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Abstract

A semiparametric model is proposed in which a parametric filtering of a non-

stationary time series, incorporating fractionally differencing with short mem-

ory correction, removes correlation but leaves a nonparametric deterministic

trend. Estimates of the memory parameter and other dependence parameters

are proposed, and shown to be consistent and asymptotically normally dis-

tributed with parametric rate. Tests with standard asymptotics for I(1) and

other hypotheses are thereby justified. Estimation of the trend function is also

considered. We include a Monte Carlo study of finite-sample performance.
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1 INTRODUCTION

A long-established vehicle for smoothing a deterministically-trending time series yt,

t = 1, ..., T, is the fixed-design nonparametric regression model given by

yt = g

(
t

T

)
+ ut, t = 1, ..., T, (1)

where g(x), x ∈ [0, 1] , is an unknown, smooth, nonparametric function, and ut is

an unbservable sequence of random variables with zero mean. The dependence on

sample size T of g (t/T ) in (1) is to ensure suffi cient accumulation of information

to enable consistent estimation of g (τ) at any τ ∈ (0, 1). A more basic trend

function is a polynomial in t of given degree, as still frequently employed in various

econometric models. A more general class of models than polynomials (and having

analogy with the fractional stochastic trends we will employ in the current paper)

involves fractional powers, i.e.

yt = β0 + β1t
γ1 + ...+ βpt

γp + ut, t = 1, ..., T, (2)

where all the βi and γi are unknown and real-valued. Subject to identifiability and

other restrictions, these parameters can be estimated consistently and asymptotically

normally, e.g. by nonlinear least squares (Phillips (2007), Robinson (2012a)). Models

such as (2) can be especially useful in modest sample sizes. However, and as with

any parametric function of t, misspecification leads to inconsistent estimation, and a

nonparametric treatment affords greater flexibility when T is large (recognizing that

nonparametric estimates converge more slowly than parametric ones). Apart from

the nonparametric/parametric aspect, the models (1) and (2) differ in that (1) entails

a weak trend while (2) can describe stonger and weaker trends. (see Phillips and Sul

(2007)).

With independent and identically distributed (iid) ut, with finite variance, vari-

ous kernel-type estimates of g in (1) were developed by Gasser and Mueller (1979) ,
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Priestley and Chao (1972) , with statistical properties established; in particular, un-

der regularity conditions kernel estimates of g (τ) are consistent and asymptotically

normally distributed as T → ∞ (see e.g. Benedetti (1977)). A suitable choice of

kernel (and bandwidth) is an important ingredient in this theory, although kernel es-

timates are essentially an elaboration on simple moving window averages, which have

a much longer history in empirical work. More recent empirical uses of (1) include

Starica and Granger (2005) in modelling stock price series.

The iid assumption on ut is very restrictive, but similar asymptotic properties

result when ut has weak dependence, for example is a covariance stationary process,

generated by a linear process or satisfying suitable mixing conditions, and having finite

and positive spectral density at degree zero (see e.g. Roussas, Tran and Ioannides

(1992), Tran, Roussas, Yakowitz and Truong Van (1996)). The rate of convergence of

kernel estimates is unaffected by this level of serial correlation, though the asymptotic

variance differs from that in the iid case (unlike in the stochastic-design model in

which the argument of g in (1) is instead a weakly dependent stationary stochastic

sequence).

Long-range dependence in ut has a greater impact on large-sample inference. If ut

is a stationary and invertible fractional process, for example

(1− L)δ0 ut = εt, |δ0| < 1/2, (3)

L being the lag operator and the εt forming an iid sequence, or if ut has a "semi-

parametric" specification with spectral density f (λ) having rate λ−2δ0 as frequency

λ approaches zero from above, then the convergence rate of kernel estimates of g (τ)

is slower when δ0 > 0 and faster when δ0 < 0. References dealing with (1) for such ut

include Beran and Feng (2002), Csorgo and Mielniczuk (1995), Deo (1997), Guo and

Koul (2007), Robinson (1997), Zhao, Zhang and Li (2014). The asymptotic variance

of the kernel estimates depends on δ0 and any other time series parameters; for the
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"semiparametric" specification Robinson (1997) justified studentization using local

Whittle estimates of δ0.

The restriction δ0 < 1/2 implies stationarity of ut, so that yt given by (1) is non-

stationary only in the mean. Stochastic trends are also an important source of

nonstationarity in many empirical time series. However, a nonstationary stochastic

trend in yt generated by a nonstationary ut, for example an I(1) trend, would render

g (t/T ) undetectable, so we do not pursue this line. An alternative, semiparametric,

model which both incorporates a possibly nonstationary stochastic trend and enables

estimation of a nonparametric deterministic trend is

∆δ0
t yt = g

(
t

T

)
+ ut, t = 1, ..., T, (4)

where ut is a sequence of uncorrelated, homoscedastic random variables and, for any

real δ, ∆δ
t is the truncated fractional differencing operator,

∆δ
t =

t−1∑
j=0

αj(δ)L
j, t ≥ 1, (5)

the αj(δ) being coeffi cients in the (possibly formal) expansion

(1− z)δ =
∞∑
j=0

αj(δ)z
j,

namely

αj(δ) =
Γ(j − δ)

Γ(−δ)Γ(j + 1)
. (6)

The truncation in (5) reflects non-observability of yt when t ≤ 0, and avoids explosion

of the moving average representation of (4) when δ0 ≥ 1/2, the nonstationary region

for δ0; this region may be of particular interest with economic data, but our work

covers also stationary settings, where δ0 < 1/2.

One nonstationary δ0 has assumed wide empirical importance in connection with

a variety of econometric models, the I(1) case δ0 = 1, when (4) becomes

(1− L)yt = g

(
t

T

)
+ ut, t = 1, ..., T. (7)
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The bulk of the econometric literature nests (7) as the unit root in autoregressive

structures, which suggests treating (7) as a special case of

(1− ρL)yt = g

(
t

T

)
+ ut, t = 1, ..., T, (8)

rather than (4). The autoregressive unit root literature suggests that estimates of

ρ in (8) will have a nonstandard limit distribution under ρ = 1 (7), but a normal

one in the "stationary" region |ρ| < 1. By contrast we can anticipate, for example

from literature concerning (4) with g(x) a priori constant, that estimates of δ0 such

as ones optimizing an approximate pseudo-Gaussian likelihood, and Wald and other

test statistics, will enjoy standard asymptotics, with the usual parametric convergence

rate,
√
T , whatever the value of δ0, due essentially to smoothness properties of the

fractional operator; tests are also expected to have the classical local effi ciency prop-

erties. While (4) cannot, unlike (8), describe "explosive" behaviour (occurring when

|ρ| > 1), it describes a continuum of stochastic trends indexed by δ0. A consequence

of the T−dependence in g(t/T ) is that the left side of (4) is also T -dependent, so the

yt = ytT in fact form a triangular array, but in common with the bulk of literature

concerning versions of (1) we suppress reference to T. The model (4) (which nests

(1) with iid ut on taking δ0 = 0) supposes that the fractional filtering of yt success-

fully eliminates correlation, but possibly leaves a trend which we are not prepared to

parameterize.

