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Stable laws and Beurling Kernels
by

A. J. Ostaszewski

Abstract. We identify a close relation between stable distributions and the
limiting homomorphisms central to the theory of regular variation. In so doing
some simplifications are achieved in the direct analysis of these laws in Pitman
and Pitman [PitP]; stable distributions are themselves linked to homomorphy.

Keywords. Stable laws, Beurling regular variation, quantifier weakening, ho-
momorphism, Goldie equation, Goł̨ab-Schinzel equation, Levi-Civita equation.
AMS Classification. 60E07; 26A03; 39B22, 34D05, 39A20.

1 Introduction

This note takes its inspiration from Pitman and Pitman’s approach [PitP], in
this volume, to the characterization of stable laws directly from their charac-
teristic functional equation [PitP, (2.2)], (ChFE) below, which they comple-
ment with the derivation of parameter restrictions by an appeal to Karamata
(classical) regular variation (rather than indirectly as a special case of the Lévy-
Khintchine characterization of infinitely decomposable laws — cf. [PitP, §4]).
We take up their functional-equation tactic with three aims in mind. The first
and primary one is to extract a hidden connection with the more general the-
ory of Beurling regular variation, which embraces the original Karamata theory
and its later ‘Bojaníc-Karamata-de Haan’variants. (This has received renewed
attention: [BinO1,4], [Ost1]). The connection is made via another functional
equation, the Goldie equation

κ(x+ y)− κ(x) = γ(x)κ(y) (x, y ∈ R+), (GFE)

with vanishing side condition κ(0) = 0 and auxiliary function γ, or more prop-
erly with its multiplicative equivalent:

K(st)−K(s) = G(s)K(t) (s, t ∈ R+), (GFE×)

with corresponding side condition K(1) = 0; the additive variant arises first in
[BinG] (see also [BinGT, Lemma 3.2.1 and Th. 3.2.5]), but has only latterly been
so named in recognition of its key role both there and in the recent developments
[BinO2,3], inspired both by Beurling slow variation ([BinGT, §2.11]) and by
its generalizations [BinO1,4] and [Ost1]. This equation describes the family of
Beurling kernels (the asymptotic homomorphisms of Beurling regular variation),
that is, the functions KF arising as locally uniform limits of the form

KF (t) := limx→∞[F (x+ tϕ(x))− F (x)], (BKer)
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for ϕ(.) ranging over self-neglecting functions (SN). (See [Ost1, 2] for the larger
family of kernels arising when ϕ(.) ranges over the self-equivarying functions SE,
both classes recalled in the complements section §4.1.)
A secondary aim is achieved in the omission of extensive special-case ar-

guments for the limiting cases in the Pitman analysis (especially the case of
characteristic exponent α = 1 in [PitP, §5.2 —affecting parts of §8]), employing
here instead the more natural approach of interpreting the ‘generic’ case ‘in
the limit’via the L’Hospital rule. A final general objective of further stream-
lining is achieved, en passant, by telescoping various cases into one, simple,
group-theoretic argument; this helps clarify the ‘group’aspects as distinct from
‘asymptotics’, which relate parameter restrictions to tail balance —see the Re-
mark in §3(a).
A random variable X has a stable law if for each n ∈ N the law of the

random walk Sn := X1 + ...+Xn, where the n steps are independent and with
law identical to X, is of the same type, i.e. the same in distribution up to scale
and location:

Sn ∼ anX + bn,

for some real constants an, bn with an > 0 —cf. [Fel, VI.1] and [PitP, (1.1)].
These laws may be characterized by the characteristic functional equation (of
the characteristic function of X, ϕ(t) = E[eitX ]), as in [PitP, (2.2)]:

ϕ(t)n = ϕ(ant) exp(ibnt) (n ∈ N, t ∈ R+). (ChFE)

The standard way of solving (ChFE) is to deduce the equations satisfied
by the functions a : n 7→ an and b : n 7→ bn. Pitman and Pitman [PitP]
proceed directly by proving the map a injective, then extending the map b
to R+ := (0,∞), and exploiting the classical Cauchy (or Hamel) exponential
functional equation (for which see [AczD] and [Kuc]):

K(xy) = K(x)K(y) (x, y ∈ R+); (CEE)

