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TRIANGLE-FREE SUBGRAPHS OF RANDOM GRAPHS

PETER ALLEN, JULIA BÖTTCHER, YOSHIHARU KOHAYAKAWA, AND BARNABY ROBERTS

Abstract. Recently there has been much interest in studying random graph analogues
of well known classical results in extremal graph theory. Here we follow this trend and
investigate the structure of triangle-free subgraphs of G(n, p) with high minimum de-
gree. We prove that asymptotically almost surely each triangle-free spanning subgraph
of G(n, p) with minimum degree at least

(
2
5 + o(1)

)
pn is O(p−1n)-close to bipartite, and

each spanning triangle-free subgraph of G(n, p) with minimum degree at least ( 1
3 + ε)pn

is O(p−1n)-close to r-partite for some r = r(ε). These are random graph analogues of a
result by Andrásfai, Erdős, and Sós [Discrete Math. 8 (1974), 205–218], and a result by
Thomassen [Combinatorica 22 (2002), 591–596]. We also show that our results are best
possible up to a constant factor.

1. Introduction

In a 1948 edition of the recreational math journal Eureka, Blanche Descartes proved
that triangle-free graphs can have arbitrarily large chromatic number, and thus be complex
in structure. This motivates the question of which additional restrictions on the class of
triangle-free graphs allow for a bound on the chromatic number. By Mantel’s theorem [17],
the densest triangle-free graphs are balanced complete bipartite graphs. So we may first
ask whether triangle-free graphs H with minimum degree somewhat below 1

2
v(H) are still

necessarily bipartite. This is true, as Andrásfai, Erdős and Sós showed in 1974.

Theorem 1 (Andrásfai, Erdős, Sós [4]). All triangle-free graphs H with δ(H) > 2
5
v(H)

are bipartite.

Triangle-free graphs of smaller minimum degree do not need to be bipartite, as blow-ups
of a 5-cycle illustrate. But one may still ask whether their chromatic number is bounded
(questions of this type were first addressed by Erdős and Simonovits in [11]). In 2002
Thomassen [19] proved that this is the case for triangle-free graphs of minimum degree at
least (1

3
+ ε)n.

Theorem 2 (Thomassen [19]). For any ε > 0 there exists rε such that if H is triangle-free
and δ(H) > (1

3
+ ε)v(H) then H is rε-colourable.

A construction of Hajnal (see [11]) shows that the minimum degree bound in this theorem
cannot be replaced by (1

3
− ε)n. A much stronger result was established by Brandt and

Thomassé [7], who showed that triangle-free graphs H with δ(H) > 1
3
n are 4-colourable.
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In this paper we are interested in random graph analogues of Theorem 1 and Theorem 2.
Establishing such analogues for prominent results in extremal graph theory has been a
particularly fruitful area of study in the last few years. A good overview can be found in
Conlon’s survey paper [8].

In order to study these kinds of questions systematically, Kohayakawa [13] and Rödl (un-
published) developed a sparse analogue of Szemerédi’s Regularity Lemma, and, together
with  Luczak [14] formulated the K LR conjecture which asserts the existence of a corre-
sponding ‘counting lemma’. Recently Conlon, Samotij, Schacht and Gowers [9] proved
this conjecture (see also [5, 18]). It is easy (as observed in [9]) to use these results to
prove ‘approximate’ random versions of Theorems 1 and 2, as well as to re-prove Mantel’s
theorem for random graphs. Thus if p� n−1/2 then asymptotically almost surely (a.a.s.)
the random graph G(n, p) has the property that all subgraphs with minimum degree a
little larger than 2

5
pn can be made bipartite by deleting o(pn2) edges. Similarly, the sparse

random version of Mantel’s theorem obtained states that any subgraph with a little more
than half the edges of G(n, p) contains a triangle.

One might expect that all subgraphs of G(n, p) with minimum degree a little larger
than 2

5
pn are bipartite. Indeed, an alternative sparse random version of Mantel’s theorem,

proved by DeMarco and Kahn [10], states that a largest triangle-free subgraph of G(n, p)
coincides exactly with a largest bipartite subgraph for p � (log n/n)1/2. However, sub-
graphs of G(n, p) with minimum degree larger than 2

5
pn which are not bipartite do exist

(see Theorem 5 below). In this paper we determine for all p how far from bipartite such
graphs can be.

Theorem 3. For any γ > 0, there exists C such that for any p(n) the random graph
Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ with
δ(H) > (2

5
+ γ)pn can be made bipartite by removing at most min

(
Cp−1n, (1

4
+ γ)pn2

)
edges.

In addition we derive an analogous random graph version of Theorem 2.

Theorem 4. For any γ > 0, there exist C and r such that for any p(n) the random graph
Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ with
δ(H) > (1

3
+ γ)pn can be made r-partite by removing at most min

(
Cp−1n, ( 1

2r
+ γ)pn2

)
edges.

Up to the values of C, these theorems are best possible.

Theorem 5. For any γ > 0 and r ∈ N, there exist constants c, c′ > 0 such that if
n−1/2/c′ 6 p(n) 6 c′ then Γ = G(n, p) a.a.s has a triangle-free spanning subgraph H with
δ(H) > (1

2
− γ)pn which cannot be made r-partite by removing fewer than cp−1n edges.

Note that for p � n−1/2 the minimum in each of Theorems 3 and 4 is achieved by
the second term and that these statements are easy: For such values of p only a tiny
fraction of the edges of G(n, p) are in triangles and the question reduces to asking for
the largest bipartite (respectively, r-partite) subgraph of G(n, p). For p close to 1, by the
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original Theorems 1 and 2, the conclusion of Theorem 5 becomes false, so that we need
the condition p 6 c′.

It would be interesting to obtain analogous results for Kr-free subgraphs of G(n, p) for
r > 3. It would also be interesting to know whether Theorem 4 could be improved to
generalise the result of Brandt and Thomassé. We conjecture that this is the case.

Organisation. In Section 2 we will introduce some of the main tools that will be used
throughout the paper. Section 3 of this paper will give a method of constructing a triangle-
free subgraph from a given, randomly generated graph. We will then prove a series of
results about this construction which will result in proving Theorem 5. In Section 4 we
will state and prove some properties that a.a.s. Γ = G(n, p) possesses. We will then use
these properties in Section 5 to prove Theorem 3, and in Section 6 to prove Theorem 4.

2. Tools

Notation. We write [n] for the set {1, ..., n}, and the notation x = (1± ε) is used to mean
x ∈ [1− ε, 1 + ε].

In a graph G we say a vertex is a common neighbour of a pair of vertices if it is adjacent
to both of them. For disjoint sets of vertices X and Y in G we will use EG(X, Y ) to denote
the set of edges between X and Y in G and EG(X) to denote the set of edges of G with
both ends in X. We denote the sizes of these sets by eG(X, Y ) and eG(X) respectively. We
will use NG(v,X) to denote the set of vertices in X which are adjacent to a vertex v of G
and degG(v,X) for the number of vertices in NG(v,X). For two vertices u, v we will write
NG(u, v,X) for the common neighbourhood NG(u,X) ∩ NG(v,X) of u and v in X, and
degG(u, v,X) for its size. For X = V (G) we will simply use NG(v), degG(v) and NG(u, v).
Often, when it is clear which graph is being referred to, we also omit the subscripts.

