
,

where εt is the error when SVIX (more precisely, Rf,t · SVIX2
t→T )

is used to forecast the equity premium and νt is the error when
the historical mean equity premium (computed on a rolling basis)
is used to forecast the equity premium.11

The rightmost column of Table II reports the values of R2
OS

at each horizon. These out-of-sample R2
OS values can be compared

with corresponding numbers for forecasts based on valuation ra-
tios, which are the subject of a vast literature.12 Goyal and Welch
(2008) consider return predictions in the form

equity premiumt = a1 + a2 × predictor variablet,

where a1 and a2 are constants estimated from the data, and ar-
gue that although conventional predictor variables perform rea-
sonably well in-sample, they perform worse out-of-sample than
does the rolling mean. Over their full sample (which runs from
1871 to 2005, with the first 20 years used to initialize estimates
of a1 and a2, so that predictions start in 1891), the dividend-price
ratio, dividend yield, earnings-price ratio, and book-to-market ra-
tio have negative out-of-sample R2s of −2.06%, −1.93%, −1.78%,

11. More detail on the construction of the rolling mean is provided in the
Appendix.

12. Among many others, Campbell and Shiller (1988), Fama and French
(1988), Lettau and Ludvigson (2001), and Cochrane (2008) make the case for
predictability. Other authors, including Ang and Bekaert (2007), make the case
against.
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and −1.72%, respectively. The performance of these predictors is
particularly poor over Goyal and Welch’s recent sample (1976 to
2005), with R2s of −15.14%, −20.79%, −5.98%, and −29.31%, re-
spectively.13

Campbell and Thompson (2008) confirm Goyal and Welch’s
finding, and respond by suggesting that the coefficients a1 and a2
be fixed based on a priori considerations. Motivated by the Gordon
growth model D

P = R − G (where D
P is the dividend-price ratio, R

the expected return, and G expected dividend growth), Campbell
and Thompson suggest making forecasts of the form

equity premiumt = dividend-price ratiot + dividend growtht

− real interest ratet,

or, more generally,

equity premiumt = valuation ratiot + dividend growtht

− real interest ratet,(18)

where in addition to the dividend-price ratio, Campbell and
Thompson also consider earnings yields, smoothed earnings
yields, and book-to-market as valuation ratios. As these forecasts
are drawn directly from the data without requiring estimation of
coefficients, they are a natural point of comparison for the forecast
(17) suggested in this article.

Over the full sample, the out-of-sample R2s corresponding
to the forecasts (18) range from 0.24% (using book-to-market as
the valuation ratio) to 0.52% (using smoothed earnings yield) in
monthly data and from 1.85% (earnings yield) to 3.22% (smoothed
earnings yield) in annual data.14 The results are worse over
Campbell and Thompson’s most recent subsample, 1980–2005: in
monthly data, R2 ranges from −0.27% (book-to-market) to 0.03%
(earnings yield). In annual data, the forecasts do even more poorly,
each underperforming the historical mean, with R2s ranging from
−6.20% (book-to-market) to −0.47% (smoothed earnings yield).

13. Goyal and Welch show that the performance of an out-of-sample version
of cay (Lettau and Ludvigson 2001) is similarly poor, with R2 of −4.33% over the
full sample and −12.39% over the recent sample.

14. Out-of-sample forecasts are from 1927 to 2005, or 1956 to 2005 when
book-to-market is used.
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In relative terms, therefore, the out-of-sample R2s shown in
Table II compare very favorably with the corresponding R2s for
predictions based on valuation ratios. But are they too small to
be interesting in absolute terms? No. Ross (2005, pp. 54–57) and
Campbell and Thompson (2008) point out that high R2 statistics
in predictive regressions translate into high attainable Sharpe
ratios, for the simple reason that the predictions can be used to
formulate a market-timing trading strategy; and if the predictions
are very good, the strategy will perform extremely well. If Sharpe
ratios above some level are too good to be true, then one should not
expect to see R2s from predictive regressions above some upper
limit.

With this thought in mind, consider using risk-neutral vari-
ance in a contrarian market-timing strategy: each day, invest
a fraction αt in the S&P 500 index and the remaining fraction
1 − αt at the riskless rate, where αt is chosen proportional to one-
month SVIX2 (scaled by the riskless rate, as on the right-hand
side of equation (17)). The constant of proportionality has no ef-
fect on the strategy’s Sharpe ratio, so I choose it such that the
market-timing strategy’s mean portfolio weight in the S&P 500
is 35%, with the remaining 65% in cash; the resulting median
portfolio weight is 27% in the S&P 500, with 73% in cash. Fig-
ure V plots the cumulative return on an initial investment of $1
in this market-timing strategy and, for comparison, on strategies
that invest in the short-term interest rate or in the S&P 500 in-
dex. In my sample period, the daily Sharpe ratio of the market is
1.35%, while the daily Sharpe ratio of the market-timing strategy
is 1.97%; in other words, the out-of-sample R2 of 0.42% reported in
Table II is enough to deliver a 45% increase in Sharpe ratio for the
market-timing strategy relative to the market itself. This exercise
also illustrates the attractive feature that since risk-neutral vari-
ance is an asset price, it can be computed in daily data, or at even
higher frequency, and thus permits high-frequency market-timing
strategies to be considered.

As illustrated in Figure I, valuation ratios and SVIX tell qual-
itatively very different stories about the equity premium. First,
option prices point toward a far more volatile equity premium than
do valuation ratios. Second, SVIX is much less persistent than are
valuation ratios, and so the SVIX predictor variable is less subject
to Stambaugh (1999) bias. It is also noteworthy that SVIX fore-
casts a relatively high equity premium in the late 1990s. In this
respect it diverges sharply from valuation ratio-based forecasts,
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FIGURE V

Cumulative Returns on Three Strategies

Cumulative returns on $1 invested in cash, in the S&P 500 index, and in a
market-timing strategy whose allocation to the market at time t is proportional to
Rf,t · SVIX2

t→t+1 mo (log scale).

which predicted a low or even negative one-year equity premium
at the time.

But perhaps the most striking aspect of Figure I is the be-
havior of the Campbell–Thompson predictor variable on Black
Monday, October 19, 1987. This was by far the worst day in stock
market history. The S&P 500 index dropped by over 20%—more
than twice as far as on the second-worst day in history—and yet
the valuation-ratio approach suggests that the equity premium
barely responded. In sharp contrast, option prices exploded on
Black Monday, implying that the equity premium was even higher
than the peaks attained in November 2008.

V.A. The Term Structure of Equity Premia

Campbell and Shiller (1988) showed that any dividend-paying
asset satisfies the approximate identity

dt − pt = constant + Et

∞∑
j=0

ρ j (rt+1+ j − �dt+1+ j
)
,
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which relates its log dividend yield dt − pt to expectations of fu-
ture log returns rt + 1 + j and future log dividend growth �dt + 1 + j.
Empirically, dividend growth is approximately unforecastable: to
the extent that this is the case, we can absorb the terms Et �dt+1+ j
into the constant, giving

(19) dt − pt = constant + Et

∞∑
j=0

ρ jrt+1+ j .

This points a path toward reconciling the differing predictions
of SVIX and valuation ratios. We can think of dividend yield as
providing a measure of expected returns over the very long run. In
contrast, the SVIX index measures expected returns over the short
run.15 The gap between the two is therefore informative about the
gap between long-run and short-run expected returns. In the late
1990s, for example, dt − pt was extremely low, indicating low
expected long-run returns (Shiller 2000);16 but Figure IV shows
that SVIX, and hence expected short-run returns, were relatively
high at that time.

We can also compare expected returns across shorter hori-
zons. For example, Figure IV suggests that an unusually large
fraction of the elevated one-year equity premium available in late
2008 was expected to materialize over the first few months of the
12-month period. To analyze this formally, define the annualized
forward equity premium from T1 to T2 (calculated from the per-
spective of time t) by the formula

(20) EPT1→T2 ≡ 1
T2 − T1

(
log

Et Rt→T2

Rf,t→T2

− log
Et Rt→T1

Rf,t→T1

)
,

15. It would be interesting to narrow the gap between long and short run
by calculating SVIX indexes over the intermediate horizons that should be most
relevant for macroeconomic aggregates such as investment. How do risk premia at,
say, 5- or 10-year horizons behave? Data availability is a challenge here: long-dated
options are relatively illiquid.

16. There is an important caveat. The discussion surrounding equation (19)
follows much of the literature in blurring the distinction between expected arith-
metic returns and the expected log returns that appear in the Campbell–Shiller

log-linearization. Since Et rt+1+ j = log Et Rt+1+ j − 1
2 vart rt+1+ j −∑∞

n=3
κ

(n)
t (rt+1+ j )

n! ,

where κ
(n)
t (rt+1+ j ) is the nth conditional cumulant of rt + 1 + j, the gap between the

two depends on the cumulants of log returns. So a low dividend yield may be asso-
ciated with high expected arithmetic returns at times when log returns are highly
volatile, right-skewed, or fat-tailed.
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and the corresponding spot equity premium from time t to time T
by

EPt→T ≡ 1
T − t

log
Et Rt→T

Rf,t→T
.