To provide greater generality than (4), the paper in fact considers the extended

model

ξt (L; δ0, θ0) yt = g

(
t

T

)
+ ut, t = 1, ..., T, (9)

where θ0 is an unknown p−dimensional column vector and

ξt (z; δ, θ) =
t−1∑
j=0

ξj(δ, θ)z
j, t ≥ 1,
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where the ξj(δ, θ) are coeffi cients in the possibly formal expansion

ξ (z; δ, θ) =
∞∑
j=0

ξj(δ, θ)z
j,

such that

ξ (z; δ, θ) = (1− z)δζ (z; θ) ,

where

ζ (z; θ) =
∞∑
j=0

ζj(θ)z
j

is a known function of z and θ that is at least continuous, and nonzero for z on or

inside the unit circle in the complex plane. When ζ (z; θ) ≡ 1, we have ξ (z; δ, θ) =

(1 − z)δ. Leading examples of ζ (z; θ) are stationary and invertible autoregressive

moving average operators of known degree, for example the first order autoregressive

operator ζ (z; θ) = 1− θz, with θ here a scalar such that |θ| < 1. In general ζ leaves

the essential memory or degree of nonstationarity δ0 unchanged but allows otherwise

richer dependence structure.

It would be possible to consider a nonparametric ζ, ζ (z) , satisfying smoothness

assumptions only near z = 1, and hence a "semiparametric" operator on yt. This

would lead to an estimate of δ0 with only a nonparametric convergence rate. How-

ever, establishing the parametric,
√
T , rate for estimating δ0 and θ0 seems actually

more challenging and delicate, because of the presence of the nonparametric g (t/T )

in (9) , estimates of which converge more slowly than
√
T . Proving consistency re-

quires establishing that certain (stochastic and deterministic) contributions to resid-

uals, whose squares make up the objective function minimized by the parameter

estimates, are negligible uniformly over the parameter space; these contributions are

of larger order than would be the case with a parametric trend (and this fact also

explains why we find ourselves unable to choose the parameter space for δ0 as large

as is possible with a parametric trend). Then, corresponding contributions to scores
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evaluated at δ0, θ0 are also of larger order than in the parametric trend case and have

to be shown to be negligible after being normalized by
√
T , rather than by a slower,

nonparametric, rate, in order to prove asymptotic normality of the parameter esti-

mates with
√
T rate. The strong dependence in yt also impacts on the conditions,

due to non-summability of certain weight sequences.

The following section proposes estimates of δ0 and θ0, and establishes their con-

sistency and asymptotic normality, the proofs appearing in Appendices A and B.

Section 3 develops I(1) tests based on Wald, pseudo log likelihood ratio and La-

grange multiplier principles. Section 4 proposes estimates of g (x) and establishes

their asymptotic properties. A small Monte Carlo study of finite-sample performance

is contained in Section 5. Section 6 concludes by describing further issues that might

be considered.

2. ESTIMATION OF DEPENDENCE PARAMETERS

Were g(x) ≡ 0 in (9) a priori, a natural method of estimating δ0 and θ0 would be

conditional-sum-of-squares, which approximates Gaussian pseudo-maximum-likelihood

estimation. We modify this method by employing residuals, which requires prelim-

inary estimation of g(x). Note that under the conditions imposed below, g (t/T )−

g ((t− 1) /T ) = O (T−1) , 2 ≤ t ≤ T, so we might instead first difference (9) as

this would effectively eliminate the deterministic trend; however this also induces a

non-invertible moving average ut − ut−1.

Let k (x) , x ∈ R, be a user-chosen kernel function and h a user-chosen positive

bandwidth number. For any δ, θ write ξtδθ (z) = ξt (z; δ, θ) and introduce

ĝδθ(x) =

T∑
s=1

ξsδθ (L) ysk

(
x− s/T

h

)
/

T∑
s=1

k

(
x− s/T

h

)
, (10)

for any x ∈ [0, 1] . The corresponding estimate of Priestley and Chao (1972) type

replaces the denominator by Th, but we prefer to use weights (of the ξsδθ (L) ys) that
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exactly sum to 1 for all x. Define residuals

ût (δ, θ) = ξtδθ (L) yt − ĝδθ(t/T ) =

T∑
s=1

(ξtδθ (L) yt − ξsδθ (L) ys) kts

T∑
s=1

kts

, (11)

where kts = k ((t− s) /Th) . Denote by ∇1, ∇2 chosen real numbers such that ∇1 <

∇2, write ∇ = [∇1,∇2] , and let Θ be a suitably chosen compact subset of Rp. We

estimate δ0 and θ0 by (
δ̂, θ̂
)

= arg min
δ∈∇;θ∈Θ

Q(δ, θ), (12)

where

Q(δ, θ) =
T∑
t=1

û2
t (δ, θ). (13)

We first establish consistency of δ̂, θ̂, under the following regularity conditons.

Assumption 1

The ut are stationary and ergodic with finite fourth moment, and

E (ut| Ft−1) = 0, E
(
u2
t

∣∣Ft−1

)
= σ2

almost surely, where Ft is the σ-field of events generated by εs, s ≤ t, and conditional

on Ft−1 3rd and 4th moments of ut equal corresponding unconditional moments.

Assumption 2

(i) θ0 ∈ Θ;

(ii) |ζ (z; θ)| 6= |ζ (z; θ0)| ,for all θ 6= θ0, θ ∈ Θ, on a z−set of positive Lebesgue

measure;

(iii) for all θ ∈ Θ and real λ, ζ
(
eiλ; θ

)
is differentiable in λ with derivative in

Lip (ς), ς > 1/2;

(iv) for all λ, ζ
(
eiλ; θ

)
is continuous in θ;

(v) for all θ ∈ Θ, |ζ (z; θ)| 6= 0, |z| ≤ 1.
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Assumption 1 is weaker than imposing independence and identity of distribution

of ut, and Assumption 2 is standard from the literature on parametric short memory

models since Hannan (1973), ensuring identifiability of θ0 and easily covering sta-

tionary and invertible moving averages. These assumptions correspond to ones of

Hualde and Robinson (2011), who established consistency of the same kind of esti-

mates when g (x) ≡ 0 in (9) a priori. In that setting they were able to choose the set

of admissible memory parameters (our ∇) arbitrarily large, to simultaneously cover

stationary, nonstationary, invertible and non-invertible values. This seems imposs-

sible to achieve in the presence of the unknown, nonparametric g in (9), which can

only be estimated with a slow rate of convergence, and we impose:

Assumption 3

∇2 −∇1 < 1/2, (14)

δ0 ∈ ∇. (15)

As can be inferred from the proof of Theorem 1 below, for consistency the weaker

condition ∇2 − δ0 < 1/2 suffi ces, but since δ0 is known from (15) only to be no less

than ∇1 and ∇2 − δ0 ≤ ∇2 −∇1 the restriction (14) is appropriate. Condition (15)

can be satisfied by stationary or nonstationary values of δ0, and ∇ could be chosen

to include potential ones in both categories, for example with ∇1 > 1/4, ∇2 < 3/4,

or to cover the I(1) case δ0 = 1 one might pick ∇1 > 3/4, ∇2 < 5/4. Condition

(15) is also consistent with ∇1 > 0, ∇2 < 1/2 employed in the early stationary long

memory literature with g (.) ≡ 0 a priori (e.g. Fox and Taqqu (1986)). But by

more recent standards (14) is highly restrictive. It arises in showing that the effect of

estimating the nonparametric function g has a negligible effect in proving consistency

of the parameter estimates
(
δ̂, θ̂
)
, which entails establishing uniform convergence to

zero on ∇ of the difference between T−1Q(δ, θ) and the corresponding function with

g (.) ≡ 0 a priori. The restriction (14) is not a consequence of the uniformity aspect
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of the proof, but arises even in establishing pointwise convergence, as demonsrated

in a lemma stated and proved after the proof of Theorem 1in Appendix A.

