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Abstract

This paper evaluates the model risk of models used for forecasting systemic and mar-

ket risk. Model risk, which is the potential for different models to provide inconsistent

outcomes, is shown to be increasing with market uncertainty. During calm periods,

the underlying risk forecast models produce similar risk readings; hence, model risk is

typically negligible. However, the disagreement between the various candidate models

increases significantly during market distress, further frustrating the reliability of risk

readings. Finally, particular conclusions on the underlying reasons for the high model

risk and the implications for practitioners and policy makers are discussed.
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1 Introduction

Following the 2008 crisis, risk forecasting has emerged as a key public concern. Statistical risk

measures are set to play a much more fundamental role in policy and decision making within

financial institutions than before the crisis. Hence, an understanding of the model risk of risk

forecast models—that is, the potential for different underlying risk forecast models to provide

inconsistent outcomes—is of considerable interest to both policymakers and practitioners.

The empirical study of such risk for macroprudential and internal management purposes

constitutes the main motivation of this paper.

Why does model risk matter? Risk models play a fundamental role in the regulatory process

and are directly embedded within the Basel regulations and are therefore used to determine

bank capital. While their use for macroprudential purposes is not as clear, there are a number

of proposals from the academic and public sectors for using these models for setting bank

capital and surcharges to meet systemic risk. Hence, the output of these models has a real

economic impact. For these reasons, it is important to understand to what extent decision

makers can rely on risk models and when their use is not advisable.

We start by proposing a general framework for quantifying model risk. To this end, we focus

on the level of disagreement amongst the candidate models and propose a new method we

term risk ratio. This entails applying a range of common risk forecast methodologies to the

problem of forecasting risk, and calculating the ratio of the maximum to the minimum risk

forecasts. This provides a succinct way of capturing model risk because if the underlying

models have passed some model evaluation criteria used by the authorities and financial

institutions, they can be considered reputable risk forecasting candidates. If risk is forecasted

by a number of equally good models, the risk ratio should be close to 1. If the risk ratio is

very different from 1, then it captures the degree to which different models disagree, providing

a measure of model risk.

We first focus our attention on the five most commonly used risk forecast models: historical

simulation, exponentially weighted moving average, normal GARCH, student-t GARCH, and

extreme value theory. In addition, we include six hybrid models identified in the literature as

high quality: both extreme value theory and historical simulation applied to GARCH filtered

data under the assumptions of normal, student-t, and skewed-t error term distributions.

While it would be straightforward to expand the universe of models if another prominent

candidate emerges, it will not materially affect the results since any additional model can

only increase model risk.
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We first apply the risk ratio methodology on market risk measures. Value-at-Risk (VaR) has

been the main building block of market risk regulations since its first incorporation into the

Basel Accords in 1996; hence, the model risk of VaR is our starting point. In addition, we

consider the model risk of expected shortfall (ES), since the Basel committee (2013, 2014)

has proposed replacing VaR with ES in market risk regulations.

We then propose a general setup for the classification of systemic risk models (SRMs), pro-

viding a lens through which to analyze the most common market data based systemic risk

models (SRMs). The prominent marginal expected shortfall (MES) (Acharya et al., 2010),

conditional value at risk (CoVaR) (Adrian and Brunnermeier, 2011), SRISK (Brownlees and

Engle, 2015; Acharya et al., 2012), Co-Risk (IMF, 2009), and BIS’s Shapley value method

(Tarashev et al., 2010) all fall under our classification setup. While intended for different

purposes, these measures and market risk regulation techniques are closely related; both ele-

mentally depend on VaR, suggesting that the model risk of VaR is likely to pass through to

market data based SRMs. One could apply the risk ratio approach to the various market data

based SRMs, but given their common ancestry, we expect the results to be fundamentally

the same, and in the interest of brevity we focus on two SRMs: MES and CoVaR.

The data set consists of large financial institutions traded on the NYSE, AMEX, and NAS-

DAQ from the banking, insurance, real estate, and trading sectors over a sample period

spanning 1970 to 2012. We find that on average, model risk is quite low, indicating that in

typical situations decision makers do not have to be too concerned about model choice or

model risk. However, the situation changes when looking at individual stocks and periods

of stress in financial markets. Model risk is significantly higher when an individual stock is

subject to idiosyncratic shocks or when financial markets are stressed. The average maximum

99% VaR risk ratio across the whole sample is 9.23, and in the most extreme case it reaches

55.32, during the 1987 crash. None of the models systematically gives the lowest or highest

forecasts, and the large risk ratios are not driven by the inclusion of a particular model.

The empirical results are a cause for concern, as the degree of model risk documented here

frustrates internal risk management as well as macro-prudential and micro-prudential policy.

For this reason, our results should be of considerable value to policymakers and risk man-

agers alike, who will get a better understanding of the reliability of risk models and how to

understand the problem of conflicting measurements of the same underlying risk. Ultimately,

a better understanding of model risk should lead to more robust policymaking and asset

allocation.

We suspect the problem of model risk arises for two reasons. The first is the low frequency of

actual financial crises. Developing a model to capture risk during crises is quite challenging,
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since the actual events of interest have almost never happened during the observation period.

Such modeling requires strong assumptions about the stochastic processes governing market

prices that are likely to fail when the economy enters a crisis.

Second, common statistical models assume risk is exogenous—extreme events arrive to the

markets from outside, like an asteroid would, and the behavior of market participants has

nothing to do with the crisis. However, as argued by Danielsson and Shin (2003); Brunnermeir

and Sannikov (2014), risk is really endogenous, created by the interaction between market

participants and by their desire to bypass risk control systems. As both risk takers and

regulators learn over time, we can also expect price dynamics to change, further frustrating

statistical modeling.

It is important to recognize that the output of risk forecast models is used as an input into

expensive decisions, be they portfolio allocations or the amount of capital held. Hence, the

minimum acceptable criterion for a risk model should not be to weakly beat noise, but the

quality of the risk forecasts should be sufficiently high so the cost of type I and type II errors

are minimized, as argued by Danielsson et al. (2015a).

Furthermore, most successful market risk methodologies, including all of those discussed

here, were originally designed for the day-to-day management of market risk in financial

institutions. In our view, one should be careful when using the same statistical toolkit for

the more demanding job of systemic and tail risk identification.

The outline of the rest of the paper is as follows. Section 2 gives the details of the model risk

analysis conducted. Section 3 presents the empirical findings for market regulatory models.

Section 4 provides a classification system for systemic risk methodologies and examines the

model risk of market data based systemic risk models. Section 5 features a discussion of our

main findings. Section 6 concludes.

2 Model risk analysis

Broadly speaking, model risk relates to the uncertainty created by not knowing the data

generating process. That high level definition does not provide guidance on how to assess

model risk, and any test for model risk will be context dependent.

Within the finance literature, Green and Figlewski (1999); Cont (2006); Hull and Suo (2002)

underline three different sources of model risk. First, there is uncertainty on the choice of

the model itself. Second, the underlying theoretical model could be misspecified. Third,

some of the input parameters in the underlying model could be unobservable and hence
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may require assumptions for empirical implementation. For Gibson (2000), model risk is

defined as uncertainty over the risk factor distribution, whereas Alexander and Sarabia (2012)

distinguish two sources of model risk: inappropriate assumptions about the form of the

statistical model, and parameter uncertainty (i.e., estimation error in the parameters of the

chosen model). Finally, Hendricks (1996); Glasserman and Xu (2013); Boucher et al. (2014)

define model risk as inaccuracy in risk forecasting that arises from estimation error and the

use of an incorrect model.

