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Abstract

Hospital performance metrics, often in the form of risk-adjusted hospital mortality rates, are in-
creasingly being made available in the public domain to compare di�erent hospitals. Despite the
proliferation of these metrics, uncertainty remains regarding their validity and reliability given the
noise surrounding their underlying measures. This paper considers a quality measure of hospi-
tal performance developed by McClellan and Staiger (1999) which smooths within hospitals and
over time, while remaining computationally straightforward. The McClellan and Staiger method
improves on others by incorporating di�erent measures of outcome, eliminating systematic bias
arising from the heterogeneous mix of hospital outputs and the noise inherent in other measures of
quality. The technique also allows the forecasting of future quality. Using English Hospital Episode
Statistics for the years 2000-2005 for Acute Myocardial Infarction (AMI) and Hip Replacement,
we use this technique to return quality measures based on hospital fixed e�ects estimated from
yearly cross-sectional patient level data, and Vector Autoregressions (VARs) estimated over time,
which then combine information from di�erent time periods and across conditions to produce ro-
bust hospital quality measures. Our results suggest that this method is well suited to measure and
predict provider quality of care in the English setting.

Keywords: Measuring Quality; Vector Autoregressions; Health; Hospitals.
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1 Introduction

Metrics of risk adjusted hospital mortality are increasingly being released into the public
domain to assess health care provider performance, enabling patients to make informed
choices, and help managers and clinicians to improve service delivery. The publication of
this type of performance information aids policy, planning and research through providing
forecasts and evaluations of health care services. Evaluations of performance information
allow policy makers to better understand the consequences of policy actions or practices
that have occurred in the past, while forecasting allows them to use data to look forward
and make informed planning decisions, such as with the allocation of funding (Jones and
Spiegelhalter, 2012; McClellan and Staiger, 1999).

To date the main measure used for these types of activities in the United Kingdom has been
the Hospital Standardized Mortality Ratio (HSMR) and since 2011 the Summary Hospital-
level Mortality Indicator (SHMI). However, these measures have limitations in their ability
to inform policy and have been heavily criticized for their methodological and practical
short comings (Campbell et al., 2012; Lilford and Pronovost, 2010). As initially developed
by Jarman (Jarman et al., 1999), HSMRs compare the observed numbers of deaths in a
given hospital with the expected number of deaths estimated using national data, after
adjustment for factors a�ecting the risk of in-hospital death; essentially adjusting through
age, gender, diagnosis and route of admission (Shojania and Forster, 2008). The SHMI
builds upon recommendations for the improvement of HSMRs to increase robustness, such
as using three years of past data to build risk adjustment models rather than one year,
but follows a similar methodology (Information Centre, 2012). Despite their widespread
use, many authors express concern over the degree of true quality information that these
indicators hold and recommend caution when using them to draw conclusions (Birkmeyer
et al., 2006; Dimick et al., 2004; Lingsma et al., 2010; Mohammed et al., 2009; Normand,
Wolf, Ayanian, and McNeil, Normand et al.; Powell et al., 2003; Shahian et al., 2010).
Mohammed et al. (2009), for example find direct, systematic associations between hospital
mortality rates and the factors used to adjust for case-mix in England based on Hospital
Episode Statistics (HES) data, suggesting that the employment of these measures as risk
adjusters may actually increase the bias that they are intended to reduce (Lilford et al.,
2007; Powell et al., 2003). While such concerns may represent skepticism over the ability
of risk adjustment techniques to control for di�erences in case mix or chance variation,
they also reflect concerns over the use of a particular, single dimension of mortality as a
proxy for overall hospital quality (Shojania and Forster, 2008).
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Notwithstanding these problems, policy makers increasingly focus on mortality rates as-
sociated with specific conditions or procedures, where the quality of care is known to have
a large impact on patient outcomes (Lilford and Pronovost, 2010). Mortality rates for
specific conditions or procedures have become popular measures as they are able to iden-
tify key areas where health system quality is more likely to influence specific outcomes,
especially where medical progress has been instrumental in improving outcomes. Popular
outcome indicators of this sort are 30-day mortality rates for acute myocardial infarc-
tion (AMI) and Stroke. The proven link between identified care processes and patient
outcomes, for conditions such as AMI, allow researchers to be more confident in making
judgments about quality and its association with treatment (Klazinga, 2011). A consider-
able body of work has used AMI mortality as a proxy for quality both in England (Bloom
et al., 2010; Cooper et al., 2010; Propper et al., 2004, 2008) and internationally (Kessler
and McClellan, 1996, 2011; McClellan and Staiger, 1999; Shen, 2003). Yet even where the
relationship between treatments and outcomes is established, observed variation across
hospitals and across time may continue to reflect considerable random variation and not
true changes in quality (Dimick and Welch, 2008).

Other measures are often also presented alongside mortality indicators. At the hospi-
tal level another common proxy for quality is readmission rates, with higher emergency
readmissions in particular, thought to be indicative of worse quality. This measure has
become increasingly popular despite the fact that it cannot always be attributed to the
overall quality of care delivered by the hospital. McClellan and Staiger (1999) note that
high readmissions may not signal poor quality when hospital treatment is lowering mortal-
ity rates and more severely ill patients are surviving initial disease episodes. Under such
circumstances higher readmission rates might be expected. Moreover, readmissions may
reflect poor quality care in other parts of the health care system (e.g. the primary care
sector), or individual behavioural factors beyond hospital control (e.g. poor adherence to
medicines). Benbassat and Taragin (2000) conclude that readmission indicators are not
good measures of quality of care for most conditions, as there is large variation in the
percentage of this indicator that can be attributed poor quality care. Their own study,
using di�erent readmission indicators for a range of conditions, estimated the variation for
readmissions associated with improved quality of care to be between 9% and 50%. They
did note that readmissions for specific conditions, such as Child Birth, Coronary Artery
Bypass Grafting and Acute Coronary Disease, as well as approaches that ensure closer
adherence to evidence based guidelines, these indicators may provide more appropriate
measures of quality. Fischer et al. (2012) also suggest that there is little evidence to indi-
cate that readmissions are related to quality of care. However, after initial use in the US,
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there are now a growing number of European countries employing readmission rates as a
health service outcome measure (Klazinga, 2011). At present, the use of hospital read-
mission to measure quality while increasing in practice, remains disputed. Nonetheless,
in April 2011, the British government introduced controversial rules aimed at penalizing
emergency readmissions by barring payment for them.

Thus, while there remains doubt over their acceptability, there is increasing employment
in the UK of measures to monitor hospital performance based on routinely collected data.
Given this environment, we wish to examine a method proposed by McClellan and Staiger
(1999), which helps overcome a number of issues associated with measuring hospital qual-
ity. Hospital quality is di�cult to observe directly. To measure true quality across a range
of relevant dimensions and contain random noise can involve highly complex modeling,
as discussed by Jones and Spiegelhalter (2012). The broad measures developed by Mc-
Clellan and Staiger (1999) use data from specific conditions where latent quality is linked
to particular outcomes, for example AMI 30-day mortality and emergency 28-day read-
missions, in a relatively simple two-step modeling process. In the US setting they find
that these measures appear to be good indicators of performance (Kessler and McClellan,
1996; McClellan and Staiger, 1999) and may be even as good as more detailed measures
of performance which are more costly to obtain (Dranove et al., 2002). While no compa-
rable research has yet been done in the UK to support either of these findings, as noted
above crudely adjusted hospital mortality rates and AMI mortality rates have been used
by numerous studies as indicators of performance in the UK and to draw conclusions on
the e�ectiveness of policy, such as increasing hospital competition (Bloom et al., 2010;
Cooper et al., 2010; Propper et al., 2004). Our contention is that the method proposed by
McClellan and Staiger (1999) can improve on these crude signals of hospital quality at low
cost in terms of data collection and computation. Moreover while the method can be used
to assess past quality, it can also be used to predict future quality levels, an attractive
attribute emphasized by Jones and Spiegelhalter (2012).