(CEE) is satisfied by K(.) = a(.) on the smaller domain N, as a consequence
of (ChFE). See [RamL] for a similar, but less self-contained account. For other
applications see the recent [GupJTS], which characterizes ‘generalized stable
laws’.
We show in §2 the surprising equivalence of (ChFE) with the fundamental

equation (GFE) of the recently established theory of Beurling regular variation.
There is thus a one-to-one relation between Beurling kernels arising through
(BKer) and the solutions of (ChFE), amongst which are the one-dimensional
stable distributions. This involves passage from discrete to continuous, a normal
feature of the theory of regular variation (see [BinGT,1.9]) which, rather than
unquestioningly adopt, we track carefully via the Lemma and Corollary of §2:
the ultimate justification here is the extension of a to R+ (Ger’s extension
theorem [Kuc, §18.7] being thematic here), and the continuity of characteristic
functions.
The emergence of a particular kind of functional equation, one interpretable

as a group homomorphism (see §4.3), is linked to the simpler than usual form
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here of ‘probabilistic associativity’(as in [Bin]) in the incrementation process of
the stable random walk; in more general walks, functional equations (and inte-
grated functional equations —see [RamL]) arise over an associated hypergroup, as
with the Kingman-Bessel hypergroup and Bingham-ultraspherical hypergroup
(see [Bin] and [BloH]). We return to these matters, and connections with the
theory of flows, elsewhere —[Ost3].
The material is organized as follows. Below we identify the solutions to

(GFE) and in §2 we prove equivalence of (GFE) and (ChFE); our proof is self-
contained modulo the (elementary) result that for ϕ a characteristic function
(ChFE) implies an = nk for some k > 0. Then in §3 we read off the form of the
characteristic functions of the stable laws. We conclude in §4 with complements
describing the families SN and SE mentioned above, and identifying the group
structure implied, or ‘encoded’, by (GFE×) to be (R+,×), the multiplicative
positive reals.
The following result, which has antecedents in several settings (some cited

below), is key; on account of its significance, this has recently received further
attention in [BinO3, esp. Th. 3], [Ost2, esp. Th. 1], to which we refer for
background —cf. §4.2.

Theorem GFE ([BinO3, Th. 1], [BojK, (2.2)], [BinGT, Lemma 3.2.1]; cf.
[AczG]). For C-valued functions κ and γ with γ locally bounded at 0 with γ(0) =
1 and γ 6= 1 except at 0, if κ 6≡ 0 satisfies (GFE), subject to the side condition
κ(0) = 0,
—then for some γ0, κ0 ∈ C:

γ(u) = eγ0u and κ(x) ≡ κ0Hγ0(x) := κ0

∫ x

0

γ(u)du = κ0(e
γ0x − 1)/γ0,

under the usual L’Hospital convention for interpreting γ0 = 0.

Remarks. 1. The cited proof is ostensibly for R-valued κ(.) but immediately
extends to C-valued κ. Indeed, in brief, the proof rests on symmetry:

γ(v)κ(u) + κ(v) = κ(u+ v) = κ(v + u) = γ(u)κ(v) + κ(u).

So, for u, v not in {x : γ(x) = 1}, an additive subgroup,

κ(u)[γ(v)− 1] = κ(v)[γ(u)− 1] : κ(u)

γ(u)− 1 =
κ(v)

γ(v)− 1 = κ0,

as in [BinGT, Lemma 3.2.1]. If κ(.) is to satisfy (GFE), then γ(.) needs to
satisfy (CEE).
The notation Hρ (originating in [BojK]) is from [BinGT, Ch. 3: de Haan

theory] and, modulo exponentiation, links to the ‘inverse’functions ηρ(t) = 1+ρt
(see §4.3) which permeate regular variation (albeit long undetected), a testament
to the underlying flow and group structure, for which see especially [BinO3,4].

The Goldie equation is a special case of the Levi-Civita equations; for a text-
book treatment of their solutions for domain a semigroup and range C see [Ste,
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Ch. 5].
2. We denote the constants γ0 and κ0 more simply by γ and κ, whenever context
permits. To prevent conflict with the γ of [PitP, §5.1] we denote that here by
γP(k), showing also dependence on the index of growth of an: see §3(b).
3. To solve (GFE×) write s = eu and t = ev obtaining (GFE); then

G(eu) = γ(u) = eγu : G(s) = sγ

K(eu) = κ(u) = κ · (eγu − 1)/γ : K(s) = κ · (sγ − 1)/γ.

