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Efficient Estimation of Conditional Variance

Functions in Stochastic Regression
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Department of Statistics Institute of Mathematics and Statistics
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Chapel Hill, NC 27599, USA Canterbury, Kent CT2 7NF, UK
Abstract

Conditional heteroscedasticity has been often used in modelling and understanding the
variability of statistical data. Under a general setup which includes the nonlinear time se-
ries model as a special case, we propose an efficient and adaptive method for estimating the
conditional variance, therefore also for estimating the volatility function. The method is data-
analytic and model free. The basic idea is to apply a local linear regression to the squared
residuals. We demonstrate that without knowing the regression function, we can estimate
the conditional variance asymptotically as well as if the regression were given. This asymp-
totic result, established under the assumption that the observations are made from a strictly
stationary and absolutely regular process, is also verified via extensive simulations. Further,
the asymptotic result paves the way for adapting an automatic bandwidth selection scheme.

Various applications with real data sets illustrate the usefulness of our proposed techniques.

Some key words: Absolutely regular; ARCH; Conditional variance; Efficient estimator; Het-

eroscedasticity; Local linear regression; Nonlinear time series; Volatility.
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1 Introduction

Many scientific studies depend on understanding the local variability of the data, which is often
featured as the conditional variance or the volatility function in a statistical model. It is of common
interest to estimate conditional variance functions in a variety of statistical applications such as
measuring the volatility or risk in finance (Gallant and Tauchen 1995, Hardle and Tsybakov 1996),
monitoring the reliability in nonlinear prediction (Yao and Tong 1994), identifying homoscedastic
transforms in regression (Carroll and Ruppert 1988), choosing optimal design and understanding
residual pattern (Miiller and Stadtmiiller 1987, Gasser et al. 1986), monitoring the signal-to-
noise ratios in quality control of experimental design (Box 1988) and so on. The problem can be
mathematically formulated as follows.

Let {(Y;, X;)} be a two-dimensional strictly stationary process having the same marginal
distribution as (Y, X). Let m(z) = E(Y|X = z) and ¢%(z) = Var(Y|X = z) be respectively the
regression function and the conditional variance, and o?(.) # 0. We write a regression model of
Y; on X; as

Y; = m(X;) + o(Xi)e. (1.1)

Then E(¢;|X;) = 0 and Var(¢;|X;) = 1, although the conditional distribution of ¢; given X; = z
may still depend on z. For X; = Y; 1, (1.1) is an autoregressive conditional heteroscedastic
(ARCH) time series model, and o(.) is called the volatility function (Engle 1982). The aim of this
paper is to derive an efficient fully-adaptive procedure for estimating o(.). This approach also
allows us to validate some postulated structural models in financial time series analysis (Anderson
and Lund 1996b, Gallant and Tauchen 1995). We proceed with the general model (1.1) in this
paper, which sometimes also facilitates modelling time series data. (See Examples 1, 2 in §4.1
below.)

There has been substantial literature on the estimation of the nonparametric regression func-
tion, yet considerably less attention has been paid to the estimation of conditional variance. Due
to the simple decomposition 0%(z) = E(Y?|X = z)—{E(Y|X = z)}?, we tend to use the following

obvious and direct estimator in practice:

G4(x) = 0(z) — {r(z)}?, (1.2)

where 7(.) and ©(zx) are respectively a regression estimator for m(.) and v(z) = E{Y? X = z}.
(See, e.g. Yao and Tong 1994, Hérdle and Tsybakov 1996.) In fact, there are some obvious

drawbacks in using such an estimator. For example, 63(.) is not always non-negative, especially if



different smoothing parameters are used in estimating m(.) and v(.). Furthermore, such a direct
method can create a very large bias (see §3.1 below). Hardle and Tsybakov (1996) recognized these
problems and used a common bandwidth and a common kernel to reduce the bias. While their
idea is useful, the approach is still not fully adaptive to the unknown regression function m(.).
An alternative regression-adaptive approach is to apply the difference-based estimator (Rice 1984,
Gasser et al. 1986, Miiller and Stadtmiiller 1987, also §3.2 below), which uses a high-pass filter
to remove the regression function from the data sequence {Y;}. Hall et al. (1990) demonstrated
that the resulting estimator was inefficient even in homoscedastic models with optimal filters.