An important characteristic of the McClellan and Staiger (1999) technique it uses smooth-
ing to improve the quality signal of noisy, naive estimators - where the smoothing is in-
formed by the data structure both within individual providers and over time. As noted by
Jones and Spiegelhalter (2012), smoothing of healthcare provider performance measures
is known to lead to advantages in terms of predictive ability. Indeed, many outcomes
measures reported by ONS, such as HSMRs or the SHMI, are smoothed over a three-
year period for these reasons. Recently a number of such “bidirectional” smoothing or
shrinkage estimators have been employed within this field (Jones and Spiegelhalter, 2012;
Normand et al., 1997). Jones and Spiegelhalter (2012) assess the predictive performance
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of a number of these types of smoothing estimators. They note that while some of these
estimators can be applied with good predictive e�ect to UK data, the models are complex
in terms of data manipulation, estimation and computation. In concluding their assess-
ment they highlight the promise of hierarchical time series models, but they also note
that such models are complex and tend to rely on specialized software, particularly if the
within provider, time smoothing technique employs Markov chain Monte Carlo techniques
to model dynamic processes. The McClellan and Staiger (1999) technique is closely re-
lated to these empirical Bayes modeling approaches, but is simpler to implement, easier
to interpret and does not require anything other than standard software. As Jones and
Spiegelhalter (2012) themselves note, these attributes alone warrant further investigation
of this specific method. A primary objective of this paper is therefore to assess the robust-
ness of this specific technique to determine whether it is useable within the English NHS
hospital data setting given the ease of implementation. Indeed, one advantage gained in
applying to the English hospital sector is that the data allow the possible extension of the
method to incorporate co-morbidity data. The paper also assesses the robustness of the
McClellan and Staiger (1999) approach by applying to a wider range of hospital outputs
and to smaller sample sizes than was the case in their original study.

The paper continues as follows. Section 2 outlines the English data we use for the analysis.
We use two treatment conditions in the application of this method within the English NHS
setting; Acute Myocardial Infarction (AMI) and Hip Replacement drawing on Hospital
Episode Statistics (HES). Section 2 also gives definition to our risk adjusters and the
measures of hospital quality we analyze. For each of the two conditions, these are 30-
day in-hospital mortality, year-long mortality, 28-day emergency readmission rates, and
year-long readmission rates. Section 3 describes the methodology and the formal model
used in the analysis. Section 4 reports our results. Section 5 gives concluding remarks
highlighting the ease of application and the usefulness of the method in reporting a more
credible measure of underlying hospital quality than cruder risk-adjusted measures.

2 Data

Hospital Episode Statistics (HES) are used to conduct this analysis. The HES database
has been in existence since 1987 and is used by the Department of Health to provide
performance information at the hospital level in England (Spiegelhalter et al., 2002). These
data contain individual records for over 15 million NHS patients admitted to English
hospitals each financial year (April 1 to March 31), with information on all medical and
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surgical specialties, including private patients treated in NHS hospital trusts. Since the
introduction of the internal market into the NHS, HES data have also been used for
contracting between purchasers and providers. The data available in the HES database
contains patient characteristic data (e.g. gender, age), clinical information (e.g. diagnoses,
procedures undergone), mode of admission (emergency, elective), outcome data (mortality,
readmission, discharge location) as well as detail on the amount of time spent in contact
with the health system (waiting times, date of admission, date of discharge) and details
of which hospital the patient was treated in. HES data can also be linked to other data
sources such as the death registries, to provide additional information such as death rates
at di�erent intervals (30-days and yearly), readmission rates and further details on the
patient, including information on co-morbidities and on socioeconomic characteristics.
Diagnosis of patients are coded using ICD-10 (International Classification of Diseases,
tenth revision) codes, while procedures use the former UK O�ce of Population Censuses
and Surveys classification (OPCS4).

Data on gender and age are used as risk-adjusters in our analysis, as discussed below, as
is information on whether the treatment undergone was an elective procedure or not. In
addition the Charlson co-morbidity index, which predicts the 1-year mortality for a patient
who may have a range of co-morbid conditions, was used to control for severity of illness.
This index is constructed by assigning a score to each of 22 conditions reflecting the risk
of dying from that condition, and aggregating these scores through summation (Charlson
et al., 1987). The conditions used are Myocardial Infarction, Congestive Cardiac Failure,
Peripheral Vascular disease, Dementia, Cerebrovascular disease, Chronic Lung disease,
Connective Tissue disease, Ulcer, Chronic Liver disease, Hemiplegia, moderate or severe
Kidney disease, Diabetes, Diabetes with complications, Tumor, Leukemia, Lymphoma,
moderate or severe Liver disease, Malignant Tumor, Metastasis and AIDS. Given the
range of clinical conditions used, the index will inherently be a better indicator of co-
morbidity for some conditions over others. For example, as it controls for many heart
conditions specifically, it is more likely to be correlated with AMI than Hip Replacement.
That said, even with this limitation it improves on the US data which were available to
McClellan and Staiger (1999), allowing greater refinement in the risk-adjustment. Finally,
socioeconomic status was measured using the Carstairs index of deprivation. This index
is based on four census indicators: social class, car ownership or lack of, overcrowding
in accommodation and male unemployment, which are combined to create a composite
score. The deprivation score is divided into seven separate categories which range from
very low to very high deprivation, calculated for the postcode area of the individual and
then applied individually.
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We restrict presentation to two conditions: AMI and Hip Replacement, although we have
analyzed a wider set of conditions. These two conditions were chosen to illustrate the per-
formance of this technique, as risk adjusted mortality and readmissions indicators for these
conditions are commonly used in hospital report cards. Moreover, these two conditions
have an established link between treatment and survival, a high number of admissions
each year ensuring large sample sizes, and AMI cases represent emergency care, while Hip
Replacement cases represent elective care. The data extraction was based on the ICD-10
and OPCS 4.3 classification codes as indicated in Table 1. Any hospital trust that had
less than 10 admissions for these conditions throughout the entire period of analysis was
dropped from the analysis. Given our focus on NHS hospital in-patient treatments NHS
primary care trusts, private trusts and social care trusts, and all patients coded as day
cases, were also excluded.

For the two conditions, AMI and Hip Replacement, we risk-adjust four crude outcome
measures, namely 30-day in hospital mortality (D30ht), year-long mortality (D365ht),
28-day emergency readmission rates (R28ht) and year-long readmission rates (R365ht).
These outcome measures are routinely available. The 30-day hospital mortality and the
28-day readmission rates are commonly used for the reporting of hospital quality, hence
our focus on these. The longer term outcomes are important to capture on-going quality
of treatment issues, but this does mean matching data from other sources, in this case to
UK O�ce of National Statistics (ONS) mortality data which is linked across individual
patients. Both matches are straightforward. Identification of short-term and long-term
readmission rates also allows us to test whether any improvement in mortality does a�ect
the signal of quality contained in readmission data. As noted, if more severely ill patients
are surviving because of improved quality of treatment, this may subsequently increase
rather than reduce the readmission rate.

The analysis is conducted using HES data as a pooled cross-section. As Table 1 reports,
English hospital performance is considered over the period 2000 to 2005 for both AMI
and Hip Replacement. This gave an average of 50,613 individual cases each year for hip
replacement and 64,208 individual cases on average each year for AMI. A unique patient
identifer links the data across years. There were 139 hospitals involved in treating the Hip
Replacement patients and 177 hospitals associated with treating the AMI patients. The
table also shows the crude mortality rates (CMR) and crude readmission rates (CR) for the
sample of hospitals across all years, reported per 1,000 deaths or readmissions respectively.
As expected, AMI mortality and readmissions are higher than Hip Replacement.
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Tab. 1: Summary Statistics of the Sample.

