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Abstract 
We develop a novel framework that simultaneously allows recovering heterogeneity in 
demand, quantity TFP and markups across firms while leaving the correlation between the three 
dimensions unrestricted. We accomplish this by explicitly introducing demand heterogeneity and 
systematically exploiting assumptions used in previous productivity estimation approaches. In doing 
so, we provide an exact decomposition of revenue productivity in terms of the underlying 
heterogeneities, thus bridging the gap between quantity and revenue productivity estimations. We use 
Belgian firms production data to quantify TFP, demand and markups and show how they are correlated 
with each other, across time and with measures obtained from other approaches. In doing so, we find 
quantity TFP and demand to be strongly negatively correlated with each other so suggesting a trade-
off between the quality of a firm's products and their production cost. We also show how our 
framework provides deeper and sharper insights on the response of firms to increasing import 
competition from China. In particular, we find that changes in revenue productivity materialise as 
the outcome of complex, and sometimes offsetting, changes in quantity TFP, demand, markups and 
production scale. 
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1 Introduction

Economists are interested in estimating firm-level productivity in a range of fields. These

estimates are often used as inputs in applications such as the firm size distribution, firm

survival and growth, self-selection of firms into exporters and non-exporters or FDI activities,

just to name a few. The most common approach in the literature to measure productivity

involves estimating a production function by regressing output quantity on input quantity

and using the resulting residual shock as a productivity index typically referred to as Total

Factor Productivity (TFP). This raises at least three issues.

First, most studies do not have output quantity data available at the firm-level so that

regressions are fitted using revenue data, i.e. price times quantity. Such revenue-based mea-

sures of TFP look quite different from quantity-based ones (Foster et al., 2008). A second

well known issue is the endogeneity of production factors used as explanatory variables (Olley

and Pakes, 1996). Third, and more importantly, firms could be heterogeneous in dimensions

other than TFP. In this respect the IO literature on demand systems (Ackerberg et al., 2007)

points to substantial heterogeneity in both markups and consumers’ willingness to pay for the

products sold by different firms. For example, the presence of vertical and horizontal prod-

uct differentiation means that firms selling otherwise similar products face rather different

demands. At the same time, market power variations, due to product quality or technical

efficiency, could substantially affect the markup that firms can charge. Being able to account

for these different dimensions and their interconnections is important for several reasons.

One of these, is that it is crucial in order to correctly measure TFP. In this respect, higher

measured TFP is typically seen as welfare improving. However, conventional measures of

TFP conflate actual TFP with demand and markup heterogeneity which may lead to different

welfare implications. In addition, being able to actually quantify dimensions other than TFP

matters from both a welfare and a policy point of view. From a welfare perspective it is, for

example, of great value to be able to assess the impact on firm markups of a trade integration

episode or market size expansion. Some recent theoretical papers have indeed revisited the

relationship between market size, markups and welfare and questioned the pervasiveness

of the so called “pro-competitive effects” (Zhelobodko et al., 2012). Furthermore, being

able to disentangle demand heterogeneity from efficiency is important for policy making, in

particular to understand where the competitiveness of a firm or an industry comes from and

then target interventions accordingly. In this respect, policy changes may affect efficiency and

demand/quality in opposite directions, so examining effects on revenue-based TFP may be

misleading and not reflect changes in underlying physical productivity.

This paper’s contribution is to address these issues in a comprehensive way by making use
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of quantity and price data at the firm-level while developing and estimating a model where

firms are heterogeneous with respect to their quantity TFP, markups and demand. More

specifically, while the literature already provides models allowing to quantify heterogeneity in

quantity TFP and markups (De Loecker et al., 2016), we explicitly introduce heterogeneity

in demand across firms within a general framework where heterogeneity in quantity TFP,

markups and demand can be simultaneously measured. In doing so, we thus allow measuring

demand heterogeneity across firms without resorting to demand system models (Ackerberg

et al., 2007) or to the restrictive assumptions imposed by the methodology developed in Foster

et al. (2008). At the same time, we also depart from the standard proxy variable approach and

develop an alternative estimation procedure for the parameters of the underlying production

function.

We apply our framework to Belgian manufacturing firms and use information on both the

quantity and the value of production over the period 1996-2007 to quantify our model. We first

document that demand factors display at least as much variability across firms as quantity

TFP. We further show that productivity and demand heterogeneity are very strongly and

negatively correlated. This finding is suggestive of a trade-off between the appeal/perceived

quality of a firm’s products (our measure of demand) and their production cost (linked to

quantity TFP) as indeed suggested in the demand system literature (Ackerberg et al., 2007).1

Another pattern worth noting is that differences in prices and markups across firms are related

to differences in demand and productivity in the way one would expect. More specifically, we

find markups to be increasing in quantity while more productive firms and/or firms selling

more appealing products charge higher markups. At the same time, more productive firms

charge lower prices while firms selling more appealing products charge higher prices. When

comparing our measure of demand with the one developed in Foster et al. (2008), we find

the two measures to be mostly orthogonal to each other. We rationalise this finding in the

light of the two key restrictions imposed by Foster et al. (2008), while also providing evidence

that our demand measure correlates well with a measure obtained using demand elasticity

estimates borrowed from Broda and Weinstein (2006). We further show how, when correctly

measured, revenue TFP exactly decomposes into the underlying dimensions of heterogeneity

so bridging the gap between quantity TFP estimations and revenue TFP estimations.

We finally assess how and to what extent these heterogeneities allow gaining deeper and

1The negative correlation we unveil can be rationalised in several ways. For example, one could reasonably
argue that technology is such that higher quality products require more and/or more expensive inputs, i.e.
lower quantity TFP. On the other hand, even if quantity TFP and demand were uncorrelated from a technology
point of view, a negative correlation between the two will arise after selection has taken place and only firms
with high enough quantity TFP and/or high enough demand survive. We provide more insights into this issue
later on in the paper.
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sharper insights into a productivity-related question: firm response to increasing import com-

petition from China. Numerous studies have explored the many, besides the well-documented

negative effects on employment (Autor et al., 2013), impacts of the spectacular rise of Chinese

trade. With respect to productivity, Bloom et al. (2016) provide evidence supporting the claim

that import competition from China caused an increase in revenue TFP for European firms.

Bloom et al. (2016) rationalise these effects via a number of channels relating competition to

innovation and X-inefficiencies. Building on our data and framework, we show how changes in

Belgian firms revenue productivity spurred by import competition from China materialise as

the outcome of complex changes in quantity TFP, product appeal, markups and production

scale. More specifically, we find that quantity TFP increases and product appeal decreases

while markups are little affected. The two opposing effects roughly cancel each other out

and so the observed increased in revenue TFP essentially comes from the reduction in firm

operations/scale. This application highlights how our framework allows to better understand

firm behaviour and margins of adjustment under competitive pressure.

Our paper is related to the literature on firm TFP measurement on which the Olley and

Pakes (1996) proxy variable approach to tackle the issue of endogeneity has had a deep im-

pact. This proxy variable approach has been further developed in Levinsohn and Petrin

(2003), Wooldridge (2009), Ackerberg et al. (2015) and De Loecker et al. (2016). Our inter-

est in demand heterogeneity is common to both Foster et al. (2008) and De Loecker (2011).

De Loecker (2011) introduces demand heterogeneity in a revenue-based production function

model while relying on standard CES preferences and a common markup across varieties.

This allows substituting for prices and getting a tractable expression for firm revenue as a

function of inputs, TFP and demand heterogeneity. Compared to our framework, De Loecker

(2011) does not allow for different markups across varieties while needing some adequate

proxies for demand shocks. By contrast Foster et al. (2008), which is the most closely related

paper to ours in terms of both data and aims, use data on both the quantity and the value of

a firm’s production in order to disentangle quantity TFP from demand heterogeneity. More

specifically, they recover production function coefficients from industry average cost shares

and subsequently estimate a demand system featuring demand heterogeneity measured as

regression residuals while instrumenting firm price with firm TFP. Therefore, the key identi-

fying assumption allowing them to disentangle productivity from demand is, besides imposing

constant markups, that they are uncorrelated. In our framework we do not impose such as-

sumptions and find productivity and demand heterogeneity to be very strongly correlated

with each other.

The rest of the paper is organised as follows. Section 2 provides our model while Section

3 develops the estimation strategy. Section 4 presents our data while Section 5 contains our
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estimation results as well as descriptive statistics and correlations. In Section 6 we compare

our demand measure with measures obtained using other approaches. In Section 7 we show

how our revenue productivity decomposition can be used to obtain deeper insights into firm

response to increasing import competition from China. Section 8 concludes. Additional

details, results, Figure and Tables are provided in the Appendix.

2 The MULAMA model

We label our model MULAMA because of the names we give to the 3 heterogeneities we allow

for: markups MU, demand LAMbda and quantity productivity A. While the literature

already provides models allowing to quantify firm-level TFP and markups (De Loecker et al.,

2016), our key contribution is to further allow measuring demand heterogeneity across firms

without resorting to demand system models (Ackerberg et al., 2007) or to the restrictive

assumptions imposed by the methodology developed in Foster et al. (2008). In doing so,

we depart from the standard proxy variable approach and develop an alternative estimation

procedure for the parameters of the underlying production function. In what follows, we

focus on the case of single-product firms while extending the model to multi-product firms in

Appendix C.

2.1 Production

We index firms by i and time by t. We consider a Cobb-Douglas production technology with

3 production factors: labour (L), materials (M) and capital (K). In line with the existing

literature we assume capital to be a dynamic input that is predetermined in the short-run,

i.e. current capital has been chosen in the past and cannot immediately adjust to current

period shocks.2 We further assume, as standard in the literature, that materials are a variable

input, free of adjustment costs. In the case of labour, we could either assume it is a variable

input, free of adjustment costs, or we could assume it is, very much like capital, predetermined

in the short-run as in De Loecker et al. (2016). We could also assume, following Ackerberg

et al. (2015), that it is a semi-flexible input.3 In light of the features of the Belgian labour

2As described in Ackerberg et al. (2015), capital is often assumed to be a dynamic input subject to an
investment process with the period t capital stock of the firm actually determined at period t− 1. Intuitively,
the restriction behind this assumption is that it takes a full period for new capital to be ordered, delivered,
and installed.

3More precisely, in the semi-flexible case, Lit is chosen by firm i at time t− b (0 < b < 1), after Kit being
chosen at t − 1 but prior to Mit being chosen at t. In this case, one should expect Lit to be correlated with
productivity shocks in t. Yet labour would not adjust as fully to such shocks as materials do. The choice
between predetermined and semi-flexible for Lit does not change the structure of the model and estimation
procedure we provide below but only affects the set of moments used in the estimation. We highlight any
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market, we opt for the predetermined case.

We further assume firms minimise costs while taking the price of materials (WMit) as

given. Labour and capital cannot adjust to current period shocks but firms can still adapt

materials. Therefore, at any given point in time, each firm i is dealing with the following

short-run cost minimisation problem:4

min
Mit

{MitWMit} s.t. Qit = AitL
αL
it M

αM
it Kγ−αL−αM

it ,

where the capital coefficient is αK = γ − αL − αM , γ characterises returns to scale, and Ait

is quantity TFP, which is observable to the firm (and influences her choices) but not to the

econometrician. In what follows we refer to the Cobb-Douglas production technology as the

quantity equation and denote with lower case the log of a variable (for example ait denotes

the natural logarithm of Ait). The quantity equation can thus be written as:

qit = αLlit + αMmit + (γ − αL − αM)kit + ait. (1)

First order conditions to the firm’s cost minimisation problem imply that:

WMit = χit
Qit

Mit

αM (2)

where χit is a Lagrange multiplier.5

We can thus write the short-run cost function as:

Cit ≡MitWMit = χitQitαM = WMit

(
Qit

Ait

) 1
αM

L
− αL
αM

it K
− γ−αL−αM

αM
it . (3)

Marginal cost thus satisfies the following property:

MCit ≡
∂Cit
∂Qit

=
1

αM

Cit
Qit

. (4)

By combining equations (2), (3) and (4) one obtains that the markup µit ≡ Pit/MCit can

be computed, in line with De Loecker et al. (2016), as the ratio of the output elasticity of

material to the share of materials’ expenditure in revenue:

µit =
αM
sMit

. (5)

differences later on.
4To simplify notation we ignore components that are constant across firms in a given time period as they

will be controlled for by time dummies.

5χit = WMit

αM
Q

1
αM
−1

it A
− 1
αM

it L
− αL
αM

it K
− γ−αL−αM

αM
it .
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2.2 Demand heterogeneity

We consider a monopolistic competition framework6 in which a representative consumer

chooses among a continuum of differentiated varieties and maximises at each point in time t

a differentiable utility function U(.) subject to budget Bt:

max
Q

{
U
(
Q̃
)}

s.t.

∫
i

PitQitdi−Bt = 0,

where Q̃ is a vector of elements ΛitQit and the vector Λ (with generic element Λit) is given to

the representative consumer. Therefore, while the representative consumer chooses quantities

Q while paying prices P , quantities Q enter into the utility function as Q̃ and Λit can be

interpreted as a measure of the perceived quality/appeal of a particular variety i. For example,

in the standard symmetric (with respect to Q̃) varieties case, the representative consumer

would be indifferent between having one more unit of a variety i with Λit = Λ or Λ more units

of a variety j with Λjt = 1.

Each firm chooses quantity to maximise profits, while taking Λit and market aggregates

as given, so implying the usual relationship between the markup and demand elasticity (ηit ≡
− ∂qit
∂pit

):

µit =
ηit

ηit − 1
. (6)

At this point it is important to note that demand elasticity, the markup and the price are

functions of both the quantity chosen by firm i (Qit) and the perceived quality/appeal of its

variety i (Λit). While quantity Qit is directly observable in production data like ours, Λit

is not, but can be inferred from the data based on a linear approximation result. First, in

Appendix B we show that utility maximisation conditions imply:

∂pit
∂qit

= − 1

ηit
=
∂pit
∂λit

− 1, (7)

where λit = log(Λit). In other words, the elasticity of the price with respect to quantity differs

from the elasticity of the price with respect to product appeal by one. The intuition behind

(7) is straightforward. In practice, everything works as if firms were selling quality-adjusted

quantities Q̃it while charging quality-adjusted prices P̃it = Pit/Λit so generating revenues

Rit = P̃itQ̃it = PitQit. Therefore, a change in Λit or Qit should have the same impact on the

6In Appendix A, we show that our approach for demand heterogeneity, and in particular equations (8) and
(9) below, applies in exactly the same way in the oligopolistic competition structure developed in Atkeson
and Burstein (2008) and further refined in Hottman et al. (2016).
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quality-adjusted price P̃it:
∂p̃it
∂qit

= ∂p̃it
∂λit

. In this respect noting that p̃it = pit − λit:

∂p̃it
∂qit

=
∂pit
∂qit
− ∂λit
∂qit

=
∂pit
∂qit

,

because ∂λit
∂qit

= 0. On the other hand:

∂p̃it
∂λit

=
∂pit
∂λit

− ∂λit
∂λit

=
∂pit
∂λit

− 1,

because ∂λit
∂λit

= 1. Combining the two above equations gives (7).