Our interest here is in a particular practical aspect of model risk—how the use of different

candidate models, all feasible ex-ante, may lead to widely different risk forecasts. It has been

known since the very first days of financial risk forecasting that different models can produce

vastly different outcomes, where it can be difficult or impossible to identify the best model,

(e.g., Hendricks, 1996; Berkowitz and O’Brien, 2002; Danielsson, 2002; O’Brien and Szerszen,

2014). This problem arises because financial risk is latent, it cannot be directly measured

and instead has to be forecasted by a statistical model. Hence, the definition of model risk

we focus on most closely resembles that of Green and Figlewski (1999); uncertainty on the

model choice itself creates model risk as there are many standard VaR forecast models used.

2.1 Model and measure choices

Our objective is to capture the resulting model disagreement into one statistical measure,

the risk ratio. We focus on the two most commonly used market risk measures, VaR and

ES, explicitly addressing the specific case of Basel III. We also consider market data based

systemic risk measures, and provide the first empirical evidence documenting how model risk

in VaR and ES passes through to the SRMs.

At this stage, we are left with the choice of whether to identify the best model amongst the

candidates. In that, we are guided by a large literature on model choice (see for instance Bao

et al., 2006; Kuester et al., 2006; Brownlees and Gallo, 2009; O’Brien and Szerszen, 2014,

among others).

A typical way to identify the best risk forecast model is by backtesting, usually through the

analysis of violation ratios. While any systematic occurrence of violations quickly shows up

in backtest results, violations are just one of many criteria for evaluating the performance

of risk models such as volatility of risk forecasts, clustering of violations, extreme tail risk,

overestimation or underestimation only, and more. This means that passing one criteria

might be relatively unimportant for any particular user.
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Furthermore, in the specific case of SRMs, what matters is extreme outcomes, which by

definition are very infrequent. The paucity of data during such time periods makes it difficult,

if not impossible, to formally test for violations and to obtain robust backtest results.

Thus, instead of identifying the best model, we opt to focus on a different relevant question:

examining the consistency/discrepancy of a set of candidate models. That leaves us with

the final question of how to quantify the degree of model disagreement. We opted for a

simple approach: the ratio of the highest to the lowest forecasts, or risk ratio. We tried other

summary measures of disagreement, such as standard deviations and absolute deviations, but

the results do not change qualitatively.

2.2 The risk ratio approach to model risk

Consider the problem of forecasting risk for day t + 1 using information available on day t.

Suppose we have N candidate models to forecast risk on day t + 1, each providing different

forecasts: {
Riskn

t+1

}N
n=1

.

We then define model risk as the ratio of the highest to the lowest risk forecasts

Risk Ratiot+1 = RRt+1 =
max

{
Riskn

t+1

}N
n=1

min
{

Riskn
t+1

}N
n=1

.

The risk ratios provide a clear unit-free way to compare the degree of divergence, as long as

the underlying models are recognized as high quality, are in use by financial institutions, and

have passed muster with the authorities.

The baseline risk ratio estimate is 1. If we forecast the risk by a number of equally good

models, the risk ratio should be close to 1; a small deviance can be explained by estimation

risk. Therefore a risk ratio very different from 1 captures the degree to which different models

disagree. In this case, both practitioners and regulators end up with valid but inconsistent

risk forecasts.

2.3 Models

A very large number of models have been proposed for forecasting market risk. Unfortunately,

it is difficult to map out all of the models used in the industry. While one can get some

guidance in reading the annual reports of financial institutions, the stated model choice may
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be different from the model used for capital purposes, which is yet different from the models

used for internal risk control.

To the best of our knowledge, there is no comprehensive survey listing the most commonly

used models by industry. As the model choice depends on the specific industry and juris-

diction, it may not be possible to create such a survey. Local regulators create their own

rulebooks, and even within the context of the Basel regulations, the same model may be

allowed in one jurisdiction and disallowed in another. Different industries—especially those

regulated more lightly, such as asset managers—might use different models while not being

required to disclose the model used.

Faced with a large number of models, the decision of which models to include is not straight-

forward. We do not want to simply pick every model because including a model that is not in

use and that persistently delivers the highest or lowest risk forecasts would artificially inflate

the risk ratio. We therefore opt for a two-level approach. First, we pick the five mainstream

models that are most commonly discussed in the academic, practitioner, and regulatory liter-

atures. Second, we include six more sophisticated models that are identified in the academic

literature as the best at forecasting risk.

That said, such a choice is inevitably subjective; hence, we also present the sensitivity of

the results by excluding specific models in Section 3.2. In addition, in the web appendix at

www.ModelsandRisk.org/modelrisk, we provide the individual risk forecasts so that any-

body can calculate model risk for their particular subset of our universe of models.

First, being one of the simplest, historical simulation (HS) is one of the most common risk

forecast models preferred in the industry. For instance, the two largest bank holding compa-

nies in our sample, Bank of America and JPMorgan, calculate trading risk via HS for their

annual reports.

Second, we include three GARCH family models. Normal GARCH (G) is one of the most

popular models to forecast volatility, along with exponentially weighted moving average

(EWMA), as the non-stationary version of GARCH (1,1) (see for example Poon and Granger,

2003, for a literature review on volatility forecasting models). Several authors have docu-

mented that the normal GARCH is not sufficient for capturing tail events, proposing student-

t GARCH (tG) (see for example Bauwens and Laurent, 2005; Bali and Theodossiou, 2007;

Marimoutou et al., 2009).

Third, we consider extreme value theory (EVT) models since several authors have argued

that they provide more accuracy and stability than GARCH-derived risk forecasts (see for

example Danielsson and Morimoto, 2000; Bekiros and Georgoutsos, 2005).
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We also include several models identified by the academic literature as being of particu-

larly high quality. In this, we make use of Kuester et al. (2006) who compare alternative

VaR forecasting models and show that hybrid models, in general, perform better compared

with the simple approaches. Though it is not possible to capture all possible hybrid/mixing

approaches, we include six models that have been shown to perform the best within the

universe considered by Kuester et al. (2006). Specifically, we include filtered historical sim-

ulation model assuming the error terms are normal (FHS), student-t (tFHS), and skewed-t

distributed (stFHS). In addition, another hybrid model combining a GARCH filter with an

EVT approach is included under the assumption of normal (G-EVT), student-t (tG-EVT),

and skewed-t (stG-EVT) distributed error terms.

Many of the models we consider are related to each other and can be expected to deliver

similar and correlated results. For example, the EWMA is nested within GARCH. The HS

and EVT models are both based on unconditional empirical quantiles, where EVT fits a

parametric function to the tails. The normal and student-t GARCH models are related by

the volatility specification but with a different conditional distribution. Finally, the hybrid

models produce correlated VaR readings as they all require GARCH filtering as a first step

in their calculation. However, the degree of similarity between the various models does not

necessarily imply that the model risk is negligible. Even related models can deliver different

results.

Hence, a relevant question is whether we can only consider, for instance, GARCH family

models and then conclude that the model risk is negligible. Our answer is no for two reasons.

First, different models have different merits. Some end users may prefer to use a model that

reacts quickly to the news (e.g., GARCH), others may prefer easy computation (e.g. EWMA

or HS), or low volatility of risk forecasts and hence, stability (e.g. HS), and still others may

want to best capture the fat tails (such as EVT or student-t GARCH). In addition, although

computationally trickier, hybrid models are shown to have good risk forecast properties (e.g.,

Kuester et al., 2006). Therefore, the choice of risk measure is tailored to the preferences of

the end user.