Using equation (17) to substitute out for Et Rt→T1 and Et Rt→T2 in
the definition (20), we can write

EPT1→T2 = 1
T2 − T1

log
1 + SVIX2

t→T2
(T2 − t)

1 + SVIX2
t→T1

(T1 − t)

and

EPt→T = 1
T − t

log
(
1 + SVIX2

t→T (T − t)
)
.

(I have modified previous notation to accommodate the extra time
dimension: for example, Rt→T2 is the simple return on the market
from time t to time T2 and Rf,t→T1 is the riskless return from time
t to time T1.)

The definition (20) is chosen so that for arbitrary T1, . . . , TN,
we have the decomposition

EPt→TN = T1 − t
TN − t

EPt→T1 +T2 − T1

TN − t
EPT1→T2 + · · ·

+ TN − TN−1

TN − t
EPTN−1→TN ,(21)

which expresses the long-horizon equity premium EPt→TN as a
weighted average of forward equity premia, exactly analogous to
the relationship between spot and forward bond yields.

Figure VI shows how the annual equity premium decomposes
into a one-month spot premium plus forward premia from 1 to 2, 2
to 3, 3 to 6, and 6 to 12 months. The figure stacks the unannualized
forward premia—terms of the form (Tn−Tn−1)

(TN−t) EPTn−1→Tn—which add
up to the annual equity premium, as shown in equation (21).
For example, on any given date t, the gap between the top two
lines represents the contribution of the unannualized 6-month-6-
month-forward equity premium, 1

2 EPt+6mo→t+12mo, to the annual
equity premium, EPt→t+12mo.

In normal times, the 6-month-6-month-forward equity pre-
mium contributes about half of the annual equity premium, as
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FIGURE VI

The Term Structure of Equity Premia (10-Day Moving Average)

might have been expected. More interesting, the figure shows that
at times of stress, much of the annual equity premium is com-
pressed into the first few months. For example, about a third of
the equity premium over the year from November 2008 to Novem-
ber 2009 can be attributed to the (unannualized) equity premium
over the two months from November 2008 to January 2009.

V.B. Expectations of Returns and Expected Returns

The view of the equity premium proposed above can use-
fully be compared with the expectations reported in surveys of
market participants, as studied by Shiller (1987), Ben-David,
Graham, and Harvey (2013), and others. In particular, Green-
wood and Shleifer (2014) emphasize that survey-based return ex-
pectations are negatively correlated with expected return fore-
casts based on conventional predictor variables. We will now
see that this is also true when SVIX is used as a predictive
variable.

Figure VII shows four of the survey measures considered by
Greenwood and Shleifer: the Graham–Harvey chief financial of-
ficer surveys, the Gallup investor survey measure, the Ameri-
can Association of Individual Investors (AAII) survey, and Robert
Shiller’s investor survey. The Graham–Harvey survey is based on
the expectations of market returns reported by the chief financial
officers of major U.S. corporations; this survey can be compared
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FIGURE VII

Expectations of Returns and SVIX-Implied Expected Returns

The units in Panel A are percentage points. The time series in Panels B, C, and
D are normalized to have zero mean and unit variance. The forecasting horizon is
one year for Panels A, B, and D, and six months for Panel C.

directly with the expected return implied by SVIX. The other three
measures are not in the same units, so Panels B, C, and D of Fig-
ure VII show time series standardized to have zero mean and
unit variance. The Gallup survey measure is the percentage of
investors who are “optimistic” or “very optimistic” about stock
returns over the next year, minus the percentage who are “pes-
simistic” or “very pessimistic.” The AAII survey measure is the
percentage of surveyed individual investors (members of the AAII)
who are “bullish” about stock returns over the next six months,
minus the corresponding “bearish” percentage. The Shiller mea-
sure reports the percentage of individual investors surveyed who
expected the market to go up over the following year.

Each panel also shows the time series of expected returns
implied by the SVIX index (calculated by adding the riskless
rate to the right-hand side of equation (17)). To be consistent
with the phrasing of each survey, I compare the the Gallup,
Graham–Harvey, and Shiller surveys to the SVIX-implied equity
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TABLE III
CORRELATIONS BETWEEN SURVEY-IMPLIED AND SVIX-IMPLIED EXPECTED RETURNS

Gallup Graham–Harvey AAII Shiller

Skewness −0.73 −0.10 0.04 0.06
Excess kurtosis 0.04 −0.28 −0.53 −1.03

Corr(survey, ER) −0.06 −0.29 −0.20 −0.45
[.232] [.030] [.003] [.000]

Corr(survey, EER) −0.53 −0.50 −0.37 −0.46
[.000] [.000] [.000] [.000]

Corr(�survey, �ER) −0.40 −0.21 −0.29 −0.16
[.000] [.097] [.000] [.035]

Corr(�survey, �EER) −0.44 −0.22 −0.27 −0.16
[.000] [.083] [.000] [.032]

Notes. Skewness and excess kurtosis of return expectation measures and correlations between return
expectations and SVIX-implied expected returns and SVIX-implied expected excess returns (EER) in levels
and in differences (denoted by �). Numbers in brackets indicate p-values on the hypothesis of zero correlation
between the two series.

premium (or expected return) at the one-year horizon, and the
AAII survey to the six-month SVIX-implied equity premium (or
expected return).

It is clear from Figure VII that survey expectations tend to
move in the opposite direction from the rational measure of ex-
pected returns based on SVIX, as emphasized by Greenwood and
Shleifer. As Table III reports, all four survey series are negatively
correlated with the SVIX-implied equity premium.17 This is true
whether one measures correlations in levels or in differences, and
whether one compares the surveys to the expected return on the
market (that is, including the riskless rate, as in the series shown
in Figure VII) or to the expected excess return on the market.
There is also a contrast in that the skewness and excess kurto-
sis of the return expectations series are negative or close to zero,
whereas they are strongly positive for SVIX, as shown in Table I.18

Moreover, the lowest points in the Graham–Harvey and Gallup
series coincide with the highest point in the SVIX series.

17. I convert the SVIX-implied equity premium into a monthly series by aver-
aging within months, and calculate correlations over all dates that are shared by
SVIX and the appropriate survey-based measure.

18. The negative kurtosis of the Gallup and AAII measures may reflect the
design of the surveys, each of which provides a fixed scale of possible responses.
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Consistent with the thesis of Greenwood and Shleifer, it
is implausible, given this evidence, that the surveyed investors
have rational expectations.19 This fact is unsettling for propo-
nents of rational-expectations representative-agent models. (To
compound the problem, I show in Section VII.A that none of the
leading representative-agent models can match the behavior of
VIX and SVIX quantitatively or even qualitatively.) Seen in a cer-
tain light, however, this cloud may have a silver lining: the fact
that there is a systematic—albeit negative—relationship between
(rationally) expected returns and the expectations of surveyed in-
vestors points to a pattern that may be amenable to modeling.
Barberis et al. (2015) take a first step in this direction by pre-
senting an equilibrium model in which irrational extrapolators
interact with rational investors. It is the latter class of investors
whose expectations should be thought of as reflected in the SVIX
index.

VI. WHAT IS THE PROBABILITY OF A CRASH?

The theory presented in Section II was based on a rather
minimal assumption: the NCC. I argued in subsequent sections
that the NCC may hold with equality, that is, that we may have
covt(MT RT , RT ) = 0. I now strengthen this latter condition fur-
ther by taking the perspective of an investor with log utility who
chooses to invest fully in the market; then the covariance term
equals zero for the strong reason that MTRT = 1. The next re-
sult shows how to convert the problem of inferring the subjective
expectations of such an investor (written Ẽ, to emphasize that
the log investor’s viewpoint is taken) into a derivative pricing
problem.

RESULT 1. Let XT be some random variable of interest whose value
becomes known at time T, and suppose that we can price a
claim to XTRT delivered at time T. Then we can compute the

19. On the other hand, Shiller (1987)—reporting the results of investor surveys
that were sent out in the immediate aftermath of the crash in October 1987—
documents that a substantial fraction of investors expected a market rebound from
the crash. Shiller also reports that some investors had more nuanced expectations
of market returns: for instance, some thought that the market would perform
better over shorter horizons than over long horizons, consistent with the results
of Section V.A.
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expected value of XT by pricing an asset:

Ẽt XT = time t price of a claim to the time T payoff XT RT .(22)

Proof. A log investor who chooses to invest fully in the market
must perceive the market as growth-optimal. The reciprocal of
the growth-optimal return is an SDF (Roll 1973), so from the
perspective of this log investor, 1

RT
is an SDF. The right-hand side

of equation (22) therefore equals Ẽt

[
1

RT
XT RT

]
, which gives the

result. �

I provide two applications in the Appendix: (i) I compare risk-
neutral volatility to the real-world volatility perceived by an in-
vestor with log utility, and (ii) I show how to modify the proof of
Result 1 to compute the expectation of XT from the perspective of
an investor with power utility whose wealth is fully invested in the
market, and calculate the equity premium from the perspective of
such a investor.

To illustrate how Result 1 can be applied, I now calculate
the probability of a market decline from the perspective of the
log investor. In this case, the relevant claim can be unambigu-
ously priced because it can be replicated using European index
options.20

RESULT 2. For simplicity, assume there are no dividend payments
between times t and T, so that RT = ST

St
. Then the log investor’s

subjective probability that the return on the market over the
period from t to T is less than α is

(23) P̃ (RT < α) = α

[
put′

t,T (αSt) − putt,T (αSt)
αSt

]
,

where put′
t,T (·) is the slope of the put option price curve when

plotted as a function of strike.