4. Alternative regularity conditions, yielding continuity and the same Hγ con-
clusion, include in [BinO3, Th. 2] the case of R-valued functions with κ(.) and
γ(.) both non-negative on R+ with γ 6= 1 except at 0 (as then either κ ≡ 0, or
both are continuous).

2 Reduction to the Goldie Equation

In this section we establish a Proposition connecting (ChFE) with (GFE×) and
so stable laws with Beurling kernels. In the interests of brevity1 , this makes use
of a well-known result, concerning the norming constants (cf. [Fel, Th. VI.1.],
[PitP, Lemma 5.3]), that a : n 7→ an satisfies an = nk for some k > 0, so is
extendable to a continuous surjection onto R+ := (0,∞) :

ã(ν) = νk (ν > 0);

this is used below to justify the validity of the definition

f(t) := logϕ(t) (t > 0),

with log here the principal logarithm, a tacit step in [PitP, §5.1], albeit based
on [PitP, Lemma 5.2]. We write am/n = ãm/n = am/an and put

AN := {an : n ∈ N}, AQ := {am/n : m,n ∈ N}.

The Lemma below reproves an assertion from [PitP, Lemma 5.2], but without
assuming that ϕ is a characteristic function. Its Corollary needs no explicit
formula for bm/n, since the term will eventually be eliminated.

Lemma. For continuous ϕ 6≡ 0 satisfying (ChFE) with an = nk, ϕ has no
zeros on R+.

Proof. If ϕ(τ) = 0 for some τ > 0, then ϕ(amτ) = 0 for all m, by (ChFE).
Again by (ChFE), |ϕ(τam/an)|n = |ϕ(amτ)| = 0, so ϕ is zero on the dense
subset of points τam/an; then, by continuity, ϕ ≡ 0 on R+, a contradiction. �

1On this point, see the fuller arXiv version.
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Corollary. The equation (ChFE) holds on the dense subgroup AQ: there are
constants {bm/n}m,n∈N with

ϕ(t)m/n = ϕ(am/nt) exp(ibm/nt).

Proof. Taking t/an for t in (ChFE) :

ϕ(t/an)
n = ϕ(t) exp(ibn/ant),

so by the Lemma, using principal values,

ϕ(t)1/n = ϕ(t/an) exp(−itbn/nan).

From here, as am/n = am/an,

ϕ(t)m/n = ϕ(t/an)
m exp(−itmbn/nan) = ϕ(am/nt) exp(it[bm −m/nbn]/an)

= ϕ(am/nt) exp(ibm/nt),

the last term, like the remaining ones, depending only on m/n. �

Our main result below, on equational equivalence, uses a condition (GA,R+)
applied to the dense subgroup A = AQ. This is a quantifier weakening relative
to (GFE) and is similar to a condition with all variables ranging over A =
AQ denoted (GA) in [BinO3], to which we refer for background on quantifier
weakening. In the Proposition below we may also impose just (GAQ), granted
continuity of ϕ.

Proposition. For ϕ continuous and an = nk, the functional equation (ChFE)
is equivalent to

K(st)−K(s) = K(t)G(s) (s ∈ A, t ∈ R+), (GA,R+)

for either of A = AN or A = AQ, both with side condition K(0) = 1; the latter
directly implies (GFE×). The correspondence is given by:

K(t) =

{
f(t)/t, if f(1) = 0,

(f(t)/tf(1))− 1, if f(1) 6= 0.

Proof. By the Lemma, using principal values, (ChFE) may be re-written as

ϕ(t)n/t = ϕ(ant)
1/t exp(ibn) (n ∈ N, t ∈ R+).

From here, on taking principal logarithms and adjusting notation (f := logϕ,
h(n) = −ibn, and g(n) := an ∈ R+), pass first to the form

f(g(n)t)/t = nf(t)/t+ h(n) (n ∈ N, t ∈ R+);
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here the last term does not depend on t, and is defined for each n so as to
achieve equality. Then, with s := g(n) ∈ R+, replacement of n by g−1(s), valid
by injectivity, gives, on cross-multiplying by t,

f(st) = g−1(s)f(t) + h(g−1(s))t.