Moving forward, log revenue equals log price plus log quantity (rit = pit+qit). Considering

a first order linear approximation of log revenue around the profit maximising solution, as

well as equations (6) and (7), we have:

rit(qit, λit) '
∂rit
∂qit

qit+
∂rit
∂λit

λit =

∂pit∂qit︸︷︷︸
− 1
ηit

+
∂qit
∂qit︸︷︷︸
+1

 qit+

 ∂pit
∂λit︸︷︷︸
− 1
ηit

+1

+
∂qit
∂λit︸︷︷︸

0

λit = (1− 1

ηit
)︸ ︷︷ ︸

ηit−1

ηit
= 1
µit

(qit+λit),

and so to sum up:

rit '
1

µit
(qit + λit). (8)

Equation (8) implies that using data on the actual quantity and revenue sold by firm i, which

will be observable in our production data, and the profit-maximising markup µit, which we

will measure using production function parameters and (5), one can recover the firm-specific

demand measure λit as:

λit ' µitrit − qit. (9)

Two points are worth noting at this stage. First, if one considers the limit case of identical,

in terms of quantity TFP, firms charging a common markup equal to one, equation (9) implies

that λit ' pit, i.e. our measure of product appeal/perceived quality corresponds to the firm

price.7 However, with heterogeneity in quantity TFP and markups, prices no longer reflect

only underlying differences in product appeal/perceived quality. Second, considering the

standard symmetric CES utility case, i.e. U =
(∫

i∈It (ΛitQit)
η−1
η di

) η
η−1

where It denotes the

7Unit values obtained from international trade data have been indeed used as a measure of quality in a
number of contributions including Schott (2008) and Bloom et al. (2020).
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set of varieties, demand is given by:

Qit = Λη−1
it

(
Pit
Pt

)−η
Bt

Pt
,

where Pt is the usual CES price index and the elasticity of demand is constant and equal

to η. From this expression, it appears how our measure of perceived quality/product appeal

boils down to a firm-specific quantity shifter Λη−1
it conditional on the individual price Pit

−η.

Writing in logs, while getting rid of Pt and Bt that are constant across firms, we have:

qit = (η − 1)λit − ηpit,

from which (given that the markup is constant and given by µit = µ = η
η−1

):

µitrit − qit =
η

η − 1
((η − 1)λit(1− η)pit)︸ ︷︷ ︸

rit

− ((η − 1)λit − ηpit)︸ ︷︷ ︸
qit

= λit,

i.e. equation (9) holds as an equality. When moving away from the CES case, the markup µit

will vary across firms and firm revenue rit needs to be ‘weighted’ by the firm-specific markup

before subtracting quantity qit to compute λit from (9). At the same time, equation (9) would

now only hold as a linear approximation of the log revenue function. In this respect, we

provide in Appendix B some examples of log revenue functions obtained from preferences

used in the IO and trade literatures supporting the log-linear approximation.8

2.3 Revenue productivity

Being explicit about underlying differences in demand across firms not only allows measuring

such differences, but also enables bridging the gap between revenue-based TFP and quantity-

based TFP.9 First note that the quantity equation (1) can be written as qit = q̄it + ait, where

q̄it = αLlit + αMmit + αKkit is an index of inputs use that we label “scale” in the remainder.

Second, by defining revenue-based TFP as TFPR
it ≡ rit − q̄it and using equation (8) while

8Despite the fact that demand functions can differ wildly in terms of their shapes and properties, the
corresponding revenue functions are reasonably log-linear in quantity. Intuitively, prices vary much less than
quantities for firms and so changes in log revenue are essentially driven by changes in log quantity.

9The idea of decomposing revenue TFP into different underlying elements is not new and it is present
in the literature since at least Klette and Griliches (1996). However, most decompositions have remained
only theoretical in nature due to the lack of suitable data to operationalise them. The availability of price
and quantity data, along with our assumptions on demand heterogeneity, allow us to actually implement our
revenue TFP decomposition in the data.
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substituting we get:10

TFPR
it =

ait + λit
µit

+
1− µit
µit

q̄it, (10)

meaning that TFPR
it is a (non-linear) function of quantity-based TFP ait, product appeal

λit, the markup µit and production scale q̄it.
11 (10) can also be made linear by considering

markup-adjusted quantity TFP, product appeal and scale: ãit = ait
µit

, λ̃it = λit
µit

, ˜̄qit = (1−µit)q̄it
µit

:

TFPR
it = ãit + λ̃it + ˜̄qit. (11)

As such, changes across time within a firm of TFPR
it , or differences between firms at a given

point in time in TFPR
it can be decomposed as the sum of changes/differences in ãit, λ̃it and

˜̄qit. This in turn enables gaining deeper and sharper insights into productivity questions. For

example, we show below in Section 7 that changes in firm revenue productivity spurred by

import competition from China materialise as the outcome of complex changes in quantity

TFP, demand, markups and production scale. This in turns allows to better understand firm

behaviour and margins of adjustment under competitive pressure and learn important lessons

that can be applied to other contexts.

3 Closing the model

The last step to close the model involves introducing some additional assumptions. These are

needed to estimate the parameters of the production function, which then are used to obtain

quantity TFP ait as a residual from the quantity equation (1), while markups are pinned down

by (5) and product appeal is measured using (9). One readily available approach to estimate

the production function, that is consistent with the underlying presence of heterogeneity in

markups and demand, is provided in De Loecker et al. (2016). This methodology relies on

10From now onwards we use the equality, rather than the approximation, when employing equations (8) and
(9). Given that later on we will be computing λit using (9), the equivalent equation (8) holds as an equality
and so do the revenue TFP decompositions (10) and (11).

11Equation (10) indicates that revenue-based TFP increases with both quantity-based TFP and product
appeal at a rate given by one over the profit-maximizing markup, which is the local slope of the log revenue
function. The markup µit is to be considered endogenous with respect to both ait and λit and in particular we
show later on that markups appear to increase with both quantity-based TFP and product appeal. Therefore,
as ait and/or λit increases, so does the markup and this translates into smaller increases of TFPRit because
the log revenue function gets flatter (see examples of log revenue functions in Appendix B). At the same time,
increasing/decreasing scale decreases/increases revenue-based TFP (for given ait and λit) simply because the
firm is using more/less inputs. In this respect, it is important to note that scale is to be considered endogenous
with respect to both ait and λit. In particular, as ait and/or λit increases, so does scale because the firm will
be selling more and using more inputs. The negative indirect effect on revenue-based TFP is mediated by
markups and gets stronger with higher µit.
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the popular proxy variable approach.12

In what follows we depart from the proxy variable approach and propose a new estimation

framework that builds upon our explicit assumptions about demand heterogeneity. We label

this estimation framework FMMM.13 The key insight of the FMMM estimation is that we

use both the log revenue function (8) and the quantity equation (1) to recover technology

parameters. This is in contrast with the common practice of using only the quantity equation

and is made possible by the fact that we are sufficiently specific about demand to be able to

explicitly write the log revenue function in terms of observables and the heterogeneities we

allow for, as well as model parameters.

We thus end up with a simultaneous system of two equations. In order to deal with

this we take advantage of two insights. First, as in Wooldridge (2009), we impose a simple

AR(1) process for productivity meaning that we can substitute ait with its time lag and an

uncorrelated component while further replacing ait−1 with the lag of quantity and inputs from

the quantity equation (1). We do something similar for product appeal by specifying again

an AR(1) and replacing λit−1 with components from the log revenue function (8). Second, as

in Grieco et al. (2016), we exploit the first order conditions of the firm’s profit maximization

problem, and in particular the markup equation (5), to substitute for the output elasticity

of material parameter αM . Thanks to these two insights we are able to greatly simplify the

estimation of the simultaneous system of two equations. In particular, the estimation can be

performed separately and with simple linear methods (OLS for the revenue equation and IV

for the quantity equation) without resorting to a more complex, and potentially numerically

unstable, joint non-linear estimation. We provide Monte Carlo evidence of the performance

of the FMMM estimation framework in Appendix F.

The time process of quantity TFP ait is characterised by an AR(1):

ait = φaait−1 + νait (12)

where νait are iid and uncorrelated with past values of productivity. As for product appeal,

12In particular, starting from the conditional input demand for materials, a number of observables (prices
and market shares in particular) are added to proxy for unobservables (markups and demand heterogeneity
in our framework) while imposing the usual assumption of invertibility.

13In order to allay concerns over the robustness of our results, we provide in Appendix D key results obtained
employing the De Loecker et al. (2016) methodology (that we label DGKP) to estimate the parameters of
the production function, and using such parameters to compute an alternative set of TFP, product appeal,
markups and revenue TFP measures. We find qualitatively, and to a large extent also quantitatively, very
similar results between the FMMM and DGKP approaches.
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we also assume:14

λit = φλλit−1 + νλit (13)

where νλit are iid and uncorrelated with past values of product appeal.15 At the same time

we allow νait in (12) and νλit in (13) to be correlated with each other. Note that, by allowing

νait and νλit to be correlated with each other, we allow demand and productivity λit and ait

to be correlated with each other.16

We start by manipulating the log revenue function. More specifically, by substituting qit

with the formula of the Cobb-Douglas we can transform (8) further as:

rit =
αL
µit

(lit − kit) +
αM
µit

(mit − kit) +
γ

µit
kit +

1

µit
(ait + λit) .

Furthermore, by using the markup equation (5), we get:

LHSit ≡
rit − sMit (mit − kit)

sMit

=
αL
αM

(lit − kit) +
γ

αM
kit +

1

αM
(ait + λit) . (14)

where LHSit is made out of observables only.

We then build upon our assumptions on the time processes for ait and λit: (12) and (13).

However, before substituting (12) and (13) into (14) we need to find a convenient way to

express ait−1 and λit−1. By using (5) and (8) we have:

λit−1 = rit−1µit−1 − qit−1 = rit−1
αM
sMit−1

− qit−1. (15)

At the same time plugging (15) into (14) and re-arranging yields:

ait−1 = αMLHSit−1 − αL (lit−1 − kit−1)− γkit−1 −
(
rit−1

αM
sMit−1

− qit−1

)
. (16)

14λit captures consumers’ perception of the quality and appeal a firm’s products; something that arguably
does not change much from one year to another. It takes years of effort and costly investments for firms
to establish their brand and build their customers’ base on the one hand, and to put in place and develop
an efficient production process for their products on the other. In our view, there are profound similarities
between the processes of productivity and product appeal and so if the former can be approximated by a
Markov process so can the latter.

15More precisely, we posit that ait and λit are jointly described by a VAR(1) process meaning that νait and
νλit are both uncorrelated with past values of productivity and product appeal.

16Table B-1 in Appendix B shows the estimated correlation between product appeal shocks (νλit) and
TFP shocks (νait). Our estimates are consistent with the idea that the strong measured negative correlation
between the two shocks drives the strong measured negative correlation between λit and ait.
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Finally, by combining (12), (13), (15) and (16) into (14) we obtain:

LHSit =
γ

αM
kit +

αL
αM

(lit − kit) + φaLHSit−1 − φa
γ

αM
kit−1 − φa

αL
αM

(lit−1 − kit−1)

+ (φλ − φa)
(
rit−1

sMit−1

− qit−1

αM

)
+

1

αM
(νait + νλit) . (17)

The advantage of the transformed log revenue function (17) with respect to the original

formulation (8) is that we remove the unobservable (to the econometrician) markups and

product appeal. Indeed, besides the idiosyncratic productivity and demand shocks νait and

νλit, the transformed log revenue function (17) contains only observables and useful param-

eters. There are various ways of estimating (17) and here we use perhaps the simplest one.

More specifically, we rewrite (17) as the following linear regression:

LHSit = b1z1it + b2z2it + b3z3it + b4z4it + b5z5it + b6z6it + b7z7it + uit, (18)

where z1it=kit, z2it=(lit − kit), z3it=LHSit−1, z4it=kit−1, z5it=(lit−1 − kit−1), z6it=
rit−1

sMit−1
, z7it=qit−1,

uit=
1
αM

(νait + νλit) as well as b1= γ
αM

, b2= αL
αM

, b3=φa, b4=−φa γ
αM

, b5=−φa αLαM , b6=(φλ − φa),
b7=− (φλ − φa) 1

αM
. Given our assumptions, the error term uit in (18) is uncorrelated with

current capital and labour as well as with lagged inputs use, quantity and revenue.17 There-

fore, z1it to z7it are uncorrelated to uit and (18) can be estimated by OLS. Operationally, we

augment (18) with a full battery of 8-digit product dummies, as well as year dummies, and

perform estimations separately for each two-digit industry. We then set γ̂
αM

=b̂1, α̂L
αM

=b̂2 and

φ̂a=b̂3 without exploiting parameters’ constraints in the estimation.18

We now turn to estimating γ from the quantity equation in a second step. Combining the

17Our assumptions are in line with the widespread practice in the literature (Olley and Pakes, 1996;
Wooldridge, 2009; De Loecker et al., 2016) of imposing that productivity follows a Markov process (to which
we add that also product appeal follows a Markov process) while at the same time exploiting the idea that
some factors of production (capital and labour in our case) are predetermined in t while others (materials
in our case) are endogenous in t. From these assumptions it immediately follows that contemporaneous
and lagged values (lagged values) of predetermined (endogenous) variables are uncorrelated with innovations
in t. If one allows labour to be a semi-flexible input then labour becomes an endogenous variable and so
E {νaitlit} = E {νλitlit} = 0 will not hold. In this case, OLS cannot be applied to equation (18) because z2it

is endogenous. However, z2it could be instrumented with, for example, z2it−2 as well as the lags of order 2 of
materials, capital, revenue and quantity.

18In principle, parameters’ constraints in equation (18) could be used to obtain an estimate of αM , and
more specifically the ratio −b6/b7, and so fully recover technology parameters without further need of the
quantity equation. However, this hinges on the difference between φλ and φa being significantly different from
zero, i.e., on parameters b6 and b7 being significantly different from zero. Operationally, we very often find
that b6 and b7 are not significantly different from zero. This is consistent with the estimates of φa and φλ
(very close to each other in each of the 9 industries we consider) obtained from our two-step procedure and
reported in Table B-2 in Appendix B.
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quantity equation (1) and the markup equation (5) we have:

qit = µitsMit (mit − kit) + αL (lit − kit) + γkit + ait. (19)

Further using αM = γ
b1

as well as αL = γb2
b1

and we get:

qit =
γ

b̂1

(mit − kit) +
γb̂2

b̂1

(lit − kit) + γkit + ait, (20)

where we replace b1 and b2 with their estimates b̂1 and b̂2 coming from (18). Finally, using

the autoregressive formulation (12) as well as (16), we substitute ait with observables and

idiosyncratic productivity shocks νait and obtain:

qit =
γ

b̂1

(mit − kit) +
γb̂2

b̂1

(lit − kit) + γkit + γ
φ̂a

b̂1

LHSit−1 −
γb̂2φ̂a

b̂1

(lit−1 − kit−1)

− γφ̂akit−1 − φ̂a
(
rit−1

γ

b̂1sMit−1

− qit−1

)
+ νait. (21)

Note that the only unobservable in (21) is the idiosyncratic productivity shock νait while

the only parameter left to identify is γ. We can more compactly write (21) as the following

linear regression:

LHSit = b8z8it + νait (22)

where:

LHSit = qit − φ̂aqit−1

z8it =
1

b̂1

(mit − kit) +
b̂2

b̂1

(lit − kit) + kit +
φ̂a

b̂1

LHSit−1

− b̂2φ̂a

b̂1

(lit−1 − kit−1)− φ̂akit−1 −
φ̂arit−1

b̂1sMit−1

as well as b8=γ. Materials mit in z8it are endogenous to contemporaneous productivity shocks

νait and so OLS cannot be applied to estimate (22). However, one can use several moment con-

ditions for identification including E {νaitkit} = E {νaitlit} = E {νaitlit−1} = E {νaitmit−1} =

E {νaitkit−1} = E {νaitqit−1} = E {νaitrit−1} = 0.19 Again, we augment (22) with year and

8-digit product dummies and perform estimations separately for each two-digit industry. The

19If one allows labour to be a semi-flexible input then E {νaitlit} = 0 will not hold. However, all of the other
moment conditions will hold and there are enough to choose from. In particular, we use in our estimations
E {νaitlit−1} = E {νaitmit−1} = E {νaitkit−1} = E {νaitqit−1} = E {νaitrit−1} = 0.
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IV estimation of (22) provides an estimate of γ that, together with γ̂
αM

and α̂L
αM

coming from

the first stage revenue equation, uniquely delivers production function parameters (α̂L, α̂M

and γ̂).