Condition ICD-10/
OPCS4.3 codes

Years
Analyzed

Mean cases
per year

Number of
hospitals

AMI ICD-10: 121 2000-2005 59,678 177
Hip OPCS4.3:

W37-W39
W46-W48 W58

2000-2005 47,472 139

Condition/
year

30-day mortality
(D30ht)
CMR per 1,000
(‡)

365-day mortality
(D365ht)
CMR per 1,000
(‡)

28 day
readmissions
(R28ht)
CR per 1,000 (‡)

365-day
readmissions
(R365ht)
CR per 1,000 (‡)

Hip 2000 3.36 (4.54) 15.66 (13.56) 35.67 (24.60) 71.42 (46.79)
Hip 2001 3.28 (4.05) 19.32 (15.39) 37.42 (26.77) 73.86 (49.20)
Hip 2002 3.13 (3.85) 18.48 (14.36) 36.29 (24.70) 74.26 (48.86)
Hip 2003 3.26 (4.11) 19.25 (14.67) 36.22 (25.31) 74.62 (48.69)
Hip 2004 3.04 (3.37) 18.45 (14.50) 36.65 (24.98) 75.68 (48.80)
Hip 2005 2.90 (3.48) 14.10 (12.19) 38.69 (26.70) 74.45 (49.22)
AMI 2000 73.08 (48.87) 119.57 (76.44) 56.21 (35.84) 125.17 (76.92)
AMI 2001 72.48 (46.65) 120.59 (75.10) 56.30 (34.85) 116.87 (70.82)
AMI 2002 72.73 (45.90) 124.24 (76.20) 58.55 (35.45) 121.69 (72.44)
AMI 2003 69.12 (44.21) 123.88 (76.05) 61.89 (37.15) 126.57 (74.43)
AMI 2004 63.94 (41.51) 116.67 (72.38) 59.31 (36.75) 122.79 (73.82)
AMI 2005 59.44 (40.80) 105.27 (67.79) 62.39 (37.87) 118.00 (70.00)

3 Empirical Model

McClellan and Staiger (1999) assume true hospital quality is a latent variable, but that
valuable information on this latent measure of quality can be returned through a two
step, smoothing procedure. Following their methodology, the first step of our analysis
uses the four unadjusted individual outcome measures, [(D30ht), (D365ht), (R28ht) and
(R365ht)], for each of the two conditions, (AMI and Hip Replacement), and risk-adjusts
them through linear regression against individual patient characteristics. This following
first stage, risk-adjustment regression equation is run on each of the individual outcome
measures for each year of the analysis separately:

Yih = µh +
mÿ

n=1
„imXih + uih , (1)

where Y represents the quality outcome measure, i indexes the individual patient, and
h the hospital they were treated in. The Xi represents a set of m individual control
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variables for patient characteristics (in our case age, gender, socioeconomic deprivation,
co-morbidities and whether an elective or emergency hospital admission), across each
hospital h they were treated in.

The equation is run with no constant term, and the term µh is of greatest interest as it
returns a hospital fixed e�ect, which followingMcClellan and Staiger (1999), is taken to
be a proxy measure of latent hospital quality. These µh are, therefore, estimates of true
hospital quality for each of the four outcome measures gained by removing noise through
risk-adjustment. As noted, the equation is run separately for each year, for each of the
four unadjusted quality outcome measures, [(D30ht), (D365ht), (R28ht) and (R365ht)],
applied to each of the two conditions, (AMI and Hip Replacement). The fixed e�ects,
returned from each yearly regression, are used to define a new vector, Qh, of risk-adjusted
hospital quality, for each of the four outcomes analysed and for each of the two conditions.
Assuming T time-periods and K measures of quality, the hospital quality vector, Qh,
has dimensions [1 ◊ TK]. This vector, Qh, is then assumed to represent the following
relationship to the latent (true) hospital quality:1

Qh = qh + ‘h , (2)

where qh represents the [1◊TK] vector of the true (latent) hospital quality for hospital h,
and ‘h is the estimation error (assumed to have mean zero and be uncorrelated with qh).
Thus, equation (2) assumes that the estimated risk-adjusted hospital quality fixed e�ects,
Qh, are suitable predictors of hospital (latent) quality, and anything not captured by these
estimates is incorporated in the error term, ‘h. It is the removal of the error term, ‘h, from
the estimated hospital quality fixed e�ects, Qh, which allows further improvement in the
measures of hospital quality. The error term, ‘h, is related to the patient level regressions
(equation (1)), in particular, to the variance-covariance of the regression estimates Qh.
That is:

E(‘Õ
h‘h) = Sh

E(‘Õ
h‘h) = 0

where Sh represents the variance-covariance matrix of the hospital e�ects estimates for
1 In our case for each of the two conditions, AMI and Hip Replacement and with 4 measures of quality,

[(D30ht), (D365ht), (R28ht) and (R365ht)], and yearly observations for 2000-2005 the vector, Qh, has
dimension [1 x 24].
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hospital h for each year. The true latent hospital quality measure, qh, is not directly
observable, but McClellan and Staiger (1999) outline a method to estimate qh. They
propose creating a linear combination of each hospital’s observed risk-adjusted measure
of hospital quality for each year, in such a way that it minimizes the mean squared error
of the predictions. This could be conceptualized as running the following (hypothetical)
regression for each year:

qh = Qh—h + Êh (3)

They note, however, that equation (3) cannot be estimated directly, precisely because qh

represents the true, unobserved (latent) quality for the defined outcomes, in each hospital,
h, for each year. Assuming K measures of quality and T years, note that Qh is a [1 ◊ TK]
vector and the optimal — for each quality measure, k, varies by hospital and year, given
equation (2). The measurement challenge is to return the true hospital quality, qh for
each quality measure k in each year, from the noisy estimate Qh. McClellan and Staiger
(1999) use a shrinkage estimate of qh to further reduce noise in the risk-adjusted measures
of hospital quality, without distorting the true quality measure. This is analogous to the
use of smoothing techniques as outlined, for example, in Jones and Spiegelhalter (2012);
Titterington et al. (1985).

Their insight is that, while equation (3) can not be estimated directly as qht is not observed,
the parameters of the hypothetical regression represented by (3) can be retrieved from the
existing data. They proceed by noting that the minimum least squared estimate, for each
of the k quality measures over each of the t time periods, can be given by:

E(qh|Qh) = Qh— ,

where

— = [E(QÕ
hQh)]≠1E(QÕ

hqh) . (4)

This best linear estimate can be returned using the following definitions:

E(QÕ
hQh) = E(qÕ

hqh) + E(‘Õ
h‘h) (5)

E(QÕ
hqh) = E(qÕ

hqh) , (6)

where E(QÕ
hQh) is is the expected value of the products and cross-products of the hospi-
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tal fixed e�ects, which is gained from the first-stage patient level regressions, and where
E(‘Õ

h‘h) is variance-covariance matrix of the distrubances associated with these fixed ef-
fects, which again is gained from the first-stage patient level regressions. Let us call this
latter estimate Sh. Noting that the Sh vary among hospitals, then E(qÕ

hqh) can be esti-
mated by rearranging (5) such that E(QÕ

hQh ≠Sh) = E(QÕ
hqh). Subsequently (6) becomes

E(QÕ
hQh ≠ Sh) = E(qÕ

hqh). Using these estimates and equalities and inserting the relevant
estimates into equation (4) allows derivation of the desired least squares parameters in(3).
The shrinkage estimates, qh, can then be easily estimated by individual hospital for each
year using observed values. McClellan and Staiger (1999) define this estmate as:

q̂h = Qh[E(QÕ
hQh)]≠1E(Qhqh) = Qh[E(qÕ

hqh) + E(‘Õ
h‘h)]≠1E(qÕ

hqh) . (7)

where the E(qÕ
hqh) have been calculated as above. McClellan and Staiger (1999) refer to

these estimates as ‘filtered estimates’ as they optimally filter out the estimation error from
the risk-adjusted quality measures.