Throughout the paper we shall omit floor and ceiling symbols when this does not affect
our argument.

Probability. We write Bin(n, p) for the binomial distribution with n trials and success
probability p. Our proofs we will make frequent use of the following Chernoff bound, which
is an immediate corollary of [12, Theorem 2.1].

Lemma 6 (Chernoff bound). Let X be a random variable with distribution Bin(n, p) and
0 < δ < 3

2
. Then

(1) P(X < (1− δ)EX) < exp
(−δ2

3
EX
)

and P(X > (1 + δ)EX) < exp
(−δ2

3
EX
)
.

Sparse regularity. We define the density d(U, V ) of a pair of disjoint vertex sets (U, V )
to be the value e(U, V )/|U ||V |. A pair (U, V ) is called (ε, d, p)-lower-regular if for any sets
U ′ ⊆ U , V ′ ⊆ V satisfying |U ′| > ε|U |, |V ′| > ε|V | we have d(U ′, V ′) > (d− ε)p. We say a
pair (U, V ) is (ε, d, p)-regular if d(U, V ) > dp and for any sets U ′ ⊆ U , V ′ ⊆ V satisfying
|U ′| > ε|U |, |V ′| > ε|V | we have d(U ′, V ′) = (d(U, V )± ε). We say (U, V ) is (ε, p)-regular
if it is (ε, d, p)-regular for some d.

An (ε, p)-regular-partition of a graph H is a vertex partition V0 ∪ V1 ∪ · · · ∪ Vt of V (G)
with |V0| 6 ε|V | and |V1| = |V2| = · · · = |Vt| such that all but at most ε

(
t
2

)
pairs (Vi, Vj)
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with i, j > 1 are (ε, p)-regular. The corresponding (ε, d, p)-reduced graph R is the graph
with vertex set [t] where ij is an edge precisely if (Vi, Vj) is an (ε, d, p)-lower-regular pair
in H. The following version of the Sparse Regularity Lemma can be deduced from [1,
Lemma 12] 1.

Lemma 7 (Sparse Regularity Lemma, Minimum Degree Form Version). For all β ∈ [0, 1],
ε > 0 and every integer t0 there exists t1 > 1 such that for all d ∈ [0, 1] the following holds
for any p > 0. For any graph G on n vertices with minimum degree βpn, such that for
any X, Y ⊆ V (G) with |X|, |Y | > εn

t1
we have e(X, Y ) 6 (1 + 1

1000
ε2)p|X||Y |, there is a

regular-partition of V (G) with (ε, d, p)-reduced graph R satisfying δ(R) > (β−d−ε)|V (R)|
and t0 6 |V (R)| 6 t1. Furthermore, for each i ∈ V (R) the number of j ∈ V (R) such that
(Vi, Vj) is not (ε, p)-regular is at most εv(R), and for each i ∈ V (R) and v ∈ Vi, at most
(d+ ε)pn neighbours of v lie in

⋃
j:ij 6∈R Vj.

Note that the regularity lemma above is not specifically for G(n, p) but for graphs in
which the density edges between pairs of large sets is never much greater than p. For
p = ω( logn

n
) the random graph G(n, p) a.a.s. satisfies this, see for example Lemma 14

part (c ).
When applying the Sparse Regularity Lemma we will wish to say that if H is triangle-

free then the reduced graph is also triangle-free. In order to do this we use the following
regularity inheritance lemma, which is [3, Lemma 1.27] and is based on techniques from [15].

Lemma 8 (Regularity Inheritance). For any 0 < ε′, d there exist ε0 and C ′ such that for
any 0 < ε < ε0 and any 0 < p = p(n) < 1 the random graph Γ = G(n, p) a.a.s. has the fol-
lowing property. For any X, Y ⊆ V (Γ) with |X|, |Y | > C ′max{p−2, p−1 log n} and any sub-
graph H of Γ[X, Y ] which is (ε, d, p)-lower-regular, there are at most C ′max{p−2, p−1 log n}
vertices v of V (Γ) such that (X ∩NΓ(v), Y ∩NΓ(v)) is not (ε′, d, p)-lower-regular in H.

We shall also want the following consequence of this lemma, stating that for every regular
partition of every H ⊆ G(n, p) the neighbourhoods of most vertices induce lower-regular
subgraphs on the regular pairs of the partition.

Lemma 9. For any 0 < ε′, d < 1 there exist ε0 and C ′ such that for any t1 ∈ N and
any p > 2C ′t1n

−1/2 the random graph Γ = G(n, p) a.a.s. satisfies the following. For any
0 < ε < ε0, any spanning subgraph H of Γ and any (ε, d, p)-regular-partition V0∪V1∪· · ·∪Vt
of H with t 6 t1 and reduced graph R, all but at most

(
t1
2

)
C ′max{p−2, p−1 log n} vertices

1The statement is identical to that in [1] except for the final ‘Furthermore’ conclusion. That we can
assume no part is in many irregular pairs follows from the proof there. The final condition can be obtained
by applying the statement in [1] with ε/100 replacing ε and removing vertices from V1, . . . , Vv(R) to V0,
keeping the sizes of the Vi equal, until no vertices failing the condition remain. Initially, by regularity and
by the upper bound on densities in G, we remove at most ε

20n vertices. Thereafter, we remove vertices
only because they have at least εpn/2 neighbours in the current set V0. If at some point in the process V0

has εn/(10) vertices, then it contains at least ε2pn2/(40) edges, so contains a bipartite subgraph with at
least ε2pn2/(80) edges, in contradiction to the density assumption on G. We conclude the process stops
before this point, as desired.
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v of H have the property that for each ij ∈ E(R) the pair (NΓ(v) ∩ Vi, NΓ(v) ∩ Vj) is
(ε′, d, p)-lower-regular in H.

Proof. By applying Lemma 8 with ε′ and d we are given ε0 and C ′. Suppose p > 2C ′tn−1/2

and that Γ satisfies the probable event of Lemma 8. Now let H ⊆ Γ and a partition
V0 ∪ V1 ∪ · · · ∪ Vt of H with reduced graph R be given. Let ij ∈ E(R). For large enough n

we have C ′max{p−2, p−1 log n} 6 C ′max{ n
4C′2t21

,
√
n logn
2C′t1

} 6 n
2t1
6 |Vi|, |Vj|. So we conclude

from Lemma 8 that for all but at most C ′max{p−2, p−1 log n} vertices v ∈ V (H) the pair
(NΓ(v) ∩ Vi, NΓ(v) ∩ Vj) is (ε′, d, p)-lower-regular in H. The lemma follows by summing
over all ij ∈ E(R). �

The following lemma combines Lemma 7 with Lemma 8 to give a regular partition of a
triangle-free subgraph H for which the reduced graph is triangle-free.