Last but not least, for all our estimates and results we correct for the presence of measure-

ment error in output (quantity and revenue) and/or unanticipated (to the firm) productivity

shocks using the methodology described in De Loecker et al. (2016) and on which we provide

some highlights in Appendix B.

4 Data, descriptives and additional variables

4.1 Basic data

Our primary data consists of firm-level production data for Belgian manufacturing firms

coming from the Prodcom database and provided by the National Bank of Belgium. Prodcom

is a monthly survey of industrial production established by Eurostat for all EU countries in

order to improve the comparability of production statistics across the EU by the use of a

common product nomenclature called Prodcom (8-digit codes whose first four digits come

from NACE codes). Prodcom covers production of broad sectors C and D of NACE Rev.

1.1 (Mining and quarrying and manufacturing), except for sections 10 (Mining of coal and

lignite), 11 (Extraction of crude petroleum and natural gas) and 23 (Manufacture of coke and

refined petroleum products). During our sample period, each Belgian firm with 10 employees

or more - or with a revenue greater than a certain threshold in a given year - had to fill out

the survey.20 Firms in the survey cover more than 90% of Belgian manufacturing production

and the raw data is aggregated from the plant-level to the firm-level.

This gives us a sample of about 6,000 firms a year over the period of 1995 to 2007.

Data is organised by product-year-month-firm. We use information on quantity (the unit of

measurement depending on the specific product) and value (Euros) of production sold. We

aggregate the data at the firm-year-product level. The same data has been previously used in

Bernard et al. (2018) in their analysis of carry along trade as well as by De Loecker et al. (2014)

for their study of the links between international competition and firm performance. There

are about 4,500 distinct 8-digit products within the Prodcom classification. The level of detail

is such that, for example, we are able within the “Meat and Meat products” industry (NACE

code 151) to look at specific products such as “Sausages not of liver” (Prodcom code 15131215)

and “Fresh or chilled cuts of geese; ducks and guinea fowls” (Prodcom code 15121157) while

20Rules are somewhat different for other EU countries. In particular some EU countries only surveyed firms
with 20 or more employees. The 10 employees threshold has been recently increased to 20 in Belgium as well.
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within the NACE 212 “Article of Papers” industry, we can distinguish between “Envelopes

of paper or paperboard” (Prodcom code 21231230) and “Wallpaper and other wall coverings;

window transparencies of paper” (Prodcom code 21241190). While not as detailed as product

categories available with bar-code data for retail products, our dataset has the advantage of

spanning across the entire manufacturing sector.

We also make use of more standard balance sheet data to get information on firms’ inputs.

We build on annual firm accounts from the National Bank of Belgium. For this study, we se-

lected those companies that filed a full-format or abbreviated balance sheet between 1996 and

2007 and with at least one full-time equivalent employee. Variables include FTE employment,

total wage bill (our preferred measure of the labour input), material costs, capital stock and

turnover. There are more than 15,000 manufacturing firms per year displaying non-missing

values for these variables.

Besides, we use standard EU-type micro trade data at the product-country-firm-month

level over the period 1995-2008 provided by the National Bank of Belgium. From this data

we simple borrow information on firm import and export status. The combined balance sheet

and trade data has been previously used in Behrens et al. (2013), Mion and Zhu (2013) and

Muûls (2015) among others and is representative of the Belgian economy. The three datasets

are matched by the unique firm VAT identifier.

4.2 Additional variables and descriptives

In the analysis of the impact of import competition from China on revenue productivity and

its components, that we report in Section 7, we further use additional trade and import quota

data. The trade data comes from the Comtrade database provided by the United Nations.

We use EU-15 and US imports data over the period 1995 to 2007 at the HS6-digit level to

construct a measure of Chinese imports penetration in these two markets. We first build on a

concordance between the HS6-digit classification and the CPA6-digit classification, where the

latter dictates the first 6 digits of Prodcom codes, to measure imports at the CPA6-exporting

country-year level.21 We then construct the following measure of Chinese imports penetration,

in either the EU15 or the US market, for each CPA6-digit product and time t:

IPCmkt
CPA6,t =

IMPmkt
CPA6,China,t∑

c IMPmkt
CPA6,c,t

. (23)

21The concordance between HS6 and CPA6 is quite straightforward and we have used suitable tables
provided by the RAMON EU website. The same does not apply to the concordance between HS6 and
Prodcom 8-digit. This is the reason why we have decided to work at the CPA6 level. The CPA 6-digit
still represents a very detailed breakdown of products. For example, there are 1,370 distinct CPA6 products
corresponding to about 4,500 Prodcom 8-digit products.
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where IMPmkt
CPA6,c,t are imports by market mkt = {EU15, US} of products belonging to a

specific CPA6 product from country c at time t while IMPmkt
CPA6,China,t represents imports

from China by either the EU15 or the US of products belonging to a specific CPA6 product

at time t. A similar measure has been used in Mion and Zhu (2013) for Belgium, as well as by a

number studies for other countries, for the analysis of the various economic impacts of import

competition from China. In this respect, we believe that the EU15 is the relevant market

for the highly export-oriented Belgian firms over our time frame. Therefore, IPCEU15
CPA6,t is

our preferred measure of the import competition faced by Belgian firms producing products

belonging to a specific CPA6 code at time t. At the same time we allow, as in Autor et al.

(2013), for the presence of unobserved demand/technology shocks at the CPA6-time level

characterising the EU15 market, and correlated with IPCEU15
CPA6,t, by instrumenting IPCEU15

CPA6,t

with IPCUS
CPA6,t. More specifically, we match in each year firms to our CPA6-time measure22

and regress firm revenue productivity on IPCEU15
CPA6,t. While allowing for firm fixed effects and

time dummies, we subsequently instrument IPCEU15
CPA6,t with IPCUS

CPA6,t. We then do the same

for the different components of revenue productivity (ait, λit, etc.).

As a complementary attempt to identify the impact of import competition from China

on revenue productivity and its components we focus on a specific industry (“Textile and

Apparel”) and exploit detailed HS6-level information on import quotas. These quotas were

imposed at the EU-level on Chinese imports, as well as on imports from other non-WTO

countries, and affected some products within the industry but not others. As a consequence

of China joining the WTO, these quotas were removed during our period of analysis. To

provide some context, when these quotas were abolished this generated a 240% increase in

Chinese imports on average within the affected product groups. The data and estimation

strategy are borrowed from Bloom et al. (2016). We compute, for each 6-digit CPA product

category, the proportion of 6-digit HS products that were covered by a quota, weighting

each HS6 product by its share of EU15 imports value computed over the period 1995-1997.

We label this QUOTACPA6 and focus on the period 1998-2007 to analyse firm behaviour.

More specifically, we match in each year firms to QUOTACPA6 and run a simple diff-in-diff

specification where the time-change in, for example, firm revenue productivity is regressed on

QUOTACPA6. We then do the same for the different components of revenue productivity.

With the exception of the quota analysis where we consider the sub-sample 1998-2007, we

focus our study on the period 1996-2007 for which all datasets are available and during which

there has not been any major change in data collection and data nomenclatures. 23

22As explained below we focus in our analysis on firm producing a single Prodcom 8-digit product. Therefore,
we match firms to IPCEU15

CPA6,t based on the first 6 digits of the unique Prodcom 8-digit product produced by
firm i at time t.

23The NACE and the CN nomenclatures changed considerably in 2008. Note however that, as reported in
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We choose not to analyse multi-product firms in this paper and focus on single-product

firms, i.e. firms producing a single 8-digit Prodcom product. This is for a variety of reasons.

First, we could include multi-product firms in our analysis by drawing on the extension of

the MULAMA model presented in Appendix C. Yet, in doing so we would not be able to tell

whether our findings are specific to the MULAMA model or whether they are driven by the

additional assumptions we need to make in order to solve the inputs assignment problem for

multi-product firms. Second, in order to estimate the MULAMA model on multi-product firms

we first need, as in De Loecker et al. (2016), to estimate the parameters of the production

function for single-product firms: these are more than half of firm-year pairs in the data.

Third, in focusing on single-product firms we improve upon previous analyses of the impact

of Chinese imports competition by being able to very precisely match a measure of import

competition with what the firm actually produces. For example, Mion and Zhu (2013) and

Bloom et al. (2016) combine information on the primary 4-digit industry code of a firm with

some of the available secondary codes to account for the fact that some firms are active in

many industries while the measure they use is specific to one industry. In this respect our

information is more detailed, at the 6-digit CPA, and at the same time the CPA-specific

measure of Chinese import competition we attach to a firm covers all of its production.

As in previous studies using either revenue or quantity data our estimations are run at a

more aggregate level, that we label “industry” g, rather than at the finest available classifi-

cation (8-digit products). This is needed to have a sufficiently large number of observations

to estimate production function parameters in a consistent way. We estimate production

function parameters separately for each industry by pooling together firms producing 8-digit

products belonging to a given industry while at the same time adding time and 8-digit product

dummies. This implies assuming that technology parameters are the same across products

within an industry. Yet, we use actual quantities (and revenues) corresponding to the specific

8-digit product produced by a firm.

In terms of data cleaning, besides getting rid of missing and/or inconsistent observations,

we exclude from the analysis firms that in a given year report different sales (± 15%) in the

Prodcom and the Balance sheet data. Indeed, for some firms, manufacturing is only one part

Bernard et al. (2018), there have been some minor changes in 8-digit level Prodcom codes during our sample
period. The first 6 digits of Prodcom codes have remained virtually unchanged from 1996 to 2007 because
they correspond to the CPA classification and this has barely changed over our sample period. Therefore,
most code changes involved the last two digits of Prodcom product codes. Whenever a new code is introduced
the old code is not re-assigned to another product. Rather than attempting a complicated, and potentially
imprecise, Prodcom 8-digit time concordance exercise we have decided to use the original codes: if a product
changes code in year t, we will be using two dummies in the estimations; one for the code prior to t and
one for the code from t. The same principle applies to one-to-many, many-to-one and many-to-many codes
changes. Albeit conservative, we believe this is the best solution in this case.

18



of their operations. We then apply a 1% top and bottom trimming based on the following

variables: (i) value added over revenue; (ii) materials expenditure over revenue; (iii) capital

stock over labour expenditure; (iv) price within an 8-digit product.

Figure 1: The importance of heterogeneity in demand across firms
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Plot of log quantity and log price

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
log quantity and log price, corresponding to each firm-year pair in our sample, and are constructed after demeaning both log
quantity and log price by 8-digit product codes.

Table B-3 in Appendix B provides our industry breakdown as well as some basic summary

statistics (mean, standard deviation, 5th and 95th percentiles) and the number of observations

for the estimation sample. Figure 1 plots, after demeaning for each 8-digit product code, the

log quantity and log price corresponding to each firm-year pair in our sample. We provide

a plot for each industry and, as one can appreciate, there is indeed a negative correlation

(within 8-digit products) between prices and quantities. However, the correlation is far from

perfect with many instances of firms selling higher quantities than others for the same price

and vice versa. These differences are substantial: prices and quantities in Figure 1 are in log

units. Overall, this points to a fair amount of heterogeneity in demand across firms in the

data.
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5 Estimation results

In this Section we provide a number of results including our estimations, our measures of

TFP, product appeal and markups and examine how the three dimensions of heterogeneity

correlate with each other.

Table 1 provides estimates of Cobb-Douglas production function parameters obtained with

the FMMM estimation procedure.24 Coefficients are in line with expectations for a 3 inputs

production function and there seems to be overall some support for constant returns to scale

(γ = 1). Capital coefficients are on the low side, as is usually the case in the literature, likely

due to measurement error particularly plaguing this variable, and they look very similar to

those reported in De Loecker et al. (2016) using quantity data for India.25

Table 1: Estimates of the Cobb-Douglas production function parameters obtained with the FMMM

procedure

Industry Description Labour Materials Capital γ

1 Food products, beverages and tobacco 0.397a 0.728a 0.045a 1.169a

(0.029) (0.040) (0.014) (0.061)
2 Textiles and leather 0.325a 0.636a 0.020c 0.981a

(0.020) (0.019) (0.012) (0.014)
3 Wood except furniture 0.340a 0.632a 0.026 0.998a

(0.050) (0.049) (0.021) (0.058)
4 Pulp, paper, publishing and printing 0.427a 0.629a 0.070a 0.986a

(0.065) (0.092) (0.017) (0.141)
5 Chemicals and rubber 0.328a 0.648a 0.034c 1.010a

(0.040) (0.052) (0.019) (0.071)
6 Other non-metallic mineral products 0.316a 0.622a 0.047a 0.985a

(0.039) (0.051) (0.015) (0.078)
7 Basic metals and fabric. metal prod. 0.338a 0.629a 0.024a 0.991a

(0.015) (0.012) (0.008) (0.005)
8 Machinery, electric. and optical equip. 0.347a 0.630a 0.026b 1.004a

(0.033) (0.023) (0.011) (0.008)
9 Transport equipment and n.e.c. 0.313a 0.636a 0.025 0.974a

(0.032) (0.031) (0.016) (0.039)

Notes: γ denotes returns to scale. Bootstrapped standard errors in parenthesis (200 replications).
a p<0.01, b p<0.05, c p<0.1.

Moving to markups, the average across all observations is 1.091 which is in line with

24Table D-1 in Appendix D provides estimates of the mean and standard deviation of output elasticities
for the Translog production function obtained with the DGKP estimation procedure. Translog production
function coefficients estimates are provided in Table D-2 of Appendix D. The correlation between quantity
TFP obtained with the two estimation procedures is extremely high: 0.998 across all observations and 0.987
once demeaning both TFP measures by 8-digit product codes. See Appendix D for additional comparisons of
results obtained with the two estimation procedures.

25It is important to note that we estimate a three-inputs (capital, labour and materials) production function
instead of the somewhat more common two-inputs (capital and labour with value added as a measure of
output) production function. In the latter case the literature typically finds output elasticities for capital
around 0.2-0.3 (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). However, in the former case, the
literature typically finds output elasticities for capital around 0.05-0.2 when using either quantity or revenue
as a measure of output (Harris and Robinson, 2003; De Loecker et al., 2016; Pozzi and Schivardi, 2016).
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numbers reported in, for example, De Loecker and Warzynski (2012). We further provide the

density distribution of markups across observations separately for each industry in Figure 2

along with the corresponding mean (red vertical line). In this respect, Figure 2 points out

how markups vary considerably across firms within each industry. As far as product appeal

is concerned averages are, as in the case of quantity TFP, of little value. What is interesting

is the variation in its values. In this respect, Table 2 reports the standard deviation of 8-digit

product code demeaned values of ait and λit, as well as raw values of µit.

Figure 2: Distribution of markups by industry
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Distribution of markups by industry: FMMM procedure

Notes: The figure provides the density distribution of markups across observations separately for each of the 9 industries we
consider. The vertical bar denotes the mean markup.

The key finding stemming from Table 2 is that, within products, there is as much variation

in product appeal as there is variation in quantity TFP, confirming the first-hand impression

stemming from raw data on prices and quantities plotted in Figure 1. This suggests that

heterogeneity in product appeal is a key component of firm idiosyncracies, at least as sizeable

as heterogeneity in productivity, and so a potentially powerful key to unlock patterns in the

data.

Moving to correlations, Table 3 provides correlations between quantity TFP, product

appeal, markups and log prices. Again, we demean quantity TFP, product appeal and log

prices because these measures do not compare much across 8-digit products. The main feature

emerging from Table 3 is the strong negative correlation between quantity TFP and product
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Table 2: Standard deviation of quantity TFP, product appeal and markups by industry

product
Industry Description TFP appeal markups

1 Food products, beverages and tobacco 0.416 0.477 0.154

2 Textiles and leather 0.604 0.671 0.130

3 Wood except furniture 0.843 0.914 0.180

4 Pulp, paper, publishing and printing 0.775 0.843 0.152

5 Chemicals and rubber 0.952 0.970 0.079

6 Other non-metallic mineral products 0.520 0.607 0.123

7 Basic metals and fabric. metal prod. 0.860 0.896 0.169

8 Machinery, electric. and optical equip. 0.917 0.925 0.139

9 Transport equipment and n.e.c. 1.021 1.020 0.151

Notes: TFP and product appeal are demeaned by 8-digit Prodcom codes.