We also need conditions on g, k and h.

Assumption 4

The function g(x) is twice boundedly differentiable on [0, 1] and (d/dx) g(0) = 0.

Assumption 5

The function k(x) is even, differentiable at all but possibly finitely many x, with

derivative k′(x), and ∫
Rk(x)dx = 1,

k(x) = O((1 + x2+η)−1), k′(x) = O((1 + |x|1+η)−1), some η > 0.

Assumption 6

As T →∞, the positive-valued sequence h = hT satisfies:

(Th)−1 + T 2(∇2−∇1)h3 → 0. (16)

Assumption 5 is virtually costless, covering many of the usual kernel choices. As-

sumption 6, however, represents a trade-off with Assumption 3: in the latter, ∇2−

∇1 is desirably as close to 1/2 as possible, but as it approaches 1/2 from below the

range of h satisfying Assumption 6 reduces to (Th)−1 + Th3 → 0.

Theorem 1

Let (9) and Assumptions 1-6 hold. Then as T →∞,

δ̂ →p δ0, θ̂ →p θ0.

The proof is in Appendix A. Asymptotic normality entails two further assumptions.

Assumption 7

(i) δ0∈ (∇1,∇2) ; θ0 is an interior point of Θ .
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(ii) for all real λ, ζ
(
eiλ; θ

)
is twice continuously differentiable in θ on a closed

neighbourhood of radius < 1/2 about θ0;

(iii) the matrix

Ω =

 π2/6 −
∑∞

j=1 ψ
′
j (θ0) /j

−
∑∞

j=1 ψj (θ0) /j
∑∞

j=1 ψj (θ0)ψ′j (θ0)


is non-singular, where

ψj (θ) =

j−1∑
k=0

φk (θ)
∂ζj−k (θ)

∂θ
,

the φj (θ) being coeffi cients in the expansion

φj (z; θ) = ζ (z; θ)−1 =
∑∞

j=0
φj (θ) zj.

This condition again is based on one of Hualde and Robinson (2011), but is sim-

ilar to others in the literature, and practically unrestrictive. However we have to

strengthen the first component of Assumption 6 on h.

Assumption 8

As T →∞, Th2/ (log T )2 →∞.

Recall that Assumption 6 requires h to decay faster than T−2(∇2−∇1)/3, where the

latter rate is slower than T−1/3 in view of Assumption 3, whereas Assumption 8

prevents h decaying as fast as T−1/2.

Theorem 2

Let (9) and Assumptions 1-8 hold. Then as T →∞

T 1/2

 δ̂ − δ0

θ̂ − θ0

→d N (0,Ω−1).

The proof is in Appendix B. Note that the same limit distributions results when

g is known or replaced by a parametric function. In the special case (4) of (9), we

deduce that as T →∞

T 1/2
(
δ̂ − δ0

)
→d N (0, 6/π2).
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3. I(1) TESTING

We first econsider t−tests (based on the square root of the Wald staistic) for δ0 = 1

in (9), based on Theorem 2. Define

Ω (θ) =

 π2/6 −
∑∞

j=1 ψ
′
j (θ) /j

−
∑∞

j=1 ψj (θ) /j
∑∞

j=1 ψj (θ)ψ′j (θ)


and denote by Ω̂(1,1) the element in the top left hand corner of Ω

(
θ̂
)−1

. Put

W = T 1/2
(
δ̂ − 1

)
/Ω̂(1,1)1/2.

Pseudo-log likelihood ratio tests can also be constructed. Define

θ̃ = arg min
θ∈Θ

QT (1, θ), (17)

and

LR = log
QT (1, θ̃)

QT (δ̂, θ̂)
.

Though it of course does not use δ̂, θ̂, for completeness we also present a Lagrange

multiplier-type test, as it and the Wald and pseudo-log likelihood tests are expected to

have equal local power. Robinson (1994) developed Lagrange multiplier tests for I(1)

and other hypotheses against fractional alternatives for the disturbances in multiple

linear regression models. The stress there was on frequency-domain tests, but starting

from an initial time-domain statistic, and to avoid introducing considerable additional

notation we stay in the time domain here. Writing ∂ = ∂/∂(δ, θ′)′, from (13)

∂Q(δ, θ) =
2

T

T∑
t=1

ût(δ, θ)∂ût(δ, θ), (18)

where

∂ût(δ, θ) = ξtδθ (L) yt − ∂ĝδθ(t/T ) =

T∑
s=1

(∂ξtδθ (L) yt − ∂ξsδθ (L) ys) kts

T∑
s=1

kts

, (19)
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in which

∂ξtδθ (z) =
t−1∑
j=0

∂ξj(δ, θ)z
j, ∂ξj(δ, θ) =

j∑
l=0

 (
∂αl(δ)/∂δ) ζj−l(θ)

)
αl(δ)∂ζj−l(θ)/∂θ

 . (20)

In fact

∂ξtδθ(1, θ) =


t−1∑
j=0

(
j∑
l=1

ζj−l(θ)

l

)
(yt−j − yt−j−1)

t−1∑
j=0

(
∂ζj(θ)/∂θ

)
(yt−j − yt−j−1)

 .

Define

LM =
T

4
∂Q(1, θ̃)′Ω

(
θ̃
)−1

∂Q(1, θ̃),

with θ̃ given by (17).

Theorem 3

Let δ0 = 1 in (9) and let Assumptions 1-8 hold. Then as T →∞,

W →d N (0, 1), LR→d χ
2
1, LM →d χ

2
1.

For W, the theorem follows from Theorem 2 and Ω
(
θ̂
)
→p Ω, where the latter

is implied by the proof of Theorem 2. We can reject the I(1) null against more

nonstationary alternatives whenW falls in the appropriate upper tail of the standard

normal density, and reject against less nonstationary alternatives when it falls in the

appropriate lower tail. For LR, the proof is standard, given Theorem 2 and a central

limit theorem for θ̃ (see e.g. Hannan (1973), or implied by Hualde and Robinso

n(2011)). For LM the proof is likewise straightforward.

4. NONPARAMETRIC REGRESSION ESTIMATION

We can base estimation of g(x) on our estimates of δ̂, θ̂ and (10), but in view of

the stringent conditions on the bandwidth h in Theorems 1 and 2 we allow use of a
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possibly different bandwidth, b, in

g̃δθ(x) =

T∑
s=1

ξsδθ (L) ysk

(
x− s/T

b

)
/

T∑
s=1

k

(
x− s/T

b

)
, (21)

We provide a multivariate central limit theorem for g̃δ̂θ̂(τ i), i = 1, 2, .., q, where τ i,

i = 1, 2, .., q, are distinct fixed points, imposing also:

Assumption 9

As T →∞, (bT )−1 + b5T → 0.

The proof of the following theorem is omitted as univariate and multivariate central

limit theorems for the g̃δ0θ0(xi) are already in the literature (see e.g. Benedetti (1977),

Robinson (1997)) and from Theorem 2 it is readily shown that g̃δ̂θ̂(x) − g̃δ0θ0(x) =

Op(T
−1/2) for all x.