Second, even the same risk forecast model may be subject to model risk simply due to different

parameters chosen by the end-user. For example, according to the 2014 annual reports, Bank

of America calculates its trading risk via 99% VaR using HS with a three-year estimation

window period. Similarly, JPMorgan calculates its trading risk by employing HS, though via

95% VaR with one-year estimation windows. We calculate the market risk of the S&P 500

index using the above two sets of parameters. We find that the minimum risk ratio is 1, as

expected, but only for 5% of the times. The correlation of the risk readings is only 66%,

where the disagreement between the two risk readings can go up to 4.
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2.4 Data

Our sample includes all NYSE, AMEX, and NASDAQ–traded financial institutions from the

banking, insurance, real estate, and trading sectors with SIC codes from 6000 to 6799. We

collect daily prices, holding period returns, and number of shares outstanding from CRSP

1925 US Stock Database for the period January 1970 to December 2012. We then keep a

company in the sample if (1) it has more than 1,000 return observations, (2) it has less than

30 days of consecutively missing return data, and (3) it is one of the largest 100 institutions

in terms of market capitalization at the beginning of each year. This yields a sample of 439

institutions.

We estimate daily 99% VaR values for each model and each company, where the portfolio

value is set to be $100 and the estimation window is 1,000 days. Some of the stocks in the

sample have periods of infrequent trading. For those illiquid stocks, it was not possible to

obtain VaR forecasts for every estimation method and each day.1 In particular, the models

were unable to simultaneously find parameter combinations that work for market outcomes

when a company is not traded for consecutive days. We could either exclude those methods,

or exclude the data with such illiquidity. We opt for the latter and remove the part of a stock’s

sample that contains more than one week’s worth of zero returns; that is, we truncated the

sample instead of removing the stock or the zeroes. However, in practice, truncation does not

have an impact on our results. For comparison, we also run the model without truncation,

and found that the results did not change in any substantial way. Yet, we end up with more

outliers in the risk forecasts. Similarly, increasing or decreasing the weekly threshold did not

materially alter the results.

3 Model risk of market risk models

When we apply the risk ratio analysis to our range of risk forecast models and risk measures

we find that model risk is always present, regardless of the asset. Overall, such risk is low

in periods when economic and market conditions are benign, tending to pick up along with

economic and market uncertainty. The results do not appear to be driven by any particular

model, the two models identifying the risk ratios change quite rapidly with time, and every

model has at one point delivered either the highest or lowest risk readings.

1In rare cases, the nonlinear optimization methods did not converge or the solution resulted in numerical
instabilities pushing up the VaR numbers, usually for student-t GARCH. We omitted those outlier cases. As
there are so few instances, they do not qualitatively affect our results.
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Figure 1 shows the model risk of all institutions in our sample, along with the mean and 95%

empirical quantiles. While a complete set of results can be obtained from the web appendix,

below we present the main results, focusing on daily VaR at the 99% level.

The risk ratio across the whole sample is, on average, about 4. Thus, for a typical asset on

a typical day, the highest risk forecast is about quadruple that of the lowest risk forecast.

The results, however, vary quite a lot with time, and in periods of stress model risk increases

significantly. During the 1987 crash, it exceeds 15 and at the most extreme case, it reaches

55.32. Another consistent observation of high model risk is in the years during and after the

2008 crisis, as we observe an increasing trend in risk ratios.

Figure 1: Maximum annual model risk: Across all institutions — 99% VaR
The plot displays the maximum daily risk ratio in a given year for each of the 439 financial institutions in our
sample. The averages across all institutions along the 95% confidence intervals are presented. The risk ratio
is the ratio of the highest to the lowest VaR estimate that is calculated at a 99% probability level based on
11 different models, including five mainstream models—historical simulation, exponentially weighted moving
average, normal GARCH, student-t GARCH, and extreme value theory—and six mixed models—historical
simulation and extreme value theory applied to a GARCH filtered data under the assumption of normal,
student-t, and skewed-t distributions.
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In order to paint a more detailed picture of model risk, Figure 2 shows the detailed results

for the biggest stock in our sample in terms of asset size: JP Morgan. The figure shows

end-of-quarter maximum and minimum VaR forecasts, along with the particular methods

generating the readings.

There is no clear pattern among model outcomes. Generally, the highest observations tend

to be generated by the fat-tailed methods (tG and EVT), whereas the thin-tailed methods

dominate the low risk readings (EWMA and G). HS is represented in both the maxima and
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Figure 2: End-of-quarter model risk for JP Morgan around the crisis
The highest and the lowest 99% daily VaR forecasts for JP Morgan based on 11 different models, including
five mainstream models—historical simulation (HS), exponentially weighted moving average (EW), normal
GARCH (G), student-t GARCH (tG), and extreme value theory (EVT)—and six mixed models—HS and
EVT applied to a GARCH filtered data under the assumption of normal, student-t, and skewed-t distributions
(nFHS, tFHS, stFHS, nEVT, tEVT, stEVT). Estimation window is 1,000 days. To minimize clutter, end-of-
quarter results are plotted. Every time the VaR method changes, the label changes. Portfolio value is $100.
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minima and EVT sometimes produces the lowest forecasts. The hybrid models sometimes

have the lowest risk forecasts and while not visible in the end-of-quarter numbers in the plot,

occasionally the highest.

3.1 Focus on Basel II and III

Table 1 presents the maximum daily risk ratios across the NBER recession dates, the stock

market crashes of 1977 and 1987, and the 1998 LTCM/Russian crisis. We present the results

from a small number of stocks for illustrative purposes, with full results in the web appendix.

We consider the largest depository, JP Morgan (JPM), non-depository, American Express

(AXP), insurance, American International Group (AIG), and broker-dealer, Goldman Sachs

(GS) in the sample.2 In addition, in order to study the model risk of the overall system, we

2Metlife and Prudential are the largest and second largest insurance companies in our sample in terms of
asset size, respectively. However, we present the results for the American International Group (AIG), which
is the third largest insurance company in the sample because both Metlife and Prudential have available
observations only after 2000.
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employ the daily returns of the S&P 500 index and the Fama-French value-weighted financial

industry portfolio (FF). In addition, we create a financial equity portfolio, Fin100, by assum-

ing that an investor holds the 100 biggest financial institutions in her portfolio. The portfolio

is rebalanced annually and the random weights are based on the market capitalization of each

stock at the beginning of the year.

Panel 1(a) shows the results when risk is calculated via daily 99% VaR, in line with the

Basel II market risk regulations. We find that risk ratios across the entire time period,

range from 1.71 to 1.82 for the portfolios and from 1.85 to 2.16 for the individual stocks

we consider, suggesting that model risk is generally quite moderate throughout the sample

period. A clearer picture emerges by examining the maximum risk ratios across the various

subsamples. Model risk remains quite temperate during economic recessions, but increases

substantially during periods of financial turmoil, exceeding 10 during the 1987 crash and 5

during the 2008 global crisis for the market portfolio.

The Basel committee has proposed a number of changes to the existing market risk capital

accords, most importantly changing the core measure from 99% VaR to 97.5% ES. In the first

round of proposals in 2013, the Committee also proposed using 10-day overlapping estimation

windows. In practice, this means that one would use the returns from days 1 to 10 as the first

observation, days 2 to 11 for the second, and so forth. However, in the subsequent revision,

the committee withdrew the overlapping proposal.