These filtered estimates have a number of attractive properties. First, they allow infor-
mation for many di�erent outcome indicators to be combined in a systematic manner; as
noted we use four outcome measures as defined above [(D30ht), (D365ht), (R28ht) and
(R365ht)], which we apply to each of the two conditions, (AMI and Hip Replacement).
Second, by nature of their construction, these estimates are optimal linear predictors for
mean squared error. Finally, the estimates are simple to construct using standard statis-
tical software (we use STATA). Note further that using estimates from (5) and (6), the
R-squared statistic can be calculated, based on the least squared formula, returning a
simple measure of explained variation. However, the filtered estimates will be sensitive to
first stage estimation. In particular, any unobserved characteristics which systematically
a�ect the variance-covariance matrix may influence the size of the filetered estimate.

As equation (1) is run with no constant, in it important to ensure that the assumptions
made above are still plausible. In particular, that the estimation error in (2) has mean
error zero or that the covariance matrix for the parameter estimates, Qh, are unbiased.
We test this assumption first by re-running equation (1) with a constant and use a t-test to
examine whether the constant is statistically significant, thus suggesting it is significantly
di�erent from zero. Our results show that significance of the constant is not maintained
(at well below conventioan standards) in any of the AMI models, and is only significant in
the 2001 models for Hip Replacement. We further test this assumption by extracting the
residuals from the models, run as specified in (1) and check their descriptives to ensure
that that the these assumptions hold. We find that in all cases the mean is su�ciently
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near zero.

Estimation of equation (7) is then used to further smooth these filtered hospital quality
measures through a further estimation step. This further step utilizes the information
across the di�erent time periods to additionally improve these risk-adjusted, filtered qual-
ity outcome measures. Hence the method can be considered a form of bi-directional
smoothing estimation, where the measures are able to reduce noise within individual hos-
pitals, and across time periods. This is undertaken using a Vector Autoregression (VAR)
model, with further structure imposed on the filtered quality estimates by assuming that
each quality measure is reflective of its past performance, plus a contemporaneous shock
that may be correlated across the di�erent outcome measures.

Noting that we have K measures of quality, which are inter-related and contain signals
from past performance, and T years, a first order VAR model is specified to return the
estimate q̂(ht)

k , which is a (1◊K) vector incorporating values from time periods t and t≠1.
That is:

q̂(ht)
k = q(h,t≠1)

k � + v(ht)
k . (8)

We define � as a (K ◊ K) matrix containing the estimates of the lag coe�cients. We
can further estimate Z = V (vht), the (K ◊ K) variance matrix of the residuals, and
� = V (qht), the (K ◊ K) initial variance matrix from the first year of the data sample.
The VAR structure and (7) implies:

E(Q
Õ(h)
k Q(h)

k ) ≠ S(h) = E(q
Õ(h)
k q(h)

k ) = f(�, Z, �) . (9)

where the only undefined term is Sh which is the estimation error. Using the parameters
estimated from the VAR model, we then estimate equation (9) to return non-stochastic
smoothed estimates of quality incorporating the times series data, we refer to these as
‘smoothed outcome measures’ which are the time-smoothed, filtered estimates. These
bidirectional smoothed estimates McClellan and Staiger (1999) refer to as ‘predicted’ esti-
mates, but we prefer the term (bidirectional) smoothed estimators, which we adopt from
here onwards.

Incorporating the VAR approach allows the further production of forecast measures of
hospital quality. This, as noted by Jones and Spiegelhalter (2012), is particularly impor-
tant as it is the prediction of future hospital quality that is of main interest to current
observers. The first stage of the analysis, to return the q̂(k)

h (equation 7) was performed
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using the statistical package STATA, and the second stage, to return q̂(ht)
k (equation 8)

was undertaken in eViews merely because this includes more options to perform time-series
analyses, being especially straightforward in the estimation of VAR models and forecasts.

To assess the statistical performance of the estimated quality outcome measures we then
use a series of metrics. The filtered estimates are assessed by a signal to noise ratio esti-
mate, while two constructed R-squared measures allow us to assess the fit of the smoothed
and forecasted outcomes values. We also use the Root Mean Squared Error (RMSE) to
assess the forecasting ability of the smoothed estimators.

The first two performance measures were proposed by McClellan and Staiger (1999). As
the VAR model is able to extract the underlying quality signal of each outcome measure,
and hence the signal variance, Vht, from the original hospital data, this allows us to define
a signal-to-noise ratio for each of the quality outcome measures. Using the signal variance
together with the estimation error contained in each measure, defined as Sh in equation
(9) above, defines the signal to noise ratio as:

Signal/(Signal + Noise) = V(ht)/(V(ht) + S(ht)) (10)

In order to assess the ability of the smoothed quality outcome measures to estimate varia-
tion in true quality, McClellan and Staiger (1999) construct an R-squared measure drawing
on the standard R-squared formula:

R2 = 1 ≠
qN

h=1(û(ht)
k )2

qN
h=1(q(ht)

k )2
. (11)

As the purpose of this goodness of fit measure is to assess the degree to which the estimated
outcomes minimize the mean square error of the prediction, the numerator should measure
prediction error, such that:

û(ht)
k = q(ht)

k ≠ q̂(ht)
k .

Since q(ht)
k is not observed, estimates must be used for both the numerator and the denom-

inator. McClellan and Staiger (1999) propose the use of E(q
Õ(h)
k q(h)

k ) for the denominator
and E(q(h)

k ≠ q̂(h)
k )Õ(q(h)

k ≠ q̂(h)
k ) for the numerator. Both of these can be estimated for

each year using 5 and 6 above. The R-squared measures are calculated for the smoothed
quality outcome estimates, and presented separately for each treatment condition.
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To evaluate the usefulness of the bivariate smoothed estimator in forecasting future events
we follow Jones and Spiegelhalter (2012) and use the empirical root-mean-squared error
(RMSE):

RMSE =
Ú

{ 1
n

nÿ

h=1
(q(h)

k ≠ q̂(h)
k )2} (12)

where q̂(h)
k indicates the forecasted values of the quality estimates, q(h)

k , for the n hospitals
in the sample.

4 Results

The methodology outlined above was applied to data on our four hospital outcome mea-
sures, (30-day in-hospital mortality (D30ht), year-long mortality (D365ht), 28-day emer-
gency readmission rates (R28ht) and year-long readmission rates (R365ht)), for each of the
two treatment conditions, AMI and Hip Replacement. The results illustrate how well the
bivariate smoothed estimates perform in measuring within sample hospital quality through
the use of the filtered and bivariate smoothed estimates, and forecasting out of sample
hospital quality through the use of the forecast estimates. Diagrammatically comparing
the filtered and smoothed measures of hospital quality, measuring the signal to noise ratio
of the filtered estimates and estimating the goodness of fit measures of both smoothed
and forecasted outcome measures suggests this method is a simple and robust means of
evaluating underlying true hospital quality. These results to support this conclusion are
now presented.