Theorem 4

Let (9) and Assumptions 1-9 hold. Then as T →∞, the (bT )1/2 (g̃δ̂θ̂(τ i)− g(τ i)
)
,

i = 1, 2, ..., q, converge in distribution to independent N
(

0, σ2
∫
R
k(x)2dx

)
random

variables, where σ2 is consistently estimated by

σ̂2 = Q
(
δ̂, θ̂
)
.

This is the same limit distribution as results if δ0 and θ0 are known, i.e. the same

as in the model (1) with iid ut.

5. FINITE-SAMPLE PERFORMANCE

A small Monte Carlo study was carried out to investigate the finite-sample behaviour

of our parameter estimates, and of one of our unit root tests. To generate data,

we took g(x) = sin(2πx), p = 1, ζ (z; θ) = 1 − θz (so yt was a FARIMA(1, δ0, 0)),

for various values of δ0 and θ0, and εt standard normally distributed. Throughout,

parameter estimates were obtained taking k to be the standard normal kernel.
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Tables 1-3 contain Monte Carlo biases bδ and bθ of δ̂ and θ̂ and correspondingMonte

Carlo standard deviations sδ and sθ. In Table 1 (δ0, θ0) =
(
1, 1

2

)
and (δ0, θ0) = (1, 0);

in Table 2 (δ0, θ0) =
(

7
8
, 1

2

)
and (δ0, θ0) =

(
7
8
, 0
)
; in Table 3 (δ0, θ0) =

(
9
8
, 1

2

)
and

(δ0, θ0) =
(

9
8
, 0
)
. We took ∇ = [0.76, 1.24] and Θ = [−0.99, 0.99]. Note that in the

cases θ0 = 0, one of which is included in each table, yt reduces to a FARIMA(0, δ0, 0) ,

but we suppose that the practitioner does not know this. Three different (T, Th)

combinations were employed: (250, 30), (600, 60) and (1000, 90). The results are

based on 1000 replications. In the tables, somewhat surprisingly the biases bδ are

greater for θ = 0 than for θ = 1
2
, though for bθ the pattern is opposite. Always bδ > 0

and bδ < 0. The standard deviations sδ and sθ are predominately greater for θ = 1
2

than for θ = 0. Biases and standard deviations diminish with increasing T, while

there is reasonable stability across corresponding elements of the three tables.

Table 1: Bias and standard deviation of
(
δ̂, θ̂
)
, (δ0, θ0) =

(
1, 1

2

)
, (1, 0).

(δ0, θ0)
(
1, 1

2

)
(1, 0)

T bδ sδ bδ sθ bδ sδ bθ sθ

250 0.0956 0.1540 -0.0832 0.1756 0.1105 0.0526 -0.0751 0.0833

600 0.0853 0.0598 -0.0770 0.0808 0.0905 0.0320 -0.0670 0.0519

1000 0.0678 0.0449 -0.0653 0.0610 0.0710 0.0223 -0.0563 0.0430

Table 2: Bias and standard deviation of
(
δ̂, θ̂
)
, (δ0, θ0) =

(
7
8
, 1

2

)
,
(

7
8
, 0
)
.

(δ0, θ0)
(

7
8
, 1

2

) (
7
8
, 0
)

T bδ sδ bθ sθ bδ sδ bθ sθ

250 0.0940 0.1385 -0.1090 0.1116 0.1106 0.0524 -0.0966 0.1028

600 0.0866 0.0592 -0.0785 0.0801 0.0900 0.0319 -0.0679 0.0851

1000 0.0685 0.0447 -0.0662 0.0608 0.0713 0.0255 -0.0568 0.0712
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Table 3: Bias and standard deviation of
(
δ̂, θ̂
)
, (δ0, θ0) =

(
9
8
, 1

2

)
,
(

9
8
, 0
)
.

(δ0, θ0)
(

9
8
, 1

2

) (
9
8
, 0
)

T bδ sδ bθ sθ bδ sδ bθ sθ

250 0.0981 0.1171 -0.1071 0.1065 0.1064 0.0528 -0.0934 0.0837

600 0.0838 0.0607 -0.0753 0.0817 0.0871 0.0420 -0.0763 0.0521

1000 0.0670 0.0451 -0.0644 0.0612 0.0707 0.0255 -0.0559 0.0432

Table 4 contains Monte Carlo sizes and powers for the LR I(1) test described

in Section 3, based on nominal 1% and 5% levels. Sizes were obtained using

(δ0, θ0) =
(
1, 1

2

)
and powers using (δ0, θ0) =

(
7
8
, 1

2

)
and (δ0, θ0) =

(
9
8
, 1

2

)
, with the

same T and h as before, but now on the basis of 10, 000 replications. The Monte

Carlo sizes seem quite satisfactory, and given that the alternative δ0 are both close

to 1 the differences between powers and corresponding sizes seem quite satisfactory.

Table 4: Sizes and powers of LR test at nominal 1% and 5% levels

Size, (δ0, θ0) =
(
1, 1

2

)
T 1% 5%

250 0.0111 0.0487

600 0.0095 0.0508

1000 0.0102 0.0498

Power, (δ0, θ0) =
(

7
8
, 1

2

)
Power, (δ0, θ0) =

(
9
8
, 1

2

)
T 1% 5% 1% 5%

250 0.1189 0.2855 0.1260 0.2946

600 0.3070 0.5089 0.2972 0.4998

1000 0.4961 0.6998 0.5017 0.7023

Table 5 contains corresponding results for the LM I(1) test described in Section

3, but for data generated with g(.) ≡ 0 in (9), and this assumed in the parameter
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estimation, so that no nonparametric estimation was involved, and the setting is like

tht in Robinson (1994). It might be expected that the sizes would be better than

in Table 4 (though the LR and LM tests are not strictly comparable), but they are

actually almost the same, though the powers are significantly better.

Table 5:Sizes and powers of LR test at nominal 1% and 5% levels

Size, (δ0, θ0) =
(
1, 1

2

)
T 1% 5%

250 0.0109 0.0511

600 0.0097 0.0497

1000 0.0101 0.0507

Power, (δ0, θ0) =
(

7
8
, 1

2

)
Power, (δ0, θ0) =

(
9
8
, 1

2

)
T 1% 5% 1% 5%

250 0.3305 0.4841 0.3215 0.4785

600 0.5249 0.6760 0.5337 0.6830

1000 0.7179 0.8696 0.7203 0.8705

6. FINAL REMARKS

The paper has justified large sample inference on the fractional and short mem-

ory parameters and nonparametric regression function in a semiparametric model

incorporating nonstationary stochastic and deterministic trends. For parametric in-

ference, the restrictions on the admissible memory parameter interval and the range

of bandwidths are relatively strong, due to the presence of the nonparametric func-

tion and the extent of the time series dependence. As always when nonparametric

estimation is involved, bandwidth choice is a practical issue, though as in other semi-

parametric settings one might expect parameter estimates to be less sensitive than

nonparametric estimates, and the problem, in our fixed nonparametric design set-
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ting, may also be less acute than in the stochastic design setting in which the density

of explanatory variables varies over their support. In our Monte Carlo study only

one value of h was used for each T, but sensitivity of estimates and tests to h, and

b, can be gauged by carrying out the computations over a range of choices. With

respect to automatic rules, in the model (1) a cross—validation choice of b is known

to minimize mean integrated squared error (MISE), and we can extend this property

to our setting, using δ̂, θ̂, though as usual the minimum-MSE rate does not quite

satisfy conditions (our Assumption 9) for asymptotic normality about g; for h, as is

familiar in the semiparametric literature the minimum-MISE rate is clearly excluded

by the conditions (our Assumption 8) for asymptotic normality of parameter esti-

mates, and a more appropriate goal may be to make a selection that matches the

orders of the next two terms after the normal distribution function in an Edgeworth

expansion for distribution function of δ̂, θ̂, and thereby minimizes the departure from

the normal limit and leads to better-sized tests and more accurate interval estimates;

in some settings this problem has a neat solution, but we do not know whether this

is the case in ours. Bootstrapping is also likely to improve finite-sample properties.