Lemma 10. For any 0 < ε, d, β < 1 and any t0 there exist c and t1 such that for p > cn−1/2

in Γ = G(n, p) a.a.s. any triangle-free subgraph H with δ(H) > βpn has an (ε, d, p)-regular-
partition V0 ∪ V1 ∪ · · · ∪ Vt with t0 6 t 6 t1 such that the corresponding reduced graph R is
triangle-free and has minimum degree at least (β − d− ε)v(R).

Proof. Suppose we are given ε, d, β, t0 as in the lemma statement. Set ε′ = d
3

and apply
Lemma 8 (Regularity Inheritance) to ε′ and d to obtain ε0 and C ′. Now apply Lemma 7
(Sparse Regularity, Minimum Degree Form) with d, β, t0 as given and with ε also required
to be smaller than ε0. This gives t1. Take c = 6t1C

′.
Lemma 7 has given us an (ε, d, p)-regular-partition of H with reduced graph R that

satisfies all the conditions we require except that of R being triangle free. Suppose for
a contradiction there is a triangle in R. This corresponds to an (ε, d, p)-lower-regular
triple (X, Y, Z). First observe that |X| = |Y | > n

2t1
and for p(n) > cn−1/2 we have

n
4t1

> C ′max{p−2, p−1 log n}. By lower-regularity of (X < Z) and (Y, Z), at least 1
2
|Z|

vertices z of Z have degH(z,X) > d
2
p|X| and also degH(z, Y ) > d

2
p|Y |. Furthermore, for

all but at most C ′max{p−2, p−1 log n} 6 |Z|
3

vertices z of Z, the pair
(
NΓ(z,X), NΓ(z, Y )

)
is (ε′, d, p)-lower-regular. Choosing a vertex z ∈ Z which satisfies both conditions, by
regularity of

(
NΓ(z,X), NΓ(z, Y )

)
the edge density of

(
NH(z,X), NH(z, Y )

)
is at least

(d− ε)p > 0. This gives a triangle, the desired contradiction. �

Finally, we need the following special case of the Slicing Lemma.

Lemma 11 (Slicing Lemma). Let (Vi, Vj) be (ε, d, p)-lower-regular. For any X ⊆ Vi,
Y ⊆ Vj such that |X| > d|Vi|, |Y | > d|Vj| the pair (X, Y ) is ( ε

d
, d, p)-lower-regular.

Proof. Let X ′ ⊆ X, Y ′ ⊆ Y satisfy |X ′| > ε
d
|X| > ε|Vi| and |Y ′| > ε

d
|Y | > ε|Vj|. So

d(X ′, Y ′) > (d− ε)p >
(
d− ε

d

)
p. �

3. Proof of Theorem 5

Recall that Theorem 5 asserts that for any γ > 0 and r ∈ N, there are c, c′ > 0 such
that for any n−1/2/c′ 6 p 6 c′ the random graph G(n, p) a.a.s. contains a subgraph which
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is triangle-free, whose minimum degree is at least
(

1
2
− γ
)
pn, and which cannot be made

r-partite by removing any cp−1n edges.
The idea of the proof of this theorem is as follows. Let Γ = G(n, p) and partition [n]

into sets B = [n/2] and A = [n] \ B. We remove all edges in A. We further ‘sparsify’
Γ[B], keeping edges with a suitable probability p′. The goal of this ‘sparsification’ is to
obtain a subgraph of Γ[B] which is still complex enough for the rest of the argument, but
is such that for each vertex a in A the number of edges in N(a,B) is negligible compared
to the degree of a (see Lemma 12(b )). Observe that this subgraph is distributed as the
following inhomogeneous random graph model. We define G(n, p, p′) to be the random
graph on [n] obtained by letting pairs of vertices within [n/2] be edges independently with
probability pp′, letting pairs in [n] \ [n/2] all be non-edges, and letting all other pairs be
edges independently with probability p.

We next use the fact, first proved in [6], that there exists a triangle-free graph F which
is not r-partite. Let [`] be the vertex set of F . We place a ‘random blow-up’ of F into B as
follows: We partition B into ` equal sets B1, . . . , B` and keep only those edges in B running
between Bi and Bj with ij ∈ F . Finally, we remove in B all edges with an endpoint whose
degree in B deviates too much from expectation, and then all edges between A and B
which are in a triangle with a vertex from A. This last step is the only step in which we
delete edges between A and B.

It is easy to check that the resulting graph is triangle-free by construction. Using some
properties of G(n, p, p′) and the blow-up of F we can also show that it cannot be made
r-partite by deleting cp−1n edges. Moreover, using the fact that for each vertex a in A the
number of edges in N(a,B) is small and hence in the last step not many edges were deleted
at any vertex, we can also conclude that the minimum degree of the resulting graph is at
least

(
1
2
− γ
)
pn.

The typical properties of G(n, p, p′) we need are the following.

Lemma 12. For any ε > 0 and K > 10, there exists 0 < c < ε such that the following
holds. If Kn−1/2 6 p(n) 6 ε2c/(104K2) and p′ = cK2p−2n−1, then a.a.s. the random graph
G(n, p, p′) has the following properties. Let B = [n/2] and A = [n] \B.

(a ) deg(b, A), deg(a,B) =
(

1
2
± ε
)
pn for every a ∈ A and b ∈ B.

(b ) For each a ∈ A, at most p′p3n2 edges have both ends in N(a,B).
(c ) For each b ∈ B with deg(b, B) > 1

10
p′pn, the number of vertices a ∈ A such that there

exists b′ ∈ B with abb′ a triangle is at most pn
(
1− (1− p)deg(b,B)

)
.

(d ) At most cp−1n edges in B are incident to some b ∈ B with deg(b, B) > pp′n or
deg(b, B) 6 1

10
p′pn.

(e ) e(U, V ) > 2cp−1n for every pair of disjoint sets U, V ⊆ B with |U |, |V | > 2n/K.

We delay the proof of this lemma to after the proof of Theorem 5.

Proof of Theorem 5. Given γ > 0 and r ∈ N, let F be a triangle-free graph which is not
r-partite. Let ` = v(F ). We set K = 8r` and

(2) ε = 1
400
γr−2`−2 .
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Now we let c > 0 with c < ε be returned by Lemma 12 for input ε and K. We choose
c′ = min

(
1
K
, c

104

)
.

Given n−1/2/c′ 6 p(n) 6 c′, let p′ = cK2p−2n−1. Observe that p′ 6 1 by choice of p. Let
B = [n/2], and A = [n] \ B. We generate Γ = G(n, p), and let G1 be the subgraph of Γ
obtained by sparsifying B, keeping edges independently with probability p′ and removing
all edges of A. Since G1 is distributed as G(n, p, p′), by Lemma 12 it a.a.s. satisfies the
properties (a )–(e ). We now condition on G1 satisfying these properties.

Partition B into ` equal sets B1, . . . , B`. Let G2 be the subgraph of G1 obtained by
keeping only edges of the form ab with a ∈ A and b ∈ B, or of the form bb′ with b ∈ Bi

and b′ ∈ Bj for some ij ∈ F . We claim that G2[B] is far from r-partite.