We consider both cases in Panels 1(b) and 1(c) from the point of view of model risk and find

that switching to ES from VaR does not overcome the model disagreement. In particular,

with 97.5% ES 10-day overlapping estimation windows, the model risk increases significantly,

with the risk ratios during turmoil periods double for S&P 500, triple for FF, and quadruple

for Fin100, on average.

We suspect the reason for the impact of the overlapping estimation windows on model risk

is because of how observations are repeated. Not only will it introduce dependence in the

underlying time series, but anomalous events will gain artificial prominence, as they are

repeated 10 times in the sample. Both sources, in turn, may bias the estimation. Since

different estimation methods react differently to these introduced artifacts, it is not surprising

that model risk increases so sharply.

3.2 Sensitivity analysis

These results give rise to the question of whether any particular model is responsible for the

highest or lowest risk forecasts systematically, and therefore driving the results. In order to
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Table 1: Daily risk ratios: non-overlapping 99% VaR and overlapping 97.5% ES
This table reports the maximum of the ratio of the highest to the lowest daily VaR and ES forecasts (risk
ratios) for the crises periods spanning from January 1974 to December 2012 for the S&P-500, Fama-French
financial sector portfolio (FF), the value-weighted portfolio of the biggest 100 stocks in our sample (Fin100), JP
Morgan (JPM), American Express (AXP), American International Group (AIG), and Goldman Sachs (GS).
Panel 1(a) presents the risk ratio estimates where the risk is calculated via daily 99% VaR. In Panel 1(b) we
calculate the risk ratios via 97.5% daily ES with 10–day overlapping estimation windows. Five mainstream
models: historical simulation, exponentially weighted moving average, normal GARCH, student-t GARCH,
and extreme value theory, and six hybrid models: historical simulation and extreme value theory applied on a
GARCH filtered data with normal, student-t, and skewed-t distributed error terms are employed to calculate
the VaR and ES estimates. Estimation window size is 1,000 days. Finally, the last row of each panel reports
the average risk ratio for the whole sample period.

(a) Basel II requirements: VaR, p = 99%, non-overlapping

Event Peak Trough SP-500 FF Fin100 JPM AXP AIG GS

1977 crash 1977-05 1977-10 2.65 3.16 3.20 3.39 4.30 13.02

1980 recession 1980-01 1980-07 1.92 2.23 2.14 2.37 1.92 2.63

1981 recession 1981-07 1982-11 2.14 2.17 2.35 2.96 2.88 2.99

1987 crash 1987-10 1988-01 10.39 10.10 10.10 11.01 6.37 3.71

1990 recession 1990-07 1991-03 2.06 2.26 2.30 3.77 2.17 1.82

LTCM crisis 1998-08 1998-11 4.34 3.34 2.98 2.97 5.13 3.00

2001 recession 2001-03 2001-11 1.96 2.48 2.45 2.31 2.12 2.80

2008 recession 2007-12 2009-06 5.22 5.26 6.39 6.90 5.44 13.89 5.79

Full sample (ave.) 1974-01 2012-12 1.71 1.78 1.82 1.85 1.85 2.09 2.16

(b) Basel III 2013 proposal: ES, p = 97.5%, 10–day overlapping

Event Peak Trough SP-500 FF Fin100 JPM AXP AIG GS

1977 crash 1977-05 1977-10 4.79 12.38 5.42 5.93 6.69 3.71

1980 recession 1980-01 1980-07 5.72 18.55 12.32 15.61 5.94 8.45

1981 recession 1981-07 1982-11 7.40 10.90 16.51 21.64 5.59 10.46

1987 crash 1987-10 1988-01 13.35 16.40 53.84 7.91 8.29 6.17

1990 recession 1990-07 1991-03 10.45 13.24 19.12 7.05 4.99 17.48

LTCM crisis 1998-08 1998-11 5.04 5.98 5.55 8.96 6.26 7.34

2001 recession 2001-03 2001-11 4.88 3.82 3.99 4.32 5.24 3.75

2008 recession 2007-12 2009-06 6.73 6.43 6.36 24.12 9.93 22.66 6.17

Full sample (ave.) 1974-01 2012-12 2.78 3.00 2.93 2.52 2.55 2.85 2.79

(c) Basel III 2014 proposal: ES, p = 97.5%, non-overlapping

Event Peak Trough SP-500 FF Fin100 JPM AXP AIG GS

1977 crash 1977-05 1977-10 2.56 3.21 3.30 3.38 4.26 16.23

1980 recession 1980-01 1980-07 1.89 2.18 2.09 2.36 1.91 2.90

1981 recession 1981-07 1982-11 2.13 2.19 2.35 3.04 2.95 3.25

1987 crash 1987-10 1988-01 9.03 8.99 9.13 10.21 5.66 3.60

1990 recession 1990-07 1991-03 2.65 2.48 2.37 3.50 2.24 2.16

LTCM crisis 1998-08 1998-11 3.79 3.15 2.87 2.90 4.69 2.98

2001 recession 2001-03 2001-11 1.82 2.59 2.57 2.28 2.07 2.90

2008 recession 2007-12 2009-06 4.74 4.42 5.67 6.07 5.17 9.59 5.28

Full sample (ave.) 1974-01 2012-12 1.76 1.83 1.87 1.91 1.88 2.19 2.14
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examine this eventuality, we study the sensitivity of our findings to any particular model by

excluding them from the risk ratio analysis, one by one.3 We focus on the S&P 500 index,

but the results are similar for the other assets.

The results reported in Table 2 suggest that the divergence across models is not dependent

on any particular model. The estimated risk ratios are almost invariant compared with the

one that considers all 11 models. In other words, each of the models can, at different times,

deliver the maximum or minimum risk forecasts.

Table 2: Sensitivity of daily risk ratios: non-overlapping 99% VaR
This table reports the maximum of the ratio of the highest to the lowest daily 99% VaR forecasts (risk ratios)
when a particular model is excluded from the risk ratio analysis indicated by the heading column. Column
two repeats the risk ratio estimates when all of the eleven models; historical simulation (HS), exponentially
weighted moving average (EWMA), normal GARCH (G), student-t GARCH (tG), extreme value theory
(EVT), HS and EVT applied to a GARCH filtered data with normal, student-t, and skewed-t distributed
error terms (nFHS, tFHS, stFHS, nEVT, tEVT, stEVT) are employed. The risk forecasts are calculated for
the period from January 1974 to December 2012 for the S&P-500 index. Estimation window size is 1,000 days.
Finally, the last row of each panel reports the average risk ratio for the whole sample period.

Excluded Model None HS EWMA G tG nFHS tFHS stFHS EVT nEVT tEVT stEVT

Event

1977 crash 2.65 2.49 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.64 2.65

1980 recession 1.92 1.92 1.92 1.92 1.92 1.90 1.92 1.92 1.92 1.92 1.92 1.92

1981 recession 2.14 2.13 2.14 2.14 1.86 2.14 2.14 2.14 2.14 2.14 2.14 2.14

1987 crash 10.39 9.62 10.39 10.39 10.39 10.39 10.39 10.39 10.39 10.08 10.39 10.39

1990 recession 2.06 2.05 1.99 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06

LTCM crisis 4.34 4.05 4.34 4.34 4.00 4.34 4.34 4.34 4.34 4.34 4.34 4.34

2001 recession 1.96 1.84 1.96 1.96 1.91 1.96 1.96 1.96 1.96 1.96 1.96 1.96

2008 recession 5.22 5.10 5.22 5.22 4.55 5.22 5.22 5.22 5.22 5.22 5.22 5.22

Full sample 1.71 1.69 1.61 1.70 1.64 1.70 1.71 1.71 1.71 1.71 1.71 1.71

We also examine the sensitivity of the results on the definition of model risk since one might

employ different measures to quantify the disagreement among the alternative models other

than risk ratio, such as standard deviation or absolute deviation of the VaR forecasts. Both

measures take into account how much a model deviates from the average risk reading, and

hence, can be considered as a plausible way to measure model risk. We find that all three

measures of model risk are correlated over 80% and the main results hold irrespective of the

definition.