Inference issues that might be investigated include testing constancy or other para-

metric restrictions on g(x). Possible model extensions that require non-trivial further

work include adding a nonparametric function of explanatory variables to g(t/T ) in

(9) , and allowing for unconditional or conditional heteroscedasticity in ut. Our work

might also be extended to a panel setting, including individual effects and possible

cross—sectional dependence.
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APPENDIX A

Proof of Theorem 1

For t = 1, ..., T

yt = ξt (L; δ0, θ0)−1

(
g

(
t

T

)
+ ut

)
= ξ (L; δ0, θ0)−1

{(
g

(
t

T

)
+ ut

)
1(t > 0)

}
,

so

ξt (L; δ, θ) yt = (1− L)δ−δ0τ (z; θ)

{(
g

(
t

T

)
+ ut

)
1(t > 0)

}
,

where

τ (z; θ) = ζ (z; θ) ζ (z; θ0)−1 =
∞∑
j=0

τ j(θ)z
j.

From Zygmund (1977, p. 46), Assumption 2 implies that the Fourier coeffi cients τ j(θ)

satisfy

sup
Θ
|τ j(θ)| = O(j−1−ς). (A.1)

The Fourier coeficients χj(δ, θ) of

(1− z)δ−δ0τ (z; θ) =
∞∑
j=0

χj(δ, θ)z
j

are given by

χj(δ, θ) =

j∑
l=0

τ l(θ)αj−l(δ − δ0).

(Note that αj(0) = τ j(θ0) = χj(δ0, θ0) ≡ 0, j ≥ 1). From (6) , uniformly in δ ∈

∇r {δ0}

αj(δ − δ0) = O(jδ0−δ−1), as j →∞, (A.2)
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and so, using also (A.1)

∣∣χj(δ, θ)∣∣ ≤
∣∣∣∣∣∣
[j/2]∑
l=0

τ l(θ)αj−l(δ − δ0)

∣∣∣∣∣∣+

∣∣∣∣∣∣
j∑

l=[j/2]+1

τ l(θ)αj−l(δ − δ0)

∣∣∣∣∣∣
≤ Kjδ0−δ−1

∞∑
l=0

|τ l(θ)|+Kj−1−ς

∣∣∣∣∣
j∑
l=0

αl(δ − δ0)

∣∣∣∣∣
≤ Kjδ0−δ−1 +Kjδ0−δ−1−ς ≤ Kjδ0−δ−1 (A.3)

uniformly in δ, θ, where K throughout denotes a generic finite, positive constant.

Also for future use note that from (6) , uniformly in δ ∈ ∇r {δ0} , θ ∈ Θ,

|αj(δ − δ0)− αj+1(δ − δ0)| = O(jδ0−δ−2), as j →∞, (A.4)

∣∣χj(δ, θ)− χj+1(δ, θ)
∣∣ ≤ ∣∣∣∣∣

j∑
l=0

τ l(θ) (αj−l(δ − δ0)− αj+1−l(δ − δ0))

∣∣∣∣∣+ |τ j+1(θ)|

≤ Kjδ0−δ−2

∞∑
l=0

|τ l(θ)|+Kj−1−ς
∞∑
l=1

lδ0−δ−2 +Kj−1−ς

≤ Kjmax(δ0−δ,1−ς)−2. (A.5)

With the abbreviations

χtδθ =
t−1∑
j=0

χj(δ, θ)L
j, gt = g

(
t

T

)
, kt =

1

Th

T∑
s=1

kts

we have from (11)

ût (δ, θ) =
1

Th

T∑
s=1

(χtδθgt − χsδθgs) kts/kt +
1

Th

T∑
s=1

(χtδθut − χsδθus) kts/kt

= χtδθut +Dtδθ − Stδθ,

where

Dtδθ =
1

Th

T∑
s=1

(χtδθgt − χsδθgs) kts/kt

and
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Stδθ =
1

Th

T∑
s=1

χsδθuskts/kt

are respectively the deterministic and stochastic errors contributing to the residual,

that are absent when g(t/T ) ≡ 0 in (9). Thus

Q(δ, θ) =
1

T

T∑
t=1

(χtδθut +Dtδθ − Stδθ)2

=
1

T

T∑
t=1

(χtδθut)
2 +

1

T

T∑
t=1

D2
tδθ +

1

T

T∑
t=1

S2
tδθ

+
2

T

T∑
t=1

(χtδθut)Dtδθ −
2

T

T∑
t=1

(χtδθut)Stδθ

− 2

T

T∑
t=1

DtδθStδθ. (A.6)

Hualde and Robinson (2011) show that the estimates minimizing

1

T

T∑
t=1

(χtδθut)
2 (A.7)

are consistent for δ0, θ0. From their proof it suffi ces to show that as T →∞,

sup
1

T

T∑
t=1

D2
tδθ → 0, (A.8)

sup
1

T

T∑
t=1

S2
tδθ → p 0, (A.9)

sup

∣∣∣∣∣ 1

T

T∑
t=1

(χtδθut)Dtδθ

∣∣∣∣∣ → p 0, (A.10)

sup

∣∣∣∣∣ 1

T

T∑
t=1

(χtδθut)Stδθ

∣∣∣∣∣ → p 0, (A.11)

sup

∣∣∣∣∣ 1

T

T∑
t=1

DtδθStδθ

∣∣∣∣∣ → p 0, (A.12)

where the suprema here and subsequently are over δ ∈ ∇, θ ∈ Θ. Given (A.8) and

(A.9), and using the Cauchy inequality, (A.10)-(A.12) follow from the fact, implied

by the proof of Hualde and Robinson (2011), that (A.7) is uniformly Op(1).
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To prove (A.8) note first that Lemma 3 of Robinson (2012b) gives, for all suffi ciently

large T,

inf
t
|kt| ≥

1

8
. (A.13)

Suppressing reference to δ, θ in χj = χj(δ, θ),

T∑
s=1

(χtδθgt − χsδθgs) kts =

T∑
s=1

(
t−1∑
j=0

χjgt−j −
s−1∑
j=0

χjgs−j

)
kts.