In this paper, we consider a residual-based estimator of the conditional variance. While the
idea is not new, see e.g. Hall and Carroll (1989) and Neumann (1994), its implications and
implementations are novel. In particular, we show that our estimator is fully regression-adaptive
in the sense that without knowning m(.), we can estimate the conditional variance function o?(.)
asymptotically as well as if m(.) were known. This phenomenon is observed independently by
Ruppert et al. (1996) in an ii.d. setting. Ruppert et al. (1996) compute the asymptotic
expressions for the conditional mean and variance in the i.i.d setting, while we establish the
asymptotic normality in a more general setup including both i.i.d setting and nonlinear time
series. These results are complementary each other and they together provide useful insights into
the residual-based variance estimation.

The residual-based estimators overcome the bias problem of the method of Hardle and Tsy-
bakov (1996) and reduce the variance of the difference-based estimator. In fact, the residual-based
estimators can be considered as generalized difference-based estimators. (See §3.2 below). An in-
teresting consequence of this study is that we do not have to undersmooth the regression function
m(.) in order to obtain a regression-adaptive estimator for the conditional variance o?(.). In
practice, this implies that we can use a data-driven bandwidth selector in estimating m(.), then
apply the same bandwidth selector with the the squared residuals to estimate o2(.). Therefore, a
fully data-driven procedure can easily be constructed based on a wealth of existing procedures for
the local polynomial regression such as the cross-validation procedure, the pre-asymptotic substi-
tution method (Fan and Gijbels, 1995) and the plug-in approach (Ruppert, Sheather and Wand,
1995). This is in marked contrast with the previous methods, where new bandwidth (or filter
length) selection problems are encountered. Neumann (1994) reported some interesting results
on a residual-based estimator based on the Gasser-Miller kernel regression.

The paper is organized as follows. In §2, we propose and study the residual-based estimator



of the conditional variance based on local linear regression. In §3, we compare the performance
of our estimator with various procedures in the literature and discuss their mutual relationship.
In §4, we present numerical applications with three real data sets and two simulated models. All

the technical proofs are given in the Appendix.

2 Main results

2.1 Estimator

A regression-adaptive estimator for the conditional variance function o2(-) is one that works
asymptotically as well as if the regression function m(-) were given. If the regression function

m(-) is given, then from the relation
E(r|X = z) =02, where r={Y —m(X)}?

we can regard the problem of estimating o?(-) as a nonparametric regression problem. Given
the observations {(Y;, X;),4 = 1,...,n} from model (1.1), the local linear estimator of o2(-) is

62(z) = &, where

(@.4) = wrgmip 3 (r— 0= A0~ ) (45 @)

the subscript b stands for ‘benchmark’, and W(.) is a density function on R and h; > 0 is a
bandwidth. See Fan and Gijbels (1996). The local linear estimators have several nice properties.
They possess high statistical efficiency in an asymptotic minimax sense and are design-adaptive
(Fan, 1993). Further, unlike many other nonparametric methods, they automatically correct edge
effects (Fan and Gijbels, 1992; Ruppert and Wand 1994; Hastie and Loader 1995). Therefore,
62(.) provides a benchmark to our problem.

In practice, m(.) is typically unknown. A natural approach is to substitute m(-) by a nonpara-
metric regression estimator. We choose the local linear estimator because of its optimal properties
mentioned above. Let m(x) = a be the local linear estimator that solves the following weighted
least-squares problem:

. n X, —
(@,) = argmin Y{¥i — a — b(X; - 2)PK (7)), (2.2)
7 og=1

where K(.) is a density function on R and he > 0 is a bandwidth. Denote the squared residuals
by 7 = {Y; — m(X;)}2. This leads to the residual-based estimator 6%(z) = & with kernel W and



bandwidth h,, where

a n X —
(&, B) = argmin S {# — a — B(X; — 2)}*W (’7”> . (2.3)
o,B Pt h1

Although the above idea appears somewhat ad hoc, it has interesting implications. Specifically,
while the bias for 7 itself is of order O(h3), its contribution to 2(.) is only of o(h3). This can

intuitively explained as follows: Observe that
79— T = 2{m(Xz) - m(Xz)}gz + {m(XZ) - m(Xi)}2>

where g; = Y; — m(X;). It is intuitively clear tht the biases of the residuals are of order O{h3 +
(nh2)~!'} and this is the effect of the estimated regression function on the estimated variance.
See Theorem 1 and Remark 2. The result also paves the way for adapting a fully data-driven

bandwidth procedure in our estimation.