Table 3: Correlations between quantity TFP, product appeal, markups and log prices

TFP λ markups prices
TFP 1
λ -0.968a 1
markups -0.079a 0.173a 1
prices -0.994a 0.967a 0.081a 1

Notes: quantity TFP, product appeal and (log) prices are de-
meaned by 8-digit Prodcom codes. a p<0.01, b p<0.05, c p<0.1.

appeal. This is robust to refining the correlation analysis by industry that we accomplish in

Figure 3. Indeed, Figure 3 shows a strong within-product negative correlation between ait and

λit in each of the 9 industries we consider. More specifically, the correlation ranges between

-0.868 and -0.988 across industries and it is always significant at the 1% level. This is also

robust to using the DGKP estimation procedure, as shown by Figure D-2 in Appendix D,

as well as to narrowing down the analysis to an allegedly homogeneous product like ‘Ready-

mixed concrete’ as shown by Figure 4 below.26 Furthermore, Table B-1 in Appendix B

26Contrary to common perception, ready-mixed concrete is far from being a homogeneous product. In-
deed, there are many varieties of ready-mixed concrete that are differentiated both horizontally and vertically.
For example, there is home-use concrete, farm-use concrete, coated concrete (specific for corrosion resis-
tance), piling concrete (specific for pillars), early-strength concrete (useful in the first stages of construction),
fibre-reinforced concrete (for higher durability), heat-conducting concrete, underwater concrete, etc. Besides
differences in physical properties and attributes, concrete sold by different firms is, like any product, also dif-
ferentiated in terms of elements such as the capacity to be delivered on time, the quality of customer service,
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does suggest that the strong negative correlation between λit and ait is driven by a strong

negative correlation between product appeal shocks (νλit) and TFP shocks (νait). At the

same time, Table B-4 in Appendix B shows that a strong negative correlation also applies

when considering (time) first-differences of product appeal and TFP so indicating that the

correlation between λit and ait is not simply driven by some level effects.

These results, which are in line with findings from the demand systems literature (Acker-

berg et al., 2007), can be rationalised in several ways.27 For example, one could reasonably

argue that technology is such that higher quality products require more and/or more expen-

sive inputs, i.e. lower quantity TFP. On the other hand, even if ait and λit were uncorrelated

from a technology point of view, a negative correlation between the two will arise after se-

lection has taken place and only firms with high enough a and/or high enough λ survive.

In Appendix E we focus on the selection mechanism and provide highlights of a Melitz-type

model, based on Behrens et al. (2014), that is in line with the MULAMA framework and that

delivers a negative correlation between quantity TFP and product appeal.28

To provide further insights and intuition about the negative correlation between TFP and

product appeal, as well as about why it is important to observe both measures, we find the

following real world example useful. One of the most productive car plants in Europe is the

Nissan factory located in Sunderland in the UK. In terms of sheer productivity, measured as

cars per employee, it is nearly 100% more productive than a state of the art Mercedes plant

near Rastatt in Germany. However, this hardly reflects a problem with the Mercedes plant.

Rather, Mercedes and Nissan face very different demands from their clients leading to products

of different quality and characteristics. Both plants are profitable and perhaps generate a very

similar revenue productivity. However, their business model is different – Nissan is high a and

low λ while Mercedes is low a and high λ – and with data on quantity and prices, along with

our framework, we are actually able to distinguish their business models. Furthermore, it is

important to distinguish product appeal from quantity TFP because Nissan and Mercedes

could behave very differently when facing the same shock precisely because of their different

the availability of different financing solutions, etc.
27Jaumandreu and Yin (2017) provide a framework allowing for the presence of correlated demand and

TFP heterogeneity. However, they do not observe quantities and so lay down a number of assumptions under
which the two heterogeneities can be recovered from standard revenue and inputs data as well as data on
demand shifters. Interestingly, they also find TFP and demand heterogeneity to be negatively correlated.
Our approach requires more data but less assumptions and provides, among others, what we believe is a more
direct and compelling evidence about the negative correlation between TFP and demand heterogeneity.

28More specifically, upon paying a fixed cost firms take a random draw in the (a, λ) space and only firms
with ‘quality adjusted’ productivity a+λ high enough are able to survive. Therefore, even if TFP and product
appeal draws are independent, a negative correlation will arise in the data because only surviving firms are
observed. Intuitively, when comparing two sub-samples of surviving firms with different average product
appeal λ, the group with the higher average λ needs less higher values of a to satisfy the cutoff survival rule
so generating the negative correlation.
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Figure 3: Within 8-digit products correlation between quantity TFP and product appeal by
industry
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Plot of TFP and product appeal: FMMM procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
quantity TFP and product appeal, corresponding to each firm-year pair in our sample, and are constructed after demeaning both
quantity TFP and product appeal by 8-digit product codes.

Figure 4: Correlation between quantity TFP and product appeal for ready-mixed concrete
producers
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Notes: The figure provides a scatter plot (as well as a best fit line) depicting quantity TFP and product appeal corresponding
to each firm-year pair in the sub-sample of producers of ready-mixed concrete (Prodcom code 26631000). Both quantity TFP
and product appeal have been demeaned using the corresponding averages.
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business model. For example, one could assume that the availability and customisability of

intermediate components is key for producing high quality cars. In that case, fostering stable

long-term relationships with input suppliers, Mercedes would be less responsive than Nissan

in terms of changing its sourcing strategies in the wake of changes to international trade costs.

Going back to Table 3, there are other strong correlations emerging but, in order to obtain

more structured insights, one needs to go beyond pairwise correlations. This is achieved in

Tables 4 and 5 where we look more in detail at prices and markups. Considering prices in

Table 4 we should, in light of our assumptions and theoretical results, expect prices to depend

upon both quantity and product appeal. More specifically we expect, given equation (7), that

for a given product appeal λ, log prices should be decreasing with log quantity at a rate given

by the inverse of the elasticity of demand. Furthermore, the elasticity of prices with respect to

λ should be equal to one minus the inverse of the elasticity of demand. In the first column of

Table 4, we regress log prices on log quantities and λ across all observations while demeaning

all variables by 8-digit Prodcom codes and adding year dummies. In order to have more of

a causal interpretation of parameters, we estimate the regression in first-differences, i.e, we

regress changes in log prices on changes in log quantity and changes in λ. The parameter

corresponding to log quantity is negative and significant and indicates an average, across

firms and products, price elasticity of demand of 4.149=1/0.241. Furthermore, the coefficient

corresponding to λ is also highly significant and roughly equivalent to one plus the coefficient

corresponding to log quantity.

Table 4: Analysis of demeaned log prices

quantity -0.241a

(0.035)

TFP -0.887a

(0.009)

λ 0.700a 0.105a

(0.040) (0.009)

capital -0.005c

(0.002)

Estimation method First differences
Year dummies Yes Yes

N Obs 7,768 7,768
R2 0.940 0.993

Notes: The dependent variable is the de-
meaned log price. (Log) prices, quantity
TFP, product appeal, (log) capital and (log)
quantity are demeaned by 8-digit Prodcom
codes. Bootstrapped standard errors in
parenthesis (200 replications). a p<0.01, b

p<0.05, c p<0.1.
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Table 5: Analysis of markups

quantity 0.116a

(0.010)

TFP 0.372a

(0.026)

λ 0.075a 0.371a

(0.013) (0.026)

capital 0.004
(.003)

Estimation method First differences
Year dummies Yes Yes
Prod dummies Yes Yes

N Obs 7,768 7,768
R2 0.218 0.397

Notes: The dependent variable is the
markup. Quantity and capital are ex-
pressed in logs while TFP indicated quan-
tity TFP. Bootstrapped standard errors in
parenthesis (200 replications). a p<0.01, b

p<0.05, c p<0.1.

Column 2 provides instead insights into the relationship between log prices and measures

of demand and costs. More specifically, in a world in which the fundamental drivers of

heterogeneity across firms are a and λ, we should expect prices to vary across firms only to

the extent that a, λ and predetermined inputs like capital (with the latter contributing to

determine short-term marginal costs) vary across firms. In column 2 of Table 4 we regress

log prices on a, λ and log capital k across all observations while demeaning all variables

by 8-digit Prodcom codes and adding year dummies. Again, in order to have more of a

causal interpretation of parameters, we estimate the regression in first-differences. Coefficients

indicate that more productive firms charge lower prices while firms selling more appealing

products charge higher prices. In addition firms with a higher capital stock, and so with a

lower short-term marginal cost, charge lower prices. In terms of magnitudes, the quantity

TFP coefficient indicates that a 10% increase in productivity translates into about a 8.9%

price reduction, i.e. a 0.89 average cost pass-through elasticity.29

29Our average cost pass-through elasticity might seem high compared to existing macro evidence (Campa
and Goldberg, 2005). However, by looking at detailed product-level price and quantity data on French
exporters, Berman et al. (2012) provide evidence that standard macro measures of pass-through elasticity
are plagued by aggregation bias, while using the detailed information available in their study they find an
average pass-through elasticity of 0.83 and further show the pass-through elasticity is even higher for smaller
and less productive exporters. Using similar data for Belgium, Amiti et al. (2014) find an average pass-
through elasticity of 0.80 for Belgian exporters with small exporters displaying a near complete pass-through.
Therefore, considering our sample is comprised of relatively small single-product firms half of which do not
export, a 0.89 average cost pass-through elasticity seems in line with the evidence provided in Berman et al.
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Moving to markups, we perform in Table 5 very similar regressions to those of Table

4. In Table 5 the dependent variable is now the markup µit while neither the markup nor

the covariates are demeaned anymore (because the level of markups can be compared across

products) and a full battery of 8-digit Prodcom codes dummies is added to the regressions.

Furthermore, as in Table 4, regressions are performed in first-differences. Considering col-

umn one, we find that markups significantly increase with quantity as well as with product

appeal λ. Although intuitive, a positive relationship between markups and quantity is not a

property of any preferences structure and it points into the direction of preferences featuring

increasing relative love for variety (also called sub-convexity or Marshall’s second law of de-

mand) from which pro-competitive effects come from (Mrázová and Neary, 2017). Column

2 shows that more productive firms and/or firms producing more appealing products charge

higher markups. This points again to preferences featuring increasing relative love for variety.

Finally, a key difference with respect to Table 4 is that the R2 is considerably lower. This

might reflect model misspecification and/or measurement error with respect to markups, or

also the presence of richer differences in demand across firms. In this respect, our framework

does allow for markups that are not fully determined by a, λ and predetermined inputs and

these findings might suggest markups are not simply a residual dimension of heterogeneity in

the data.30

6 Comparison to alternative methodologies for retriev-

ing demand

Our key contribution is to allow measuring demand heterogeneity across firms without re-

sorting to demand system models (Ackerberg et al., 2007) or to the restrictive assumptions

imposed by the methodology developed in Foster et al. (2008). Demand system models have

very rich structures and allow for consumer- and product-specific elasticities of demand. How-

ever, they require detailed information on product and consumer characteristics as well as

suitable instruments (like cost shifters) for identification. The high data requirements of these

models are such that their application is usually limited to specific industries and contexts.31

By contrast, our simpler and more parsimonious framework only requires information on

(2012) and Amiti et al. (2014).
30Within our framework nothing prevents preferences from being characterised by asymmetries across va-

rieties, i.e. by more parameters than λit. For example, CARA-style preferences of the type U
(
Q̃
)

=∫
It

[
1 − e−α(QitΛit)

βit
]
di, where 0 < βit < 1, are well behaved preferences falling into our general case and

leading to (8). Therefore, (9) can be used to back out λit. Yet, markups will also depend upon βit.
31See Aw-Roberts et al. (2020) for an application of a demand system model to international trade data.
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product prices, quantities and inputs and does not need any additional instrument.

Concerning Foster et al. (2008), they use production data of US manufacturing firms,

containing information on both value and physical quantity, to estimate quantity-based TFP

as well as a measure of heterogeneity in demand, that they label demand shocks. More specif-

ically, they measure demand as the residual of a regression where log quantity is regressed

on log price, i.e. their demand measure is a firm-specific quantity shifter for given prices.

The log price in their regression is further instrumented with quantity TFP which is obtained

using industry costs shares to measure production function parameters. The key identify-

ing assumption in their framework is thus that productivity is uncorrelated with demand

heterogeneity.

In light of our framework, the Foster et al. (2008) approach is thus problematic for at least

two reasons:

1. Markups are heterogeneous across firms: this means that the log price coefficient (de-

mand elasticity) in their regression should be firm-specific. Within our framework we do

not need to estimate those firm-specific elasticities because, based on our assumptions,

they equal ηit = µit
µit−1

where ηit is the (perceived) elasticity of demand of firm i.32

2. Demand heterogeneity and TFP are strongly correlated with each other in our data:

this means that their IV strategy would violate exclusion restrictions.33 Within our

framework we do not need to take a prior stand on the correlation between demand and

productivity shocks.

In order to gain insights into the differences between our approach and the Foster et al.

(2008) approach we compute their demand measure (FHS demand measure) as the residual

of a regression where log quantity is regressed on log price and the latter is instrumented

with quantity TFP. Quantity TFP is constructed using industry-specific cost shares for the

parameters of the production function as in Foster et al. (2008).34 Figure 5 shows a plot of λ

and the FHS demand measure for each industry obtained after demeaning both measures by

32Interestingly, Pozzi and Schivardi (2016) build upon a demand framework similar to Foster et al. (2008)
but obtain measures of the firm-specific elasticity of demand from managers’ assessment of the impacts of an
hypothetical price increase of their firm.

33In a recent paper, Eslava and Haltiwanger (2018) improve upon Foster et al. (2008) by using as instrument
the residual of a regression where quantity TFP is regressed on its time lag, i.e. productivity shocks rather
than productivity are used as instruments.

34Foster et al. (2008) also control for a set of demand shifters, including a set of year dummies as well
as the average income in the plant’s local market where local markets are defined based on the Bureau of
Economic Analysis’ Economic Areas. We also include in our regressions year and 8-digit product dummies.
Given the small size of Belgium, we did not include any control for the plant’s local market income. Our IV
estimations, available upon request, deliver highly (1%) significant coefficients for the log price coefficient in
all nine industries.
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Figure 5: Scatter plot of product appeal and the FHS demand measure
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Plot of lambda and FHS demand: FMMM procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
product appeal and the FHS demand measure, corresponding to each firm-year pair in our sample, and are constructed after
demeaning both product appeal and the FHS demand measure by 8-digit product codes.

8-digit product codes. It is fair to say the two measures are mostly orthogonal to each other

with correlation ranging between -0.114 and 0.211 across industries, while being significant in

4 (1) out of 9 cases at the 5% (1%) level. Furthermore, a strikingly similar picture emerges

when: i) using production function coefficients from the DGKP procedure to compute product

appeal; ii) not using cost shares to compute the FHS demand measure.35

As an additional step towards comparing our framework with other approaches for mea-

suring demand heterogeneity we also consider the elasticity measurement exercise proposed

by Broda and Weinstein (2006) and further developed in Hottman et al. (2016). More specif-

ically, we borrow from Broda and Weinstein (2006) measures of the product-specific elasticity

of demand obtained from international trade data.36 Equipped with these elasticity measures,

35Figure D-3 in Appendix D shows a plot of λ obtained with the DGKP procedure and the FHS demand
measure. Furthermore, Figure B-3 in Appendix B shows a plot of λ (obtained with the FMMM procedure) and
an alternative FHS demand measure obtained using FMMM estimates of the production function coefficients,
rather than cost shares, to compute TFP and then instrument log price.