Defining g (x) = g (0) , x ∈ (−1, 0), this is

T−1∑
j=0

χj

T∑
s=1

(gt−j − gs−j) kts − g (0)
T∑
s=1

(
T∑
j=t

χj −
T∑
j=s

χj

)
kts. (A.14)

Considering the first term in (A.14),

sup

∣∣∣∣∣
T∑
s=1

(χtδθgt − χsδθgs) kts

∣∣∣∣∣ ≤
T−1∑
j=0

sup
∣∣χj∣∣

∣∣∣∣∣
T∑
s=1

(gt−j − gs−j) kts

∣∣∣∣∣ . (A.15)

From (A.3) and Assumption 3

sup
∣∣χj∣∣ ≤ Kj∇2−∇1−1. (A.16)

Applying Assumption 4 and with
.
gt denoting the derivative of g(x) at x = t/T,

T∑
s=1

(gt−j − gs−j) kts =
.
gt−j

T∑
s=1

(
t− s
T

)kts +O

(
T∑
s=1

(
t− s
T

)2 |kts|
)
, (A.17)

where
.
gt = 0, t ≤ 0. By, e.g., Lemma 2 of Robinson (2012b)

T∑
s=1

(
t− s
T

)kts = Th2

(
1

Th

T∑
s=1

(
t− s
Th

)kts −
∫
uk(u)du

)
= O (h) (A.18)

uniformly in t ∈ (Th, T − Th) . Uniformly in t ≤ Th, t ≥ T − Th,

T∑
s=1

(
t− s
T

)kts = O(Th2) (A.19)
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from, e.g., Lemma 1 of Robinson (2012b). By the same lemma,

T∑
s=1

(
t− s
T

)2 |kts| = O(Th3) (A.20)

uniformly in t. Thus from (A.17)-(A.20),

max
j

∣∣∣∣∣
T∑
s=1

(gt−j − gs−j) kts

∣∣∣∣∣ = O
(
h+ Th3

)
, t ∈ (Th, T − Th)

= O
(
Th2

)
, t ≤ Th, t ≥ T − Th, (A.21)

uniformly.

Next, considering the second term in (A.14),

T∑
s=1

(
T∑
j=t

χj −
T∑
j=s

χj

)
kts =

T∑
s=t+1

(
s−1∑
j=t

χj

)
kts −

t−1∑
s=1

(
t−1∑
j=s

χj

)
kts

=
T−t∑
r=1

t+r−1∑
j=t

χjkt,t+r −
t−1∑
r=1

t−1∑
j=t−r

χjkt,t+r.

For t ≤ (T + 1) /2 this is

t−1∑
r=1

(
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

)
kt,t+r +

T−t∑
r=t

t+r−1∑
j=t−r

χjkt,t+r.

by Assumption 5. Now∣∣∣∣∣
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

∣∣∣∣∣ =

∣∣∣∣∣
r−1∑
j=0

(
χt+j − χt−j−1

)∣∣∣∣∣ ≤ K
r−1∑
j=0

(
(t− j − 1)δ−δ0−1 − (t+ j)δ−δ0−1

)
≤ Ktδ−δ0−2

r−1∑
j=0

j ≤ Ktδ−δ0−2r2,

so from Assumption 5

sup

∣∣∣∣∣
t−1∑
r=1

(
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

)
kt,t+r

∣∣∣∣∣ ≤ Kt∇2−∇1−2

t−1∑
r=1

r2
(
1 + r2+η

)−1

≤ Kt∇2−∇1−2

t−1∑
r=1

r−η

≤ Kt∇2−∇1−1−η.
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For (T + 1) /2 we have

T−t∑
r=1

t+r−1∑
j=t

χjkt,t+r−
t−1∑
r=1

t−1∑
j=t−r

χjkt,t+r =

T−t∑
r=1

(
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

)
kt,t+r−

t−1∑
r=T−t+1

t−1∑
j=t−r

χjkt,t+r,

where much as before

∣∣∣∣∣
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

∣∣∣∣∣ ≤ Ktδ−δ0−2r2

and thence

sup

∣∣∣∣∣
T−t∑
r=1

(
t+r−1∑
j=t

χj −
t−1∑
j=t−r

χj

)
kt,t+r

∣∣∣∣∣ ≤ Kt∇2−∇1−1−η.

From these results and also (A.13), (A.15) and (A.16),

sup
δ,θ
|Dtδθ| ≤ K(Th)−1

((
h+ Th3

) T−1∑
j=0

(1 + j)δ0−∇1−1 + t∇2−∇1−1−η

)
≤ K(T∇2−∇1−1 + T∇2−∇1h2), t ∈ (Th, T − Th) ,

and

sup
δ,θ
|Dtδθ| ≤ K(Th)−1

(
Th2

T−1∑
j=0

(1 + j)∇2−∇1−1 + t∇2−∇1−1−η

)
≤ KT∇2−∇1h, t ≤ Th, t ≥ T − Th,

uniformly over the stated ranges of t. Thus

sup
1

T

T∑
t=1

D2
tδθ ≤ K(T 2(∇2−∇1−1) + T 2(∇2−∇1)h4 + T 2(∇2−∇1)h3)→ 0

by Assumption 6, verifying (A.8).

To prove (A.9), we have

T∑
s=1

χsδθuskts =
T−1∑
j=0

χjctj =

[Th]∑
j=0

χjctj +
T−1∑

j=[Th]+1

χjctj
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where

ctj =

T−j∑
r=1

urkt,r+j,

so, using (A.3),

sup

∣∣∣∣∣∣
[Th]∑
j=0

χjctj

∣∣∣∣∣∣ ≤
[Th]∑
j=0

(
sup

∣∣χj∣∣) |ctj| ≤ K

[Th]∑
j=1

j∇2−∇1−1 |ctj|

and thus

E

sup

∣∣∣∣∣∣
[Th]∑
j=0

χjctj

∣∣∣∣∣∣
2

≤ K

[Th]∑
j=1

[Th]∑
l=1

j∇2−∇1−1l∇2−∇1−1
(
Ec2

tjEc
2
tl

)1/2
. (A.22)

Now

Ec2
tj = σ2

T−j∑
r=1

k2
t,r+j = O(Th)

by Assumption 6, so (A.22) is O((Th)2(∇2−∇1)+1) = o((Th)2) uniformly in t, by As-

sumption 3.

By summation-by-parts

T−1∑
j=[Th]+1

χjctj =
T−2∑

j=[Th]+1

(
χj − χj+1

)
dtj + χT−1dt,T−1. (A.23)

where

dtj =

j∑
l=0

ctl.

Now (A.23) is bounded uniformly by

T−2∑
j=[Th]+1

(
sup

∣∣χj − χj+1

∣∣) |dtj|+ (sup
∣∣χT−1

∣∣) |dt,T−1|

≤ K
T−2∑

j=[Th]+1

jγ−1 |dtj|+KT γ |dt,T−1| (A.24)

using (A.3) and (A.5) and writing γ = max (∇2 −∇1, 1− ς)− 1. Rearranging,

dtj =

T∑
r=1

ur

min(r+j,T )∑
s=r

kts

 ,
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so

Ed2
tj = σ2

T∑
r=1

min(r+j,T )∑
s=r

kts

2

≤ Kj

(
T∑
s=1

|kts|
)2

≤ Kj (Th)2

and (A.24) has second moment bounded by

K (Th)2
T−2∑

j=[Th]+1

T−2∑
l=[Th]+1

jγ−1/2lγ−1/2 +K (Th)2 T 2γ+1

≤ K (Th)2γ+3 = o((Th)2)

uniformly in t, since γ < −1/2.We have established that E supS2
tδθ = o(1) uniformly

in t, whence follows (A.9), to complete the proof of the theorem.

In the preceding proof it was shown that sup∇ T
−1

T∑
t=1

S2
tδθ = Op

(
(Th)2γ+1) , and

since γ ≥ ∇2 −∇2 − 1, (14) bites in order to establish (A.9). In a more specialized

setting the following Lemma implies that sup∇T−1

T∑
t=1

E (S2
tδθ) > c (Th)2(∇2−δ0)−1 ,

and when as indicated after Assumption 3 and elsewhere in the proofs we replace

∇2 − δ0 by ∇2 −∇1 here it appears that (14) may be sharp.