3We exclude one model at a time, rather than exclude a group of models, because it would be unfeasible

to report all combinations here. The total number of possible combinations is
∑10

k=2

(
11

k

)
= 2035, where k

is the number of models considered each time and 11 is the total number of models. The entire set of results
is available on the web appendix so any combination of interest can be calculated.
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3.3 Model risk and market conditions

Table 1 and Figure 1 reveal that while model risk is typically quite moderate, it sharply

increases during crisis periods. Given that some of the risk measures we use are based

on conditional volatilities, a part of the explanation is mechanical—whenever the volatility

increases, a conditional historical volatility method, such as GARCH, will produce higher risk

readings. More fundamentally, however, the results indicate that not the VaR readings, but

the disagreement between those readings increases. All of the risk forecast models employed

can be considered as valid candidates. Given that they have entered the canon based on

their performance during non-crisis times, it is not surprising that they broadly agree at such

periods; otherwise, any model that sharply disagreed, might have been dismissed. However,

the models all treat history and shocks quite differently and therefore can be expected to

differ when faced with a change in statistical regimes. Given that none of the methods

systematically produces the highest or the lowest VaR estimates throughout the sample

period, we surmise that this is what we pick up in our analysis.

We investigate this by testing whether the difference between the model risk during crisis

and immediate pre-crisis periods are statistically different from each other. To this end, we

further adopt a variation of the portfolio bootstrap procedure of Hendricks (1996) to evaluate

the statistical significances of risk ratios during different market conditions.4 We assume that

an investor holds the 100 biggest financial institutions in her portfolio. We also assume that

the stocks in the portfolio are allowed to change at the beginning of each year and portfolio

weights are random. We calculate the ratio of the highest to the lowest VaR estimates for

the random portfolios employing 11 VaR approaches. The following algorithm illustrates the

main steps:

1. Select the biggest 100 institutions in terms of market capitalization at the beginning

of each year and obtain the daily holding period return for each stock.

2. For a given year, select a random portfolio of positions for the stocks selected in step

(1) by drawing the portfolio weights from a unit-simplex. Hence, get the daily return

of the random portfolio for the sample period.

4We also considered a stationary/block bootstrap procedure, finding similar results. However, the block
bootstrap approach implicitly assumes no dependence across blocks, which can be avoided by employing the
portfolio bootstrap approach. With the random weights, the value and the risk of a portfolio is random,
producing different and incomparable VaR forecasts. However, our aim is not to compare the VaR of two
portfolios. We rather compare the risk ratio of a given portfolio, which should be close to 1 if the model
risk is negligible. As a consequence, we find that portfolio bootstrapping is a more suitable procedure for our
purposes.
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Figure 3: Model risk: Confidence intervals
The plot displays the first and third quartiles of risk ratios for the crisis and non-crisis periods separately
between January 1974 and December 2012. The intervals for the crisis periods are plotted in red, whereas the
pre-crisis periods are identified as black. The risk ratio is the ratio of the highest to the lowest VaR estimates
of the simulated portfolio outlined in Section 3.3. Estimation window size is 1,000 and VaR estimates are
calculated at a 99% probability level based on six different models: historical simulation, moving average,
exponentially weighted moving average, normal GARCH, student-t GARCH, and extreme value theory. Data
are obtained from the CRSP 1925 US Stock Database.
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3. Calculate the daily 99% VaR by employing each of the six candidate risk models for

the random portfolio chosen in step (2) with an estimation window size of 1,000.

4. For a given day calculate the ratio of the highest to the lowest VaR readings (VaR risk

ratios) across all models.

5. Repeat steps (2) through (4) 1,000 times. This gives a matrix of risk ratios with a

dimension of number of days × number of trials.

6. Identify the crisis and pre-crisis periods. For a given episode, we consider the previous

12 months as a pre-crisis period. For instance, for the 2008 global financial crisis, with

a peak on December 2007 and a trough on June 2009, the pre-crisis period covers from

December 2006 to November 2007.

7. For each trial, obtain the time-series averages of risk ratios over the crisis and pre-crisis

periods and calculate the confidence intervals.

Figure 3 plots the first and third quartiles of risk ratios for each of the episodes separately.

The intervals for the crisis periods are plotted in red, whereas the pre-crisis periods are in

black. For all of the periods, except the 1990 recession, we find that the risk ratios are higher
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during crises compared to non-crises. Moreover, the difference is statistically significant for

the 1987 crash, 1998 LTCM crisis, and 2008 global financial crisis.

4 Model risk of systemic risk models

Perhaps the most common way to construct a systemic risk model (SRM) is to adopt existing

market risk regulation methodologies to the systemic risk problem, an approach we term

market data based methods.5 In this section, we examine the model risk of such models. To

this end, we start by proposing a general setup for the classification of SRMs, and then we

apply our risk ratio methodology to the most popular SRMs.

Our objective is not to document the degree of disagreement across systemic risk measures.

Systemic risk measurements are very much in the early stages and use inconsistent definitions

of systemic risk. Hence, it would not be surprising to see that they do not agree when

measuring such risk. However, our paper focuses on a different question that has not been

studied before—the disagreement of a given systemic risk measure if it is calculated based

on different models, such as HS, GARCH, or EVT.

4.1 Classification of systemic risk measures

The various market data based SRMs that have been proposed, generally fall into one of

three categories: the risk of an institution given the system, the risk of the system given

the institution or the risk of the system or institution by itself. In order to facilitate the

comparison of the various SRMs, it is beneficial to develop a formal classification scheme.

Let Ri be the risky outcome of a financial institution i on which the risk is calculated. This

could be, for example, daily return risk of such an institution. Similarly, we denote the risky

outcome of the entire financial system by RS . We can then define the joint density of an

institution and the system by

f (Ri, RS) .

The marginal density of the institution is then f(Ri), and the two conditional densities

are f (Ri|RS) and f (RS |Ri). If we then consider the marginal density of the system as a

5Besides the market data based methods, other approaches exist to construct SRMs, such as those based on
credit risk techniques, market-implied losses, connectedness and macroeconomic conditions. See, for instance,
Segoviano and Goodhart (2009), Huang et al. (2009), Alessi and Detken (2009), Borio and Drehmann (2009),
Tarashev et al. (2010), Drehmann and Tarashev (2013), Gray and Jobst (2011), Huang et al. (2012), Suh
(2012), Billio et al. (2012), Gray and Jobst (2013), and Bluhm and Krahnen (2014). However, given the
preeminence of market data based methods amongst SRMs, that is where we focus our attention.
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normalizing constant, we get the risk of the institution conditional on the system by Bayes’

theorem:

f (Ri|RS) ∝ f (RS |Ri) f(Ri). (1)

The risk of the system conditional on the institution is similarly defined;

f (RS |Ri) ∝ f (Ri|RS) f(RS). (2)

Suppose we use VaR as a risk measure. Defining Q as an event such that:

pr[R ≤ Q] = p,

where Q is some extreme negative quantile and p the probability. Then, VaR equals −Q.