Claim 13. G2[B] cannot be made r-partite by deleting any 2cp−1n edges.

Proof. Given a (not necessarily proper) r-colouring χ : B → [r], we define a majority
r-colouring χ′ : [`]→ [r] by setting χ′(i) equal to the smallest j such that

∣∣χ−1(j) ∩Bi

∣∣ >
|Bi|/r. Since F is not r-partite, the colouring χ′ is not proper, and hence there exists ij ∈ F
such that χ′(i) = χ′(j). The subsets B′i and B′j of Bi and Bj respectively which are given
colour χ′(i) by χ are by construction disjoint and each of size at least n/(4r`) = 2n/K.
Thus by Lemma 12(e ) we have e(B′i, B

′
j) > 2cp−1n, and the claim follows. �

Now we let G3 be obtained from G2 by deleting all edges of G2[B] which use a vertex
b ∈ B with deg(b, B) > pp′n or deg(b, B) 6 pp′n/10. By Lemma 12(d ) the number of
edges deleted is at most cp−1n.

Finally, we let H be obtained from G3 by deleting all edges ab of G3 with a ∈ A and
b ∈ B such that there exists b′ ∈ B with abb′ a triangle of G3. Observe that since A is
independent in H, any triangle of H has at most one vertex in A. By construction of
H, there are no triangles with exactly one vertex in A, so any triangle of H has all three
vertices in B. But then the three vertices of a triangle in H would lie in sets Bi, Bj and
Bk with ijk a triangle in F , and we chose F to be a triangle-free graph. We conclude that
H is triangle-free. Furthermore, if H can be made r-partite by deleting cp−1n edges, then
certainly H[B] can be made r-partite by deleting cp−1n edges. But since we deleted at most
cp−1n edges from G2[B] in order to obtain G3[B], and no further edges to obtain H[B], this
implies G2[B] can be made r-partite by deleting at most 2cp−1n edges, in contradiction to
Claim 13.

It remains only to show that δ(H) >
(

1
2
− γ

)
pn. First consider any vertex b ∈ B.

By Lemma 12(a ) we have degG1
(b, A) >

(
1
2
− ε)pn. By construction, no edge from b to

A was deleted in creating G2 from G1, or G3 from G2. By construction of G3, either
degG3

(b, B) = 0, in which case no edge from b to A was deleted in creating H, or we have
1
10
pp′n 6 degG1

(b, B) 6 pp′n. By Lemma 12(c ) we conclude that the total number of edges
deleted from b to A in forming H from G3 is at most

pn
(
1− (1− p)pp′n

)
6 p3p′n2 6 64r2`2cpn

(2)

6 1
2
γpn ,
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because c < ε. Thus we have

dH(b) >
(

1
2
− ε
)
pn− 1

2
γpn

(2)

>
(

1
2
− γ
)
pn

as desired.
Now consider any a ∈ A. Again by Lemma 12(a ) we have degG1

(a,B) >
(

1
2
− ε)pn.

Again no edges from a to B are deleted in forming G2 or G3. In forming H from G3, we
delete edges from a to each of b and b′ in B whenever abb′ forms a triangle in G3. Since
G3[B] is a subgraph of G1[B], this means that we delete at most 2e

(
NG1(a;B)

)
edges from

a to B, which by Lemma 12(b ) is at most 2p′p3n2. Thus we have

dH(a) >
(

1
2
− ε
)
pn− 2p′p3n2

(2)

>
(

1
2
− 1

2
γ
)
pn− 1

2
γpn =

(
1
2
− γ
)
pn ,

which completes the proof. �

We now give the proof of Lemma 12.

Proof of Lemma 12. Choose c = min{1
2
ε,K−2}. These properties follow from easy appli-

cations of the Chernoff bound, Lemma 6. We omit the proof of (a ) as it is standard.

(b ): By property (a ) we may assume that there are at most (1
2

+ ε)pn vertices in

N(a,B) for each a ∈ A. Now consider an arbitrary set S of (1
2

+ ε)pn vertices in B. The

expected number of edges in S is
(|S|

2

)
p′p 6 1

2
|S|2p′p. By Lemma 6 the probability that

S has more than |S|2p′p 6 p′p3n2 edges is less than exp(−1
6
|S|2p′p) 6 exp(− 1

100
p′p3n2) =

exp(− 1
100
K2cpn). Hence the claimed property follows by taking a union bound over all

a ∈ A.

(c ): Assume that we first only reveal the edges of G(n, p, p′) in B and consider a vertex
b ∈ B for which deg(b, B) > 1

10
p′pn. Now reveal also the edges between A and B. Then a

fixed a ∈ A forms a triangle with b in which the third vertex is also in B with probability
p · (1− (1− p)deg(b,B)). Therefore the expected number of such a ∈ A is

1

2
np(1− (1− p)deg(b,B)) >

1

2
np · (1− (1− p)p′pn/10) >

1

40
p′p3n2 ,

where the inequality follows from 1 − (1 − p)p
′pn/10 > 1

10
p′p2n − 1

100
p′2p4n2 > 1

20
p′p2n,

which uses p′ = K2cp−2n−1. Hence by Lemma 6 the probability that there are more than
pn(1 − (1 − p)deg(b,B)) such a ∈ A is less than exp(−10−3p′p3n2) = exp(−10−3K2cpn).
Taking a union bound over vertices in B the claimed property follows.

(d ): Two applications of Lemma 6 and simple union bounds show that a.a.s. for any
S ⊆ B with |S| = n/(2K2) we have

e(S) 6 (1 + ε)p′p

(
|S|
2

)
and(3)

e(S,B \ S) = (1± ε)p′p|S||B \ S| ,(4)
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since p 6 ε2c/(104K2). This implies that for any S ⊆ B with |S| 6 n/(2K2) the number
of edges in B adjacent to S is at most

(1 + ε)p′p

(
n/(2K2)

2

)
+ (1 + ε)p′p

n

2K2

(n
2
− n

2K2

)
6 (1 + ε)p′p

n

2K2
· n

2
6

1

2
cp−1n .

Hence, with C = {b ∈ B : deg(b, B) 6 1
10
p′pn} and D = {b ∈ B : deg(b, B) > p′pn}, the

claimed property follows if |C| 6 n/(2K2) and |D| 6 n/(2K2).
So assume that there is C ′ ⊆ C with |C ′| = n/(2K2). But then e(C ′, B \ C ′) 6
|C ′| 1

10
p′pn 6 1

20K2p
′pn2, contradicting (4). Similarly, assuming there is D′ ⊆ D with

|D′| = n/(2K2) and using (3) we get

e(D′, B \D′) > |D′|p′pn− 2e(D′) >
n2p′p

2K2
− (1 + ε)p′p

( n

2K2

)2

>
1

3K2
p′pn2 ,

contradicting (4).

(e ): For any disjoint U, V ⊆ B each with at least 2n
K

vertices the expected number of

edges between U and V is |U ||V |p′p > 4n2

K2 p
′p = 4cp−1n, so the result follows from another

application of Lemma 6 and a union bound (using p 6 ε2c/(104K2)). �

4. Auxiliary properties of G(n, p)

In this section we list some typical properties of G(n, p), which we shall use in the proofs
of Theorems 3 and 4.