36Broda and Weinstein (2006) build on a monopolistic competition constant elasticity/markup framework
to estimate their elasticities. We use elasticities disaggregated at the SITC Rev.3 4-digit level (roughly
1,000 products) and referring to the period 1990-2001 for the US. We use the HS classification to bridge the
original SITC Rev.3 4-digit classification to the CPA 2002 6-digit classification (first 6 digits of the Prodcom
classification).
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Figure 6: Scatter plot of product appeal and the BW demand measure
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Plot of lambda and BW demand: FMMM procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
product appeal and the BW demand measure, corresponding to each firm-year pair in our sample, and are constructed after
demeaning both product appeal and the BW demand measure by 8-digit product codes.

we recompute product appeal while imposing the same elasticity/markup across firms within

a product category p (BW demand measure), i.e. λit = µprit− qit where the common markup

is µp = ηp
ηp−1

and ηp is the product-specific elasticity of demand borrowed from Broda and

Weinstein (2006). Figure 6 shows a plot of λ and the BW demand measure for each industry

obtained after demeaning both measures by 8-digit product codes. Interestingly, the two de-

mand measures correlate reasonably well (correlation coefficients ranging between 0.404 and

0.791 while being always significant at the 1% level) and certainly better than product appeal

and the FHS demand measure.

7 Decomposing revenue productivity: an application to

Chinese imports competition

The decompositions provided in equations (10) and (11) allow us to shed new light on a

well studied question. More specifically, besides the well-documented negative effects on

employment (Autor et al., 2013), numerous studies have explored the many impacts of the

spectacular rise of Chinese trade, that started well before China joined the WTO in 2001,
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on both developed and developing countries firms and workers. One particular aspect we

are interested in here is how China has affected the productivity of European firms and in

particular Belgian firms. In this respect, Bloom et al. (2016) provide evidence supporting the

claim that import competition from China caused an increase in technical change, as well

as an increase in revenue TFP, for European firms selling products most affected by rising

imports from China. Bloom et al. (2016) rationalise these effects via a number of channels

relating competition to innovation and X-inefficiencies.

Bloom et al. (2016) deal with the presence of unobserved demand and/or supply shocks

potentially correlated with Chinese imports competition patterns by focusing on a specific

industry (“Textile and Apparel”) and exploiting detailed information on import quotas. These

quotas were imposed at the EU-level on Chinese imports, as well as on imports from other

non-WTO countries, and affected some 6-digit products within the industry but not others.

As a consequence of China joining the WTO, these quotas were removed over the time frame

of our analysis. To provide some context, when these quotas were abolished this generated

a 240% increase in Chinese imports on average within the affected product groups. The

underlying identifying assumption of this strategy is that unobserved demand/technology

shocks are uncorrelated with the strength of quotas to non-WTO countries (like China) in

2000. Since these quotas were built up from the 1950s, and their phased abolition negotiated

in the late 1980s was in preparation for the Uruguay Round, Bloom et al. (2016) conclude

that this seems a plausible assumption.

We first start by replicating some key findings of Bloom et al. (2016) and other papers;

namely that employment decreased and revenue productivity increased for firms more affected

by import competition. We thus match the product-level quota measureQUOTACPA6 to firms

in the “Textile and Apparel” industry and run a regression where the time change in either

log firm-level labour expenditure or log revenue productivity is used as outcome variable.

Results are reported in columns 1 and 2 of Table 6. The negative (positive) and significant

coefficient for labour (revenue TFP) indicates that, on average, labour expenditure growth

(revenue productivity growth) has been 3.6% lower (0.7% higher) per year over our time frame

for firms affected by the quota removal as compared to non-affected firms.

Within our framework we can ask a deeper question and in particular how the increase

in revenue productivity has materialised. Indeed, Bloom et al. (2016) provide evidence that

import competition from China caused an increase in innovation while claiming this increased

innovation went into reducing production costs, i.e. boosting quantity TFP. However, Bloom

et al. (2016) are only able to measure revenue TFP and so are ultimately unable to distinguish

the underlying impacts of innovation on quantity TFP, demand and markups. More specifi-

cally an alternative, to Bloom et al. (2016), scenario is one in which the increased innovation

31



was primarily directed towards product quality improvements rather than towards increasing

quantity TFP/reducing production costs. In order to get insights into this we use our decom-

positions and in particular markups-adjusted TFP (ã), product appeal (λ̃) and scale (˜̄q) as

additional y variables in columns 3 to 5 of Table 6. In this respect note that, by construction,

the sum of the 3 coefficients equals the coefficient of revenue TFP (0.007).

Table 6: Disentangling the impact of Chinese imports competition on revenue productivity in terms

of markups-adjusted TFP (ã), product appeal (λ̃) and scale (˜̄q): quota analysis on the “Textile and

Apparel” industry

Outcome measure Labour Rev.TFP ã λ̃ ˜̄q

QuotaCPA6 -0.036c 0.007b 0.109c -0.116b 0.014b

(0.021) (0.003) (0.059) (0.057) (0.006)

Observations 700 700 700 700 700
R-squared 0.005 0.005 0.003 0.004 0.008

Notes: QuotaCPA6 denotes the share of products within a CPA6 code belonging to the
“Textile and Apparel” industry affected by a removal of quota on Chinese imports. Firm-
level clustered standard errors in parenthesis. a p<0.01, b p<0.05, c p<0.1.

The overall picture emerging from looking at coefficients is suggestive of the following

scenario. First, in the light of our model a quota removal is a negative demand shock that

should impact product appeal. Indeed, the coefficient of markups-adjusted product appeal λ̃ is

significantly negative and quite large. This suggests that, if there has been a product quality

innovation effort, it was not large enough to countervail the reduction in demand caused

by the quota removal. At the same time, the increase in innovation documented in Bloom

et al. (2016) seems to have been successful in increasing markups-adjusted quantity TFP

ã and reducing production costs as indicated by the related positive and large coefficient.

Incidentally, the two opposing effects roughly cancel each other out and so the observed

increased in revenue TFP essentially comes from the reduction in firm operations/scale, i.e.

from the increase in the markups-adjusted scale ˜̄qit = (1−µit)q̄it
µit

.37

We reach the very same conclusions using a completely different regression design in Table

7. More specifically, building on Autor et al. (2013) we consider all industries and construct

a time-varying 6-digit product-specific measure of Chinese imports penetration in the EU15

market (IPCEU15
CPA6,t) based on import shares. In order to deal with the presence of unobserved

demand/technology shocks at the product-time level characterising the EU15 market, and

37Markups µit > 1 imply that, everything else equal, markups-adjusted scale increases when scale decreases.
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correlated with IPCEU15
CPA6,t, we then instrument this measure with the equivalent Chinese

imports penetration measure in the US market IPCUS
CPA6,t. In doing so we also allow for firm

fixed effects and year dummies.

Table 7: Disentangling the impact of Chinese imports competition on revenue productivity in terms

of TFP (a), product appeal (λ), scale (q̄) and markups (µ): Chinese import penetration analysis

Outcome measure Labour Rev.TFP a λ q̄ µ

IPCEU15
CPA6,t -0.739a 0.185a 1.321a -1.073a -0.848a 0.049

(0.241) (0.042) (0.403) (0.414) (0.258) (0.065)

Observations 10,161 10,161 10,161 10,161 10,161 10,161
R-squared 0.174 0.029 0.017 0.011 0.214 0.037
Firm FE and year dummies Yes Yes Yes Yes Yes Yes
Kleibergen-Paap rk LM statistic under-id 146.71 146.71 146.71 146.71 146.71 146.71
P-value 0 0 0 0 0 0
Kleibergen-Paap rk Wald F statistic weak id. 226.34 226.34 226.34 226.34 226.34 226.34

Notes: Instrumental variable estimator with firm fixed effects implemented. Chinese import penetration in the
EU15 market (IPCEU15

CPA6,t) is instrumented with Chinese import penetration in the US market (IPCUSCPA6,t).

Firm-level clustered standard errors in parenthesis. a p<0.01, b p<0.05, c p<0.1. The Kleibergen-Paap rk LM
statistic tests for under-identification. P-value reported. The Kleibergen-Paap rk Wald F statistic tests for weak
identification. The corresponding Stock-Yogo weak ID test critical value is 16.38 for a 10% maximal IV size bias.

Coming back to Table 7, where we provide results based on non-markups-adjusted mea-

sures as well as firm markups to complete the picture, one can appreciate in columns 3 and

4 the same two countervailing effects of Chinese imports competition on quantity TFP (pos-

itive) and products appeal (negative). At the same time production scale is negatively and

significantly affected (column 5) while markups increased a little but not in a significant way

(column 6). Overall, this adds up again to an increase in revenue productivity stemming from

higher import penetration (column 2) while the impact on firm employment is negative as in

previous studies (column 1). Last but not least, test statistics suggest IPCUS
CPA6,t is a strong

instrument for IPCEU15
CPA6,t.

8 Conclusions

We provide a novel framework that simultaneously allows recovering heterogeneity in pro-

ductivity, demand and markups across firms while leaving the correlation among the three

unrestricted. In doing so, we provide an exact decomposition of revenue productivity in

terms of the underlying heterogeneities, so bridging the gap between quantity and revenue

productivity estimations. We accomplish this by explicitly introducing demand heterogeneity

and by systematically exploiting assumptions of previous firm-level productivity estimation

approaches. We apply our econometric framework to Belgian manufacturing firms and quan-
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tify productivity, markups and demand heterogeneity. We show how these heterogeneities are

correlated among them, across time as well as with measures obtained from other approaches.

We finally assess how and to what extent our three dimensions of heterogeneity allow gaining

deeper and sharper insights on firm response to increasing import competition from China.

Our methodology is rich enough to be applied to markets where products have some

features of both horizontal and vertical differentiation. At the same time, our framework is

parsimonious enough to allow retrieving productivity, demand, and markups heterogeneity

with relatively little information compared to demand systems models. It also builds upon

firm-level data on physical production that is becoming increasingly available to researchers

(Belgium, Brazil, Chile, Denmark, France, India, UK and the US to name a few countries).

Both elements provide a wide scope of applications of our framework.

Our analysis has policy implications both at the micro and macro level. At the micro level,

it makes a significant difference to know that some firms or industries lack in competitiveness

because of poor physical TFP (due for example to low expenditure in process R&D) or poor

product quality (due for example to low expenditure in product R&D). At the macro level,

our framework allows analysing aggregate revenue productivity cycles, such as the severe

downturn of EU countries’ revenue productivity since the financial crisis, not only in terms

of changes in some underlying production capacity of the economy, but also as changes in

markups and demand. These are the objects of ongoing research.
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Appendix

A Product appeal in the Atkeson and Burstein (2008)

oligopoly model

The key property needed for λit to be interpreted as a measure of perceived quality/product

appeal is that the elasticity of revenue with respect to quantity is equal to the elasticity of

revenue with respect to product appeal at the profit maximising solution. We provide here an

example of how (8) holds within an oligopoly model based on Atkeson and Burstein (2008)

and further refined in Hottman et al. (2016) for multi-product firms. The key ingredient is the

same as in the monopolistic competition case, namely that quantities enter into preferences

as Q̃it = ΛitQit. Atkeson and Burstein (2008) consider a nested CES model of quantity

competition à la Cournot in which firms sell differentiated varieties and are large enough

to perceive their impact on industry aggregates while charging markups that depend upon

their market share. More specifically, a finite number of single-product firms operates within

each industry j where preferences are characterised by a CES demand with parameter ηj. At

each point in time final consumption is produced by a competitive firm using the output of a

continuum of industries Qjt for j ∈ [0, 1] as inputs subject to a CES production function with

parameter η and 1 < η < ηj, i.e. varieties within an industry are more substitutable with each

other than industry outputs Qjt across industries. Contrary to the monopolistic competition

case, firm i operating in industry j does recognise that sectoral prices and quantities vary

when it changes its quantity. Introducing product appeal within this framework is quite

straightforward.

First, industry j aggregate output at time t is:

Qjt =

∑
i∈Ijt

(QijtΛijt)
ηj−1

ηj


ηj
ηj−1

, (A-1)

where Ijt is the set of varieties (firms) available within industry j at time t, Qijt is firm

i output in industry j and Λijt is product appeal. The inverse demand corresponding to

varieties within an industry is:

Pijt
Pjt

=

(
Qijt

Qjt

)− 1
ηj

Λ

ηj−1

ηj

ijt , (A-2)

where Pjt is the CES price index for industry j and and Pijt is firm i price in industry j.
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Firm revenue is thus Rijt = PijtQijt. The inverse demand corresponding to industry outputs

is instead:
Pjt
Pt

=

(
Qjt

Qt

)− 1
η

, (A-3)

where Pt and Qt are the CES price and quantity indexes for the whole economy and in

particular the latter is:

Qt =

(∑
j

(Qjt)
η−1
η

) η
η−1

.

In choosing the optimal quantity, firms realise the impact of their choices on industry

aggregates and in particular on Qjt. They have instead a zero measure at the aggregate level

and so take Pt and Qt as given. Combining (A-2) and (A-3) the relevant demand is:

Pijt
Pt

=

(
Qijt

Qjt

)− 1
ηj

Λ

ηj−1

ηj

ijt

(
Qjt

Qt

)− 1
η

. (A-4)

Using the properties of CES demand, the market share of firm i in industry j (sRijt ≡
Rijt/(PjtQjt)) equals the elasticity of the industry quantity index with respect to firm quantity:

∂Qjt

∂Qijt

Qijt

Qjt

= sRijt. (A-5)

Symmetrically we have:
∂Qjt

∂Λijt

Λijt

Qjt

= sRijt. (A-6)

From (A-4) and (A-5), the elasticity of firm price Pijt with respect to firm quantity Qijt is

thus − 1
ηj

(1− sRijt)− 1
η
sRijt. Therefore, the elasticity of demand is:

εit = −∂qijt
∂pijt

=

(
1

ηj
(1− sRijt) +

1

η
sRijt

)−1

, (A-7)

while from profit maximisation the markup µijt is related to the elasticity of demand in the

usual way:

µijt =
εijt

εijt − 1
. (A-8)

Multiplying both sides of (A-4) by quantity delivers the revenue equation:

Rijt

Pt
= (QijtΛijt)

ηj−1

ηj Q
1
ηj

jt

(
Qjt

Qt

)− 1
η

, (A-9)

from which the elasticity of revenue with respect to quantity is equal to the elasticity of
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revenue with respect to product appeal and equal to one over the profit maximising markup:

∂rijt
∂qijt

=
∂rijt
∂λijt

=
ηj − 1

ηj
+

1

ηj
sRijt −

1

η
sRijt =

1

µijt
. (A-10)

B Additional results

B.1 Some analytical results

The first order conditions of the utility maximisation problem imply:

∂U

∂Qit

=
∂U

∂Q̃it

∂Q̃it

∂Qit

=
∂U

∂Q̃it

Λit = κtPit,

where κt is a Lagrange multiplier and ∂Q̃it
∂Qit

= Λit. Taking logs we have:

ln
∂U

∂Q̃it

+ λit = lnκt + pit. (B-1)

Differentiating both sides of (B-1) with respect to qit yields:

∂pit
∂qit
≡ − 1

ηit
=
∂ ln ∂U

∂Q̃it

∂qit
=
∂ ln ∂U

∂Q̃it

∂q̃it

∂q̃it
∂qit

=
∂ ln ∂U

∂Q̃it

∂q̃it
, (B-2)

where ∂q̃it
∂qit

= 1 and ηit is the elasticity of demand. On the other hand, keeping in mind that
∂q̃it
∂λit

= 1, differentiation of both sides of (B-1) with respect to λit gives:

∂pit
∂λit

=
∂ ln ∂U

∂Q̃it

∂λit
+ 1 =

∂ ln ∂U
∂Q̃it

∂q̃it

∂q̃it
∂λit

+ 1 =
∂ ln ∂U

∂Q̃it

∂q̃it
+ 1 = 1− 1

ηit
= 1 +

∂pit
∂qit

, (B-3)

i.e. the elasticity of the price with respect to quantity differs from the elasticity of the price

with respect to product appeal by one.