20. The link between option prices and tail probabilities has been studied by
several authors using various different approaches. See, for example, Bates (1991),
Backus, Chernov, and Zin (2011), Bollerslev and Todorov (2011), and Barro and
Liao (2016).
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FIGURE VIII

Calculating the Probability of a Crash, P̃ (RT < α), from Put Prices

Proof. Since P̃ (RT < α) = Ẽ
(
1{RT <α}

)
, we must (by Result 1)

price a claim to the payoff RT 1{RT <α}. The result follows from the
fact that

RT 1{RT <α} = ST

St
1{ST <αSt}

= α

[
1{ST <αSt}︸ ︷︷ ︸

digital put payoff

− 1
αSt

max {0, αSt − ST }︸ ︷︷ ︸
put payoff

]
,

since (as is well known and easily checked via a static replica-
tion argument) the price of a digital put with strike αSt—that
is, the price of a claim to $1 paid if and only if ST < αSt—is
put′

t,T (αSt). �

The crash probability index (23) has a geometrical interpre-
tation that is illustrated in Figure VIII: the tangent to putt,T (K)
at K = αSt cuts the y-axis at −St P̃ (RT < α). Thus the crash prob-
ability is high when put prices exhibit significant convexity, as a
function of strike, at and below K = αSt.

Panels A–C of Figure IX show the probability of a 20% market
crash over the next one, six, and twelve months, smoothed by
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FIGURE IX

The Probability of a 20% Market Crash at Various Horizons

The dashed line in Panel D indicates October 11, 2007, when the S&P 500
index attained an all-time intraday high.

taking a 20-day moving average. The probability of a crash in the
next month averages 0.85% over the sample period, and peaks at
8.4%, whereas that of a crash in the next year averages 8.7% and
peaks at 17.2%.

Panel D zooms in to show the evolution of the crash probabil-
ity index at horizons of 1, 6, and 12 months during the subprime
crisis.21 It is notable that the 6-month and 12-month crash proba-
bilities were rising during 2007, before the effects of the subprime
crisis started to be felt at the aggregate market level—indeed, at a
time when the S&P 500 index itself was rising toward an all-time
high on October 11, 2007.

21. The index measures the probability of a market decline of (at least) 20%
over a fixed horizon, not the probability of a 20% decline at any time during the
given horizon; thus, for example, the 12-month crash probability could in principle
be lower than the 6-month crash probability.
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VII. VIX, SVIX, AND VARIANCE SWAPS

The SVIX index, defined in equation (12), can usefully be
compared to the VIX index:

(24)

VIX2
t→T ≡ 2Rf,t

T − t

{∫ Ft,T

0

1
K2 putt,T (K) dK +

∫ ∞

Ft,T

1
K2 callt,T (K) dK

}
.

We saw in equation (13) that the SVIX index measures the risk-
neutral volatility of the return on the market. What does VIX
measure? Since option prices are equally weighted by strike in
the definition of SVIX, but weighted by 1

K2 in the definition of
VIX, it is clear that VIX places relatively more weight on out-of-
the-money puts and less weight on out-of-the-money calls, and
hence places more weight on left-tail events.

RESULT 3 (WHAT DOES VIX MEASURE?). If the underlying asset does
not pay dividends, so that RT = ST

St
, then VIX measures the

risk-neutral entropy of the simple return:

(25) VIX2
t→T = 2

T − t
L∗

t

(
RT

Rf,t

)
,

where entropy is defined by L∗
t (X) ≡ log E

∗
t X − E

∗
t log X.

Proof. As an application of the result of Breeden and Litzen-
berger (1978), the price of a claim to log RT is

1
Rf,t

E
∗
t log RT = log Rf,t

Rf,t
−
∫ Ft,T

0

1
K2 putt,T (K) dK

−
∫ ∞

Ft,T

1
K2 callt,T (K) dK.

The result follows by combining this with the fact that
E

∗
t RT = Rf,t. �

Entropy is a measure of the variability of a positive random
variable.22 Like variance it is nonnegative by Jensen’s inequality,
and like variance it measures variability by the extent to which a

22. Entropy makes appearances elsewhere in the finance literature: see, for
example, Alvarez and Jermann (2005), Backus, Chernov, and Martin (2011), and
Backus, Chernov, and Zin (2014).
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concave function of an expectation of a random variable exceeds
an expectation of a concave function of a random variable.

If the VIX index measures entropy, and the SVIX index mea-
sures variance, which is a better measure of return variability?
The answer is that both are of interest. Entropy is more sensi-
tive to the left tail of the return distribution, whereas variance is
more sensitive to the right tail, as can be seen by comparing the
entropy measure (24), which loads more strongly on out-of-the-
money puts, with the variance measure (12), which loads equally
on options of all strikes.

The next result shows that VIX and SVIX take a particularly
simple form in conditionally log-normal models.

RESULT 4. If the SDF MT and return RT are conditionally jointly
log-normal, then SVIX2

t→T = 1
T −t (e

σ 2
t (T −t) − 1) and VIX2

t→T =
σ 2

t , where σ 2
t = 1

T −t vart log RT . In particular, SVIXt→T >

VIXt→T .

Proof. The claims in the first sentence are proved in the Ap-
pendix. Since ex − 1 > x for any real number x, it follows that
SVIXt→T > VIXt→T under log-normality. �

It would also follow under log-normality that the difference
between SVIX and VIX—which the above result shows would be
positive—should be negligible for empirically relevant values of
σ t and T − t: if for example σ t = 20% and T − t = 1

12 (i.e., at
a one-month horizon) then we would have VIXt→T = 20% and
SVIXt→T = 20.02%. Figure X shows (also at a one-month hori-
zon) that these predictions are dramatically violated in the data.
The gap between VIX and SVIX is particularly large at times
of market stress, but VIX is higher than SVIX on every single
day in my sample. This is direct, model-free evidence that the
market return and SDF are not conditionally log-normal at the
one-month horizon. It is not that non-log-normality only matters
at times of crisis; it is a completely pervasive feature of the data.
It is also worth emphasizing that this evidence is much stronger
than the familiar observation that histograms of log returns are
not normal, since that leaves open the possibility that log returns
are conditionally normal (with, perhaps, time-varying conditional
volatility). Figure X, Panel B excludes that possibility.
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(A) (B)

FIGURE X

The Time Series of VIX and SVIX

Panel A: Time series of closing prices of VIX (dotted line) and SVIX (solid
line). Panel B: VIX minus SVIX. Both figures show 10-day moving averages.

VII.A. VIX and SVIX as Diagnostics of Equilibrium Models

The characterizations of VIX and SVIX in terms of risk-
neutral variance and entropy can be read in reverse, as a way
to calculate implied VIX and SVIX indexes within equilibrium
models: it is easier to calculate risk-neutral entropy and variance
than it is to compute option prices and then integrate over strikes.

Can equilibrium models account for the behavior of VIX and
SVIX? It might seem that there is room for optimism, given that
consumption growth spiked downward in late 2008 as SVIX spiked
upward (see Appendix Figure A.3); but as we will now see, leading
consumption-based models are unable to match the properties of
the two series.

The first three lines of Table IV report various statistics of
VIX, SVIX, and VIX minus SVIX: namely, the mean, median,
standard deviation, maximum, minimum, skewness, excess kur-
tosis, and autocorrelation of each series (computed on a monthly
basis; full details are provided in the Appendix). The panels re-
port the corresponding quantities calculated within six leading
consumption-based models: the Campbell and Cochrane (1999,
CC) habit formation model, the long-run risk model in the orig-
inal stochastic volatility calibration of Bansal and Yaron (2004,
BY) and in the more recent calibration of Bansal, Kiku, and Yaron
(2012, BKY), the model of Wachter (2013, W) with time-varying
disaster arrival rate, and two models that explicitly address the
properties of option prices, Bollerslev, Tauchen, and Zhou (2009,
BTZ) and Drechsler and Yaron (2011, DY). These numbers are
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generated by simulating 1,000,000 sample paths of VIX and SVIX
within each model and computing the average value of the mean,
median, and so on across the paths. I also generate an empirical
p-value for each statistic: this represents the proportion of the
1,000,000 paths that generate values that are as or more extreme
as observed in the data.

The results are easily summarized. None of the models comes
close to matching the properties of either VIX or SVIX. The dif-
ference between the two is particularly problematic: for all six
models, the mean (and median) level of VIX minus SVIX observed
in the data lies outside the support of the 1,000,000 trials. In the
case of the CC, BY, BKY, and BTZ models, which are approxi-
mately conditionally log-normal, this failure is a consequence of
Result 4. The DY model is not log-normal, but still does not gen-
erate a sufficiently large mean gap between VIX and SVIX. The
Wachter model, with its extreme disasters, generates too large a
mean gap. The models also fail on the other statistics of VIX mi-
nus SVIX: its volatility (the Wachter model generates too much,
the others not enough), its spikiness (all the models generate too
little skewness and kurtosis), and its autocorrelation (higher in
the models than in the data). As for VIX and SVIX themselves,
only the DY model can match their high skewness and kurto-
sis and relatively low autocorrelation, and it fails on the other
dimensions.