Lemma 14. For any 0 < ε < 3
2

and M ∈ N and any p = ω
(

lnn
n

)
, the graph Γ = G(n, p)

a.a.s. satisfies the following.

(a ) degΓ(v) = (1± ε)pn for every v ∈ V (Γ).
(b ) eΓ(A) 6 max{|A|2p, 9n} for every A ⊆ V (Γ).
(c ) eΓ(A,B) = (1 ± ε)p|A||B| for every disjoint A,B ⊆ V (Γ) with |A|, |B| > n

M
. If on

the other hand |A| < M−1n, then eΓ(A,B) 6 (1 + ε)pM−1n2.
(d ) For any A ⊆ V (Γ) with |A| > n

M
all but at most 10Mε−2p−1 vertices in V (Γ) have

(1± ε)p|A| neighbours in A.

Proof. These properties follow from standard applications of the Chernoff bound, Lemma 6.
Here we only show (b ); the other properties follow similarly.

Suppose that A is an arbitrarily chosen vertex subset. The expected number of edges
in A is

(|A|
2

)
p 6 |A|2p. By Lemma 6 the probability that there are more than |A|2p edges

in A is less than exp(−1
3

(|A|
2

)
p) 6 exp(−1

7
|A|2p). For |A| > 3p−1/2n1/2 this probability

is less than exp(−9
7
n) and so taking a union bound over all subsets the probability that

Property (b ) fails for a set of size at least 3p−1/2n1/2 is less than 2n exp(−9
7
n), which tends

to zero. A set A with |A| < 3p−1/2n1/2 is less likely to have more than 9n edges than a set
B with |B| = 3p−1/2n1/2 6 n. Therefore, since |B|2p = 9n and by the previous argument,
the probability that a set A of size less than 3p−1/2n1/2 has more than 9n edges tends to
zero. �
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The next lemma shows that for any partition V
(
G(n, p)

)
= A ∪ B with neither A nor

B very small, most edges of G(n, p) have ‘typical’ neighbourhoods in each set.

Lemma 15. For any 0 < ε < 1
2
, M ∈ N and p = ω

(
lnn
n

)
in Γ = G(n, p) a.a.s. for any two

subsets A,B of V (Γ) with n
M
6 |A|, |B| all but at most 103Mε−2p−1n edges uv in Γ satisfy

all of the following:

• degΓ(u,A), degΓ(v,A) = (1± ε)p|A|.
• degΓ(u,B), degΓ(v,B) = (1± ε)p|B|.
• degΓ(u, v, B) > (1− ε)p2|B|.

Proof. By Lemma 14(d ) we may assume that all but a set S of at most 20Mε−2p−2 vertices
in Γ have (1± ε)p|B| neighbours in B and (1± ε)p|A| neighbours in A. By Lemma 14(c )
we further may assume that we have

(5) e(S,A) 6 (1 + ε)p · 20Mε−2p−2n = 20(1 + ε)Mε−2p−1n .

We now consider an arbitrary vertex v in V \ S and two arbitrary sets P,Q ⊆ N(v)
satisfying |P | > (1− 1

2
ε)p|B| and |Q| > 100Mε−2p−1. The probability that all vertices in

Q have fewer than (1− ε)p2|B| 6 (1− 1
2
ε)p|P | neighbours in P is less than

exp
(
− ε2

12
p|P ||Q|

)
6 exp

(
− ε2

12
p · 1

2
p
n

M
· 100Mε−2p−1

)
6 exp(−3pn) .

Since P,Q ⊆ N(v) we have |P |, |Q| 6 (1 + ε)pn. So, taking a union bound, the probability
that there exist v, P,Q as above is less than n2(1+ε)pn2(1+ε)pn exp(−3pn) which tends to
zero as n tends to infinity for p = ω(log n/n). Hence a.a.s. each vertex v in V \ S has at
most 100Mε−2p−1 neighbours u such that deg(u, v, B) < (1− ε)p2|B|. Summing over v we
obtain at most 100Mε−2p−1n such edges, which along with the edges incident to S by (5)
gives at most 103Mε−2p−1n edges. �

The following lemma is crucial in the proofs of Theorems 3 and 4. Before stating it
we need some definitions. For any s ∈ N, the s-star is the star K1,s. The vertex of
degree s in the s-star is called its centre, all other vertices are its leaves. For A ⊆ V (Γ) and
0 < q, ε < 1 we say that an s-star with centre x is (q, ε)-bad for A if there is S ⊆ NΓ(x,A)
with |S| 6 qp|A| such that each leaf y of the s-star satisfies degΓ(y, S) > (1 + ε)qp2|A|; in
other words y has substantially more neighbours in S than expected. We also say that S
witnesses this badness.

When we use this definition, we will choose a star with centre x and set S = NΓ(x,A) \
NH(x,A), where H is a triangle-free subgraph of Γ with large minimum degree, and we
will choose our star such that that NΓ(y, S) is quite large for each leaf y. Now if the star
is good it follows that S itself must be quite large, so that the degree of x in H cannot be
too large, leading to a contradiction to the minimum degree of H. The following lemma
however implies that bad stars cover only O(p−1n) edges, which is where the sharp bounds
in Theorems 3 and 4 come from.

Lemma 16. For every 0 < ε < 1 and every p the random graph G(n, p) a.a.s. satisfies
the following. For every A ⊆ V (Γ) with n

3
6 |A|, every q with ε < q < 1, and every
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s > 100q−1ε−2p−1 there are fewer than 1
2
p−1 vertex disjoint s-stars in V (Γ) \ A which are

(q, ε)-bad for A.

Proof. First let A be fixed. Consider an s-star with centre x and a set S ⊆ NΓ(x,A) with
|S| 6 qp|A|. By the Chernoff bound, Lemma 6, the probability that S witnesses that this

star is (q, ε)-bad for A is less than exp
(−ε2

3
· qp2|A|s

)
. Observe that |S| 6 qp|A| 6 pn

and that we may assume s 6 degΓ(x) 6 2pn by Lemma 14(a ). So by taking a union
bound over choices of S for a single s-star, and then considering collections of 1

2
p−1 vertex

disjoint s-stars, and taking another union bound over all such collections, we obtain that
the probability that there are at least 1

2
p−1 disjoint (q, ε)-bad stars for A in V (Γ) \ A is

less than(
n · 22pn

) 1
2
p−1

·
(

2pn exp
(−ε2

3
qp2|A|s

))1
2
p−1

6
(
24pn exp

(−ε2
9
qp2ns

))1
2
p−1

.

By taking a union bound over choices of A we find that the probability that there is A
such that 1

2
p−1 stars K1,s outside A are (q, ε)-bad for A is less than

2n
(
24pn exp

(−ε2
9
qp2ns

))1
2
p−1

6 exp
(
n+ 2n− ε2

18
qpns

)
,

which tends to zero for s > 100ε−2q−1p−1. (Observe that we do not have to take a union
bound over s, because for s′ > s any s-star which is a subgraph of a (q, ε)-bad s′-star is
also (q, ε)-bad.) �

5. Proof of Theorem 3

Recall that Theorem 3 states the following.