Lemma Under (4) with δ − δ0 > 0 and k (u) = 1 (|u| ≤ 1) /2, for a generic arbi-

trarily small c > 0,

1

T

T∑
t=1

E
(
S2
tδθ

)
> c (Th)2(δ−δ0)+1 .

Proof of Lemma

With the above definitions, and since for given δ χj is either always positive or
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always negative,

(Th)2 1

T

T∑
t=1

E
(
S2
tδθ

)
=

1

T

T∑
t=1

E

(
T−1∑
j=0

χjctj

)2

=
1

T

T−1∑
j=0

T−1∑
`=0

χjχ`

T−j∑
r=1

T−∑̀
s=1

E (urus)
T∑
t=1

kt,r+jkt,s+`

=
σ2

T

T−1∑
j=0

T−1∑
`=0

χjχ`

T−max(j,`)∑
r=1

T∑
t=1

kt,r+jkt,r+`

>
σ2

4T

T−1∑
j=0

T−1∑
`=j+1

χjχ`

T∑
t=1

T−∑̀
r=1

1 (|r + `− t| ≤ Th) 1 (|r + j − t| ≤ Th)

>
c

T

[Th/4]∑
j=0

[Th/2]∑
`=j+1

χjχ`

T∑
t=1

T−[Th/2]∑
r=1

1 (|r − t| ≤ Th/2)

> cTh

[Th/4]∑
j=0

jδ−δ0−1

[Th/2]∑
`=[Th/4]+1

`δ−δ0−1

> c (Th)2(δ−δ0)+1

to complete the proof.

APPENDIX B

Proof of Theorem 2

Writing ∂ = ∂/∂(δ, θ′), by the mean value theorem

0 = ∂Q(δ̂, θ̂)/2 = ∂Q(δ0, θ0)/2 + Ω

 δ̂ − δ0

θ̂ − θ0

 ,

where ∂Q(δ, θ) is given by (18)-(20) and Ω is obtained from the matrix ∂2Q(δ, θ)/2 =

∂∂′Q(δ, θ)/2 by evaluating each row at a generally different δ̃, θ̃ such that
∥∥∥δ̃ − δ0, θ̃

′
− θ′0

∥∥∥ ≤∥∥∥δ̂ − δ0, θ̂
′
− θ′0

∥∥∥ . The theorem follows if

T 1/2

2
∂Q(δ0, θ0) → d N (0,Ω), (B.1)

Ω → p Ω. (B.2)
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From (11)

ût(δ0, θ0) = ut +Dt − St

= ut +
T∑
s=1

(gt − gs) kts −
T∑
s=1

uskts

where

Dt =

T∑
s=1

(gt − gs) kts/kt, St =
T∑
s=1

uskts/kt.

From (19), (20)

∂ût(δ, θ) = ∂χtδθut + ∂Dtδθ − ∂Stδθ.

Write

πj = ∂χj |δ0,θ0 =

j∑
l=0

 τ l(θ0)∂αj−l(δ0)/∂δ

αj−l(δ0)∂τ l(θ0)/∂θ

 =

 j−1

ψj(θ0)

 , j ≥ 1

Then

∂ût(δ0, θ0) = vt + ∂Dt − ∂St,

where

vt = ∂χtδθut |δ0,θ0 =
t−1∑
j=1

πjut−j,

∂Dt = ∂Dtδθ |δ0,θ0 =
T∑
s=1

(
t−1∑
j=1

gt−jπj −
s−1∑
j=1

gs−jπj

)
kts/kt,

∂St = ∂Stδθ |δ0,θ0 =

T∑
s=1

s−1∑
j=1

us−jπjkts/kt.

Thus from (18)

∂Q(δ0, θ0) =
2

T

T∑
t=1

(ut +Dt − St) (vt + ∂Dt − ∂St) .

Hualde and Robinson (2011) show that

T−1/2

T∑
t=1

utvt →d N (0,Ω).
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Thus (B.1) holds if all the following are op(1) :

T−1/2

T∑
t=1

ut∂Dt, T
−1/2

T∑
t=1

ut∂St, T
−1/2

T∑
t=1

Dtvt, T
−1/2

T∑
t=1

Stvt,

T−1/2

T∑
t=1

Dt∂Dt, T
−1/2

T∑
t=1

Dt∂St, T
−1/2

T∑
t=1

St∂Dt, T
−1/2

T∑
t=1

St∂St. (B.3)

Note first that, as in (A.14), and using (A.13), (A.21) and ‖πj‖ = O (j−1) ,

‖∂Dt‖ ≤
K

Th

∥∥∥∥∥
T∑
j=1

πj

T∑
s=1

(gt−j − gs−j) kts

∥∥∥∥∥
≤ K

Th
max
t,j

∣∣∣∣∣
T∑
s=1

(gt−j − gs−j) kts

∣∣∣∣∣
T∑
j=1

j−1

= O
((
T−1 + h2

)
log T

)
, t ∈ (Th, T − Th)

= O (h log T ) , t ≤ Th, t ≥ T − Th, (B.4)

uniformly over the stated ranges of t. Similarly but more easily, we derive, uniformly,

Dt = O
((
T−1 + h2

))
, t ∈ (Th, T − Th)

= O (h) , t ≤ Th, t ≥ T − Th. (B.5)

We check each claim of (B.3) in turn; for notational convenience, when j ≤ 0 we take

πj = 0 and interpret 1/j to be 0.

First, using (B.4) and Assumption 6,

E

∥∥∥∥∥T−1/2

T∑
t=1

ut∂Dt

∥∥∥∥∥
2

≤ K

T

T∑
t=1

‖∂Dt‖2

≤ K

T

(
T
(
T−1 + h2

)2
log2 T + Th3 log2 T

)
= O

(
T−2 log2 T + h4 log2 T + h3 log2 T

)
= o(1).
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Next,∥∥∥∥∥T−1/2

T∑
t=1

ut∂St

∥∥∥∥∥
2

=
1

T
E

{
T∑
t=1

ut

T∑
r=1

ur

T∑
s=1

s−1∑
j=1

us−jπ
′
j

kts
kt

T∑
q=1

q−1∑
l=1

uq−lπl
krq
kr

}

=
σ4

T

T∑
t=1

T∑
s=1

s−1∑
j=1

T∑
q=1

π′jπq−s+j
ktsktq
ktkr

+
σ4

T

T∑
t=1

T∑
r=1

T∑
s=1

T∑
q=1

π′s−tπq−r
kts
kt

krq
kr

+
σ4

T

T∑
t=1

T∑
r=1

T∑
s=1

T∑
q=1

π′s−rπq−t
ktskrq
ktkr

+
Eu4

t

T

T∑
t=1

T∑
s=1

T∑
q=1

π′s−tπq−t
ktsktq
ktkr

.