VII.B. Variance Swaps and Simple Variance Swaps

The equation underpinning the VIX index (24) is a defini-
tion rather than a statement about asset pricing, but the form of
the definition originally emerged from the theory of variance swap
pricing. This section explores this connection in further detail, and
proposes a definition of a tradable contract, the simple variance
swap, that is to SVIX as variance swaps are to VIX. As we will
see, simple variance swaps are considerably more robust than con-
ventional variance swaps. In particular, they can be hedged even
if the underlying asset is subject to jumps. This is an attractive
feature, because the variance swap market collapsed during the
events of 2008.

In this section we assume that today’s date is time 0, and that
the goal is to trade (some notion of) variance over the period from
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time 0 to time T. A variance swap is an agreement (initiated, say,
at time 0) to exchange

(26)
(

log
S�

S0

)2

+
(

log
S2�

S�

)2

+ · · · +
(

log
ST

ST −�

)2

for some fixed “strike” Ṽ that is defined at time 0 and paid at time
T. Here � is some small time increment; typically, � = 1 day. The
market convention is to set Ṽ so that no money needs to change
hands at initiation of the trade:

(27) Ṽ = E
∗
0

[(
log

S�

S0

)2

+
(

log
S2�

S�

)2

+ · · · +
(

log
ST

ST −�

)2
]

.

The next result, which is well known, shows how to compute
the expectation on the right-hand side of equation (27), under
three assumptions that are standard in the variance swap litera-
ture but were not required in preceding sections:

A1 the continuously compounded interest rate is constant, at
r;

A2 the underlying asset does not pay dividends; and
A3 the underlying asset’s price follows an Itô process dSt =

rSt dt + σ tSt dZt under the risk-neutral measure (so that,
in particular, there are no jumps).

RESULT 5. Under Assumptions A1–A3, the strike on a variance
swap is

(28)

Ṽ = 2erT

{∫ F0,T

0

1
K2 put0,T (K) dK +

∫ ∞

F0,T

1
K2 call0,T (K) dK

}

in the limit as � → 0; and this quantity has the interpretation

(29) Ṽ = E
∗
[∫ T

0
σ 2

t dt

]
.

The variance swap can be hedged by holding
(i) a static position in

( 2
K2

)
dK puts expiring at time T with

strike K, for each K � F0,t,



408 QUARTERLY JOURNAL OF ECONOMICS

(ii) a static position in
( 2

K2

)
dK calls expiring at time T with

strike K, for each K � F0,t, and

(iii) a dynamic position in
2
(

F0,t
St

−1
)

F0,T
units of the underlying as-

set at time t, financed by borrowing.

Sketch proof of (28) and (29). In the limit as � → 0, the
right-hand side of equation (27) converges to

Ṽ = E
∗
[∫ T

0
(d log St)2

]
.

Neuberger (1994) observed that by Itô’s lemma and Assumption
A3, d log St = (r − 1

2σ 2
t )dt + σt dZt under the risk-neutral measure,

so (d log St)2 = σ 2
t dt, and

Ṽ = E
∗
[∫ T

0
σ 2

t dt

]

= 2 E
∗
[∫ T

0

1
St

dSt −
∫ T

0
d log St

]

= 2rT − 2 E
∗ log

ST

S0
.(30)

Carr and Madan (1998) then showed that the approach of Breeden
and Litzenberger (1978) can be used to express the price of a
claim to the underlying asset’s log return in terms of the prices of
European call and put options on the underlying asset:

Plog ≡ e−rT
E

∗ log RT = rT e−rT −
∫ F0,T

0

1
K2 put0,T (K) dK

−
∫ ∞

F0,T

1
K2 call0,T (K) dK.

Substituting back into equation (30), we have the result. �

This result is often referred to as “model-free,” since it ap-
plies if the underlying asset’s price follows any sufficiently well-
behaved Itô process. But this is a very strong condition. In real-
ity, the market does not follow an Itô process, so VIX2 does not
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correspond to the fair strike on a variance swap, Ṽ ;23 the replicat-
ing portfolio provided in Result 5 does not replicate the variance
swap payoff; and neither Ṽ nor VIX2 has the interpretation (29).

Because variance swaps cannot be hedged at times of jumps,
market participants have had to impose caps on their payoffs.
These caps—which have become, since 2008, the market conven-
tion in index variance swaps as well as single-name variance
swaps—limit the maximum possible payoff on a variance swap
but further complicate the pricing and interpretation of the con-
tract. A fundamental problem with the definition of a conventional
variance swap can be seen very easily: if the underlying asset—an
individual stock, say—goes bankrupt, so that St hits zero at some
point before expiry T, then the payoff (26) is infinite.

Simple variance swaps do not suffer from this deficiency. A
simple variance swap is an agreement to exchange

(31)
(

S� − S0

F0,0

)2

+
(

S2� − S�

F0,�

)2

+ · · · +
(

ST − ST −�

F0,T −�

)2

for a prearranged strike V at time T. (Recall that F0,t is the for-
ward price of the underlying asset to time t, which is known at
time 0.) The choice to put forward prices in the denominators is
important: we will see that this choice leads to a huge simplifica-
tion of the formula for the strike V and of the associated hedging
strategy in the limit as the period length � goes to zero. In an
idealized frictionless market, this simplification of the hedging
strategy would merely be a matter of analytical convenience; in
practice, with trade costs, it acquires far more importance.

The following result shows how to price a simple variance
swap (i.e., how to choose V so that no money need change hands
initially) in the � → 0 limit. From now on, I write V for the fair
strike on a simple variance swap in this limiting case and write
V(�) when the case of � > 0 is considered. The result depends
on weaker assumptions than were required for the conventional
variance swap. Most important, there is no need to assume that
the underlying asset follows a diffusion.

23. Aı̈t-Sahalia, Karaman, and Mancini (2015) document a large gap between
index variance swap strikes and VIX-type indexes (squared) at all horizons: on the
order of 2% in volatility units, compared with an average volatility level around
20%.
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B1 the continuously compounded interest rate is constant, at
r; and

B2 the underlying asset pays dividends continuously at rate
δSt per unit time.

Given these assumptions, F0,t = S0e(r−δ)t. Dividends should be
interpreted broadly: if the underlying asset is a foreign currency
then δ corresponds to the foreign interest rate. I discuss other
ways to deal with dividend payouts in the Appendix.

RESULT 6. (Pricing and hedging a simple variance swap in the
� → 0 limit). Under Assumptions B1 and B2, the strike on a
simple variance swap is

(32) V = 2erT

F2
0,T

{∫ F0,T

0
put0,T (K) dK +

∫ ∞

F0,T

call0,T (K) dK

}
.

If the asset does not pay dividends, δ = 0, this can be written
in terms of the unannualized SVIX formula as

V = T · SVIX2
0→T .

The payoff on a simple variance swap can be replicated by
holding
(i) a static position in

( 2
F2

0,T

)
dK puts expiring at time T with

strike K, for each K � F0,t,
(ii) a static position in

( 2
F2

0,T

)
dK calls expiring at time T with

strike K, for each K � F0,t, and

(iii) a dynamic position in 2e−δ(T − t)

(
1− St

F0,t

)
F0,T

units of the under-
lying asset at time t, financed by borrowing.

Proof. The derivation of equation (32) divides into two steps.
Step 1: The absence of arbitrage implies that there are stochastic
discount factors M�, M2�, . . . such that a payoff Xj� at time j�
has price Ei�

[
M(i+1)�M(i+2)� · · · Mj�Xj�

]
at time i�. The subscript

on the expectation operator indicates that it is conditional on time
i� information. I abbreviate M(j�) ≡ M�M2�· · · Mj�.

V is chosen so that the swap has zero initial value, that is,

(33) E

[
M(T )

{(
S� − S0

F0,0

)2

+ · · · +
(

ST − ST −�

F0,T −�

)2

− V

}]
= 0.
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We have

E[M(T )(Si� − S(i−1)�)2] = e−r(T −i�)
E[M(i�)(Si� − S(i−1)�)2]

= e−r(T −i�){
E[M(i�)S2

i�] − (2e−δ� − e−r�)

× E[M((i−1)�)S2
(i−1)�]

}
,

using (i) the law of iterated expectations; (ii) the fact that the inter-
est rate r is constant, so that E(i−1)� Mi� = e−r�; and (iii) the fact
that if dividends are continuously reinvested in the underlying
asset, then an investment of e−δ�S(i − 1)� at time (i − 1)� is worth
Si� at time i�, which implies that E(i−1)� Mi�Si� = e−δ�S(i−1)�. If
we define �(i) to be the time 0 price of a claim to S2

i , paid at time
i, then

E
[
M(T )

(
Si� − S(i−1)�

)2 ] = e−r(T −i�)[�(i�) − (2 − e−(r−δ)�)

× e−δ��((i − 1)�)
]
.

Substituting this into equation (33), we find that

(34) V (�) =
T/�∑
i=1

eri�

F2
0,(i−1)�

[
�(i�) − (2 − e−(r−δ)�)e−δ��((i − 1)�)

]
.