For each of the two conditions, AMI and Hip Replacement, Tables 2 and 3 report the
basic parameters associated with the bivariate smoothed estimator, as based on the VAR
estimates of interest which are constructed using the full, available data: that is, the
lag coe�cients to assess persistence; the variance and correlation between the residuals for
each e�ect; and the initial variance and correlation of the time varying e�ects with the first
sample year. The VAR parameters for each of the two conditions are estimated using the
information on all of the four outcome measures, (i.e. 30-day in hospital mortality (D30ht),
year-long mortality (D365ht), 28-day emergency readmission rates (R28ht) and year-long
readmission rates R365ht). The VAR specification is as given in equation (8), although
other specifications, with di�erent lag lengths were tested. The inclusion of additional lags
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yielded similar scores, sometimes marginally better, as judged by the Akaike information
criterion and the Schwartz criterion. Given the small improvement, we chose to use the
VAR(1) specification for all models as it promotes ease of interpretation and is relatively
parsimonious with the data. All VAR models were tested for stability and passed unit
root tests for stationarity.

The (bidirectional) smoothed parameter estimates reported in Tables 2 and 3 indicate the
e�ect that past values of each of the four outcome measures have on their own performance
for the two conditions, AMI and Hip Replacement respectively. The results suggest that
none of the outcome measures are strongly persistent. For AMI, long term hospital mor-
tality, D365ht, is slightly more persistent than the other four outcome indicators with the
value of the coe�cient on its own lag taking a value of approximately0.18. In the case of
Hip Replacement, short term mortality, D30ht is slightly more persistent than the other
outcomes and take a value of 0.10.

Two robustness checks were performed to determine to what extent the persistence esti-
mates reported in Tables 2 and 3 are influenced by the removal of more of the noise from
the risk adjusted estimates to create the filtered estimates, and by incorporating other
outcome measures into the VAR models. The first test was undertaken by running the
same VAR model specification using simple risk adjusted metrics - the fixed e�ects from
equation 1, for each year of the sample - instead of the filtered estimates. The results on
this check show the AMI results to be very similar, although it suggests that all outcomes
apart from short term mortality, D30ht are more persistent if the filtered measures are
used. However, the Hip Replacement results suggest that the persistence for all measures
is lower when the filtered measures are used, but particularly for the long term outcomes,
D365ht and R365ht. The second test re-estimates the VAR using only each individual
outcome measure and not including the other three outcome measures. This tests how
much estimated persistence is influenced by other past outcomes. The results when run-
ning the VAR on the individual outcomes alone do change the coe�cients, in some cases
making them more persistent while in others less, however in all instances the e�ect is
small. For example in AMI, running the VAR on each of the outcomes alone results in
more persistent readmission outcomes, and less persistent mortality outcomes. For Hip
Replacement, the e�ects are much smaller on all outcome measures aside from short term
readmissions, R28ht, which come out to be more persistent.

As illustrated in Table 2, the standard deviation of the residuals indicates a variation
of about 0.05 in short-term AMI mortality rates for the individual hospitals over time,
and a variation of nearly 0.06 in long-term mortality rates. As reported in Table 3,
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there is much less variation in short- and long-term mortality following Hip Replacement,
with a variation of almost 0.1 for short-term mortality, and approximately 0.04 in long-
term mortality, possibly reflecting the low absolute mortality rates for this condition.
For both conditions, readmissions are subject to less variation than mortality across the
sampled hospitals. The variation in emergency 28-day readmissions is notably 0.03 for
both conditions, while the variation in long-term readmissions is slightly larger for both
conditions; at just under 0.05.

The time-varying standard deviations from the initial year of the sample, provide infor-
mation on the annual variation across hospitals associated with each outcome measure.
Short-term mortality varies the most for AMI at around 0.85 and is only 0.08 for Hip
Replacement. Long-term mortality has a higher standard deviation for Hip Replacement
of approximately 0.2, but remains at approximately 0.8 across hospitals for AMI. The re-
sults for AMI no doubt reflect the e�ect of improved treatments over time. Readmissions
have a relatively low standard deviation for both conditions, with short-term readmis-
sions indicating a variation of about 0.02 for both conditions, and long-term variation
of approximately 0.05 for AMI and 0.1 for Hip Replacement. Taken at face value, the
explained variation in quality across time and hospitals therefore appears relatively high
in the majority of outcomes.

The correlation across the four di�erent outcome indicators is also of interest, and can
be assessed both in terms of the VAR residuals, as well as over time by comparing later
measures to the initial year of the sample. The correlation of residuals for AMI indicate a
negative association between D30ht and R28ht, and a negative association between D30ht

and R365ht. The Hip Replacement results show a negative association between short
term mortality D30 and long term readmissions R365ht, although not between short term
mortality and short term readmissions, R28ht. For both conditions, there is a positive
association between R28ht and R365ht and D30ht and D365ht. These are important
results, especially given the UK government’s linking of emergency re-admission rates to
financial penalties. The negative correlations between mortality and re-admission rates,
possibly reflects that treatment improvements over time are leading to “less healthy”
individuals surviving, with subsequent increases in re-admissions. The correlation between
outcome measures with the outcomes in the initial year of the sample, also indicates
a negative association between the outcome measures 30-day mortality and both short
and long term re-admissions for AMI. While the positive association between D30ht and
D365ht, and between R28ht and R365ht is still observed in the comparisons with the initial
samples for both conditions, indicating that the short term outcomes are associated with
the long term outcomes.



4 Results 18

Tab. 2: Estimates of multivariate VAR(1) parameters for hospital specific e�ects (AMI).

AMI

D30ht R28ht D365ht R365ht

D30h(t≠1) 0.0919 0.0645 -0.1199 -0.1421

(0.0470) (0.0311) (0.0578) (0.0685)

R28h(t≠1) 0.0490 -0.0389 -0.2065 -0.0024

(0.0610) (0.0404) (0.0750) (0.0890)

D365h(t≠1) -0.0838 -0.1125 0.1807 0.2086

(0.0368) (0.0244) (0.0452) (0.0536)

R365h(t≠1) -0.0690 0.0078 0.0016 0.0676

(0.0283) (0.0187) (0.0348) (0.0413)

Constant -0.0690 0.0078 0.0016 0.0676

(0.0017) (0.0012) (0.0021) (0.0025)

Residuals

S.D. dependent 0.0487 0.0324 0.0603 0.0712

Correlation of residuals (D30ht) - -0.1895 0.5717 -0.3184

Correlation of residuals (R28ht) -0.1895 - -0.1428 0.4208

Correlation of residuals (D365ht) 0.5717 -0.1428 - -0.1068

Correlation of residuals (R365ht) -0.3184 0.4208 -0.1068 -

Initial Conditions

S.D. dependent in 2000 0.0447 0.0309 0.0564 0.0472

Correlation with D30ht 2000 - -0.3030 0.8486 -0.3571

Correlation with R28ht 2000 -0.3030 - -0.2328 0.6043

Correlation with D365ht 2000 0.8486 -0.2328 - -0.1831

Correlation with R365ht 2000 -0.3571 0.6043 -0.1831 -

Included observations (Hospitals): 165

Included observations (Individuals): 770

Sample (adjusted): 2001 2005

Standard errors in ( )
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Tab. 3: Estimates of multivariate VAR(1) parameters for hospital specific e�ects (Hip).