Theorem 3. For any γ > 0, there exists C such that for any p(n) the random graph
Γ = G(n, p) a.a.s. has the property that all triangle-free spanning subgraphs H ⊆ Γ with
δ(H) > (2

5
+ γ)pn can be made bipartite by removing at most min

(
Cp−1n, (1

4
+ γ)pn2

)
edges.

The main strategy of the proof is as follows. We first apply Lemma 10 (which is a
consequence of the Sparse Regularity Lemma) to H to obtain a dense triangle-free reduced
graph R of H with minimum degree above 2

5
v(R), which by the Andrásfai–Erdős–Sós

Theorem, Theorem 1, is bipartite. We conclude that H can be made bipartite by removing
o(pn2) edges. Hence in a maximum cut X ∪ Y of H we have eH(X), eH(Y ) = o(pn2). Our
goal will then be to improve this bound on eH(X) and eH(Y ) by distinguishing between
‘typical’ and ‘atypical’ edges in these sets and applying the results established in the
previous section to count these, using that X∪Y is a maximum cut and that H is triangle-
free.

Proof of Theorem 3. Let

(6) ε =
γ4

107
, d =

γ2

103
, η = d+ 3ε, β =

2

5
+ γ, t0 =

1

ε
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and let c and t1 be the values attained by applying Lemma 10 with inputs ε, d, β and t0.
Let M = t21, and let

(7) C = max
(
1010ε−2, c2

)
.

We first consider the easy case that p is small. If p 6 n−7/4, then the expected number
of paths with two edges in G(n, p) is at most p2n3 6 n−1/2. In particular a.a.s there
are no such paths, so a.a.s. G(n, p) is bipartite and the statement of Theorem 3 holds
trivially. We may therefore assume p > n−7/4, so by Lemma 6 a.a.s. G(n, p) has at most(

1
2

+ γ
)
pn2 edges. Now if G is any graph with at most

(
1
2

+ 2γ
)
pn2 edges, then we can

make G bipartite by removing all the edges of G not in a maximum cut. Since a maximum
cut of G contains at least half its edges, we remove at most

(
1
4

+ γ
)
pn2 edges. Again, if

min
(
Cp−1n, (1

4
+ γ)pn2

)
= (1

4
+ γ)pn2, which occurs when p 6 cn−1/2, the statement of

Theorem 3 follows.
It remains to consider the hard case that p > cn−1/2. We now assume Γ = G(n, p)

satisfies the properties stated in Lemma 14 with input ε and M , Lemma 15 with input ε
and M , Lemma 16 with input ε and Lemma 10 for the parameters given above.

Consider any triangle-free H ⊆ Γ with δ(H) > (2
5

+ γ)pn and let X ∪ Y be a maximum
cut of the vertex set of H. Assume without loss of generality that eH(X) > eH(Y ). Our
goal is to show eH(X) 6 1

2
Cp−1n. We start with the following observation.

Claim 17. eH(X) 6 ηpn2.

Proof of Claim 17. By the property asserted by Lemma 10 we obtain an
(
ε, d, p

)
-regular

partition V (Γ) = V0 ∪ V1 ∪ · · · ∪ Vt of H with t0 6 t 6 t1 whose corresponding reduced
graph R is triangle-free and has minimum degree at least (2

5
+ γ − d − ε)v(R) > 2

5
v(R).

Therefore, by the Andrásfai–Erdős–Sós Theorem, Theorem 1, R is bipartite.
By Lemma 14(a ) at most εn(1+ε)pn edges have at least one end in V0. Moreover, since

at most an ε-fraction of all pairs are irregular, by Lemma 14(c ) at most ε(1 + ε)pn2 edges
are contained in irregular pairs. Finally, at most dpn2 edges are in pairs with density less
than d. We conclude that at most (d+ 2(1 + ε)ε)pn2 6 ηpn2 edges of H do not lie in pairs
corresponding to edges of R, which proves the claim. �

We next bound the sizes of X and Y .

Claim 18.
(

2
5

+ 1
2
γ
)
n 6 |X|, |Y | 6

(
3
5
− 1

2
γ
)
n.

Proof of Claim 18. Suppose for a contradiction that X satisfies |X| > (3
5
− 1

2
γ)n and

hence |Y | < (2
5

+ 1
2
γ). Then by Lemma 14(c ) we see that eH(X, Y ) 6 eΓ(X, Y ) 6

(1 + ε)(3
5
− 1

2
γ)(2

5
+ 1

2
γ)pn2.

On the other hand, by our minimum degree condition 2eH(X)+eH(X, Y ) > (2
5
+γ)pn|X|,

and similarly 2eH(Y ) + eH(X, Y ) > (2
5

+ γ)pn|Y |. Since eH(X), eH(Y ) 6 ηpn2 this gives

eH(X, Y ) > (2
5

+γ)pn ·max{|X|, |Y |}−2ηpn2. Since max{|X|, |Y |} > (3
5
− 1

2
γ)n we obtain

eH(X, Y ) >
(
(3

5
− 1

2
γ)(2

5
+ γ)− 2η

)
pn2, a contradiction.

So |X| 6 (3
5
− 1

2
γ)n, and analogously |Y | 6 (3

5
− 1

2
γ)n, proving the claim. �
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We next define

X̃ =
{
x ∈ X : degH(x,X) > γ · degH(x)

}
,

a set of vertices with high degree in X, which require special treatment later on. The next
claim shows that X̃ is small and contains at most half of the edges in X.

Claim 19. |X̃| 6 1
100
γn, and if eH(X) > 1

2
Cp−1n then eH(X̃) 6 1

2
eH(X).

Proof of Claim 19. By Claim 17 and the definition of X̃ we have

(8) ηpn2 > eH(X) >
1

2
|X̃|γδ(H) >

γ

2

(2

5
+ γ
)
pn|X̃| ,

hence |X̃| 6 2ηn
γ(2/5+γ)

6 5γ−1ηn 6 γn/100 by (6).

For the second part of the claim assume that eH(X) > 1
2
Cp−1n. By Lemma 14(b ) we

have eH(X̃) 6 eΓ(X̃) 6 max{|X̃|2p, 9n}. If this maximum is attained by 9n, then we are
done because 9n 6 1

4
Cp−1n < 1

2
eH(X). Otherwise eH(X̃) 6 |X̃|2p, and since |X̃| 6 1

100
γn,

we have

|X̃|2p 6 1

100
γpn|X̃| 6 γ

4

(2

5
+ γ
)
pn|X̃|

(8)

6
1

2
eH(X) ,

and we are also done. �

We continue by removing ‘atypical’ edges from H. Let H ′ be the graph obtained from
H by removing edges from EH(X) which do not satisfy the conditions of Lemma 15 with
respect to the partition X ∪ Y . We also remove the edges in EH(X̃). By Lemma 15 and
Claim 19 we have eH(X) 6 1

2
Cp−1n or

(9) eH(X)− eH′(X) 6 103ε−2p−1n+
1

2
eH(X)

(7)

6
1

10
Cp−1n+

1

2
eH(X) .