As we have already seen,

(35) �(t) = 2
∫ ∞

0
call0,t(K) dK

or, using put-call parity to express �(t) in terms of out-of-the-
money options,

(36) �(t) = 2
∫ F0,t

0
put0,t(K) dK + 2

∫ ∞

F0,t

call0,t(K) dK + e−rt F2
0,t .

Step 2. Observe that equation (34) can be rewritten

V (�) =
T/�∑
i=1

{
eri�

F2
0,(i−1)�

[
P(i�) − (2 − e−(r−δ)�)e−δ� P((i − 1)�)

]}

+ T
�

(
e(r−δ)� − 1

)2
,
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where

P(t) ≡ 2

{∫ F0,t

0
put0,t(K) dK +

∫ ∞

F0,t

call0,t(K) dK

}
.

For 0 < j < T
�

, the coefficient on P( j�) in this equation is

erj�

F2
0,( j−1)�

− er( j+1)�

F2
0, j�

(2 − e−(r−δ)�)e−δ� = erj�

F2
0, j�

(
e(r−δ)� − 1

)2
.

(The definition (31) was originally found by viewing the normal-
izing constants F0, j�, for j = 0, . . . T

�
, as arbitrary, and choosing

them so that the above equation would hold.) We can therefore
rewrite

V (�) = erT

F2
0,T −�

P(T ) +
T/�−1∑

j=1

erj�

F2
0, j�

(e(r−δ)� − 1)2 P( j�)

︸ ︷︷ ︸
O( 1

�
) terms of size O(�2)

+ T
�

(
e(r−δ)� − 1

)2
.(37)

The second term on the right-hand side is a sum of T
�

− 1 terms,
each of size on the order of �2; all in all, the sum is O(�). The
third term is also O(�), so both tend to zero as � → 0. The first
term tends to erT P(T )

F2
0,T

, as required.

The trading strategy that replicates the payoff on a simple
variance swap is described in detail in the Appendix. �

The exact expression (34) applies for fixed � > 0. It shows that
the strike on a simple variance swap is dictated by the prices of
options across all strikes and the whole range of expiry times
�, 2�, . . . , T. But correspondingly, the hedge portfolio requires
holding portfolios of options of each of these maturities. Although
this is not a serious issue if � is large relative to T, it raises the
concern that hedging a simple variance swap may be extremely
costly in practice if � is very small relative to T. Fortunately, this
concern is misplaced: by choosing forward prices as the normal-
izing weights in the definition (31), both the pricing formula (34)
and the hedging portfolio simplify nicely in the limit as � → 0. In
principle, we could have put any other constants known at time
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0 in the denominators of the fractions in the definition (31). Had
we done so, we would have to face the unappealing prospect of a
hedging portfolio requiring positions in options of all maturities
between 0 and T. Using forward prices lets us sidestep this prob-
lem, meaning that the hedge calls only for a single static portfolio
of options expiring at time T and equally weighted by strike.

The dynamic position in the underlying can be thought of as
a delta-hedge (though no assumptions have been made about the
behavior of the underlying security’s price): if, say, the underly-
ing’s price at time t happens to exceed F0,t = S0e(r−δ)t, then the
replicating portfolio is short the underlying to offset the effects of
increasing delta as calls go in-the-money and puts go increasingly
out-of-the-money.

What happens if sampling and trading occurs at discrete in-
tervals � > 0, rather than continuously? What if deep-out-of-the-
money options cannot be traded? What are the effects of different
dividend payout policies? I show in the Appendix that simple vari-
ance swaps have good robustness properties in each case.

VIII. CONCLUSION

The starting point of this article is the identity (4), which
shows that the expected excess return on any asset equals the
risk-neutral variance of the asset’s return minus a covariance
term. I apply the identity to the return on the market. In this
case, risk-neutral variance is directly observable because index
options are traded securities, and it turns out that risk-neutral
variance is equal to the square of a volatility index, SVIX, that is
closely related to the VIX index.

The second term in the decomposition is not directly observ-
able, but it can be controlled: I argue that it is reasonable to
assume that the covariance term is negative, and formalize this
assumption as the NCC. If the NCC holds, the identity implies
that the square of the SVIX index provides a lower bound on
the equity premium. I supply various conditions under which the
NCC does indeed hold. None of the conditions are necessary, but
each is sufficient, so a reader who accepts any one of them—which
cover many of the leading equilibrium models of macro-finance,
including those of Campbell and Cochrane (1999), Bansal and
Yaron (2004), Barro (2006), Wachter (2013), Bansal et al. (2014),
and Campbell et al. (2016)—must accept the NCC and the results
that flow from it.
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I construct the SVIX index using S&P 500 index option data
from 1996 to 2012. The index is strikingly volatile: it implies that
in late 2008, the equity premium rose above 21% at the one-year
horizon and above 55% (annualized) at the one-month horizon.
Since the average level of the lower bound over my sample period
is approximately 5%, I argue, more aggressively, that the lower
bound is approximately tight—that is, risk-neutral variance is not
merely a lower bound on the equity premium, it is approximately
equal to the equity premium. To assess this possibility, I run pre-
dictive regressions and show that the hypothesis of equality is
not rejected in the data (though the sample is short, so the stan-
dard errors are large). Moreover, when the coefficient on SVIX2

t→T
is constrained to equal 1—as it is if the bound is tight—the in-
dex outperforms the historical mean as a return predictor; Goyal
and Welch (2008) showed that this is not true of a range of pre-
dictor variables that have been proposed in the literature. These
empirical results suggest that the SVIX index can be used as a
direct proxy for the equity premium. I do so, and draw various
conclusions.

First, the equity premium is far more volatile than implied by
the valuation-ratio predictors of Campbell and Thompson (2008).
The distinction between the two views is sharpest on days such
as Black Monday, in October 1987, when the S&P 500 and Dow
Jones indexes experienced very severe declines, with daily returns
roughly twice as negative as the next-worst day in history. On
the Campbell–Thompson view of the world, the equity premium
rose on the order of 2 or 3 percentage points during this episode.
In sharp contrast, option prices are known to have exploded on
Black Monday, which I argue implies also that the equity premium
exploded.

Second, the equity premium is strongly right-skewed: the me-
dian equity premium is on the order of 4%, but there are occasional
opportunities for unconstrained investors to earn a much higher
equity premium.

Third, during such episodes, a disproportionate fraction of
the equity premium is concentrated in the form of extremely high
expected returns over the very short run.

Fourth, while I have argued that the SVIX index proxies for
the rationally expected return on the market, it is, like other pre-
dictor variables that have been proposed in the literature, nega-
tively correlated with survey measures of investor return expec-
tations (which forecast returns with the wrong sign).
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Fifth, the equity premium exhibits significant fluctuations at
monthly, weekly, daily, and still higher frequencies. The macro-
finance literature, which seeks to rationalize market gyrations at
the business cycle frequency, typically has not acknowledged or
attempted to address such movements. The basic point can be
made by focusing on the behavior of the VIX and SVIX indexes
(thereby making the argument independent of the NCC). I com-
pute the two indexes within a range of leading equilibrium models
and find that none is able to generate sample paths of VIX and
SVIX that even roughly resemble the data: the models generate
sample paths that are more persistent and less spiky than the
paths of the indexes observed in reality. This casts further doubt
on the plausibility of such models, quite apart from the fact that
they cannot be squared with survey evidence.

Since models featuring a representative agent who consumes
aggregate consumption are inconsistent with the data in each of
these last two respects, I prefer to take the perspective of a ra-
tional, unconstrained investor whose wealth is invested in the
market—or in assets that are well proxied by the market—and
whose risk aversion is at least 1, so that the NCC holds. (As shown
in Section III, more general assumptions are possible: if the in-
vestor’s portfolio is less than fully invested in the market, the NCC
holds subject to a stronger restriction on risk aversion.) This ap-
proach allows for the possibility that this rational, unconstrained
investor coexists with irrational and/or constrained investors.
But since there are many ways to be irrational and many ways to
be constrained, the equity premium perceived by a rational uncon-
strained investor is the natural benchmark (even though such an
investor, whose beliefs are embedded in asset prices, is not neces-
sarily representative of the full population: as an extreme exam-
ple, a tightly constrained investor may have essentially arbitrary
beliefs without these beliefs being detectable in asset prices).

The article concludes with extensions on two rather differ-
ent dimensions. In the first, I consider the problem of inferring
the subjective expectations of an unconstrained log investor who
chooses to hold the market. This represents a special case in which
the NCC holds with equality, and the inference problem then re-
duces to an exercise in derivative pricing. As an application, I
compute the probability of a market crash from option prices. As
one might have expected, the resulting crash probability index
tends to be high at times when the equity premium is high; more
interestingly, the one-year crash probability started to rise in late



416 QUARTERLY JOURNAL OF ECONOMICS

2007, at a time when the S&P 500 index was itself at historic
highs, and well before the unfolding subprime crisis led to sharp
declines in the stock market.

The second extension completes a square. The definition of the
VIX index is motivated by the theory of variance swap pricing. I
show how to define a contract—the simple variance swap—that
is to SVIX as variance swaps are to VIX. If such a contract were
traded in liquid markets, it would directly reveal the level of SVIX
in real time, obviating the need to observe option prices at all
strikes. Moreover, simple variance swaps have the advantage that
they can be priced and hedged even in the presence of jumps in the
underlying asset price. This is not true of conventional variance
swaps, and as a result the variance swap market collapsed during
the market turmoil of 2008.

