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robustness

We enjoyed reading Johansen and Nielsen (2016) which describes some

recent asymptotic theory with potential for applications in data analysis. We

first comment on the Forward Search in regression and finally consider the

similar mathematical problems that arise in robust estimation for multivari-

ate data when residuals are replaced by Mahalanobis distances. In between,

our major empirical contribution is a forward analysis of the Fulton fish

market data which leads to straightforward conclusions.

Johansen and Nielsen stress the strong relationship between outlier detec-

tion and robust estimation. This depends on the use of the binary weights or

indicator functions vi in Johansen and Nielsen’s §5.1. Smooth downweight-

ing, as in M-estimation, is excluded. The aim is to partition the data into

two sets: “good” data for which the vi = 1 and “bad” data, or outliers, for

which vi = 0. Given the partition, least squares can be used to estimate

the parameters and, using these estimates, the outliers are revealed. The

subject is mathematically and computationally interesting because, if there
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are several outliers, they may not be revealed by initially fitting a model to

all the data (that is starting with all vi = 1); the parameter estimates may

be so perturbed by the outliers that the outliers appear to be part of the

good data, a phenomenon known as masking.

The title of the paper makes clear the asymptotic nature of the results ob-

tained. It doesn’t make clear that all calculations are under the null hypoth-

esis; outliers perhaps only making an appearance in the Fulton fish market

data. When Johansen and Nielsen come to their list of problems in their §11

they will need to consider both the size and power of the outlier test. Riani

et al. (2014a) used the average power, that is the average number of obser-

vations correctly detected as being contaminated. Of course, high power can

be obtained by a test with a higher than nominal size, so both quantities

need to be considered.

The purpose of the study of Riani et al. (2014a) was to compare the

performance of various robust estimators in regression when viewed as outlier

detection tests. The novelty was to consider comparative performance as

the outlier pattern, typically a cluster, moved in a parameterised way from

being remote from the majority of the data to being close to it and then

moved away again. Johansen and Nielsen might like to include something

like this parametric trajectory of outliers in their list of further problems in

their §11. Theoretically, this emphasized that there are often two asymptotic

assumptions in the study of robust estimation: one is that the sample size

n → ∞. The other is consideration of what happens to estimators as the

outliers move to the edge of the parameter space, that is the breakdown of

an estimator.

The Forward Search algorithm is straightforward. Its use to detect out-

liers less so. The rule in Johansen and Nielsen’s (18) can be thought of as the

“crude” rule, responding to the first crossing of a boundary. Their Figure 4

shows how the number of outliers detected in outlier free samples can be large

and depend on the part of the search monitored. Simulations in Atkinson

and Riani (2006), adapting and extending a sophisticated simulation method

of Buja and Rolke (2003), also considered rules responding to one or several

successive values above the pointwise boundary, with similarly disappointing
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results.

A second problem with the crude rule is that, with many outliers, masking

may cause the first crossing to occur in the centre of the search, while, at the

same time, there is little or no indication of departures in the later stages.

To overcome these problems, Riani et al. (2009) developed a complicated

empirical rule which covers the whole search from m > 3p, using a variety

of pointwise intervals derived from a scaled-F distribution and, sometimes,

envelopes from a series of sample sizes. The regression version of this proce-

dure, which uses minimum deletion residuals that contain an expression for

leverage, has excellent size (1%) and good power over the ranges explored.

We would greatly welcome an insightful comparison between our empirical

rule and the asymptotic approach developed in this paper.

Another specific, but we feel important, remark on calibration of cutoff

values is given by Johansen and Nielsen below their (17). A similar argu-

ment was exploited in Riani et al. (2014b) for S and MM-estimators, two in-

stances of smooth downweighting, to obtain relationships between efficiency

and breakdown point. This leads to the monitoring of the performance of

methods of robust regression as the breakdown point or efficiency vary (Riani

et al., 2014a), made possible by the efficient routines of the FSDA Matlab

Toolbox available at http://www.riani.it. Of course, an advantage of the

Forward Search is that we do not have to specify breakdown point or effi-

ciency in advance.

Now for some data analysis. Two data transformations are plotted in

Johansen and Nielsen’s Figure 1 and the results of a number of aggregate

tests reported. In the spirit of the Forward Search we like to see several

transformations considered and the values of tests monitored throughout the

search. If there are outliers, which, if any, inferences do they affect?

Figure 1 about here

Figure 1 is a “fan plot” (Atkinson and Riani, 2000), that is a forward plot

of an approximate score test for the parameter in the Box-Cox transformation

of the response in the regression. The central band contains 99% of a standard

normal distribution. This shows that λ = 1 (no transformation) is thoroughly
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rejected, as are values of −1 and −0.5. The log transformation (λ = 0) is

rejected at the end of the search when the last five observations enter the

subset; 0.25 is an acceptable value, but 0.5 scarcely so with a value of -2.41

for the statistic for all the data.

Figure 2 about here

Figure 2 shows results for the analysis on the log scale. The left-hand

panel is the plot of scaled residuals. This stable plot reveals that the three

most extreme residuals are negative. Brushing the plot shows where these

points lie in the scatterplots of y against x1 and x2. The right-hand plot

shows the forward plot of absolute minimum deletion residuals with 99%

pointwise envelopes based on a sample size of 110. Although the three most

extreme residuals cause the trajectory to increase, it does not go outside the

upper limit.

Figure 3 about here (No new paragraph)

Figure 3 shows similar results for the square root transformation. Now the

two largest residuals in the left-hand panel are positive. The plot is again

stable. Introduction of these two observations causes a smaller increase in

the trajectory plotted in the right-hand panel than occurs when λ = 0. The

final figure

Figure 4 about here (No new paragraph)

is for the analysis with λ = 0.25. As might be expected from this intermediate

parameter value, the largest residuals are both positive and negative. The

scatterplots in the centre panel show that the observations are not far from

the rest of the data, and the plot of absolute minimum deletion residuals at

the end of the search lies close to the median value.

There are three comments about our analysis. One is that we see none

of the instability hinted at in §10 of Johansen and Nielsen’s paper. The

second is on the width of our pointwise intervals, which are sufficiently wide

not to detect any outliers for the three transformations considered in detail.

This points again to the importance of an extensive comparison between
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asymptotic and finite sample bands. The third is that we have ignored the

autoregressive structure when using the forward search.

We conclude our discussion by stressing that we agree with Johansen and

Nielsen about the importance of controlling the size of any outlier detection

test. Our experience has been that too liberal cutoff values can produce dele-

terious practical consequences in many areas, with a plethora of false signals.

We also provided some corrections in the case of multivariate data, where Ma-

halanobis distances replace scaled residuals. Our improved methods involve

both distributional results for finite samples and powerful ways of dealing

with multiple outliers tests (Cerioli et al., 2009; Cerioli, 2010; Cerioli and

Farcomeni, 2011). However, we acknowledge that a unified asymptotic the-

ory of multivariate outlier detection has yet to come. We thus look forward

to Johansen and Nielsen’s contribution also in this field.
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Figure 1: Fan plot for Fulton fish market data.

Figure 2: Fish data: analysis on the log scale, λ = 0. Left: plot of scaled
residuals. Centre: brushing the scatterplots. Right: forward plot of absolute
minimum deletion residuals.

Figure 3: As Figure 2, but now the analysis is with the square root transfor-
mation, λ = 0.5.
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Figure 4: As Figure 2, but now the analysis is with λ = 0.25.
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