By boundedness of k, the final term in the last displayed expression is bounded by

K

T 3h2

T∑
t=1

T∑
s=1

T∑
q=1

1

s− t
1

q − t = O

(
log2 T

T 2h2

)
,

while the other terms are bounded by

K

T 3h2

T∑
t=1

T∑
s=1

s−1∑
j=1

T∑
q=1

|kts|
j

|ktq|
q − s+ j

+
K

T 3h2

T∑
t=1

T∑
r=1

T∑
s=1

T∑
q=1

|kts|
s− r

|krq|
q − t

≤ K

T 3h2

T∑
t=1

T∑
s=1

s−1∑
j=1

T∑
q=1

|kts|
j

1

q − s+ j
+

K

T 3h2

T∑
t=1

T∑
r=1

T∑
s=1

T∑
q=1

1

s− r
|krq|
q − t

≤ KT 2h log2 T

T 3h2
= O

(
log2 T

Th

)
= o(1),

by Assumption 8.

Next, noting that
T∑
t=1

Dtvt =
T∑
t=1

ut

T∑
s=t+1

Dsπs−t,
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from (B.5)

E

∥∥∥∥∥T−1/2

T∑
t=1

Dtvt

∥∥∥∥∥
2

= σ2T−1E
T∑
t=1

∥∥∥∥∥
T∑

s=t+1

Dsπs−t

∥∥∥∥∥
2

≤ KT−1h2

T∑
t=1

(
T∑

s=t+1

(s− t)−1

)2

≤ Kh2 log2 T = o (1) ,

by Assumption 6.

Next, using (B.4) and (B.5),

T−1/2

T∑
t=1

Dt∂Dt = O
(
T−1/2T

(
T−1 + h2

)2
log T + T−1/2Th3 log T

)
= O

(
T−3/2 log T + T 1/2h4 log T + T 1/2h3 log T

)
= o (1) ,

by Assumption 6.

Next,

E

∥∥∥∥∥T−1/2

T∑
t=1

Stvt

∥∥∥∥∥
2

= T−1E

{
T∑
t=1

T∑
s=1

us
kts
kt

t−1∑
j=1

π′jut−j

T∑
r=1

T∑
q=1

uq
krq
kr

r−1∑
l=1

πlur−l

}
which equals

σ4T−1

(
T∑
t=1

t−1∑
s=1

kts
kt
π′t−s

)2

+σ4T−1

T∑
t=1

T∑
s=1

T∑
r=1

kts
kt

krs
kr

t−1∑
j=1

π′jπr−t+j

+σ4T−1

T∑
t=1

T∑
s=1

T∑
r=1

T∑
q=1

kts
kt

krq
kr
π′t−qπr−s

+Eu4
t

T∑
t=1

T∑
s=1

T∑
r=1

kts
kt

krs
kr
π′t−sπr−s,

and using boundedness of k this is bounded byKT−1 (Th)−2 T 2 log2 T+KT−1 (Th)−2 T log2 T ≤

K log2 T/ (Th2) = o (1) , by Assumption 8.
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Next,

E

∥∥∥∥∥T−1/2

T∑
t=1

Dt∂St

∥∥∥∥∥
2

= σ2T−1

T∑
t=1

T∑
r=1

DtDr

T∑
s=1

T∑
q=1

s−1∑
j=1

π′jπq−s+j
kts
kt

krq
kr

≤ KT−1 (Th)−2 h2

T∑
t=1

T∑
r=1

T∑
s=1

|kts|
T∑
q=1

‖πq−s+j‖
s−1∑
j=1

‖πj‖

≤ KT−1 (Th)−2 h2T 2 (Th) log2 T

≤ Kh log2 T = o (1) ,

by (B.5) and Assumption 6.

Next,

E

∥∥∥∥∥T−1/2

T∑
t=1

St∂Dt

∥∥∥∥∥
2

= E

∥∥∥∥∥T−1/2

T∑
t=1

∂Dt

T∑
s=1

us
kts
kt

∥∥∥∥∥
2

= σ2T−1

T∑
t=1

T∑
r=1

∂D′t∂Dr

T∑
s=1

ktskrs
ktkr

≤ KT−1 (Th)−2 h2 log2 T
T∑
t=1

T∑
r=1

T∑
s=1

|ktskrs|

≤ KT−1 (Th)−2 h2
(
log2 T

)
T (Th)2 ≤ Kh2 log2 T = o (1) ,

by Assumption 6.

Finally,

E

∥∥∥∥∥T−1/2

T∑
t=1

St∂St

∥∥∥∥∥
2

= T−1E

(
T∑
t=1

T∑
s=1

us
kts
kt

T∑
r=1

r−1∑
j=1

ur−jπ
′
j

ktr
kt

T∑
q=1

T∑
p=1

up
kqp
kq

T∑
n=1

n−1∑
l=1

un−lπl
kqn
kq

)
,
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which equals

σ4T−1

T∑
t=1

T∑
s=1

kts
kt

T∑
r=1

π′r−s
ktr
kt

T∑
q=1

T∑
p=1

kqp
kq

T∑
n=1

πn−p
kqn
kq

+σ4T−1

T∑
t=1

T∑
s=1

kts
kt

T∑
r=1

r−1∑
j=1

π′j
ktr
kt

T∑
q=1

kqs
kq

T∑
n=1

πn−r+j
kqn
kq

+σ4T−1

T∑
t=1

T∑
s=1

kts
kt

T∑
r=1

T∑
p=1

π′p−r
ktr
kt

T∑
q=1

kqp
kq

T∑
n=1

πn−s
kqn
kq

+Eu4
tT
−1

T∑
t=1

T∑
s=1

kts
kt

T∑
r=1

π′r−s
ktr
kt

T∑
q=1

kqs
kq

T∑
n=1

πn−s
kqn
kq
,

which is bounded by

KT−1 (Th)−4

(
T∑
t=1

T∑
s=1

kts

T∑
r=1

‖πr−s‖
)2

+KT−1 (Th)−4
T∑
t=1

T∑
s=1

|kts|
T∑
r=1

r−1∑
j=1

‖πj‖
T∑
q=1

|kqs|
T∑
n=1

‖πn−r+j‖

+KT−1 (Th)−4
T∑
t=1

T∑
s=1

|kts|
T∑
r=1

T∑
p=1

‖πp−r‖
T∑
q=1

|kqp|
T∑
n=1

‖πn−s‖

+KT−1 (Th)−4
T∑
t=1

T∑
s=1

|kts|
T∑
r=1

‖πr−s‖
T∑
q=1

|kqs|
T∑
n=1

‖πn−s‖

≤ KT−1 (Th)−4 (T 2h log T
)2

+KT−1 (Th)−4 T (Th log T )2

≤ K
(
Th2

)−1
log2 T = o(1),

by Assumption 8.

This completes the proof of (B.3), and thus of (B.1).

Finally (B.2) follows if
1

2
∂2Q(δ0, θ0)→p Ω (B.6)

and, given Theorem 1, for a neighbourhood N of δ0, θ0,

sup
N

∥∥∂2Q(δ, θ)− ∂2Q(δ0, θ0)
∥∥→p 0. (B.7)
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The proof of (B.6) partly employs Theorem 2.2 of Hualde and Robinson (2011)

and partly methods used above to deal with contributions from deterministic and

stochastic errors, where these are less delicate than in Theorem 1’s proof because

∇2 − ∇1 is replaced by an arbitrarily small positive number, and less delicate than

the proof of Theorem 1 because T−1/2 norming is replaced by T−1 norming. The

proof of (B.7) uses that of Theorem 2.2 of Hualde and Robinson (2011) and standard

techniques. The full details of the proofs of (B.6) and (B.7) are very lengthy but

straightforward relative to what has gone before and are thus omitted.
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