APPENDIX

This section contains proofs that the examples in Section III
satisfy the NCC.

Example 1. Write MT = e−r f,t+σM,t ZM,T − σ2
M,t
2 and RT =

eμR,t+σR,t ZR,T − σ2
R,t
2 , where ZM, T and ZR, T are (potentially corre-

lated) standard normal random variables. The requirement that
Et MT RT = 1 implies that μR,t − r f,t + covt(log MT , log RT ) = 0.
This fact, together with some straightforward algebra, implies
that Et MT R2

T � Et RT if and only if λt � σR,t, where λt is the
conditional Sharpe ratio μR,t−r f,t

σR,t
.

Example 2. By assumption, there is an investor with wealth
Wt and utility function u(·) who chooses, at time t, from the avail-
able menu of assets with returns R(i)

T , i = 1, 2, . . . . In other words,
he chooses portfolio weights {wi} to solve the problem

(38) max
{wi}

Et u

[
Wt

(∑
i

wi R(i)
T

)]
subject to

∑
i

wi = 1.

The first-order condition for (say) wj is that

Et

[
Wtu′

(
Wt

∑
i

wi R(i)
T

)
R( j)

T

]
= λt,
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where λt > 0 is the Lagrange multiplier associated with the con-
straint in (38). Since the investor chooses to hold the market, we
have

∑
i wi R(i)

T = RT . Thus,

Et

⎡⎢⎢⎢⎣Wt

λt
u′ (Wt RT )︸ ︷︷ ︸

MT

R( j)
T

⎤⎥⎥⎥⎦ = 1

for any return R( j)
T . It follows that the SDF is proportional (with a

constant of proportionality that is known at time t) to u′(WtRT).
To show that the NCC holds, we must show that

covt(u′(Wt RT )RT , RT ) � 0. This holds because u′(WtRT)RT is de-
creasing in RT: its derivative is u′(WtRT) + WtRTu′′(WtRT) =
−u′(WtRT)[γ (WtRT) − 1], which is negative because risk aversion
γ (x) ≡ − xu′′(x)

u′(x) is at least 1.
If the investor has log utility, then γ (x) ≡ 1, so the inequality

holds with equality. But it is not necessary for the investor to have
log utility for the inequality to hold with equality: all we require is
that MTRT is uncorrelated with RT. That is, we merely need that
MT = IT/RT where IT and RT are uncorrelated (and Et IT = 1 since
Et MT RT must equal 1). Log utility is the special case in which
IT ≡ 1.

Examples 3a and 3b. For reasons given in the text, Example
3a is a special case of Example 3b, which we now prove. We must
check that covt(MT RT , RT ) � 0, or equivalently that

(39) covt(−RT VW (WT , z1,T , . . . , zN,T ), RT ) � 0.

So we must prove that the covariance of two functions of
RT , R(i)

T , z1,T , . . . , zN,T is positive. The two functions are

f
(
RT , R(i)

T , z1,T , . . . , zN,T
) = −RT VW

(
αt(Wt − Ct)RT

+ (1 − αt)(Wt − Ct)R(i)
T , z1,T , . . . , zN,T

)
and

g
(
RT , R(i)

T , z1,T , . . . , zN,T
) = RT .

(Since the covariance is conditional on time t information, αt and
(Wt − Ct) can be treated as known constants.) By the defining
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property of associated random variables, (39) holds if f and g are
each weakly increasing functions of their arguments. This is ob-
viously true for g, so we must check that the first derivatives of f
are all nonnegative.

Differentiating f with respect to RT, we need −VW(WT, z1, T,
. . . , zN, T) − αt(Wt − Ct)RTVWW(WT, z1, T, . . . , zN, T) � 0, or
equivalently

−WT VWW (WT , z1,T , . . . , zN,T )
VW (WT , z1,T , . . . , zN,T )

� WT

WM,T
,

where WT and WM, T are as given in the main text; this is the
constraint on risk aversion. Differentiating with respect to R(i)

T ,
we need −RT(1 − αt)(Wt − Ct)VWW(WT, z1, T, . . . , zN, T) � 0, which
follows because VWW < 0. Differentiating with respect to zj,T, we
need −RTVWj(WT, z1, T, . . . , zN, T) � 0, which follows because VWj
(the cross derivative of the value function with respect to wealth
and the jth state variable) is weakly negative given the choice of
sign on the state variables.

Examples 4a and 4b. With Epstein–Zin preferences, the SDF

is proportional (up to quantities known at time t) to

(
WT
CT

) (γ−1)
(1−ψ)

R−γ

T
, so

the desired inequality, covt(MT RT , RT ) � 0, is equivalent to

covt

[
−
(

WT

CT

) (γ−1)
(1−ψ)

R1−γ

T , RT

]
� 0.

If γ = 1, as in Example 4b, then this holds with equality.
If WT

CT
and RT are associated, as assumed in Example 4a, then

we need to check that the first derivatives of f(x, y) = −x
(γ−1)
(1−ψ) y1 − γ

are nonnegative. But this holds if γ � 1 and ψ � 1, as claimed.

A. Construction of the Lower Bound

The data are from OptionMetrics, runnning from January
4, 1996, to January 31, 2012; they include the closing price of
the S&P 500 index, and the expiration date, strike price, highest
closing bid and lowest closing ask of all call and put options with
fewer than 550 days to expiry. I clean the data in several ways.
First, I delete all replicated entries. Second, for each strike, I select
the option—call or put—whose mid price is lower. Third, I delete
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all options with a highest closing bid of zero. Finally, I delete all
Quarterly options, which tend to be less liquid than regular S&P
500 index options and to have a smaller range of strikes. Having
done so, I am left with 1,165,585 option-day data points. I compute
mid-market option prices by averaging the highest closing bid and
lowest closing ask, and using the resulting prices to compute the
lower bound by discretizing the right-hand side of inequality (14).

On any given day, I compute the lower bound at a range of time
horizons depending on the particular expiration dates of options
traded on that day, with the constraint that the shortest time to
expiry is never allowed to be less than seven days; this is the same
procedure the CBOE follows. I then calculate the bound for T =
30, 60, 90, 180, and 360 days by linear interpolation. Occasionally,
extrapolation is necessary, for example when the nearest-term
option’s time-to-maturity first dips below seven days, requiring
me to use the two expiry dates further out; again, this is the
procedure followed by the CBOE.

B. The Effect of Discrete Strikes

The integrals that appear throughout the article are ideal-
izations: in practice we only observe options at some finite set of
strikes. Write �t,T(K) for the price of an out-of-the-money option
with strike K, that is,

�t,T (K) ≡
{

putt,T (K) if K < Ft,T
callt,T (K) if K � Ft,T

;

write K1, . . . , KN for the strikes of observable options; write Kj for
the strike that is nearest to the forward price Ft,T;24 and define
(Ki+1−Ki−1)

2 . Then the idealized integral
∫∞

0 �t,T (K) dK is replaced,
in practice, by the observable sum

∑N
i=1 �t,T (Ki) �Ki. (This is the

CBOE’s procedure in calculating VIX, and I follow it in this arti-
cle.) Appendix Figure A.2, Panel A illustrates.

RESULT 7 (The effect of discretization by strike). Discretizing by
strike will tend to lead to an underestimate of the idealized

24. I assume for simplicity that strikes are evenly spaced near-the-money,
Kj+1 − Kj = Kj − Kj−1. This is not essential, but it is almost always the case in
practice and lets me economize slightly on notation.
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FIGURE A.1

Volume and Open Interest in S&P 500 Index Options

The figures show 10-day moving averages.

FIGURE A.2

The Effect of Discretization

Different panels use different scales.
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lower bound, in that

2
(T −t)Rf,tS2

t

N∑
i=1

�t,T (Ki) �Ki︸ ︷︷ ︸
discretization

� 2
(T −t)Rf,tS2

t

∫ ∞

0
�t,T (K) dK︸ ︷︷ ︸

idealized lower bound

+ (�Kj)2

4(T − t) · R2
f,t · S2

t︸ ︷︷ ︸
very small

.

Proof. Nonobservability of deep-out-of-the-money options ob-
viously leads to an underestimate of the lower bound.

Consider, first, the out-of-the-money puts with strikes
K1, . . . , Kj−1. The situation is illustrated in Appendix Figure A.2,
Panel B: by convexity of putt,T (K), the light gray areas that are
included (when they should be excluded) are smaller than the dark
gray areas that are excluded (when they should be included). The
same logic applies to the out-of-the-money calls with strikes Kj+1,
Kj+2, . . . . Thus the observable options—excluding the nearest-the-
money option—will always underestimate the part of the integral
which they are intended to approximate.

It remains to consider the nearest-the-money option with
strike Kj, which alone can lead to an overestimate. Lemma 1,
below, shows that the worst case is if the strike of the nearest-
the-money option happens to be exactly equal to the forward price
Ft,T, as in Appendix Figure A.2, Panel C. For an upper bound on
the overestimate in this case we must find an upper bound on the
sum of the approximately triangular areas (x) and (y) that are
shown in the figure. We can do so by replacing the curved lines in
the figure by the (dashed) tangents to putt,T (K) and callt,T (K) at
K = Ft,T. The areas of the resulting triangles provide the desired
upper bound, by convexity of putt,T (K) and callt,T (K):

area (x) + area (y) � 1
2

(
�K
2

)2

put′
t,T (K) − 1

2

(
�K
2

)2

call′t,T (K).