B.2 Examples of log revenue functions

In this Section we provide examples of log revenue functions obtained from HARA prefer-

ences (Haltiwanger et al., 2018) and CARA preferences (Behrens et al., 2014) supporting the

log-linear approximation. In the case of CARA preferences, the underlying utility behind

heterogeneity in product appeal across firms would be:

U
(
Q̃
)

=

∫
It

[
1− e−αQitΛit

]
di,
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where It is the set of varieties available at time t. The inverse demand function corresponding

to such preferences is:

Pit = κ−1
t

∂U
(
Q̃
)

∂Qit

= κ−1
t αΛite

−αQitΛit ,

where κt is a Lagrange multiplier and so the log revenue function is:

rit = log(PitQit) = − log(κt) + log(α) + qit + λit − (αeqit+λit),

from which it is clear that ∂rit
∂qit

= ∂rit
∂λit

and, because of (8), equal to 1
µit

at the profit maximising

solution.

Figure B-1: CARA log revenue function examples
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Figure B-1 plots two CARA log revenue functions obtained using two different values

for product appeal: λit=1 for log revenue function 1 and λit=2 for log revenue function 2.

The other parameters are α=0.001 and κt=0.001. As can be appreciated from Figure B-1, a

linear approximation looks both reasonable and accurate for the relevant part of the two log

revenue functions, i.e. within the range where log revenue (and revenue) is increasing because

the marginal revenue is positive and the demand is elastic.
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Figure B-2: HARA log revenue function examples
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We provide further evidence about the linear approximation in Figure B-2, which is the

equivalent of Figure B-1 for HARA preferences. With HARA preferences the relevant utility

function is U
(
Q̃
)

=
∫
It

(QitΛit1−ρ +α)
ρ
−αρ

ρ
1−ρ

di. Parameters used in Figure B-2 are, besides λit=1

for log revenue function 1 and λit=2 for log revenue function 2, α=10, ρ=0.25 and the La-

grange multiplier κt=0.001. Again, one can appreciate that a linear approximation looks both

reasonable and accurate.

B.3 Measurement error in output and unanticipated shocks

One issue we need to account for is the presence of measurement error in output (quantity

and revenue) and/or unanticipated productivity shocks. In the former case, instead of qit,

the econometrician might be observing q′it=qit + eit where eit is standard measurement er-

ror. Another interpretation of the same equation is that eit represents productivity shocks

unanticipated by the firm. (1) thus becomes:

q′it = αLlit + αMmit + (γ − αL − αM)kit + ait + eit.

The approach suggested by the literature (Ackerberg et al., 2015; De Loecker et al., 2016)

to deal with measurement error in output and/or unanticipated shocks eit is based on the

proxy variable framework and a semi-parametric implementation. We follow this approach
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and, building on the same logic of equation (19) in De Loecker et al. (2016), we estimate:

q′it = poly(lit,mit, pit, kit) + eit, (B-4)

where q′it is (log) quantity as reported in the data and poly(.) is a third-order polynomial

in lit, mit, pit and kit.
38 We run (B-4) separately for each two-digit industry and, following

De Loecker et al. (2016), we also consider importer and exporter status dummies as additional

proxies while adding a full set of 8-digit product dummies and year dummies to (B-4). We

then use the OLS prediction of q′it, that we label q̂′
OLS

it , as quantity in the rest of the analysis.

We also use the same approach for revenue and consider:

r′it = poly(lit,mit, pit, kit) + ēit, (B-5)

where ēit now contains measurement error in both quantity and prices, as well as unobserved

productivity shocks, and use the OLS prediction of r′it, that we label r̂′
OLS

it , as revenue in

the rest of the analysis.39 We run (B-5) separately for each two-digit industry and consider

importer and exporter status dummies as additional proxies while adding a full set of 8-

digit product dummies and year dummies to (B-5). Also note that, by purging revenue

from measurement error and using r̂′
OLS

it instead of r′it, we obtain a more reliable measure of

the share of materials in revenue (sMit) that is needed to compute markups from (5) as in

De Loecker et al. (2016).

Last but not lest our key findings are unaffected by accounting for measurement error with

this approach but the reliability and precision of technology parameters (especially capital)

does benefit from it. The R2 of regressions (B-4) and (B-5) are indeed very high (about 0.98

or higher).

B.4 Additional Graphs and Tables

38The logic behind using (B-4) to purge quantity from measurement error and unanticipated shocks is
straightforward. From the quantity equation (1) qit is a function of lit, mit, kit and ait. Using prices pit as a
proxy for ait, while assuming invertibility, one can then write ait as a function of lit, mit, pit and kit. Overall,
qit is thus a function of lit, mit, pit and kit that can be semi-parametrically approximated by a polynomial
function. Crucially, measurement error and/or unanticipated shocks do influence a firm’s choices and so are
not part of the polynomial approximation but rather the residual of equation (B-4).

39From the revenue equation (8) rit is a function of qit µit and λit. We already know qit is a function of
lit, mit, pit and kit. Profit maximising prices will be a function of lit, mit, kit, µit and λit. Building again on
invertibility, one can thus express both µit and λit as a function of lit, mit, pit and kit. Overall, rit will thus
be a function of lit, mit, pit and kit than can be semi-parametrically approximated by a polynomial function.
Again, measurement error and/or unanticipated shocks influence a firm’s choices and so are not part of the
polynomial approximation but rather the residual of equation (B-5).
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Table B-1: OLS regression of product appeal shocks (νλit) on TFP shocks (νait) by industry

Industry 1 2 3 4 5 6 7 8 9

Product appeal shock

TFP shock -0.9147a -1.026a -0.8932a -0.9294a -1.019a -0.8555a -0.9876a -0.9641a -0.9931a

(0.0380) (0.0214) (0.0359) (0.1136) (0.0075) (0.0847) (0.0102) (0.0091) (0.0066)

N Obs 901 843 232 710 692 867 2,000 785 738
R2 0.6458 0.8830 0.8178 0.5858 0.9746 0.3055 0.9583 0.9388 0.9766

Notes: Quantity TFP and product appeal have been demeaned by 8-digit Prodcom codes before computing shocks
νλit and νait. Time dummies are included in estimations but are not reported here. Bootstrapped standard errors in
parenthesis (200 replications). a p<0.01, b p<0.05, c p<0.1.

Table B-2: OLS regression of TFP and product appeal on their time lag by industry

Industry 1 2 3 4 5 6 7 8 9

TFP

lag TFP 0.9743a 0.9718a 0.9865a 0.9577a 0.8715a 0.9711a 0.8665a 0.7482a 0.8332a

(0.0155) (0.0126) (0.0157) (0.0231) (0.0264) (0.0114) (0.0245) (0.0579) (0.0355)

N Obs 901 843 232 710 702 867 2,000 785 738
R2 0.8742 0.8785 0.9620 0.8986 0.7867 0.9371 0.7035 0.5986 0.7300

product appeal

lag product appeal 0.9654a 0.9688a 0.9886a 0.9532a 0.8737a 0.9503a 0.8769a 0.7465a 0.8292a

(0.0136) (0.0136) (0.012) (0.0323) (0.0265) (0.0153) (0.0247) (0.059) (0.0413)

N Obs 901 843 232 710 702 867 2,000 785 738
R2 0.8763 0.8825 0.9688 0.8710 0.7813 0.8942 0.7216 0.6001 0.7239

Notes: Quantity TFP and product appeal are demeaned by 8-digit Prodcom codes. Time dummies are included in estimations
but are not reported here. Bootstrapped standard errors in parenthesis (200 replications). a p<0.01, b p<0.05, c p<0.1.
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Table B-3: Basic summary statistics of the estimation sample

Industry Industry description Nace N Obs Statistic Revenue Quantity Labour Materials Capital
1 Food prod, beverages and tobacco 15+16 1,317

mean 1.431 14.311 -0.220 0.979 -0.024
st. dev. 1.165 1.741 1.003 1.240 1.336
p5 -0.277 11.786 -1.626 -0.944 -2.376
p95 3.574 17.458 1.689 3.205 2.209

2 Textiles and leather 17 to 19 1,225
mean 1.047 12.256 -0.359 0.578 -1.035
st. dev. 1.129 1.938 0.995 1.227 1.549
p5 -0.696 9.029 -1.789 -1.284 -3.650
p95 3.147 15.677 1.589 2.793 1.535

3 Wood except furniture 20 348
mean 1.284 11.359 -0.166 0.812 -0.394
st. dev. 1.354 2.827 1.169 1.457 1.598
p5 -0.314 7.738 -1.505 -0.951 -2.962
p95 4.579 15.778 2.586 4.325 2.721

4 Pulp, paper, publish. and print. 21+22 975
mean 1.916 14.875 0.396 1.447 -0.299
st. dev. 1.240 1.679 1.190 1.296 1.719
p5 0.124 12.087 -1.181 -0.530 -3.353
p95 4.227 17.728 2.735 3.829 2.610

5 Chemicals and rubber 24+25 1,043
mean 1.865 14.060 0.145 1.453 0.206
st. dev. 1.121 2.378 1.085 1.162 1.267
p5 0.272 10.062 -1.336 -0.308 -1.870
p95 3.852 17.819 2.249 3.481 2.273

6 Other non-metallic mineral prod. 26 1,215
mean 1.792 16.002 0.295 1.298 0.239
st. dev. 1.039 2.850 1.111 1.049 1.312
p5 0.310 10.795 -1.258 -0.225 -2.021
p95 3.774 19.318 2.447 3.121 2.491

7 Metals and fabric. metal prod. 27+28 2,814
mean 1.114 12.563 -0.160 0.588 -0.827
st. dev. 0.980 2.301 0.875 1.067 1.262
p5 -0.162 8.151 -1.246 -0.909 -2.883
p95 3.036 16.109 1.543 2.668 1.360

8 Machin., electr. and optic. equip. 29 to 33 1,108
mean 1.514 8.828 0.233 1.002 -0.693
st. dev. 1.169 3.365 1.031 1.259 1.439
p5 -0.070 3.989 -1.078 -0.759 -3.049
p95 3.506 14.374 2.105 3.127 1.738

9 Transport equipment and n.e.c. 34 to 36 1,055
mean 1.244 9.552 -0.110 0.762 -0.830
st. dev. 1.130 2.935 1.072 1.206 1.419
p5 -0.276 5.361 -1.489 -0.951 -3.411
p95 3.481 16.102 1.981 3.158 1.371

Notes: Revenue denotes log revenue, quantity denotes log quantity in the unit specific to a product, labour denotes log of labour expenditure,
materials denotes log of materials expenditure, capital denotes log capital stock. All monetary values are expressed in current million euros.
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Table B-4: OLS regression of changes in product appeal on changes in TFP by industry

Industry 1 2 3 4 5 6 7 8 9

Changes in product appeal

Changes in TFP -0.9158a -1.026a -0.8921a -0.9254a -1.0170a -0.8503a -0.9847a -0.9663a -0.9953a

(0.0345) (0.0236) (0.0343) (0.1298) (0.0079) (0.0865) (0.0100) (0.0095) (0.0067)

N Obs 901 843 232 710 692 867 2,000 785 738
R2 0.6490 0.8827 0.8285 0.5908 0.9772 0.3237 0.9577 0.9411 0.9788

Notes: Quantity TFP and product appeal have been demeaned by 8-digit Prodcom codes before computing growth rates.
Time dummies are included in estimations but are not reported here. Bootstrapped standard errors in parenthesis (200
replications). a p<0.01, b p<0.05, c p<0.1.

Figure B-3: Scatter plot of product appeal and an alternative FHS demand measure
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Plot of lambda and alternative FHS demand: FMMM procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots
depict product appeal (obtained with the FMMM procedure) and an alternative FHS demand measure (computed using FMMM
estimates of the production function coefficients, rather than cost shares, to obtain TFP and instrument log price), corresponding
to each firm-year pair in our sample, and are constructed after demeaning both product appeal and the alternative FHS demand
measure by 8-digit product codes.
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C Multi-product firms

There are several issues related to multi-product firms. We focus here on the issue of the

assignment of inputs to outputs. Produced quantities and generated revenues may be observ-

able for the different products of each firm in databases like ours. However, information on

inputs used for a specific product is typically not available. We propose here an extension of

our baseline model to solve the problem of assigning inputs to outputs for multi-product firms.

In doing so we assume, as in De Loecker et al. (2016), there is a limited role for economies

(or diseconomies) of scope on the cost side. However, contrary to De Loecker et al. (2016),

we do not impose multi-product firms to be characterised by a common productivity across

the different products they produce. We also allow for firm-product-time specific markups

but impose product appeal/perceived quality to be common across products within a firm.

This corresponds to a setting where firms can be distinguished into those consistently selling

high perceived quality products and those consistently selling low perceived quality products.

Yet firms are allowed to be more or less efficient in the production of a specific product and

charge different markups. The assumptions we lay down below and the related estimation

procedure are consistent with both a monopolistically competitive market structure, like the

one developed in Bernard et al. (2011), and the Cournot competition version of the model

developed in Hottman et al. (2016) that we discuss in Appendix A.

As usual we denote a firm by i and time by t. A firm i produces in t one or more products

indexed by p and the number of products produced by the firm is denoted by Iit. In our

data p is an 8-digit Prodcom product code but in other data, like the bar-code data used in

Hottman et al. (2016), can be much more detailed. We assume product appeal is firm-time

specific (λit) while we allow markups (µipt) and productivity (aipt) to be firm-product-time

specific. The production function for product p produced by firm i is given by:

Qipt = CpCtAiptL
αLg
ipt M

αMg

ipt K
γg−αMg−αLg
ipt , (C-1)

where Cp and Ct are innocuous product and time constants we disregard in what follows

and g identifies a product group/industry. Production function coefficients are the same for

products within a product group because a certain level of data aggregation is needed to

deliver enough observations to estimate parameters. (C-1) means we allow for technology

(αLg, αMg, γg) to differ across the different products p produced by a multi-product firm. At

the same time productivity is allowed to vary across products within a firm and information

coming from single-product firms need to be used to infer the technology of multi-product

firms, i.e. we rule out physical synergies in production but allow for some of the economies
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(diseconomies) of scope discussed in De Loecker et al. (2016). Furthermore, we assume firm i

to maximise profits and choose (for each product p) the amount of labour Lipt and materials

Mipt in order to minimise short-term costs while taking capital Kipt, as well as productivity

aipt and product appeal λit as given. We make use of (8) and so assume:

ript '
1

µipt
(qipt + λit). (C-2)

Profit maximisation implies:

Pipt = µipt
∂Cipt
∂Qipt

, (C-3)

where marginal cost is equal to40

∂Cipt
∂Qipt

= A
− 1
αLg+αMg

ipt Q

1−αLg−αMg
αLg+αMg

ipt K

γg−αLg−αMg
αLg+αMg

ipt (C-4)

Firms minimise costs and so markups are such that:

µipt =
αMg

sMipt

(C-5)

where sMipt is the expenditure share of materials for product p at time t in firm revenue for

product p at time t. Finally, we assume that both aipt and λit evolve over time as linear

stochastic Markov processes:

aipt = φag aipt−1 + νaipt

λit = φλλit−1 + νλit

where νaipt and νλit can be correlated with each other.