Hip Replacement

D30ht R28ht D365ht R365ht

D30h(t≠1) 0.1002 0.4626 0.3970 -0.0427

(0.0385) (0.1219) (0.1794) (0.2410)

R28h(t≠1) -0.0410 0.0713 0.0986 0.2294

(0.0125) (0.0396) (0.0582) (0.0782)

D365h(t≠1) 0.0067 -0.0721 0.0133 -0.1432

(0.0092) (0.0292) (0.0429) (0.0577)

R365h(t≠1) -0.0153 0.1234 -0.2062 0.04462

(0.0075) (0.0237) (0.0348) (0.0468)

Constant -4.81e-05 -0.0051 7.18e-05 0.0003

(0.0003) (0.0009) (0.0013) (0.0018)

Residuals

S.D. dependent 0.0077 0.0247 0.0363 0.0477

Correlation of residuals (D30ht) 1 0.0143 0.2036 -0.0499

Correlation of residuals (R28ht) 0.0143 1 0.1007 0.4116

Correlation of residuals (D365ht) 0.2036 0.1007 1 0.4370

Correlation of residuals (R365ht) -0.0499 0.4116 0.4370 1

Initial Conditions

S.D. dependent in 2000 0.0076 0.0217 0.0204 0.0402

Correlation with D30ht 2000 1 0.0830 0.6241 0.0810

Correlation with R28ht 2000 0.0830 1 0.0766 0.5269

Correlation with D365ht 2000 0.6241 0.0766 1 0.3084

Correlation with R365ht 2000 0.0810 0.5269 0.3084 1

Included observations (Hospitals): 138

Included observations (Individuals): 685

Sample (adjusted): 2001 2005

Standard errors in ( )
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Figures 1 and 2 present the signal to noise ratio for the four outcome measures across the
two conditions, AMI and Hip Replacement for the year 2005. By plotting the estimates
of the ratio of signal variance to total (signal plus noise) variance in the observed hospital
outcome measures against the number of cases treated in each hospital (the cases upon
which this measure is based in the first step of the analysis), this plot provides statistical
information on the level of “true” signal contained in each of the quality measures rel-
ative to the underlying noise in the estimates. Both Figures indicate that the signal to
noise ratios observed for all four outcomes rise as the number of cases increase. In some
cases the smoothed quality outcome measures represent relatively robust estimates of true
underlying hospital quality, once cases go above 200, such as the readmission metrics for
AMI, and most of the Hip Replacement outcomes. Of the four outcome measures, the two
mortality outcomes have the weakest signal for AMI, while for Hip Replacement the signal
to noise ratios performed better for long term mortality. These results suggest that as the
sample exceeds 300 patient, the indicators can be used to reliably detect a large amount
of quality outcome variation across hospitals. However, short term outcomes, such as 30
day in hospital mortality are still subject to a largest degree of noise for both conditions,
even when looking across a high number of cases.

Fig. 1: Signal to noise ratio for smoothed AMI measures (year 2005).
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Fig. 2: Signal to noise ratio for smoothed Hip measures (year 2005).

Figure 3 presents the filtered outcome measures alongside the smoothed measures of 30
day mortality for a random subset of hospitals for the year 2005, as well as comparing them
to the simple risk adjusted rate (or the fixed e�ects from equation 1). Each horizontal line
of the figure reprsents the three estimates for a particular hospital. The outcome measures
are normalized such that the mean value is equal to zero, where a value below zero indicates
the hospital has below average mortality and vice versa. The hospitals are listed in rank
order based on the risk adjusted estimates. Moreover, the risk adjusted estimates can be
interpreted as absolute outcome di�erences; a value of 0.02 indicates that the hospital’s
mortality was 2% above the average hospital in that year, with negative values indicating
lower mortality than average, after controlling for patient characteristics. The filtered
estimates are estimated using equation 7, and represent cleaned estimates of the risk
adjusted quality measures. The smoothed estimates, are derived from the multivariate
VAR model, applied to AMI and as presented in equation 2, thus incorporating all of the
individual hospital’s data from 2000-2005 for all four outcome measures applied to the
one condition, AMI. Both the risk adjusted and the filtered estimates exhibit considerably
more variation than the smoothed estimates. The figure also indicates that despite being
derived from the same underlying mortality rates, the three quality measures do not
present a consistent ranking of hospitals; in other words noise does a�ect ranking.
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Fig. 3: Risk Adjusted, Filtered and Smoothed estimates for AMI D30ht (year 2005).

As a further test of the model, we run the VAR separately small and large hospitals. This
relates to one of the assumptions made regarding the calculation of the filtered estimates,
namely that they will be influenced by any bias present through unaccounted unobserv-
ables. Not only does this related to omitted variables but also to any heteroskedasticity
related to hopsital size. Seperating the analysis this way will limit the smoothing to hos-
pitals of a similar size, which allows us to explore the e�ect of heteroskedasticity. We
classify hospitals into small and large according to the overall mean cases over the years
studied: hospitals with less than an average of 300 cases throughout the period are termed
small hospitals, hospitals with averaging over 300 cases over the period are consider large
hospitals. We use the number 250 based on our signal to noise ratios, which suggest more
volatility in the signal to noise ratios for cases less than 200-300. Our findings suggest
that there is more variation across hospitals, particularly for AMI outcomes, across VAR
estimates derived from the sample of small hospitals. The technique is weakest when ap-
plied to the smaller hospitals as the background noise, possibly as reflecting changes in
mean patient characteristics over time, will be greatest in these hospitals.
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Tab. 4: Estimates of multivariate VAR(1) parameters for small and large hospitals (AMI).

Small Hospitals (n<250) Large Hospitals (n>250)

D30ht R28ht D365ht R365ht D30ht R28ht D365ht R365ht

D30h(t≠1) 0.2415 0.0472 -0.0219 -0.1144 0.0750 -0.0265 0.0796 -0.1088

(0.0751) (0.0495) (0.0935) (0.0718) (0.1040) (0.0720) (0.1242) (0.1095)

R28h(t≠1) 0.0089 0.0049 -0.1242 0.1188 -0.0205 -0.0074 -0.0579 -0.0422

(0.1248) (0.0822) (0.1555) (0.1194) (0.1161) (0.0803) (0.1387) (0.1222)

D365h(t≠1) -0.1227 -0.0963 0.1626 -0.0050 -0.0642 -0.0260 -0.0733 0.0297

(0.0577) (0.0380) (0.0719) (0.0552) (0.0839) (0.0581) (0.1002) (0.0885)

R365h(t≠1) 0.1111 -0.0780 0.0877 -0.1501 0.0254 0.0512 0.1025 0.1374

(0.0891) (0.0587) (0.1110) (0.0852) (0.0811) (0.0561) (0.0969) (0.0854)

Constant -6.85E-05 -7.15E-05 3.63E-06 4.25E-05 1.88E-09 4.11E-11 -3.75E-09 7.82E-10

(0.0042) (0.00274) (0.00517) (0.00397) (0.0014) (0.0010) (0.0017) (0.0015)

Residuals

S.D. dependent 0.0715 0.0469 0.0885 0.0677 0.0266 0.0185 0.0319 0.0284

Correlation of residuals (D30ht) - -0.1993 0.5211 -0.3746 - -0.1110 0.8294 -0.2573

Correlation of residuals (R28ht) -0.1993 - -0.1754 0.5914 -0.1110 - 0.0292 0.7448

Correlation of residuals (D365ht) 0.5211 -0.1754 - -0.1506 0.8294 0.0292 - -0.0411

Correlation of residuals (R365ht) -0.3746 0.5914 -0.1506 - -0.2573 0.7448 -0.0411 -

Initial Conditions

S.D. dependent in 2000 0.0680 0.0450 0.0851 0.0654 0.0263 0.0191 0.0312 0.2900

Correlation with D30ht 2000 - -0.2070 0.5368 -0.3771 - -0.1628 0.8182 -0.2836

Correlation with R28ht 2000 -0.2070 - -0.2159 0.6080 -0.1628 - 0.0055 0.7542

Correlation with D365ht 2000 0.5368 -0.2159 - -0.1694 0.8182 0.0055 - -0.0374

Correlation with R365ht 2000 -0.3771 0.6080 -0.1694 - -0.2836 0.7542 -0.0374 -

Included observations (Hospitals):

Included observations (Individuals):

Sample (adjusted): 2001 2005

Standard errors in ( )

Tab. 5: Estimates of multivariate VAR(1) parameters for small and large hospitals (Hip).