Expected shortfall (ES) is similarly defined:

ES = E[R|R ≤ Q].

Conditional VaR (CoVaRi) is then obtained from (1) with VaR being the risk measure:6

CoVaRi = pr[RS ≤ QS |Ri ≤ Qi] = p. (3)

and if instead we use (2) and ES as a risk measure, we get marginal expected shortfall (MES):

MESi = E[Ri|RS ≤ QS ]. (4)

We could just as easily have defined MVaR as

MVaRi = pr[Ri ≤ Qi|RS ≤ QS ] = p (5)

and CoES as

CoESi = E[RS |Ri ≤ Qi]. (6)

To summarize:

6Adrian and Brunnermeier (2011) identify an institution being under distress if its return is exactly at its
Value–at–Risk (VaR) level rather than at most at its VaR.
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Marginal

risk measure Condition on system Condition on institution

MVaR CoVaR

VaR pr[Ri ≤ Qi|RS ≤ QS ] = p pr[RS ≤ QS |Ri ≤ Qi] = p

MES CoES

ES E[Ri|RS ≤ QS ] E[RS |Ri ≤ Qi]

The Shapley value (SV) methodology falls under this classification scheme, by adding a

characteristic function, which maps any subgroup of institutions into a measure of risk. The

SV of an institution i is a function of a characteristic function θ and the system S. If we

choose θ as VaR, then

SVi = g(S, θ) = g(S,VaR).

If the characteristic function is chosen as the expected loss of a subsystem given that the

entire system is in a tail event, we end up with the same definition as MES. Similarly, the

Co-Risk measure of IMF (2009) and systemic expected shortfall (SRISK) of Brownlees and

Engle (2015); Acharya et al. (2012) also fall under this general classification system. SRISK

is a function of MES, leverage, and firm size, where MES is calculated as in (4) with a DCC

and TARCH model to estimate volatility. On the other hand, Co-Risk is similar in structure

to CoVaR, except that it focuses the co-dependence between two financial institutions, rather

than the co-dependence of an institution and the overall financial system. In other words, it

depends on the conditional density of institution i given institution j and can be estimated

via quantile regressions with market prices, specifically the CDS mid-prices being the input.

Ultimately, regardless of the risk measure or conditioning, the empirical performance of the

market based systemic risk measures fundamentally depends on VaR. This applies equally

whether the risk measure is directly based on VaR, like CoVaR, or indirectly, like MES.

Hence, we expect the model risk of VaR to pass through to the model risk of MES and

CoVaR.

4.2 Model risk of MES

MES is defined as an institution’s expected equity loss given that the system is in a tail

event. Hence, it is an expected shortfall estimate modified to use a threshold from the overall

system rather than the returns of the institution itself, and the first step requires calculation

of VaR of the market portfolio. Following Acharya et al. (2010), we use a 95% probability

level, with the S&P 500 as the market portfolio.
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By using the same risk models previously employed for VaR and ES, we construct 11 MES

forecasts for each day, one for each risk forecast model. We then finally calculate daily risk

ratios across the risk readings.

Figure 4 illustrates the end-of-quarter risk ratios for the same four companies introduced in

Section 3.1. The NBER recession dates, the stock market crashes of 1977 and 1987, and the

1998 LTCM/Russian crisis are marked with gray shades to visualize the trends in model risk

during the turmoil periods. The results are in line with those for VaR, as presented in Table

1. Model risk remains low most of the time, but spikes during periods of market turmoil.

Figure 4: MES model risk
Ratio of the highest to the lowest daily 95% MES estimates for JP Morgan (JPM), American Express (AXP),
American International Group (AIG), and Goldman Sachs (GS). The S&P 500 index is used as market
portfolio. To calculate the system–VaR estimates, we employ five mainstream methods: historical simulation,
exponentially weighted moving average, normal GARCH, student-t GARCH, and extreme value theory. In
addition, we consider six hybrid models: historical simulation and extreme value theory applied to a GARCH
filter under the assumptions of normal, student-t, and skewed-t distributed error terms. Estimation window
size is 1,000. To minimize clutter, end-of-quarter results are plotted. Data are obtained from the CRSP
1925 US Stock Database. The NBER recession dates, the stock market crashes of 1977 and 1987, and the
LTCM/Russian crisis are marked with gray shades.
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Note that, in general, MES risk ratios presented in Figure 4 are closer to 1 than the VaR

ratios. This is because one gets much more accurate risk forecasts in the center of the

distribution compared with the tails, and therefore 95% risk forecasts are more accurate than

99% risk forecasts. The downside is that a 95% daily probability is an event that happens

more than once a month. This highlights a common conclusion, it is easier to forecast risk for

non-extreme events than extreme events and the less extreme the probability is, the better

the forecast. That does not mean that one should therefore make use of a non-extreme

probability, because the probability needs to be tailored to the ultimate objective for the risk

forecast.
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4.3 Model risk of CoVaR and ∆CoVaR

The other market based systemic risk measure we study in detail is CoVaR (Adrian and

Brunnermeier, 2011). The CoVaR of an institution is defined as the VaR of the financial sys-

tem given that the institution is under financial distress, and ∆CoVaR captures the marginal

contribution of a particular institution to the systemic risk.

While Adrian and Brunnermeier (2011) estimate CoVaR by means of a quantile regression

method (see Appendix B for details), one can estimate it with all of the methods considered

in this study, with the exception of risk forecast models based on historical simulation. Those

are quite easy to implement, but require at least 1/0.012 = 10, 000 observations at the 99%

level. For this reason, the risk ratio results for CoVaR will inevitably be biased towards one.

If one defines an institution being under distress when its return is at most at its VaR level,

rather than being exactly at its VaR, then CoVaR is defined as:7

pr[RS ≤ CoVaRS|i |Ri ≤ VaRi] = p.

It is then straightforward to show that:∫ CoVaRS|i

−∞

∫ VaRi

−∞
f(x, y)dxdy = p2. (7)

Hence, CoVaR can be estimated under any distributional assumption by solving (7). Girardi

and Ergun (2013) estimate CoVaR under normal GARCH and Hansen’s (1994) skewed-t

distribution. In addition, we extend this analysis to EWMA, student-t GARCH, EVT, and

a GARCH filter with an EVT approach using the assumptions of normal, student-t, and

skewed-t distributed error terms. We then compare the risk forecasts produced by these

models. We model the correlation structure with Engle’s (2002) DCC model and obtain

CoVaR by numerically solving (7). The EVT application was based on using EVT for the

tails and an extreme value copula for the dependence structure.

Figure 5 illustrates the end-of-quarter risk ratios for the same four companies. Similarly,

recession and crisis periods are marked with gray shades to visualize the trends in model

risk. We find that the model risk of CoVaR is higher on average compared with the model

7Mainik and Schaanning (2012) and Girardi and Ergun (2013) estimate the dynamics of CoVaR under the
conditioning event Ri ≤ VaRi. Their results show that the resulting CoVaR is not significantly different from
the original CoVaR analysis proposed by Adrian and Brunnermeier (2011) conditioned on Ri = VaRi. This
suggests that without loss of generality, one can condition the CoVaR measure on Ri ≤ VaRi rather than on
Ri = VaRi, and yet it allows us to estimate the CoVaR under different distributional assumptions.
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risk of VaR and MES, especially after the 2008 period. In line with other results, it increases

sharply with market turmoil.