As far as single-product firms are concerned the above assumptions are such that the

parameters of the production function, as well as single-product firms’ productivity, product

appeal and markups, can be obtained using a variant of the MULAMA procedure. More

specifically, if also labour is chosen at t (17) becomes:

LHSipt =
γg
αMg

kipt + φagLHSipt−1 − φag
γg
αMg

kipt−1

+ (φλ − φag)
(
ript−1

sMipt−1

− 1

αMg

qipt−1

)
+

1

αMg

(νaipt + νλit) , (C-6)

40We omit the innocuous product-time constant
(
WLpt

αLg

) αLg
αLg+αMg

(
WMpt

αMg

) αMg
αLg+αMg
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where LHSipt ≡ ript−sLipt(lipt−kipt)−sMipt(mipt−kipt)
sMipt

and sLipt is the share of labour in revenue

(sLipt ≡ WLptLipt
Ript

). One can rewrite (C-6) as the following linear regression:

LHSipt = b1gz1ipt + b2gz2ipt + b3gz3ipt + b4gz4ipt + b5gz5ipt + uipt (C-7)

where z1ipt=kipt, z2ipt=LHSipt−1, z3ipt=kipt−1, z4ipt=
ript−1

sMipt−1
, z5ipt=qipt−1, uipt=

1
αMg

(νaipt + νλit)

as well as b1g=βg ≡ γg
αMg

, b2g=φag, b3g=−φagβg, b4g=(φλ − φag) and b5g=− (φλ − φag) 1
αMg

.

Given our assumptions, the error term uipt in (C-7) is uncorrelated with all of the regressors.

Therefore (C-7) can be estimated via simple OLS. After doing this we set β̂g=b̂1g and φ̂ag=b̂2g

and do not exploit parameters’ constraints in the estimation.

We now turn to estimating γg. Within this setting we have αLg = µiptsLipt and αMg =

µiptsMipt. (21) becomes:

qipt =
γg

β̂g

sLipt
sMipt

(lipt − kipt) +
γg

β̂g
(mipt − kipt) + γgkipt

+ φ̂ag
γg

β̂g
LHSipt−1 − φ̂agγgkipt−1 − φ̂ag

(
ript−1

γg

β̂gsMipt−1

− qipt−1

)
+ νaipt. (C-8)

(C-8) can be rewritten in a linear way:

LHSipt = b6gz6ipt + νaipt (C-9)

where:

LHSipt = qipt − φ̂agqipt−1

z6ipt =
1

β̂g

sLipt
sMipt

(lipt − kipt) +
1

β̂g
(mipt − kipt) +kipt+

φ̂ag

β̂g
LHSipt−1− φ̂agkipt−1− ript−1

φ̂ag

β̂sMipt−1

as well as b6g=γg and z6ipt can instrumented with with kipt as well as past inputs, revenue and

quantity. We set γ̂g=b̂6g and are in turn able to estimate productivity as:

âipt = qipt −
γ̂g

β̂g

sLipt
sMipt

(lipt − kipt)−
γ̂g

β̂g
(mipt − kipt)− γ̂gkipt, (C-10)

while product appeal and markups are computed as in the baseline procedure from (C-2) and

(C-5).

Estimations need to be carried on single-product firms separately for each product group

g. Turning to multi-product firms we impose, as in De Loecker et al. (2016), that the same

technology parameters coming from single-product producers extend to the products of the
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former. Yet, in order to quantify multi-product firms’ productivity, markups and product

appeal we still need to solve the issue of how to assign inputs to outputs and we do so by

building on the above assumptions. As far as materials are concerned, we need to assign

the observable total firm material expenditure Mit across the Iit products produced by firm

i at time t, i.e. we need to assign values to Mipt such that
∑Iit

p=1Mipt = Mit. We can use

this condition along with (C-5) and (C-2) to operate this assignment. Substituting (C-5)

into (C-2) and adding
∑Iit

p=1Mipt = Mit provides a system of Iit + 1 equations in Iit + 1

unknowns; the Iit inputs expenditures Mipt plus λit. Indeed, at this stage we have data on

ript, qipt, αMg and Mit. Operationally, one can actually proceed in two stages. Combining

the above equations one has
∑Iit

p=1
αMgriptRipt
qipt+λit

= Mit. This equation can be solved for each

firm and delivers λit. With this at hand one can then obtain materials expenditure from

Mipt =
αMgriptRipt
qipt+λit

. By recovering inputs expenditures Mipt we can subsequently compute

materials expenditure shares in revenues sMipt and so use (C-5) to recover our firm-product-

time specific markups µipt. Since labour is a variable input a condition analogous to (C-5)

holds for this input and so we can use the computed markups µipt and information on αLg to

derive labour expenditure: Lipt =
αLgRipt
µipt

.41 In the data, this is not guaranteed to satisfy the

constraint
∑Iit

p=1 Lipt = Lit for each firm and so the Lipt need to be re-scaled for each firm.

So far, the above procedure yields markups and product appeal, as well as information on

labour and materials use, for each of the products of a multi-product firm. However, in order

to recover productivity aipt we still need values for capital Kipt. To do this one can proceed as

follows. Combining the marginal cost, profit maximisation and quantity equations one gets:

Kipt =

(
Pipt

µiptQ
a+b
ipt L

−aαLg
ipt M

−aαMg

ipt

)(
1

c−aαKg

)

where a = − 1
αLg+αMg

, b =
1−αLg−αMg

αLg+αMg
, c =

γg−αLg−αMg

αLg+αMg
and αKg = γg − αMg − αLg is the

capital coefficient. Again values need to be re-scaled for each firm to meet the constraint∑Iit
p=1Kipt = Kit and even further refined by running an estimation where the computed Kipt

is regressed on Ript, Mipt, Lipt as well as total firm expenditure on materials and labour plus

the capital stock and product dummies.

41As a matter of fact in this variant of the model we do not impose αLg to be the same across firms.
From every single-product firm, using the computed markups and the observed labour expenditure share in
revenue, equation (C-5) applied to labour delivers a different αLg. One can compute the mean value of these
coefficients across firms producing products belonging to g to get a unique αLg.
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D Key results obtained with the DGKP estimation pro-

cedure

For the DGKP procedure, we estimate a Translog production function and perform estima-

tions separately for each two-digit industry while considering a full battery of 8-digit product

dummies as well as year dummies. The average, across all observations, markup from the

DGKP procedure is 1.158. The correlation between product appeal obtained with the FMMM

and DGKP procedures is extremely high: 0.983 across all observations and 0.908 once de-

meaning both product appeal measures by 8-digit product codes.

Table D-1: Estimates of the mean and standard deviation of output elasticities for the Translog

production function obtained with the DGKP procedure

Industry Description Statistic Labour Materials Capital γ

1 Food products, beverages and tobacco Mean 0.180 0.638 0.039 0.857
St. Dev. 0.110 0.121 0.060 0.094

2 Textiles and leather Mean 0.221 0.776 0.018 1.016
St. Dev. 0.082 0.069 0.017 0.022

3 Wood except furniture Mean 0.268 0.670 0.016 0.953
St. Dev. 0.120 0.208 0.018 0.096

4 Pulp, paper, publishing and printing Mean 0.215 0.817 0.017 1.049
St. Dev. 0.100 0.154 0.064 0.070

5 Chemicals and rubber Mean 0.168 0.708 0.037 0.913
St. Dev. 0.067 0.152 0.039 0.142

6 Other non-metallic mineral products Mean 0.186 0.762 0.023 0.971
St. Dev. 0.075 0.081 0.042 0.050

7 Basic metals and fabric. metal prod. Mean 0.310 0.636 0.030 0.976
St. Dev. 0.137 0.142 0.019 0.015

8 Machinery, electric. and optical equip. Mean 0.289 0.675 0.018 0.981
St. Dev. 0.093 0.098 0.015 0.008

9 Transport equipment and n.e.c. Mean 0.184 0.780 0.025 0.988
St. Dev. 0.220 0.215 0.033 0.039

Notes: γ denotes returns to scale.
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Table D-2: Estimates of the Translog production function parameters with the DGKP procedure

Industry 1 2 3 4 5 6 7 8 9

αL 0.395a 0.379a 0.461a 0.414a 0.327a 0.305a 0.485a 0.432a 0.498a

(0.025) (0.023) (0.014) (0.019) (0.029) (0.019) (0.004) (0.014) (0.008)

αM 0.577a 0.671a 0.395a 0.507a 0.458a 0.634a 0.438a 0.539a 0.423a

(0.138) (0.056) (0.032) (0.058) (0.140) (0.047) (0.010) (0.026) (0.036)

αK -0.009 0.010 0.044a 0.124a -0.027 0.068 0.048a 0.001 0.063b

(0.082) (0.026) (0.015) (0.037) (0.116) (0.045) (0.007) (0.016) (0.025)

αLL 0.167a 0.157a 0.182a 0.137a 0.109a 0.129a 0.260a 0.177a 0.385a

(0.026) (0.043) (0.018) (0.014) (0.027) (0.018) (0.005) (0.021) (0.006)

αMM 0.022 0.103 0.285a 0.246a 0.177c 0.132a 0.262a 0.180a 0.391a

(0.178) (0.078) (0.031) (0.035) (0.095) (0.045) (0.009) (0.023) (0.027)

αKK -0.016 -0.009 0.008 0.027b -0.022 0.041b 0.021a -0.014b 0.030a

(0.049) (0.010) (0.008) (0.011) (0.061) (0.017) (0.003) (0.007) (0.010)

αKM 0.051 0.008 -0.027c -0.072a 0.046 -0.038 -0.005 0.005 -0.021
(0.074) (0.023) (0.016) (0.021) (0.087) (0.036) (0.007) (0.010) (0.016)

αKL 0.012 0.015b 0.016b 0.014b 0.004 -0.020c -0.014a 0.006 -0.021a

(0.011) (0.006) (0.007) (0.007) (0.008) (0.011) (0.002) (0.006) (0.003)

αML -0.181a -0.148a -0.193a -0.172a -0.121a -0.117a -0.246a -0.180a -0.379a

(0.020) (0.026) (0.012) (0.014) (0.020) (0.018) (0.005) (0.018) (0.007)

Notes: Firm-level clustered standard errors in parenthesis. a p<0.01, b p<0.05, c p<0.1.

Figure D-1: Distribution of markups obtained with the DGKP procedure by industry
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Notes: The figure provides the density distribution of markups across observations separately for each of the 9 industries we
consider. The vertical bar denotes the mean markup. Markups are obtained with the DGKP estimation procedure.
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Table D-3: Standard deviation of quantity TFP, product appeal and markups by industry (DGKP

procedure)

product
Industry Description TFP appeal markups

1 Food products, beverages and tobacco 0.430 0.545 0.207

2 Textiles and leather 0.588 0.637 0.111

3 Wood except furniture 0.842 0.905 0.110

4 Pulp, paper, publishing and printing 0.769 0.975 0.129

5 Chemicals and rubber 0.946 0.984 0.114

6 Other non-metallic mineral products 0.500 0.575 0.093

7 Basic metals and fabric. metal prod. 0.855 0.861 0.063

8 Machinery, electric. and optical equip. 0.914 0.916 0.046

9 Transport equipment and n.e.c. 1.017 1.047 0.170

Notes: TFP and product appeal are demeaned by 8-digit Prodcom codes.

Table D-4: Correlations between quantity TFP, product appeal, markups and log prices (DGKP

procedure)

TFP λ markups prices
TFP 1
λ -0.943a 1
markups -0.024c 0.130a 1
prices -0.995a 0.935a 0.017 1

Notes: quantity TFP, product appeal and (log) prices are de-
meaned by 8-digit Prodcom codes. a p<0.01, b p<0.05, c p<0.1.
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Figure D-2: Within 8-digit products correlation between quantity TFP and product appeal
by industry (DGKP procedure)
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Plot of TFP and product appeal: DGKP procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
quantity TFP and product appeal, corresponding to each firm-year pair in our sample, and are constructed after demeaning both
quantity TFP and product appeal by 8-digit product codes. Quantity TFP and product appeal are obtained with the DGKP
estimation procedure.

Table D-5: Analysis of demeaned log prices (DGKP procedure)

quantity -0.374a

(0.055)

TFP -0.934a

(0.015)

λ 0.582a 0.061a

(0.065) (0.015)

capital -0.003c

(0.002)

Estimation method First differences
Year dummies Yes Yes

N Obs 7,768 7,768
R2 0.954 0.996

Notes: The dependent variable is the de-
meaned log price. (Log) prices, quantity
TFP, product appeal, (log) capital and (log)
quantity are demeaned by 8-digit Prodcom
codes. Bootstrapped standard errors in
parenthesis (200 replications). a p<0.01, b

p<0.05, c p<0.1.
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Table D-6: Analysis of markups (DGKP procedure)

quantity 0.076a

(0.011)

TFP 0.257a

(0.027)

λ 0.090a 0.258a

(0.012) (0.027)

capital 0.004
(0.003)

Estimation method First differences
Year dummies Yes Yes
Prod dummies Yes Yes

N Obs 7,768 7,768
R2 0.271 0.548

Notes: The dependent variable is the
markup. Quantity and capital are ex-
pressed in logs while TFP indcated quan-
tity TFP. Bootstrapped standard errors in
parenthesis (200 replications). a p<0.01, b

p<0.05, c p<0.1.

Figure D-3: Scatter plot of product appeal and the FHS demand measure (DGKP procedure)
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Plot of lambda and FHS demand: DGKP procedure

Notes: The figure provides a scatter plot (as well as a best fit line) for each of the 9 industries we consider. Scatter plots depict
product appeal (computed using the DGKP procedure) and the FHS demand measure, corresponding to each firm-year pair in
our sample, and are constructed after demeaning both product appeal and the FHS demand measure by 8-digit product codes.
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E A model of selection with underlying heterogeneity

in both TFP and product appeal

In what follows we provide key highlights of a Meltitz-type selection model with underlying

heterogeneity in both TFP and product appeal based on Behrens et al. (2013). The model

delivers a cutoff rule for surviving firms based on ‘quality adjusted’ productivity t̃fp = a+ λ

rather than just productivity a. The reader with limited interest in the details of the model

might directly jump to Section E.4 where, conditional on the existence of a cutoff survival

rule based on a + λ, we show that, even if draws of a and λ are independent, a and λ will

be negatively correlated in the sample of surviving firms. Intuitively, when comparing two

sub-samples of surviving firms with different average product appeal λ, the group with the

higher average λ needs less higher values of a to satisfy the cutoff survival rule so generating

the negative correlation.

Consider an economy with L identical workers/consumers. Labour is the only factor of

production.

E.1 Preferences and demands

There is a final consumption good provided as a continuum of differentiated varieties. More

specifically, consumers have identical CARA preferences displaying ‘love of variety’ and giving

rise to demands with variable elasticity. Let P (i) and Q(i) denote the price and the per capita

consumption of variety i. The utility maximisation problem of the representative consumer

is given by:

max
Q(j), j∈Ω

U ≡
∫

Ω

[
1− e−αΛ(j)Q(j)

]
dj s.t.

∫
Ω

P (j)Q(j)dj = E, (E-1)

where Ω denotes the endogenously determined set of varieties, E denotes consumption expen-

diture and Λ(j) > 0 is perceived quality/product appeal. The representative consumer buys

quantity Q(j), while paying a price P (j), that effectively translates into a quality-adjusted

quantity Q̃(j) = Λ(j)Q(j) in the utility function. Indeed, because Λ(j) is given to the repre-

sentative consumer, the utility maximisation problem (E-1) is equivalent to:

max
Q̃(j), j∈Ω

U ≡
∫

Ω

[
1− e−αQ̃(j)

]
dj s.t.