As s, t ∈ R+, take F (t) := f(t)/t, G(s) := g−1(s)/s, H(s) := h(g−1(s))/s; then

F (st) = F (t)G(s) +H(s) (s ∈ AN, t ∈ R+). (†)

This equation contains three unknown functions: F,G,H (cf. the Pexider-like
formats considered in [BinO2, §5]), but we may reduce the number of unknown
functions to two by entirely eliminating2 H. The elimination argument splits
according as F (1) = f(1) is zero or not.
Case 1: f(1) = 0 (i.e. ϕ(1) = 1); taking t = 1 in (†) yields F (s) = H(s), and
so (GAN,R+) holds for K = F, with side condition K(1) = 0 (= F (1)).
Case 2: f(1) 6= 0; then, with F̃ := F/F (1) and H̃ := H/F (1) in (†),

F̃ (st) = F̃ (t)G(s) + H̃(s), and F̃ (1) = 1,

for s ∈ A, t ∈ R+. Taking again t = 1 gives

F̃ (s) = G(s) + H̃(s).

Setting
K(t) := F̃ (t)− 1 = F (t)/F (1)− 1 (††)

(so that K(1) = 0), and using H̃ = F̃ −G in (†) gives

F̃ (st) = F̃ (t)G(s) + F̃ (s)−G(s),
(F̃ (st)− 1)− (F̃ (s)− 1) = (F̃ (t)− 1)G(s),

K(st)−K(s) = K(t)G(s).

That is, K satisfies (GA,R+) with side condition K(1) = 0.
In summary: in both cases elimination of H yields (GA,R+) and the side

condition of vanishing at the identity.
So far, in (GA,R+) above, t ranges over R+ whereas s ranges over AN = {an :

n ∈ N}, but s may as well range over over {am/n : m,n ∈ N}, by the Corollary.
As before, since a : n 7→ an has ã as its continuous extension to a bijection onto
R+ and ϕ is continuous, we conclude that s may as well range over R+, yielding
the multiplicative form of the Goldie equation (GFE×) with the side-condition
of vanishing at the identity. �

Remarks. 1. As in [PitP, §5], we consider only non-degenerate stable dis-
tributions, consequently ‘Case 1’will not figure below (as this case yields an
arithmetic distribution —cf. [Fel, XVI.1 Lemma 4], so here concentrated on 0).
2. In ‘Case 2’above, H̃(st) − H̃(s) = H̃(t)G(s), since G(st) = G(s)G(t), by
Remark 3 of §1. So H̃(eu) = κHγ(u) = κ · (eγu − 1)/γ. We use this in §3.

2This loses the “affi ne action”: K 7→ G(t)K +H(t).
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3 Stable laws: their form

This section demonstrates how to ‘telescope’several cases of the [PitP] analysis
into one, and to make L’Hospital’s Rule carry the burden of the ‘limiting’case
α = 1. At little cost, we also deduce the form of the location constants bn,
without needing the separate analysis conducted in [PitP, §5.2].
We break up the material into steps, beginning with a statement of the

result.

(a) Form of the law. The form of ϕ for a non-degenerate stable distribution is
an immediate corollary of Theorem GFE (§1) applied to (††) above. For some
γ ∈ R, κ ∈ C and with A := κ/γ and B := 1−A,

f(t) = logϕ(t) =

{
f(1)(Atγ+1 +Bt), for γ 6= 0,
f(1)(t+ κt log t), with γ = 0,

(t > 0).

Here α := γ + 1 is the characteristic exponent. From this follows a formula for
t < 0 (by complex conjugation—see below). The connection with [PitP, §5 at
end] is given by:
(i) f(1) := logϕ(1) = −c+ iy (with c > 0, as |ϕ(t)| < 1 for t > 0);
(ii) f(1)κ = −iλ. So f(1)B = −c+ i(y + λ/γ), and κ = λ(−y + ic)/(c2 + y2).