But by put-call parity, put′
t,T (K) − call′t,T (K) = 1

Rf,t
. Thus, the over-

estimate due to the at-the-money option is at most 1
2

(
�K
2

)2 1
Rf,t

.
Since the contributions from out-of-the-money and missing op-
tions led to underestimates, the overall overestimate is at most
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this amount. Finally, since the definition scales the integral by
2

((T −t)Rf,t S2
t )

, the result follows. �

The maximal overestimate provided by this result is very
small: for the S&P 500 index, the interval between strikes near-
the-money is �Kj = 5. If, say, the forward price of the S&P 500
index is Ft,T = 1000 then at a monthly horizon, T − t = 1

12 , the
discretization leads to an overestimate of SVIX2 that is at most 7.5
× 10−5 < 0.0001. By comparison, the average level of SVIX2 is on
the order of 0.05, as shown in Table I. Since the nonobservability
of deep-out-of-the-money options causes underestimation, there is
a strong presumption that the sum underestimates the integral.

It only remains to establish the following lemma, which is
used in the proof of Result 7. The goal is to consider the largest
possible overestimate that the option whose strike is nearest to the
forward price, Ft,T, can contribute. Appendix Figure A.2, Panel D
illustrates. The dotted rectangle in the figure is the contribution
if the strike happens to be equal to Ft,T; I call this Case 1. The
dashed rectangle is the contribution if the strike equals Ft,T − ε,
for some ε > 0 (the case ε < 0 is essentially identical); I call this
Case 2.

LEMMA 1. The option with strike closest to the forward overesti-
mates most in the case in which its strike is equal to the
forward.

Proof. The overestimate in Case 1 is greater than that in Case
2 if area (b) + area (c) + area (e) + area (f) � area (a) + area (b) +
area (f) − area (d) in Figure A.2 Panel D, i.e., if area(c) + area(d) +
area(e) � area(a). But by convexity of putt,T (K), area(b) + area(c)
� area(a) + area(b), which gives the result. An almost identical
argument applies if ε < 0. �

C. Supplementary Tables and Figures

Appendix Figure A.3, Panel A shows that the VXO index of
one-month at-the-money implied volatility on the S&P 100 index
exploded on October 19, 1987. Panel B plots log real consumption
growth (quarterly, seasonally adjusted personal consumption ex-
penditures, from the Bureau of Economic Analysis) and the one-
year SVIX-implied equity premium on the same axes, with each
time series scaled to have zero mean and unit variance. Panel C
plots the rolling mean historical equity premium, computed using
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FIGURE A.3

Supplementary Figures

TABLE A.1
COEFFICIENT ESTIMATES FOR THE REGRESSION (16), EXCLUDING THE CRISIS PERIOD

AUGUST 1, 2008–JULY 31, 2009 FROM THE SAMPLE

Horizon α̂ Std. err. β̂ Std. err. R2 (%)

1 mo −0.095 0.061 3.705 1.258 3.36
2 mo −0.081 0.062 3.279 1.181 4.83
3 mo −0.076 0.067 3.147 1.258 5.98
6 mo −0.043 0.072 2.319 1.276 4.94
1 yr 0.045 0.088 0.473 1.731 0.27

the data series used by Campbell and Thompson (2008) based on
S&P 500 total returns from February 1871, with the data prior to
January 1927 obtained from Robert Shiller’s website.

Table A.1 reproduces the results in Table II, but excludes the
period August 1, 2008–July 31, 2009. Table A.2 reports results for
regressions

(40) RT − Rf,t = α + β1 × Rf,t · SVIX2
t→T +β2 × VRPt→T +εT
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TABLE A.2
COEFFICIENT ESTIMATES FOR THE REGRESSION (40)

Horizon α̂ Std. err. β̂1 Std. err. β̂2 Std. err. R2 (%)

1 mo −0.086 0.063 2.048 1.273 3.908 1.053 4.96
2 mo −0.113 0.061 2.634 1.007 3.884 0.761 8.54
3 mo −0.086 0.071 2.273 1.407 2.749 0.346 6.79
6 mo −0.051 0.076 1.992 1.132 −0.525 1.259 6.56
1 yr −0.073 0.078 2.278 0.909 −0.694 0.680 10.34

FIGURE A.4

The Variance Risk Premium, Calculated as Rf,t · SVIX2
t→T − SVARt→T

of realized returns onto risk-neutral variance and a measure of
the variance risk premium, VRPt→T ≡ Rf,t · SVIX2

t→T − SVARt→T .
Realized daily return variance, SVARt→T , is computed at time t
by looking backward over the same horizon length, T − t, as the
corresponding forward-looking realized return (so, for example,
I use one-month backward-looking realized variances to predict
one-month forward-looking realized returns). If realized variance
is a good proxy for forward-looking real-world variance, this is a
measure of the variance risk premium.

Consistent with the findings of Bollerslev, Tauchen, and Zhou
(2009) and Drechsler and Yaron (2011), the coefficient on VRPt
is positive and strongly significant at predictive horizons out to
three months. This predictive success reflects the fact that im-
plied and realized volatility, SVIXt→T and SVARt→T , rose sharply
as the S&P 500 dropped in late 2008; implied volatility then
fell relatively quickly, while SVARt→T declined more sluggishly.
VRPt→T therefore turned dramatically negative in late 2008, as
shown in Appendix Figure A.4. Since the market then continued
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TABLE A.3
COEFFICIENT ESTIMATES FOR THE REGRESSION (40), EXCLUDING THE CRISIS PERIOD

AUGUST 1, 2008, TO JULY 31, 2009

Horizon α̂ Std. err. β̂1 Std. err. β̂2 Std. err. R2(%)

1 mo −0.103 0.061 3.333 1.292 1.548 1.125 3.61
2 mo −0.097 0.063 3.137 1.353 1.532 1.801 6.04
3 mo −0.083 0.068 2.902 1.451 1.133 1.855 6.34
6 mo 0.016 0.071 0.797 1.560 0.360 2.095 0.74
1 yr 0.008 0.061 0.331 2.274 1.761 3.760 3.10

to fall, this sluggish response of VRPt→T helps fit the data. At
the six-month and one-year horizons, however, VRPt→T responds
too sluggishly—it remains strongly negative even as the market
starts to rally in March 2009—so there is a sign-flip, with nega-
tive estimates of the coefficient on VRPt→T at the six-month and
one-year horizons. The empirical facts are therefore hard to in-
terpret: the sign flip raises the concern that the apparent success
of VRPt→T as a predictor variable may be an artefact of this par-
ticular sample period. Table A.3 therefore repeats the regression
(40), but excludes the period from August 1, 2008, to July 31,
2009. Once this crisis period is excluded, VRPt→T does not enter
significantly at any horizon.

From a theoretical point of view, it is hard to rationalize a
negative equity premium forecast within any equilibrium model.
It is also implausible that the correctly measured variance risk
premium should ever be negative. More specifically, Bollerslev,
Tauchen, and Zhou (2009) show that within their own preferred
equilibrium model, the variance risk premium would always be
positive.

D. VIX, SVIX, and Equilibrium Models

Proof of Result 4. I write τ = T − t to make the notation easier

to handle. Let RT = eμR,tτ+σt
√

τ ZR− σ2
t τ

2 and MT = e−r f,tτ+σM,t
√

τ ZM− σ2
M,tτ

2 ,
where ZR and ZM are normal random variables with mean 0,
variance 1, and correlation ρt, and rf,t = log Rf,t. Since Et MT RT =
1, we must have μR,t − rf,t = −ρtσM, tσ t.
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From equation (13), SVIX2
t→T = e−2r f,tτ

τ

[
E

∗
t (R2

T ) − (E∗
t RT )2

] =
1
τ

(
e−r f,tτ Et MT R2

T − 1
)
. Now, using the fact that μR,t − rf,t =

−ρtσM, tσ t, we have

Et MT R2
T = E e−r f,tτ+σM,t

√
τ ZM− 1

2 σ 2
M,tτ+2μR,tτ+2σt

√
τ ZR−σ 2

t τ

= er f,tτ+σ 2
t τ .

Thus, SVIX2
t→T = 1

τ
(eσ 2

t τ − 1) as required.
The calculation for VIX is slightly more complicated. Us-

ing equation (25), VIX2
t→T = 2

τ
L∗

t RT = 2
τ

[
log E

∗
t RT − E

∗
t log RT

] =
2
τ

[
r f,tτ − er f,tτ Et MT log RT

]
. Now,

Et
[
MT log RT

] = Et

[(
μR,tτ + σt

√
τ ZR − 1

2
σ 2

t τ

)
× e−r f,tτ+σM,t

√
τ ZM− σ2

M,tτ

2

]
=
(

μR,t − 1
2

σ 2
t

)
τ · e−r f,tτ

+ σt
√

τe−r f,tτ− σ2
M,tτ

2 Et

[
ZReσM,t

√
τ ZM

]
.