∫
Ω

P̃ (j)Q̃(j)dj = E, (A-1’)

where the representative consumer chooses quality-adjusted quantities Q̃(j) and the price

P̃ (j) = P (j)/Λ(j) is the quality-adjusted price of variety j with P̃ (j)Q̃(j) = P (j)Q(j) ∀j.
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The utility maximisation problem (A-1’) now involves perfectly symmetric varieties and so

the maths in Behrens et al. (2014) can be applied to (A-1’) to derive a number of result. More

specifically, solving (A-1’) yields the following demand functions:

Q̃(i) =
E

N cP̃
− 1

α

{
ln

[
P̃ (i)

N cP̃

]
+ η

}
, ∀i ∈ Ω, (E-2)

where N c is the mass of varieties consumed and

P̃ ≡ 1

N c

∫
Ω

P̃ (j)dj and η ≡ −
∫

Ω

ln

[
P̃ (j)

N cP̃

]
P̃ (j)

N cP̃
dj

denote the average quality-adjusted price and the differential entropy of the quality-adjusted

price distribution, respectively. Since marginal utility at zero consumption is bounded, the

demand for a variety need not be positive. Formally,

Q̃(i) > 0 ⇐⇒ P̃ (i) < P̃ d

where P̃ d ≡ N cP̃ eαE/(N
cP̃ )−η is a reservation price that depends on the quality-adjusted price

aggregates P̃ and η. The definition of the reservation price allows to express the demands for

varieties concisely as follows:

Q̃(i) =
1

α
ln

[
P̃ d

P̃ (i)

]
. (E-3)

Going back to the original prices and quantities delivers:

Q(i) =
1

αΛ(i)
ln

[
Λ(i)P̃ d

P (i)

]
. (A-3’)

E.2 Technology and market structure

Prior to production, firms engage in research and development. The labour market is perfectly

competitive, so that all firms take the wage rate W as given. Entry requires a fixed amount

F of labour paid at the market wage. Each firm i discovers its marginal labour requirement

C(i) = 1/A(i) ≥ 0, i.e. the inverse of quantity TFP, and the perceived quality of its variety

Λ(i) ≥ 0 only after making this irreversible entry decision. We assume that C(i) and Λ(i)

are drawn from two known, continuously differentiable distributions GC and GΛ. The above

assumptions mean that each individual firm faces uncertainty over its productivity and the

perceived quality/product appeal of its product. However, in the aggregate productivity and

product appeal are predictable and in particular it is possible to derive the average firm
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productivity and the average product appeal.

In what follows it is not necessary to make any strong assumptions regarding the rela-

tionship between GC and GΛ. Indeed, all is needed is that the quality-adjusted marginal

labour requirement ratio C̃(i) = C(i)/Λ(i) is a non-degenerate random variable that we as-

sume to be characterised by a continuously differentiable distributions GC̃ . In particular,

in order to facilitate deriving analytical results, we assume that quality-adjusted productiv-

ity T̃FP (i) = 1/C̃(i) = A(i)Λ(i) is Pareto distributed implying that GC̃(C̃) =
(
C̃/C̃max

)k
,

where C̃ ∈ (0, C̃max] while C̃max > 0 and k ≥ 1 are the upper bound and the shape parameter,

respectively.

Since entry costs are sunk, firms will survive/operate provided they can charge prices P (i)

above marginal costs C(i)W . The operating profit of a firm i is as follows:

Π(i) = LQ(i) [P (i)− C(i)W ] , (E-4)

where demand Q(i) is given by (A-3’). Each surviving firm maximises (E-4) with respect to

its price P (i). Since there is a continuum of firms, no individual firm has any impact on P̃ d,

so that the first-order conditions for (operating) profit maximisation are given by:

ln

[
Λ(i)P̃ d

P (i)

]
=
P (i)− C(i)W

P (i)
, ∀i ∈ Ω. (E-5)

A price distribution satisfying (E-5) is called a price equilibrium. Equations (A-3’) and (E-5)

imply that Q(i) = (1/αΛ(i))[1− C(i)W/P (i)]. The minimum output that a firm may sell is

clearly given by Q(i) = 0 at P (i) = C(i)W . This, by (E-5), implies that P (i)/Λ(i) = P̃ (i) =

P̃ d. Overall this means that, in order to find it profitable to operate, firms need to have a

cost draw C(i) and a product appeal draw Λ(i) such that their marginal cost C(i)W is lower

or equal to their price while at the same time their quality-adjusted price P (i)/Λ(i) should

be lower or equal to the choke quality-adjusted price P̃ d. This ultimately implies a cutoff

condition in terms of quality-adjusted marginal labour requirement (C(i)W = P (i) = P̃ dΛ(i)

or C̃(i) = P̃ d/W ) such that only firms with quality-adjusted marginal labour requirement

lower or equal to C̃∗ = P̃ d/W find it profitable to sell.

Given the cutoff C̃∗ and a mass of entrants NE, only N c = NE GC̃
(
C̃∗
)

firms survive,

namely those which are productive enough and/or have products of high enough quality to

sell. Since all firms differ only by their quality-adjusted marginal labour requirements, we

can express all firm-level variables in terms of C̃. In this respect, it should be noted that by
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multiplying and dividing by Λ(i), equations (E-4) and (E-5) can be rewritten as:

Π(i) = LQ̃(i)
[
P̃ (i)− C̃(i)W

]
, (A-4’)

and

ln

[
P̃ d

P̃ (i)

]
=
P̃ (i)− C̃(i)W

P̃ (i)
, ∀i ∈ Ω. (A-5’)

Equations (E-3), (A-4’) and (A-5’) are identical to those reported in Behrens et al. (2014) once

prices, quantities and marginal costs are replaced with their quality-adjusted counterparts.

In other words, our model is isomorphic to Behrens et al. (2014) and so we can directly apply

a number of their results.

E.3 Equilibrium

In what follows we normalise the wage W to one to simplify the exposition. In equilibrium,

aggregate profits are zero and the labour market should clear. Using the Pareto assumption

for the distribution of quality-adjusted productivity T̃FP , we obtain, parallel to Behrens

et al. (2014), the following closed-form solutions for the equilibrium cutoff and the mass of

entrants:

C̃∗ =

(
T̃max

L

) 1
k+1

and NE =
κ2

κ1 + κ2

L
F
, (E-6)

where T̃max ≡
[
αF (C̃max)k

]
/κ2 while κ1 and κ2 are positive constants that solely depend on

k. Finally, the indirect utility can be expressed as:

U = α

[
1

(k + 1)(κ1 + κ2)
− 1

]
1

C̃∗
, (E-7)

where the term in square brackets is, by construction, positive for all k ≥ 1.

E.4 Relationship between TFP and product appeal

Suppose that TFP Ai and product appeal Λi are independent. This implies that ai and λi

are also independent, i.e. Ga,λ(X ,Y)=Ga(X )Gλ(Y) where Ga,λ(., .) is the joint cumulative

distribution of ai and λi, G
a(.) and Gλ(.) are the univariate cumulative distribution of ai and

λi, and X and Y are two generic numbers.

Because of this, the expectation of ai conditional on λi is not a function of λi: E(ai|λi) =

E(ai). However, the expectation of ai conditional on λi and the cutoff survival rule is a

function of λi. To show this note that the cutoff survival rule imposes that only firms with
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quality-adjusted marginal labour requirement lower or equal to C̃∗, i.e. firms with (log)

quality-adjusted productivity higher or equal to t̃fp
∗

= log(1/C̃∗) = −c̃∗, will find it profitable

to operate. We indicate this by an indicator function si taking value 1 if the cutoff survival

rule is satisfied and zero otherwise: si = 1[ai + λi ≥ t̃fp
∗
], where ai + λi = t̃fpi. Using the

definition of conditional probability, the probability that ai is lower or equal to a given value

X conditional on λi and the selection rule si being satisfied is:

P (ai ≤ X|λi, si = 1) =
P (ai ≤ X , si = 1|λi)

P (si = 1|λi)
. (E-8)

The denominator of (E-8) is:

P (si = 1|λi) = P (ai+λi ≥ t̃fp
∗
|λi) = P (ai ≥ t̃fp

∗
−λi|λi) = P (ai ≥ t̃fp

∗
−λi) = 1−Ga(t̃fp

∗
−λi),

where the penultimate equality comes from the independence hypothesis. The numerator of

(E-8) is instead:

P (ai ≤ X , si = 1|λi) = P (t̃fp
∗
−λi ≤ ai ≤ X|λi) = P (t̃fp

∗
−λi ≤ ai ≤ X ) = Ga(X )−Ga(t̃fp

∗
−λi)

where, again, the penultimate equality comes from the independence hypothesis. Putting the

above two results together provides:

P (ai ≤ X|λi, si = 1) =
P (ai ≤ X , si = 1|λi)

P (si = 1|λi)
=
Ga(X )−Ga(t̃fp

∗
− λi)

1−Ga(t̃fp
∗
− λi)

. (E-9)

Taking the derivative of (E-9) with respect to X delivers the density function:

ga|λ,s=1(X ) =
ga(X )

1−Ga(t̃fp
∗
− λi)

.

Therefore, the expectation of ai conditional on λi and the selection rule si being satisfied is:

E(ai|λi, si = 1) =

∫
X ga|λ,s=1(X )dX =

E(ai)

1−Ga(t̃fp
∗
− λi)

,

which is a decreasing function of λi, i.e. the higher is λi the lower is the expected value of ai

for observation belonging to the surviving sample of firms.
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F Monte Carlo Analysis

We implement the FMMM estimation framework on artificially generated data.42 For this we

use the following setup: we draw a data set with N firms which we observe over T periods.

Markups are defined as

µit = 1 + αµ,i + σνµνµ,it

where αµ,i = γ+ σαµ × να,µ,i is a component that is fixed over time and νµ,it is a time varying

component. We draw να,µ,i and νµ,it from the uniform distribution. γ is the scale parameter

and our formulation ensures that µ > γ which is a requirement for nonzero output.

We assume that both (the log of) demand λit and technology shocks ait evolve as AR(1)

processes:

ait = φaait−1 + νa,it

and

λit = φλλit−1 + νλ,it

where we draw νλ,it and νa,it from the normal distributions N(0, σν,a) and N(0, σλ,a). For the

initial values we assume that ai0 = λi0 = 0. Normalising the economy wide variables to 1 we

can write demand as

Qit = Ληit−1
it P ηit

it

where ηit = µit
µit−1

is the price elasticity of demand. We can invert the demand function as

Pit = Λ
ηit−1

ηit
it Q

− 1
ηit

it

In the remainder we drop firm and time indices to avoid notational clutter. The short run firm

level profits maximisaiton problem becomes V (K,L) = maxM

{
Λ

1
µQ

1
µ −MWM

}
subject to

the production function Q = AKαKLαLMαM where αK = γ−αM −αL First order conditions

require:

M =
αMQ

1
µ

µWM

Λ
1
µ

We can plug this into the production function Q = AKαKLαL
(
αMQ

1
µ

µWM
Λ

1
µ

)αM
and solve for

Q:

Q∗ =

[
AKαKLαL

(
αM
WM

)αM Λ
αM
µ

µαM

] µ
µ−αM

(F-1)

42We provide an interactive version of this under https://mondpanther.shinyapps.io/MulamaRoulette/
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Also note that if capital and labour were flexible in the short run we would have

L =
αLQ

1
µ

µWL

Λ
1
µ (F-2)

K =
αKQ

1
µ

µWK

Λ
1
µ (F-3)

where WK is the user cost of capital and αK = γ − αL − αM . With this we can work out

optimal output QFLEX - the amount of output if all factors were flexible - as

QFLEX =

[
A
(
αL
WL

)αL (
αM
WM

)αM (
αK
WK

)αK
Λ
αK+αL+αM

µ

µαK+αL+αM

] µ
µ−αL−αM−αK

We assume that labor

and capital evolve converging to the level consistent with flexible levels but with a random

deviations νL and νK so that

L = LAG

αL (QFLEX
) 1
µ

µWL

Λ
1
µ

× exp νL (F-4)

K = LAG

αK (QFLEX
) 1
µ

µWK

Λ
1
µ

× exp νK (F-5)

where LAG(·) is the lag operator; i.e. current levels of capital and labor will be un-correlated

with the shocks arising in the current period. νL and νK are random shocks we draw from

then normal distributions N(0, σνL) and N(0, σνK ). Plugging equations (F-4) and (F-5) into

(F-1) we can work out Q∗, prices, revenue, material inputs etc. We then can apply the FMMM

estimation framework to recover firstly the parameters and secondly, the various shocks; i.e.

we run the regressions described in equations (18) and (22).

We draw 1000 samples of 500 firms with 10 time periods of observations. We assume the

following parameter values: αL = 0.3, αM = 0.6, γ = 1.2, σνa = 0.25, σνλ = 0.25, σνµ = 0.25,

σαµ = 1, σνK=1, σνL=1, φλ = 0.5, φa = 0.4. We illustrate the result of this by reporting

density plots of the estimated parameters γ, αM and αL in the first row of panels in Figure

F-1. In all cases we see that this leads to unbiased estimates of the true parameter. Similarly

we report density plots of the average difference between estimated and actual markup µ,

demand λ and productivity a shocks in the second row of Figure F-1. In each case we see

that there are no systematic differences between estimates and actual values. Note that our

identification relies on the presence of at least one on quasi fixed production factor that is

pre-determined as of time t. It is instructive to conduct a Monte-Carlo exploration of a

setting where this assumption goes wrong. Hence we also create artificial data violating this

assumption. For that we compute the quasi fixed factors as
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Figure F-1: Monte Carlo Results
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Notes: The figure reports results from a Monte-Carlo analysis of the FMMM estimation framework. We draw 1000 replications
of samples of 500 firms over 10 time periods with the following parameter values: αL = 0.3n, αM = 0.6,γ = 1.2, σνa = 0.25,
σνλ = 0.25, σνµ = 0.25, σαµ = 1, σνK=1, σνL=1, φλ = 0.5, φa = 0.4. Solid vertical lines indicator the true value, dashed
vertical lines indicate the average estimated values.

L = LAG

αL (QFLEX
) 1
µ

µWL

Λ
1
µ

× exp νL × (1− b) + b×

αL (QFLEX
) 1
µ

µWL

Λ
1
µ



K = LAG

αK (QFLEX
) 1
µ

µWK

Λ
1
µ

× exp νK × (1− b) + b×

αK (QFLEX
) 1
µ

µWK

Λ
1
µ


i.e. we allow both to be correlated with contemporaneous shocks to productivity where

b ∈ [0, 1) controls the strength of this correlation. We report results of this in Figure F-2

with b = 0.4. This leads to biases in all parameters as well as the markup, demand and

productivity shocks. In more detail, note that it leads to a downward bias in αM . This is

because in equation (18) we assign too much of the variation to k leading to an upward bias in

b1. This in turn leads to a downward bias in b8 in equation (22). As a result we underestimate

the scale parameter γ = b8. We estimate α̂M = γ
b1

. Hence we get a downward bias because

both the denominator is too high and the numerator too low. This in turn leads to upward

bias in our estimates of µ which is the inverse material share divided by αM . We estimate

λ̂ = rµ̂− q. As we have upward bias in µ we consequently get downward bias in λ, as we find

in Figure F-2. We compute α̂L = b2 × αM . Like for b1 we have upward bias in b2 because

l will contain short term variation (against model assumptions). This will be compensated
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Figure F-2: Monte Carlo Results with Bias
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Notes: The figure reports results from a Monte-Carlo analysis of the FMMM estimation framework. We draw 1000 replications
of samples of 500 firms over 10 time periods with the following parameter values: αL = 0.3n, αM = 0.6,γ = 1.2, σνa = 0.25,
σνλ = 0.25, σνµ = 0.25, σαµ = 1, σνK=1, σνL=1, φλ = 0.5, φa = 0.4. We also allow for a bias parameter of b = 0.4 Solid
vertical lines indicator the true value, dashed vertical lines indicate the average estimated values.

somewhat by the downward bias in αM leading to only a relatively small upward bias in for

αL in F-2. Finally, we compute â as â = q−αLl−αMm− (γ−αM −αL)k. We over estimate

αL. However, we overestimate αM and γ. Thus the bias could go either way but with the

particular parameter combination in Figure F-2 we end up with an upward bias.
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