Our goal in the remainder is to bound the number of H ′-edges in X.
Let xz be any H ′-edge in X. We have

(10) degΓ(x, z, Y ) > (1− ε)p2|Y |
by construction of H ′, so this common neighbourhood constitutes many Γ-triangles xzy,
for each of which either xy or zy is not present in H ′. We now would like to direct the
edges in X according which of these two cases is more common – however, it turns out
that we need to favour vertices not in X̃ in this process; so we direct with a bias.

More precisely, for any H ′-edge in X, if one of its vertices is in X̃ call it x, otherwise
let x be any vertex of the edge. Let x′ be the other vertex of the edge. We direct xx′

towards x if

|NΓ(x, x′, Y ) \NH′(x, Y )| > 2

3
degΓ(x, x′, Y ) ,

that is if many edges from x to NΓ(x, x′, Y ) were deleted. We direct xx′ towards x′

otherwise, in which case we have

|NΓ(x, x′, Y ) \NH′(x
′, Y )| > 1

3
degΓ(x, x′, Y ) ,
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An s-in-star in this directed graph is an s-star such that all edges are directed towards
the centre. Recall that an s-star with centre x is (q, ε)-bad for Y if there is a witness
S ⊆ NΓ(x, Y ) with |S| 6 qp|Y | such that each leaf z of the s-star satisfies degΓ(z, S) >
(1 + ε)qp2|Y |. The next claim shows that in-stars in H ′[X] are bad. We define

s = 103ε−2p−1 , q̃ = (1− 2ε)
2

3
, q = (1− 2ε)

1

3
.

Claim 20. Each s-in-star in H ′[X] with centre x ∈ X̃ is (q̃, ε)-bad for Y , and each s-in-
star in H ′[X] with centre x 6∈ X̃ is (q, ε)-bad for Y .

Proof of Claim 20. First assume F is an s-in-star with centre x ∈ X̃ which is not (q̃, ε)-bad.
We first show that this implies

(11) |NΓ(x, Y ) \NH′(x, Y )| > q̃p|Y | .

Indeed, assume otherwise. Then, since F is not (q̃, ε)-bad for Y we have for S = NΓ(x, Y )\
NH′(x, Y ) that there is a leaf z of F such that

|NΓ(x, z, Y ) \NH′(x, Y )| = degΓ(z, S) < (1 + ε)q̃p2|Y | 6 2

3
(1− ε)p2|Y | .

This however contradicts the fact that F is an in-star and thus

|NΓ(x, z, Y ) \NH′(x, Y )| > 2

3
degΓ(x, z, Y )

(10)

>
2

3
(1− ε)p2|Y | .

Accordingly (11) holds.
Since degH(x, Y ) = degH′(x, Y ) we conclude that

degH(x, Y ) 6 degΓ(x, Y )− q̃p|Y | 6 (1 + ε)p|Y | − (1− 2ε)
2

3
p|Y | 6

(1

3
+ 3ε

)
p|Y | .

Because X ∪ Y is a maximum cut this implies by Claim 18 that

degH(x) 6 2
(1

3
+ 3ε

)
p
(3

5
− 1

2
γ
)
n <

(2

5
+ γ
)
pn ,

contradicting the minimum degree of H.
For the second part of the claim assume that F is an s-in-star with centre x 6∈ X̃ which

is not (q, ε)-bad. By similar logic to the proof of (11), this implies that

|NΓ(x, Y ) \NH′(x, Y )| > qp|Y |

by using that for any leaf z of F we have |NΓ(x, z, Y ) \NH′(x, Y )| > 1
3

degΓ(x, z, Y ). Also

analogously, this implies that degH(x, Y ) 6 (2
3

+ 3ε)p|Y |. Recall that x 6∈ X̃ means that

degH(x,X) < γ degH(x) and hence degH(x) 6 1
1−γ degH(x, Y ) 6 (1 + 2γ) degH(x, Y ).

Thus, by Claim 18,

degH(x) 6 (1 + 2γ)
(2

3
+ 3ε

)
p
(3

5
− 1

2
γ
)
n 6

(2

3
+

5

3
γ
)
p
(3

5
− 1

2
γ
)
n <

(2

5
+ γ
)
pn ,

again contradicting the minimum degree of H. �
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By Lemma 16, however, the number of s-stars in Γ which are either (q̃, ε)-bad or (q, ε)-
bad is less than p−1. So Claim 20 implies that the number of s-in-stars in H ′[X] is less
than p−1. The following claim shows that this implies that eH′(X) is small.

Claim 21. eH′(X) 6 1
10
Cp−1n.

Proof of Claim 21. Assume for a contradiction that eH′(X) > 1
10
Cp−1n > 104ε−2p−1n.

Using a greedy argument, we will show that we then can find more than p−1 stars in
H ′[X] which are s-in-stars (with s = 103ε−2p−1). Indeed, the average in-degree is at least
104ε−2p−1, so we can find at least one (103ε−2p−1)-in-star. If we remove from H ′[X] this
star and all edges adjacent to it this accounts for at most (1 + s)(1 + ε)pn 6 2spn edges.
So we can repeat this process p−1 times, after which at most 2sn = 2 · 103ε−2p−1n edges
have been deleted from H ′[X], hence H[X] still contains more than 103ε−2p−1n edges in
X, still giving an average in-degree of at least 103ε−2p−1, and hence we can find another
(103ε−2p−1)-in-star, which is the desired contradiction. �

Now (9) and Claim 21 imply eH(Y ) 6 eH(X) 6 1
2
Cp−1n, hence H can be made bipartite

by removing at most Cp−1n edges as claimed. �

6. Proof of Theorem 4

The proof of Theorem 4 adds the techniques developed for the proof of Theorem 3 to
ideas used in [2, 16]. Our strategy is as follows. Given a subgraph H of Γ = G(n, p) with
δ(H) >

(
1
3

+ γ
)
pn, we will apply the sparse regularity lemma to obtain a regular partition

V (H) = V0 ∪ · · · ∪ Vt with (ε, d, p)-reduced graph R. We let W be the set of all vertices
whose degree to some set Vi is far from the expected p|Vi|, and then for each I ⊆ [t] we
let NI be the subset of vertices in V (H) \W with many neighbours in exactly the clusters
{Vi : i ∈ I}, which gives a partition of V (H) into 2t + 1 sets. We will show that there are
O(p−1n) edges in W and in each NI , hence we can remove all such edges to obtain a graph
with bounded chromatic number. We do this by showing that W is too small to contain
many edges, and that the same is true for any NI such that R[I] contains an edge. If on
the other hand R[I] is independent, we use an argument similar to that in the proof of
Theorem 3.

Proof of Theorem 4. Given γ > 0, let

(12) d =
γ

20
, ε′ =

d3

30
, β =

1

3
+ γ , t0 =

1

ε′
.