2.2 Asymptotic normality

To discuss the asymptotic properties, we need the following regularity conditions. Denote by p(.)
the marginal density function of X. We use ¢ to denote a generic constant which may be different

at different places.

(C1) For a given point z, the functions E{Y*|X = 2} and p(z) are continuous at the
point z for k = 3,4, and m(z) = %m(z) and 5%(z) = %02(@ are uniformly

continuous on an open set containing the point z. Further, assume p(z) > 0.
(C2) E{Y*(+9} < 0o, where § € [0,1) is a constant.
(C3) The kernel functions W and K are symmetric density functions each with a
bounded support in R. Further, |W(z1) — W (z2)| < c|z1 — z2| for all z; and z9
in the support of the function W, and |K(z1) — K(z2)| < ¢|z1 — z9| for all z;

and z9 in the support of K.

(C4) The strictly stationary process {(X;,Y;)} is absolutely regular, i.e.

B(j) = supE{ sup |P(A|]-'f) — P(A)|} —0, as j— oo,

i>1 AEFE;

where F/ is the o-field generated by {(Xg,Yx) : k=14,...,73}, (j > 4). Further,

7

)
for the same ¢ as in (C2), 3272, §2BT+ () < co. (We use the convention 0° = 0.)



(C5) As n — oo, h; — 0, and liminf, . nhi > 0, for i = 1,2.

We impose the boundedness on the supports of K(.) and W(.) for brevity of proofs; it may
be removed at the cost of lengthier proofs. In particular, the Gaussian kernel is allowed. The
assumption of the convergence rate of 3(j) is also for technical convenience. The assumption on

the convergence rates of h; and he is not the weakest possible.

Remark 1. When {(X},Y;)} are independent, (C4) holds with 6 = 0 and condition (C2)
reduces to E(Y*) < co. On the other hand, if (C4) holds with § = 0, there are at most finitely
many non-zero 3(j)'s. This means that there exists an integer 0 < jp < oo for which (X;,Y;) is

independent of {(X;,Y;), j > i+ jo}, for all 4 > 1.

Theorem 1. Suppose that conditions (C1) — (C5) hold. Then,
VAR {2(@) — 02(z) — 0.} -5 N (o, L (2)o () \2() / W2(t)dt) ,

where A\?(z) = BE{(e® — 1)}|X =z}, e = {Y — m(X)}/o(X), 0%, = [t*W (t)dt, and
B2
0, = 710124,62(36) + o(h? + h3). (2.4)
Remark 2. In the bias of %(z), the contribution from the error in the estimator 7 (z) enters
as a higher order infinitesimal than h2, namely the order of the bias of 7iu(z) itself. This permits
us to use the optimal bandwidth to smooth 7 — no undersmooth of 7 is needed. Our proof

shows further that the bias in (2.4) is of form

h2
On, = EIU%V&Q(:E) + o(n73/%),

if the bandwidths with optimal rates (i.e. k1 = O(n~/®) and hy = O(n~/?)) are used.

2.3 Efficiency

It follows from the local linear regression theory (see e.g. §5.4.4 of Fan and Gijbel 1996), the
benchmark estimator 62(.) derived from (2.1) is asymptotically normal. The leading terms in

asymptotic bias and variance are as follows:

i o () \2(x 2
bias{oF(0)} : ohda), Var(od(a)} s o T LIOR

(2.5)



Theorem 1 shows that the asymptotic variance of 52(z) admits the same leading term as that of
62(:1:), while the asymptotic biases of the two estimators are also the same provided hs converges
to 0 not slower than hy. This is a very minor requirement. It is well known that the best ho for
estimating m(.) should be of the order n~'/5. Substituting such an hy in (2.4), the optimal h;
which minimizes the asymptotical mean squared error is also of the order n~/5. Therefore, the

estimator 62(.) is efficient and adaptive to the unknown regression function m(-).