We can write ZR = ρt ZM +
√

1 − ρ2
t Z, where Z is uncorrelated with

ZM (conditional on time t information) and hence, since they are
both normal, independent of ZM. The expectation in the above
expression then becomes

Et
[
ZReσM,t

√
τ ZM

] = Et
[
(ρt ZM +

√
1 − ρ2

t Z)eσM,t
√

τ ZM
]

= ρt Et
[
ZMeσM,t

√
τ ZM

]
.

By Stein’s lemma,

Et
[
ZMeσM,t

√
τ ZM

] = Et
[
σM,t

√
τeσM,t

√
τ ZM

]
= σM,t

√
τe

σ2
M,tτ

2 .

It follows (using the fact that μR,t − rf,t = −ρtσM, tσ t) that
Et MT log RT = (μR,t − 1

2σ 2
t + ρtσM,tσt)τe−r f,tτ = (r f,t − 1

2σ 2
t )τe−r f,tτ .

So VIX2
t→T = σ 2

t , as required. �



EXPECTED RETURN ON THE MARKET 427

The top panel of Table IV reports a variety of summary statis-
tics for VIX, SVIX, and VIX minus SVIX in the data, at the
one-month horizon. (For comparison with the models, which are
simulated at monthly frequency, I generate a monthly series from
the daily series of VIX and SVIX by taking the 1st, 22nd, 43rd,
64th, . . . , elements and compute the mean, median, etc. Then I
repeat using the 2nd, 23rd, . . . elements; the 3rd, 24th, . . . ; and
so on, up to the 21st, 42nd, . . . Finally, I average each statistic
over the 21 choices of initial element.) The panels below report
corresponding statistics computed within the equilibrium models
of Campbell and Cochrane (1999, CC), Bansal and Yaron (2004,
BY), Bansal, Kiku, and Yaron (2012, BKY), Wachter (2013, W),
Bollerslev, Tauchen, and Zhou (2009, BTZ), and Drechsler and
Yaron (2011, DY).

Within each model, I simulate 1,000,000 16-year-long sample
paths of VIX, SVIX, and VIX minus SVIX. Each sample path is
generated by initializing state variables at their long-run aver-
ages, then computing a 32-year sample realization. I discard the
first 16-year “burn-in” period and use the second 16 years (for
comparability with the 16 years of data). I compute VIX and SVIX
at the one-month horizon for all models apart from Wachter’s
continuous-time model, for which I compute an instantaneous
measure, that is, I report the limiting case in which the time
horizon T − t approaches 0, rather than one month.25 Along each

25. I do so for tractability, because this quantity can be computed in closed
form. Since the Wachter model generates too little skewness and kurtosis in
VIX and SVIX, and too much persistence, it is likely that using the one-month
measure would make the results even worse. It is also possible to solve for VIX
and SVIX in closed form within Barro’s model; in this case, VIX and SVIX are
constant and their term structures are flat, so there is no distinction between
the instantaneous and one-month measures. Following Martin (2013) by defin-

ing κ(θ ) ≡ log Et

[(
Ct+1

Ct

)θ
]
, it can be shown that within Barro’s (2006) model—or

indeed within any consumption-based model with an Epstein–Zin representative
agent and i.i.d. consumption growth—we have

VIX2 = 2
[
κ(1 − γ ) − κ(−γ ) − κ ′(−γ )

]
log

(
1 + SVIX2

)
= κ(2 − γ ) − 2κ(1 − γ ) + κ(−γ ),

where γ is relative risk aversion. Using the calibration of Barro (2006), one finds
that VIX = 23.8% and SVIX = 18.4%, and that the difference between the two
is 5.4%, well above the value observed in the data. (These calculations assume
that there is no default on index options, and model equity as an unlevered
claim to consumption. Allowing for default would move the numbers in the right
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sample path, I compute the mean, standard deviation, median,
minimum, maximum, skewness, excess kurtosis, and monthly au-
tocorrelation for VIX, SVIX, and VIX minus SVIX. The numbers
reported in Table IV are the averages, across 1,000,000 sample
paths in each model, of each of these quantities. Asterisks in Ta-
ble IV indicate statistics for which a given model struggles to
match the data. The models find it so difficult to match the data
that I use fewer asterisks than is conventional to indicate signifi-
cance levels: one asterisk denotes a p-value of .05 (fewer than 5%
of the 1,000,000 trials gave statistics as extreme as are observed
in the data), two asterisks a p-value of .01, three asterisks a p-
value of .000 to three decimal places. Boldface font indicates that
the observed statistic in the data lies completely outside the sup-
port of the 1,000,000 model-generated statistics (i.e., an empirical
p-value of 0). Obviously a successful model should not have any
boldface statistics; unfortunately, there are multiple such exam-
ples for all six models.

E. Simple Variance Swaps

The proof of Result 6 implicitly supplies the dynamic trad-
ing strategy that replicates the payoff on a simple variance swap.
Tables A.4 and A.5 describe the strategy in detail. Each row of
Table A.4 indicates a sequence of dollar cash flows that is attain-
able by investing in the asset indicated in the leftmost column.
Negative quantities indicated that money must be invested; pos-
itive quantities indicate cash inflows. Thus, for example, the first
row indicates a time 0 investment of $e−rT in the riskless bond
maturing at time T, which generates a time T payoff of $1. The
second and third rows indicate a short position in the underlying
asset, held from 0 to � with continuous reinvestment of dividends,
and subsequently rolled into a short bond position. The fourth row
represents a position in a portfolio of call options of all strikes ex-
piring at time �, as in equation (35); this portfolio has simple
return S2

�

�(�) from time 0 to time �. The fifth, sixth, and seventh
rows indicate how the proceeds of this option portfolio are used
after time �. One part of the proceeds is immediately invested in
the bond until time T; another part is invested from � to 2� in the

direction—the gap between VIX and SVIX would decline—since VIX loads more
heavily on the deep out-of-the-money puts that would be most vulnerable to de-
fault. Allowing for leverage would move the numbers in the wrong direction, ex-
panding the gap between VIX and SVIX.)
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TABLE A.5
REPLICATING THE SIMPLE VARIANCE SWAP: THE GENERIC POSITION IN OPTIONS OF

INTERMEDIATE MATURITY, TOGETHER WITH THE ASSOCIATED TRADES REQUIRED AFTER

EXPIRY.

Asset 0 j� (j + 1)� T

j� −(e(r−δ)�−1)2� j�

er(T − j�) F2
0, j�

(e(r−δ)�−1)2 S2
j�

er(T − j�) F2
0, j�

B e−r(T − j�)
[

−S2
j�

F2
0,( j−1)�

− S2
j�

F2
0, j�

]
S2

j�

F2
0,( j−1)�

+ S2
j�

F2
0, j�

U
2S2

j�e−δ�

er(T −( j+1)�) F2
0, j�

−2Sj�S( j+1)�

er(T −( j+1)�) F2
0, j�

B
2Sj�S( j+1)�

er(T −( j+1)�) F2
0, j�

−2Sj�S( j+1)�

F2
0, j�

Notes. In the left column, B indicates a position in the bond, U indicates a position in the underlying with
dividends continuously reinvested, and j� indicates a position in options expiring at j�

underlying asset, and subsequently from 2� to T in the bond. The
replicating portfolio requires similar positions in options expiring
at times 2�, 3�, . . . , T − 2�. These are omitted from Table A.4,
but the general such position is indicated in Table A.5, together
with the subsequent investment in bonds and underlying that
each position requires.

The self-financing nature of the replicating strategy is re-
flected in the fact that the total of each of the intermediate columns
from time � to time T − � is 0. The last column of Table A.4 adds
up to the desired payoff (31) minus the strike V. The first column
must therefore add up to the cost of entering the simple variance
swap. Equating this cost to 0, we find the value of V provided in
equation (34).

The replicating strategy simplifies nicely in the � → 0 limit.
The dollar investment in each of the option portfolios expiring
at times �, 2�, . . . , T − � goes to 0 at rate O(�2). We must
account, however, for the dynamically adjusted position in the
underlying, indicated in rows beginning with a U. As shown in
Table A.5, this calls for a short position in the underlying asset of
2e−r(T −( j+1)�) S2

j�e−δ�

F2
0, j�

in dollar terms at time j�, that is, a short position

of 2e−r(T −( j+1)�) Sj�e−δ�

F2
0, j�

units of the underlying. In the limit as � → 0,

holding j� = t constant, this equates to a short position of 2e−r(T −t) St

F2
0,t

units of the underlying asset at time t.
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The static position in options expiring at time T, shown in the
penultimate line of Table VIII, does not disappear in the � → 0
limit. We can think of the option portfolio as a collection of calls of
all strikes, as in equation (35). It is more natural, though, to use
put-call parity to think of the position as a collection of calls with
strikes above F0,t and puts with strikes below F0,t, together with a
long position in 2e−δ(T −t)

F0,t
units of the underlying asset—after contin-

uous reinvestment of dividends—and a bond position. Combining
this static long position in the underlying with the previously
discussed dynamic position, the overall position at time t is long
2e−δ(T −t)

F0,T
− 2e−r(T −t) St

F2
0,t

= 2e−δ(T −t)(1− St
F0,t

)

F0,T
units of the asset and long out-

of-the-money-forward calls and puts, all financed by borrowing.
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.
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