Small Hospitals (N<250) Large Hospitals (N>250)

D30ht R28ht D365ht R365ht D30ht R28ht D365ht R365ht

D30h(t≠1) 0.0229 -0.3335 -0.3531 -0.2028 0.0680 0.0374 0.3420 0.2659

(0.0641) (0.3118) (0.1658) (0.4360) (0.0727) (0.2017) (0.1787) (0.3226)
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Small Hospitals (N<250) Large Hospitals (N>250)

D30ht R28ht D365ht R365ht D30ht R28ht D365ht R365ht

R28h(t≠1) 0.0499 -0.0477 0.1281 -0.0422 0.0350 0.0497 0.1182 0.0546

(0.0210) (0.1020) (0.0543) (0.1427) (0.0363) (0.1008) (0.0892) (0.1613)

D365h(t≠1) 0.0051 0.1478 0.1134 0.1978 0.0138 -0.0106 0.0264 -0.0782

(0.0237) (0.1151) (0.0612) (0.1610) (0.0331) (0.0919) (0.0813) (0.1470)

R365h(t≠1) -0.0256 0.0745 -0.0794 0.1479 -0.0594 -0.0541 -0.1174 -0.0730

(0.0149) (0.0724) (0.0385) (0.1013) (0.0234) (0.0649) (0.0574) (0.1038)

Constant 0.0001 -0.0001 0.0001 -0.0005 -1.52E-05 0.0003 -0.0001 0.0009

(0.0002) (0.0011) (0.0006) (0.0015) (0.0006) (0.0017) (0.0015) (0.0027)

Residuals

S.D. dependent 0.0040 0.0194 0.0104 0.0272 0.0105 0.0285 0.0257 0.0456

Correlation of residuals (D30ht) - -0.1345 0.4664 -0.1403 - 0.0197 0.5367 -0.0981

Correlation of residuals (R28ht) -0.1345 - -0.0005 0.8452 0.0197 - 0.1403 0.6923

Correlation of residuals (D365ht) 0.4664 -0.0005 - 0.0168 0.5367 0.1403 - 0.0075

Correlation of residuals (R365ht) -0.1403 0.8452 0.0168 - -0.0981 0.6923 0.0075 -

Initial Conditions

S.D. dependent in 2000 0.0068 0.0262 0.0158 0.0393 0.0039 0.0188 0.0105 0.0269

Correlation with D30ht 2000 - 0.0233 0.4345 0.1789 - -0.1450 0.4943 -0.0112

Correlation with R28ht 2000 0.0233 - 0.0842 0.7542 -0.1450 - -0.0258 0.8405

Correlation with D365ht 2000 0.4345 0.0842 - 0.1789 0.4943 -0.0258 - -0.0112

Correlation with R365ht 2000 0.1789 0.7542 0.1789 - -0.0112 0.8405 -0.0112 -

Included observations (Hospitals):

Included observations (Individuals):

Sample (adjusted): 2001 2005

Standard errors in ( )

To assess the performance of the smoothed estimates, Tables 6 and 7 indicate the R-
squared estimates as calculated from equation (11) and applied to both conditions. These
are presented for the four di�erent quality outcome smoothed measures, using di�erent
amounts of past data, and running the models with all outcomes and for models with a
single outcome. The R-squared estimates are also calculated for a year in the middle of the
sample (2003) and and the last year of the sample (2005) to test how well the smoothing
performs for years with no future data. In all cases the R-squared values for the smoothed
estimates appear to capture much of the true variation across hospitals for each of the
four outcome measures, even when only using one-year of data. For both AMI and Hip,
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the R-squared estimates are particularly high for the D30ht, D365ht and R28ht at over
90% for both the 2003 and 2005 values. There is little di�erence between the R-squared
estimates for the 2003 values and the 2005 values, apart from the AMI R365ht estimates,
which are notably weaker for 2003 as compared to 2005.

Tab. 6: Summary of estimated R-squared values for smoothed estimates using alternative methods
of signal extraction. All estimates based on the AMI VAR(1) model from Table 2.

Expected R2 prediction based on:
All 5 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2003 0.9815 0.9815 0.9815 0.9815 0.9827 0.9821
2005 0.9692 0.9691 0.9692 0.9692 0.9696 0.9692
D365ht

2003 0.9631 0.9631 0.9631 0.9631 0.9699 0.9651
2005 0.9246 0.9246 0.9246 0.9246 0.9248 0.9247
R28ht

2003 0.9936 0.9936 0.9935 0.9935 0.9936 0.9936
2005 0.9915 0.9915 0.9915 0.9915 0.9920 0.9915
R365ht

2003 0.8958 0.8958 0.8948 0.8948 0.7334 0.8948
2005 0.9711 0.9711 0.9711 0.9711 0.9714 0.9711

Tab. 7: Summary of estimated R-squared values for smoothed estimates using alternative methods
of signal extraction. All estimates based on the Hip VAR(1) model from Table 3.

Expected R2 prediction based on:
All 5 years 3 most recent years Concurrent year

All
outcomes

Same
outcome

All
outcomes

Same
outcome

All
outcomes

Same
outcome

D30ht

2003 0.9919 0.9919 0.9919 0.9919 0.9943 0.9923
2005 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994
D365ht

2003 0.9830 0.9830 0.9830 0.9830 0.9886 0.9830
2005 0.9960 0.9960 0.9960 0.9960 0.9964 0.9961
R28ht

2003 0.9980 0.9981 0.9981 0.9981 0.9984 0.9982
2005 0.9975 0.9975 0.9975 0.9975 0.9979 0.9978
R365ht

2003 0.9952 0.9952 0.9952 0.9952 0.9958 0.9953
2005 0.9890 0.9890 0.9890 0.9890 0.9999 0.99001
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Turning to the ability to use the smoothed estimates for forecasting, the expected RSME
values are derived using equation (12) and represent how well the forecast estimates are
able to forecast out-of-sample values. The results indicate that the models forecast well
for both AMI and Hip Replacement, yet in the outcomes across both conditions there
are di�erences in the model’s predictive ability. Overall, Hip Replacement forecasts are
found to be closer to the true values, however this likely reflects the lack of variation in
outcomes in this treatment area from one year to the next. For both conditions the values
suggest that the forecasts for D30ht followed by D365ht, are close to the true values for
both years, and also that the expected and actual values are close in predictive power.
Across all outcomes the Hip model is better able to predict future values than the AMI
model.

Tab. 8: Summary of forecast accuracy using Root Square Mean Error (RSME) estimates. Fore-
casting 2000-2005 AMI and Hip Replacement values using data from 2000-2003.

AMI Hip Replacement

RSME estimate based on: RSME estimate based on:

All outcomes Same outcome All outcomes Same outcome

D30ht

2004 (expected) 0.0563 0.0565 0.0060 0.0061
2004 (actual) 0.0564 0.0564 0.0063 0.0063
2005 (expected) 0.0488 0.0492 0.0066 0.0066
2005 (actual) 0.0496 0.0492 0.0065 0.0065
D365ht

2004 (expected) 0.0725 0.0683 0.0202 0.0209
2004 (actual) 0.0682 0.0684 0.0193 0.0200
2005 (expected) 0.0660 0.0652 0.0180 0.0176
2005 (actual) 0.0651 0.0652 0.0174 0.0176
R28ht

2004 (expected) 0.0322 0.0322 0.0230 0.0236
2004 (actual) 0.0361 0.0324 0.0244 0.0244
2005 (expected) 0.0344 0.0348 0.0247 0.0249
2005 (actual) 0.0346 0.0347 0.0248 0.0250
R365ht

2004 (expected) 0.0579 0.0530 0.0369 0.0361
2004 (actual) 0.0525 0.0526 0.0354 0.0350
2005 (expected) 0.0552 0.0504 0.0418 0.0423
2005 (actual) 0.0507 0.0502 0.0421 0.0424
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5 Discussion

In this study we have applied a simple, bidirectional smoothing estimator to measure
hospital quality, based on the work by McClellan and Staiger (1999). In their study,
McClellan and Staiger (1999) suggest their method is able to tackle some of the main
limitations inherent in hospital quality measurement, allowing them to create indicators
which reduce noise both within individual hospitals and across time, as well as integrate
di�erent dimensions of quality within a single estimator. Their paper uses US patient level
data for elderly American’s su�ering from heart disease to create quality indicators at the
hospital level. They show that their indicators are better able to reflect the multifaceted
nature of hospital performance, appear reliable, and forecast quality remarkably well,
better than many existing methods.