Figure 5: CoVaR model risk
Ratio of the highest to the lowest daily 99% CoVaR estimates for JP Morgan (JPM), American Express
(AXP), American International Group (AIG), and Goldman Sachs (GS). The Fama-French value-weighted
financial industry portfolio index is used as the market portfolio. Seven different methods—exponentially
weighted moving average, normal GARCH, student-t GARCH, EVT, and mixed models that combine EVT
with a GARCH filter under the assumptions of normal, student-t, skewed-t distributions—are employed to
calculate the individual stock VaR estimates. CoVaR is estimated by numerically integrating (7). Estimation
window size is 1,000. To minimize clutter, end-of-quarter results are plotted. Data are obtained from the
CRSP 1925 US Stock Database. The NBER recession dates, the stock market crashes of 1977 and 1987, and
the LTCM/Russian crisis are marked with gray shades..
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We also investigate the statistical properties of the CoVaR measure, as well as the ∆CoVaR

measure, estimated by the quantile regression methods of Adrian and Brunnermeier (2011).

The results are reported in Appendix B. First, we find that the unconditional correlation

between VaR and ∆CoVaR mostly exceeds 99%, suggesting that the scaled signal provided

by ∆CoVaR is very similar to the signal provided by VaR. Second, we show that when the

estimation noise in the quantile regression is carried through to the ∆CoVaR estimates, it is

hard to significantly discriminate between different financial institutions based on ∆CoVaR.

5 Analysis

Our findings indicate significant levels of model risk in the most common risk forecast meth-

ods, affecting applications of both market risk regulatory models (MRRMs) and systemic

risk measures (SRMs). Importantly, we find that model risk increases along with financial

market stress.
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This result does not necessarily imply that the performance of the models deteriorate during

a financial crisis. All it says is that the disagreement among models, captured by risk ratios,

increases significantly during market turmoil. From a practical point of view, anyone who

relies on risk forecast models for decision-making will be faced with a less precise signal at

such times than normally is the case.

That might not be all that is bothersome for many users, especially those engaged in preven-

tative measures and hedging. For others, an important part of their job is crisis response,

identifying risk in real time and formulating short-term measures to protect their particular

financial institution or the system at large. Similarly, especially after the 2008 crisis, the

authorities formulating post-crisis regulatory design heavily depend on risk models.

In our view, therefore, the disagreement among the models and, hence, the risk ratio analysis

is a valuable resource to both private market participants and macro and micro prudential

regulators.

We suspect there are two main reasons for high model risk: the low frequency of financial

crises and the presence of endogenous risk. Perhaps the main problem in systemic risk

forecasting is the low frequency of financial crises. While fortunate from a social point of

view, it causes significant difficulties for any empirical analysis. For instance, a typical OECD

country suffers a banking crisis once every 35 years (Danielsson, Valenzuela and Zer, 2015b).

Therefore, the empirical analyst has to make use of data from non-crisis periods to impute

statistical inference on the behavior of financial markets during crises.

The challenge in building an empirical systemic risk model is therefore capturing the risk of

an event that has almost never happened using market variables during times when not much

is going on. In order to do so, one needs to make stronger assumptions about the stochastic

process governing market prices, assumptions that may not hold as the economy transits

from a calm period to a turmoil period. At the very least, this implies that a reliable method

would need to consider the transition from one state of the world to another. It requires a

leap of faith to believe that price dynamics during calm periods have much to say about price

dynamics during crises, especially when there is no real crisis with which to compare the

forecast. Ultimately this implies that from a statistical point of view, the financial system

may transit between distinct stochastic processes, frustrating modeling.

As an illustration, Figure 6 plots the time series of JP Morgan returns. Visual identification

shows the presence of three distinct regimes, where the volatility and extreme outcomes before

the crisis do not seem to indicate the potential for future crisis events, and similarly, data

during the crisis would lead to the conclusion that risk is too high after the crisis. In other

words, if one were to estimate a model that does not allow for structural breaks, one is likely
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to get it wrong in all states of the world; risk assessments would be too low before the crisis

and too high after the crisis.

Figure 6: Daily JP Morgan returns before, during, and after the 2008 crisis, along with daily volatility.
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The second reason for the rather high levels of model risk witnessed here is how risk arises

in practice. Almost all risk models assume risk is exogenous, in other words that adverse

events arise from the outside. However, in the language of Danielsson and Shin (2003),

risk is endogenous, created by the interaction between market participants. Because market

participants have an incentive to undermine any extant rules aimed at controlling risk-taking

and hence, take risk in the least visible way possible, risk-taking is not observable until the

actual event is realized. In the words of the former head of the BIS, Andrew Crockett (2000):

“The received wisdom is that risk increases in recessions and falls in booms. In

contrast, it may be more helpful to think of risk as increasing during upswings,

as financial imbalances build up, and materializing in recessions.”

6 Conclusion

Risk forecasting is a central element of financial decision-making, the control of risk-taking,

and macro and micro prevention policy. Such forecasting, necessarily depends on statistical

models, and our results indicate that the degree of model risk of such models is quite high. The

fundamental problem of model risk in any risk model such as VaR arises because risk cannot
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be measured but has to be estimated by the means of a statistical model. Many different

candidate statistical models have been proposed where one cannot robustly discriminate

among them. Therefore, with a range of different plausible models one obtains a range of

risk readings, and their disagreement provides a succinct measure of model risk.

We propose a method, termed risk ratios, for the estimation of model risk. Our results

indicate that, model risk is low during times of no financial distress. In other words, the

various candidate statistical models roughly provide the same risk forecasts. However, risk

forecast models are subject to significant model risk during periods of financial distress, which

are, unfortunately when they are most needed. This is a cause for concern because under

high model risk, risk readings do not coincide, obstructing risk inference.

High model risk casts a doubt on appositeness of market data based SRMs and MRRMs to

macroprudential policy making. After all, policymakers would like to use their outputs for

important purposes; perhaps to determine capital for systematically important institutions,

or in the design of financial regulations. However, our analysis shows that the risk readings

depend on the model employed, so it is not possible to accurately conclude which institution

is (systemically) riskier than the other.

Our results suggest that risk readings should be interpreted and evaluated with caution since

they may lead to costly decision mistakes. Point forecasts are not sufficient. Confidence in-

tervals incorporating the uncertainty from a particular model should be provided along with

any point forecasts, analyzing for robustness and model risk. Recently some policy authori-

ties, such as the European Banking Authority, have moved in this direction by emphasizing

the need for confidence intervals conditional on a specific model, but still not capturing the

risk across models.

Finally, from a prudential policymaker’s perspective, it would be of interest to assess the

forecasting performance of a systemic risk measure – when estimated using different under-

lying models – over economic indicators. Thus in a possible extension of future work, one

could employ indicators such as the Chicago Fed National Activity Index (CFNAI) or NBER

recession dates and different underlying risk forecast models, to examine whether a systemic

risk measure delivers better out-of-sample forecasts compared to historical averages.
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A Risk forecasting models

We employ five mainstream VaR forecast models: historical simulation (HS), exponentially weighted

moving average (EWMA), normal GARCH (G), student-t GARCH (tG), and extreme value theory

(EVT). We also include six hybrid models that have been identified in the literature as high quality:

HS and EVT methods applied to the residuals of a GARCH model, under the assumptions of normal,

student-t, and skewed-t distribution.