Remark. We note, for the sake of completeness, that restrictions on the two
parameters α and κ (equivalently γ and κ) follow from asymptotic analysis of
the ‘initial’behaviour of the characteristic function ϕ (i.e. near the origin). This
is equivalent to the ‘final’or tail behaviour (i.e. at infinity) of the corresponding
distribution function. Specifically, the ‘dominance ratio’of the imaginary part of
the dominant behaviour in f(t) to the value c (as in (i) above) relates to the ‘tail
balance’ratio β of [PitP, (6.10)], i.e. the asymptotic ratio of the distribution’s
tail difference to its tail sum —cf. [PitP, §8]. Technical arguments, based on
Fourier inversion, exploit the regularly varying behaviour as t ↓ 0 (with index of
variation α —see above) in the real and imaginary parts of 1−ϕ(t) to yield the
not unexpected result [PitP, Th. 6.2] that, for α 6= 1, the dominance ratio is
proportional to the tail-balance ratio β by a factor equal to the ratio of the sine
and cosine variants of Euler’s Gamma integral3 (on account of the dominant
power function) —compare [BinGT, Th. 4.10.3].

(b) On notation. The parameter γ := α − 1 is linked to the auxiliary function
G of (GFE); this usage of γ conflicts with [PitP], where two letters are used
for the constant ratio bn/n : λ for the ‘case α = 1’, and otherwise γ (following
Feller [Fel, VI.1 Footnote 2]). The latter we denote by γP(k), reflecting the k
value in the ‘case α = 1/k 6= 1’. In (d) below it emerges that γP(1+) = λ.

(c) Verification of (a). By Remark 1 of §2, only the second case of the Propo-
sition applies: the function K(t) = F̃ (t) − 1 = f(t)/tf(1) − 1 solves (GFE×)

3 In view of that factor’s key role, a quick and elementary derivation is offered in the
Appendix of the fuller arXiv version of this note (for 0 < α < 1).
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with side-condition K(1) = 0. Writing t = eu (as in §1 Remark 2) yields

f(t)/tf(1) = f(eu)e−u/f(1) = 1 +K(eu) = κ(u) = 1 + κ(eγu − 1)/γ,

for some complex κ and γ 6= 0 (with passage to γ = 0, in the limit, to follow).
So, for t > 0, with A := κ/γ and B := 1−A, as above,

f(t) = logϕ(t) = f(1)t (1 + κ (tγ − 1) /γ) = f(1)(Atα +Bt), with α = γ + 1.

On the domain t > 0, this agrees with [PitP, (5.5)]; for t < 0 the appropriate
formula is immediate via complex conjugation, verbatim as in the derivation of
[PitP, (5.5)], save for the γ usage. To cover the case γ = 0, apply the L’Hospital
convention; as in [PitP, (5.8)], for t > 0 and u > 0 and some κ ∈ C,

κ(t) := f(et)e−t/f(1) = 1 + κt : f(u) = f(1)(u+ κu log u).

(d) Location parameters: general case α 6= 1. Here γ = α − 1 6= 0. From the
proof of the Proposition, G(t) := g−1(et)e−t; so

g−1(et) = eteγt = eαt.

Put k = 1/α; then

v = g−1(u) = uα : u = g(v) = v1/α = vk,

confirming an = g(n) = nk, as in [PitP, Lemma 5.3]. (Here k > 0, as strict
monotonicity was assumed in the Proposition). Furthermore, as in Remark 2 of
§2, κ · (eγt − 1)/γ = H̃(et) = h(g−1(et))e−t/f(1); so

h(g−1(et)) = f(1)κ · (eαt − et)/γ
h(u) = f(1)κ · (u− u1/α)/γ = f(1)(κ/γ)(u− uk),

where γ = α− 1 = (1− k)/k. So bn = ih(n) = if(1) · (κ/γ) · (n− nk), as in the
Pitman analysis: see [PitP, §5.1]. Here bn is real, since f(1)κ = −iλ, according
to (a) above and conforming with [PitP, §5.1]. So as bn/n = γP(k), similarly to
[PitP, end of proof of Lemma 4.1], again as f(1)κ = −iλ,

lim
k→1

γP(k) = if(1)κ · lim
k→1

k
1− nk−1
k − 1 = λ log n.

(e) Location parameters: special case α = 1. Here γ = 0. In (c) above the form
of g specializes to

g−1(et) = et : g(u) = u.