Let ε0, CL9 be the outputs if Lemma 9 is applied with ε′ and d. We take ε = min{ε0, ε
′}

and let t1 be the output if Lemma 7 is applied with β, ε and t0. We require as well that
t1 > 10. We choose c = 2CL9t1 (which is needed for the application of Lemma 9). Finally
we choose

(13) M = 2t1 , r = 2t1 + 1 , C ′ = 104 · 210t1ε−3 , C = max(rC ′2, c2) .

As in the proof of Theorem 3, if p 6 n−7/4 a.a.s. G(n, p) is bipartite and the statement is
trivially true, while for any graph G a maximum r-partition of G contains at least r−1

r
e(G)
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edges, so that when p > n−7/4 a.a.s. we can make any subgraph of G(n, p) r-partite by
deleting at most

(
1
2r

+ γ
)
pn2 edges. Again, this leaves the hard case when p > cn−1/2.

Now sample Γ = G(n, p). Since p > cn−1/2 = ω( lnn
n

) we can assume that Γ satisfies the
properties of Lemmas 7, 14, 15, and 16 with the parameters chosen above.

Let H be a triangle-free spanning subgraph of Γ with δ(H) >
(

1
3

+ γ
)
n. By Lemma 7

there is an (ε, d, p)-regular partition V0∪V1∪· · ·∪Vt of H with t 6 t1 such that the reduced
graph R has δ(R) >

(
1
3

+ γ − d − 3ε
)
v(R) >

(
1
3

+ γ
2

)
v(R), and such that for each i and

each v ∈ Vi, the vertex v has at most (d+ ε)pn neighbours in
⋃
j:ij 6∈R Vj.

Let W consist of all vertices which either have more than (1 + ε)p|Vi| neighbours in
Vi for some i, or more than 2εpn neighbours in V0. By Lemma 14(d ) we have |W | 6
10M(t + 1)ε−2p−1, and by Lemma 14(b ) the number of edges in W is therefore at most
max

(
100M2(t + 1)2ε−4p−1, 9n

)
6 10p−1n, where the inequality holds for all sufficiently

large n. Now for each I ⊆ [t], let NI be the set of vertices of H with many neighbours
exactly in the clusters Vi with i ∈ I, that is,

NI = {v ∈ V (H) : |N(v) ∩ Vi| > 10dp|Vi| if and only if i ∈ I} .

Claim 22. {NI : |I| > t
3
} partitions V (H) \W .

Proof. The sets {NI : I ⊆ [t]} are disjoint and partition V (H) \W by definition. If |I| 6 t
3

then any vertex v ∈ NI has at most
∑

i∈I(1 + ε)p|Vi|+
∑

i 6∈I 10dp|Vi|+ 2εpn <
(

1
3

+ γ
)
pn

neighbours since v 6∈ W and by definition of NI , which is a contradiction, so NI = ∅ if
|I| 6 t

3
. �

Our goal is thus to show that eH(NI) 6 C ′2p−1n for any I with |I| > t
3
, since this implies

that H can be made r-partite with r = 2t1+1 by removing at most rC ′2p−1n 6 Cp−1n edges.
This is established by the following two claims.

Claim 23. If R[I] contains an edge, then eH(NI) 6 C ′2p−1n.

Proof of Claim 23. Suppose that ij ∈ R[I]. If v ∈ NI is such that
(
NΓ(v, Vi), NΓ(v, Vj)

)
is

(ε′, d, p)-lower-regular in H. Since v 6∈ W , the pair
(
NH(v, Vi), NH(v, Vj)

)
is
(
ε′ 1+ε

10d
, d, p

)
-

lower-regular in H. Since d > ε′ 1+ε
10d

, there is an edge of H in this latter pair and hence H
contains a triangle, a contradiction.

We conclude that there are no such vertices in NI , so by Lemma 9 we have |NI | 6
C ′max

(
p−2, p−1 log n

)
. By Lemma 14(b ) the number of edges in NI is therefore at most

max
(
C ′2p−3, C ′2p−1 log2 n, 9n

)
6 C ′2p−1n by choice of p and C ′. �

Claim 24. If R[I] is independent, then eH(NI) 6 C ′p−1n.

Proof of Claim 24. Since δ(R) >
(

1
3

+ γ
2

)
t, if R[I] is independent then |I| < 2t

3
. Let

SI :=
⋃
i∈I Vi. We first show that SI and NI are disjoint. Indeed, if v ∈ Ni were in some

Vi with i ∈ I, then by definition of NI the vertex v has at least
∑

j∈I 10dp|Vj| > 5dpn/3

neighbours in
⋃
j∈I Vj, where the inequality follows since |I| > t/3. Since ij is not an edge

of R for any j ∈ I, this is in contradiction to the guarantee that v has at most (d + ε)pn
neighbours in

⋃
j:ij 6∈R Vj.
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We now delete some ‘atypical’ edges from H[NI ]. Remove from H[NI ] each edge uv with
degΓ(u, v, SI) < (1− ε)|SI |p2. to obtain the graph H ′. By Lemma 15 this accounts for at
most 103 · 4ε−2p−1n 6 ε

10
C ′p−1n edges.

Let Z be the set of vertices v ∈ NI such that degH(v) − degH′(v) > εpn. By double

counting we have |Z| 6 εC′p−1n
5εpn

= 1
5
C ′p−2.

We now proceed similarly as in the proof of Theorem 3. We orient the edges uv in
H ′[NI ] towards u if |NΓ(u, v, SI) \NH′(u, SI)| > 1

2
degΓ(u, v, SI) and towards v otherwise.

Again, for s = 103q−1ε−2p−1 and q = (1 − 2ε)1
2

any s-in-star with centre x not in Z is
(q, ε)-bad with respect to SI . Indeed, otherwise, analogously to the proof of (11), we have
|NΓ(x, SI) \NH′(x, SI)| > qp|SI |, which implies

degH′(x, SI) < (1 + ε)p|SI | − qp|SI | =
1

2
p|SI | 6

1

2
p

2

3
n =

1

3
pn

Since x 6∈ Z, we have degH(x) 6 degH′(x) + εpn <
(

1
3

+ γ)pn, a contradiction.
We now pick greedily vertex disjoint s-in-stars whose centres are not in Z until no more

remain. By Lemma 16, since SI and NI are disjoint, this process terminates having found
less than 1

2
p−1 such stars. Let Y be the set of vertices contained in all these stars; then

|Y | 6 1
2
p−1s 6 103q−1ε−2p−2. Now eH′

(
NI \ (Y ∪ Z)

)
6 s|NI | since NI \ (Y ∪ Z) contains

no s-in-star, so we conclude

eH(NI) 6 (1 + ε)pn|Y ∪ Z|+ s|NI |+ 1
10
C ′p−1n 6 C ′p−1n ,

as desired. �

Finally, these claims show that deleting all edges internal to any of the sets W and NI

for I ⊆ [t] yields a 2t + 1 = r-partite graph, and that the number of edges deleted is at
most Cp−1n, as desired. �
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18 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND B. ROBERTS
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