Recently, Jones and Spiegelhalter (2012) highlighted a number of directly competing bidi-
rectional smoothing estimators, applying these to health care also. They noted that their
preferred estimates relied upon specialised software and even so were associated with high
computing time. As they state this raises practical issues over the applicability of such
estimators in routine performance monitoring. They also noted the similarity of the class
of bidirectional smoothing estimators they assess with those proposed by McClellan and
Staiger (1999). Despite the practical advantages over competing methods, as noted for
example by Jones and Spiegelhalter (2012), this particular approach has not been applied
to evaluate hospital quality outside the USA or to other treatment conditions beyond
heart attack. It has been shown to have wider application however, as witnessed in its
use to evaluate other public service outcomes; specifically educational outcomes in the
USA (Kane et al., 2002). This paper has applied the method to English, patient level
data to test the robustness of their approach and its generalizability. The paper is also
able to address some of the limitations acknowledged by the McClellan and Staiger (1999)
study, arising from gaps in the US data on patient co-morbidity. We thus improve on
their measure by specifically incorporating co-morbidity information to create even more
robust indicators of hospital quality. Our results suggest that this method might be read-
ily applied to other treatment conditions. Indeed we did apply these methods to a wider
range of other conditions (including Stroke, TIA and Congestive Heart Failure) and the
measures performed as well as the examples reported here. The methods thus seem to be
generalizable to a wide set of treatment conditions and transferable across countries using
similar administrative data. Our application of this method to a di�erent setting did iden-
tify other issues however, stemming from the smaller sample sizes available in the English
hospital sector as compared to the US setting. That said, even for medium sized hospitals
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the proposed quality measures perform well. Thus, with this caveat aside, the McClellan
and Staiger (1999) approach would therefore appear to reduce noise and strengthen the
signal, thus improving the ability to assess hospital quality within the NHS.

To outline the approach we relied on a VAR(1) specification for our smoothed estimator,
which was chosen for ease of interpretation and parsimony. The signal variances estimated
using the VAR parameters were coupled with the estimation error to construct signal to
noise ratios for each outcome measure, in each of the two conditions, for the year 2005.
This signal, given a su�cient sample of patients, was strong in the majority of cases. While
the number of cases required to get a good signal to noise ratio varied by condition, in most
cases it included the medium to large volume hospitals. McClellan and Staiger (1999) also
observe this finding in their paper, and note that it is generally harder to observe the true
performance of smaller hospitals from patient outcome data, as the variation in the data
will be strongly influenced by specific di�erences in treatment, such as the presence or
absence of an individual physician, which would have relatively small e�ects in a larger
hospital. The other striking result from the signal to noise ratios was that in both cases,
short-term mortality performed worst. This is an important finding for policy, which
tends to emphasize quality measurement through short-term indicators. For AMI, where
treatment variation in the short-term has a major implication for survival, one might
expect short-term mortality measures to have the stronger signal. Indeed this the finding
was reported by McClellan and Staiger (1999) in the US analysis. It is interesting that this
is not the case for the UK, raising questions as to why. A possibility is that the wider range
of outcome measures available within the UK data allowed us to incorporate more of the
short term variation in mortality and readmission into the other outcome measures thus
strengthening their signal. While for Hip Replacement, this possibly reflects the largely
elective nature of the latter condition. Moreover a robustness check of the models, shows
that information from the other outcome measures is important and in some instances
can adjusted the persistence of indicators, confirming the assumption made that many
outcomes are co-dependent and should be considered together.

This point is perhaps more strongly noted by the interpretation of the correlation of the
residuals for the di�erent indicators as reported in the VAR models. Short- and long-term
readmissions have strong positive correlations with each other for AMI, while short-term
mortality is correlated with long-term readmissions for Hip Replacement. Interestingly,
McClellan and Staiger (1999) also observe this negative correlation for AMI between 30-
day mortality and year-long readmissions. Although a positive correlation might have
been expected, as noted in the text, if the smoothed mortality rates are improving, then
“sicker” patients may be being discharged leading to higher future readmission rates.
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This has direct implications for the recent introduction in the UK of a policy to financially
penalize high readmission rates. The Hip Replacement model suggests a mixed association
between the readmission and mortality variables; indicating a positive correlation between
some of the mortality and readmission combinations and negative correlations between the
others. For example, 30-day mortality is negatively associated with both short and long
term readmissions but year-long mortality had a positive association. However, for no
condition were all the associations positive, indicating that one should be cautious when
interpreting readmission measures in isolation as they may well not be indicative of higher
quality. Once again, these findings question the 2011 policy that introduced financial
penalties for English NHS hospital readmissions within the same HR.

Overall, these estimates of hospital quality based on four outcome measures for two condi-
tions, an emergency condition (AMI) and an elective condition (Hip Replacement), appear
to be acceptable measures and predictors of underlying quality, with straightforward ap-
plicability to the English NHS hospital setting. The method itself is less computationally
intensive than recently assessed Bayesian approaches and, building on a suggestion by
Jones and Spiegelhalter (2012) to evaluate simpler and less intensive measures, we have
done precisely that. Although the simplicity of the calculations are a major advantage,
a further advantage is that the proposed method provides a systematic approach to as-
sessing noisy hospital quality signals which does not require costly measurement as it
relies on routinely collected data. By systematically integrating di�erent dimensions of
hospital quality, it also reduces the general criticism that a single measure can not cap-
ture the breadth of elements necessary to return an aggregate indicator of quality. Given
that the method incorporates correlations across alternative quality signals, identifies and
eliminates redundant statistical information, and does so in a straightforward manner
there would appear much to recommend this measure over the alternative bidirectional
measures assessed by Jones and Spiegelhalter (2012). While recognizing that the aggre-
gation of quality signals will always involve value judgment, especially over the implicit
weights employed, the measures presented here are useful precisely because they return
a combined signal of quality. They also identify the degree of variation in quality left
unexplained after these smoothed shrinkage estimates have removed as much statistical
noise as possible. That is, while there will always be a role for interpretation, by incor-
porating risk-adjustment, smoothing and aggregation of quality dimensions into a single
statistical estimate there is, by definition, less noise and therefore more reason to suggest
that the measures presented here are more acceptable than the more naive estimators
currently used in policy evaluation. Obvious extensions would include investigation into
the aggregation of the di�erent measures into a single global measure, or at the very least
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a comparison of within hospital quality versus between hospital quality across di�erent
treatment conditions using similar methods.

In conclusion, the major advantages of this technique, as illustrated throughout this paper,
is their relatively good short-term accuracy and simplicity. Moreover this process can be
easily implemented, does not require large amount of historical data, and are relatively
low cost. However, this technique does also have disadvantages which are important to
note. In particular, any other variables that might influence the forecast, and are not
included in the first stage regression will not be accounted for. And, as noted previously
the smoothing technique is only valid if we assume that the error terms are random.
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