Historical simulation is the simplest non-parametric method to forecast risk. It employs the pth

quantile of historical return data as the VaR estimate. The model does not require an assumption

regarding the underlying distribution on asset returns. However, it relies on the assumption that

returns are independent and identically distributed. Moreover, it gives the same importance to all

returns, ignoring structural breaks and clustering in volatility.

For the next three models—EWMA, G, and tG—VaR is calculated as follows:

VaR(p)t+1 = −σtF−1R (~θ)ϑ, (A.1)

where σt is the time-dependent return volatility at time t, FR(·) is the distribution of standardized

simple returns with a set of parameters ~θ, and ϑ is the portfolio value. Hence, these approaches require

a volatility estimate and distributional assumptions.

One of the simplest ways to estimate the time-varying volatility is the EWMA model, which modifies

the standard moving average model by applying exponentially decaying weights into the past. Under

the assumption that the error terms are conditionally normally distributed, FR(·) represents the

standard normal cumulative distribution Φ(·). The volatility is calculated as:

σ̂2
EWMA,t+1 = (1− λ)y2t + λσ̂2

EWMA,t,

where λ is the decay factor set to 0.94 as suggested by J.P. Morgan for daily returns (J.P. Morgan,

1995).

In addition, we estimate the volatility by employing a standard GARCH(1,1) model under the as-

sumption that error terms are both normally and student-t distributed. We denote the former model

as normal GARCH (G) and the latter as the student-t distribution GARCH (tG):

σ̂2
G,t+1 = ω + αy2t + βσ2

G,t.

The degrees of freedom parameter for the student-t distribution GARCH (tG) is estimated through a

maximum-likelihood estimation.

Another fat-tailed model, extreme value theory (EVT), is included in our analysis under the assump-

tion that the tails are asymptotically Pareto distributed:

F (x) ≈ 1−Ax−ι
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where A is a scaling constant whose value is not needed for VaR and ι the tail index estimated by

maximum likelihood (Hill, 1975):

1

ι̂
=

1

q

q∑
i=1

log
x(i)

x(q−1)
,

where q is the number of observations in the tail. The notation x(i) indicates sorted data. We follow

the VaR derivation in Danielsson and de Vries (1997):

VaR(p) = x(q−1)

(
q/T

p

)1/ι̂

.

ES is then:

ES(p) = VaR
ι̂

ι̂− 1
.

Finally, we include two groups of hybrid models that combine HS and EVT with a GARCH filter,

respectively. We estimate VaR as follows:

VaR(p)t+1 = µ̂+ σ̂tQ
η

where µ̂ is the unconditional mean and σ̂t is the one-ahead forecast conditional volatility. We estimate

σ̂t using a GARCH(1,1) model assuming that the error terms (εt) have a normal, student-t, and

skewed-t distribution. We compute Qη by applying the HS or EVT models to the standardized

residuals ηt =
εt
σ̂t

.

B CoVaR

Following Adrian and Brunnermeier (2011) for stock i and the system S, we estimate the time-varying

CoVaR via quantile regressions:

Rt,i = αi + γiMt−1 + εt,i (B.1)

Rt,S = αS|i + βS|iRt,i + γS|iMt−1 + εt,S|i, (B.2)

where R is defined as the growth rate of marked-valued total assets. The overall financial system

portfolio Rt,S is the weighted average of individual stock Rt,is, where the lagged market value of

assets is used as a weight. Finally, M denotes the set of state variables that are listed in detail below.

By definition, VaR and CoVaR are obtained by the predicted values of the quantile regressions:

VaRt,i = α̂i + γ̂iMt−1 (B.3)

CoVaRt,i = α̂S|i + β̂S|i VaRt,i +γ̂S|iMt−1.
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The marginal contribution of an institution, ∆CoVaR, is defined as:

∆CoVaRt,i(p) = β̂S|i [VaRt,i(p)−VaRt,i(50%)] . (B.4)

In order to calculate CoVaR estimates, we collapse daily market value data to a weekly frequency

and merge it with quarterly balance sheet data from the CRSP/Compustat Merged quarterly dataset.

Following Adrian and Brunnermeier (2011), the quarterly data are filtered to remove leverage and

book-to-market ratios less than zero and greater than 100, respectively.

We start our analysis by considering the time series relationship between ∆CoVaR and VaR. ∆CoVaR

is defined as the difference between CoVaR conditional on the institution being in distress and CoVaR

calculated in the median state of the same institution. Given that the financial returns are almost

symmetrically distributed, VaR calculated at 50% is almost equal to zero. Our empirical investigation

confirms this observation; we find that the unconditional correlation between VaR and ∆CoVaR mostly

exceeds 99%. This suggests that the scaled signal provided by ∆CoVaR is very similar to the signal

provided by VaR.

On the other hand, in a cross-sectional setting, in what is perhaps their key result, Adrian and

Brunnermeier (2011) find that even if the VaR of two institutions is similar, their ∆CoVaR can

be significantly different, implying that the policy maker should consider this while forming policy

regarding institutions’ risk.

In order to get the idea of the model risk embedded in this estimation, we employ a bootstrapping

exercise. For each of the stocks we re-run the quantile regressions 1,000 times by reshuffling the

error terms and estimate VaR, CoVaR, and ∆CoVaR for each trial. Figure B.1 shows 99% confidence

intervals of the bootstrapped estimates along with the point estimates. An institution’s ∆CoVaR is

plotted on the y-axis and its VaR on the x-axis, estimated as of 2006Q4 at a 1% probability level.

For ease of presentation, we present the confidence intervals for Goldman Sachs (GS), American

Express (AXP), Metlife (MET), and Suntrust Banks (STI). The point estimates show that there is a

considerable difference between VaR and ∆CoVaR cross–sectionally, confirming the results of Figure

1 in Adrian and Brunnermeier (2011). For instance, although the VaR estimate of Goldman Sachs

is comparable with its peers, its contribution to systemic risk, ∆CoVaR, is the highest. However

concluding that Goldman Sachs is the systemically riskiest requires substantial caution since the

confidence intervals overlap in quite wide ranges.

The following set of state variables (M) are included in the time–varying CoVaR analysis:

1. Chicago Board Options Exchange Market Volatility Index (VIX): Captures the implied volatility

in the stock market. Index is available on the Chicago Board Options Exchange’s website.

2. Short–term liquidity spread: Calculated as the difference between three-month U.S. repo rate

and three-month US Treasury bill rate. The former is available in Bloomberg since 1991, and

the latter is from the Federal Reserve Board’s H.15 release.

3. The change in the three-month Treasury bill rate.
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Figure B.1: 99% confidence intervals
99% confidence intervals of the 1,000 bootstrapped quantile regressions outlined in (B.3). VaR is the 1%
quantile of firm asset returns, and ∆CoVaR is the marginal contribution of an institution to the systemic
risk. The confidence intervals of Goldman Sachs (GS), Metlife (MET), Suntrust Banks (STI), and American
Express (AXP) are presented. Portfolio value is equal to $100. Stock data are obtained from the CRSP 1925
US Stock and CRSP/Compustat Merged databases.

3 4 5 6 7 8 9 10

0

1

2

3

4

VaR

∆
C
o
V
a
R

GS

AXP

MET
STI

4. Credit spread change: Difference between BAA-rated corporate bonds from Moody’s and 10-

year Treasury rate, from the H.15 release.

5. The change in the slope of the yield curve: The change in difference of the yield spread between

the 10-year Treasury rate and the three-month bill rate.

6. S&P 500 returns as a proxy for market return.

7. Real estate industry portfolio obtained from Kenneth French’s website.
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