Applying the L’Hospital convention yields the form of h: for t > 0 and u > 0,

h(g−1(et)) = h(et) = f(1)κtet : h(u) = f(1)κ · u log u;

so, as in [PitP, (5.8)], bn = λn log n (since bn = ih(n) and again λ = if(1)κ).
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4 Complements

1. Self-neglecting and self-equivarying functions. Recall (cf. [BinGT, §2.11])
that a self-map ϕ of R+ is self-neglecting (ϕ ∈ SN) if

ϕ(x+ tϕ(x))/ϕ(x)→ 1 locally uniformly in t for all t ∈ R+, (SN)

and ϕ(x) = o(x). This traditional restriction may be usefully relaxed in two
ways, as in [Ost1]: firstly, in imposing the weaker order condition ϕ(x) = O(x),
and secondly by replacing the limit 1 by a general limit function η, so that

ϕ(x+ tϕ(x))/ϕ(x)→ η(t) locally uniformly at t for all t ∈ R+. (SE)

Such a ϕ is called self-equivarying in [Ost1], and the limit function η = ηϕ

necessarily satisfies the equation

η(u+ vη(u)) = η(u)η(v) for u, v ∈ R+ (BFE)

(this is a special case of the Goł̨ab-Schinzel equation — see also e.g. [Brz], or
[BinO2], where the equation above is termed the Beurling functional equation).
As η ≥ 0, imposing the natural condition η > 0 (on R+) implies that it is
continuous and of the form

η(t) = 1 + ρt, for some ρ ≥ 0

(see [BinO2]); the case ρ = 0 recovers SN. A function ϕ ∈ SE has the repre-
sentation

ϕ(t) ∼ ηϕ(t)
∫ t

1

e(u)du for some continuous e→ 0

(where f ∼ g if f(x)/g(x)→ 1, as x→∞) and the second factor is in SN (see
[BinO1, Th. 9], [Ost1]).
2. Theorem GFE. This theorem has antecedents in [Acz] and [Chu], [Ost 2, Th.
1], and is generalized in [BinO2, Th.3]). It is also studied in [BinO3] and [Ost2].
3. Homomorphisms and random walks. In the context of a ring, the ‘Goł̨ab-
Schinzel functions’ηρ(t) = 1 + ρt, as above, were used by Popa and Javor (see
[Ost2] for references) to define associated (generalized) circle operations:

a ◦ρ b = a+ ηρ(a)b = a+ (1 + ρa)b = a+ b+ ρab.

(Note that a◦1 b = a+ b+ab is the familiar circle operation, and a◦0 b = a+ b.)
These were studied in the context of R in [Ost2, §3.1]; it is straightforward to
lift that analysis to the present context of the ring C, yielding the complex circle
groups

Cρ := {x ∈ C : 1 + ρx 6= 0} = C\{ρ−1} (ρ 6= 0).
Since

(1 + ρa)(1 + ρb) = 1 + ρa+ ρb+ ρ2ab = 1 + ρ[a+ b+ ρab],

ηρ(a)ηρ(a) = ηρ(a ◦ρ b),
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ηρ : (Cρ, ◦ρ)→ (C∗, ·) = (C\{0},×) is an isomorphism (‘from Cρ to C∞’).
We may recast (GFE×) along the lines of (†) so that G(s) = sγ with γ 6= 0,

and
K(t) = (tγ − 1)ρ−1, for ρ = γ/κ = (1− k)/(kκ).

Then, as ηρ(x) = 1 + ρx = G(K−1(x)),

K(st) = K(s) ◦ρ K(t) = K(s) + ηρ(K(s))K(t) = K(s) +G(s)K(t).

For γ 6= 0, K is a homomorphism from the multiplicative reals R+ into Cρ;
more precisely, it is an isomorphism between R+ and the conjugate subgroup

(R+ − 1)ρ−1.

In the case γ = 0 (k = 1), C0 = C is the additive group of complex numbers;
from (GFE×) it is immediate that K maps logarithmically into (R,+), ‘the
additive reals’.

Acknowledgement. The final form of this manuscript owes much to the Ref-
eree’s supportively penetrating reading of an earlier draft, for which sincere
thanks.
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