2.4 Bandwidth selection

Bandwidth parameter is important to virtually any nonparametric estimators. The results given
in §2.2 permit us to take advantage of existing bandwidth selection methods for the local linear
fit. Let B(Xl, <, X3 Yp,--+,Y),) be a data-driven bandwidth selection rule for the local linear
regression based on the data (X1,Y1), -, (Xp,Yy). This can be derived in one case by e.g. the
cross-validation bandwidth rule, and in another case by either the pre-asymptotic substitution
method of Fan and Gijbels (1995) or by the plug-in method of Ruppert, Sheather and Wand
(1995). The latter two methods have been demonstrated to be less variable and more effective. In
all cases, i?,(X 1, >, Xn; Y1,---,Y,,) is a consistent estimate of the asymptotic optimal bandwidth,

which is of order O(n~'/%). Our bandwidth selection rule reads as follows:

1. Use bandwidth hy = E(Xl, <o, X3 Yp,---,Y,,) in local linear regression (2.2) to obtain the

estimate m(X;) fori=1,---,n.

2. Compute squared residuals 7; = {Y; — m(X;)}%,i=1,---,n.

3. Apply bandwidth hy = h(Xy,---,X,;71,---,7,) in local linear regression (2.3) to obtain

52(-).

In the above algorithm, we keep the bandwidth selection method flexible. In our implemen-
tation, we use the pre-asymptotic substitution method by Fan and Gijbels (1995), since it has
been demonstrated that the resulting estimator possesses fast relative rate of convergence (Huang,

1995).



3 Other estimators

3.1 Direct estimators

Hirdle and Tsybakov (1996) proposed an improved version of the direct estimator 63(.), as given
in (1.2), with local polynomial regression estimators 7(.) and 2(.) using the same kernel function
and the same bandwidth, where #(z) is an estimate for E(Y?2|X = z). They also established the
asymptotic normality of the estimator. If the local linear estimators are used with kernel W (.)
and bandwidth h1, the leading terms in the asymptotic bias and the asymptotic variance of 63(:1:)

are

2 4 2 2

bias{62(z)} %U%V[a?(x) +20m(2)}2],  Var{62()} : nihl“ (z)A (Z()xf)w (t)dt

On comparing this with (2.5), the direct estimator has the same asymptotic variance as the
benchmark 67(.), but admits one more term in the bias. This extra term h?o%,{m(z)}? could
lead to an adverse effect on the quality of estimation and is not adaptive to unknown regression
functions. For example, even when m(-) is a linear function with a large slope, this direct method
would have a large bias. Thus, the estimator 62(.) derived from (2.3) appears more appealling.

The existence of one more term in the bias of the direct estimator can be understood through

the following heuristic arguments. Note that

G4(z) — o*(z) = {D(z) — v(2)} - 2m(2){r(z) — m(z)} - {(z) — m(z)}*. (3.1)

The first term on the RHS has the bias

h? 5 . h? 5 . . ..
L ofi(a) = Lot (@) + hof {n(@)}? + Kofm(z)in(a), (3.2)

in which the last term on the RHS will cancel the bias of the second term on the RHS of (3.1).
Note that the bias from the third term on the RHS of (3.1) is of the order h{. Therefore, the term
involving {rm(z)}? stays. This argument also shows that using different kernels or bandwidths in
the estimators 7(.) and ©(.) could further increase the bias of 63(.). Note that the inefficiency of
the estimator 63(.) cannot be rescued by using higher order polynomials in the local fitting or by
a fitting with different orders. For example, the last term in the RHS of (3.2) will remain in the
bias if the local quadratic smoother was used in estimating m(.) while we retain the local linear
estimator for v(.).

Why can the residual-based estimator 62(.) give smaller bias? To gain some insight, let us

consider the local constant smoother, namely setting 8 equal 0 in (2.3). Then the resulting



estimator is .
Y — (X)W (%)

S w(%52)

This estimator will reduce to the direct estimator 63(z) if all the 72 (X;)'s in the above expression

are replaced by 7m(z). Clearly, {Y; — m(z)}? is more biased for E{Y — m(X)}? than {Y; —
m(X;)}2. This explains why the residual-based estimator inherits less bias from (.) than the

direct estimator.

3.2 Difference-based estimators

For a fixed design model
Y = m(z;) + o(z;)e;,
in which z; < ... < =z, are fixed, E(¢;) = 0 and E(e?) = 1, Miiller and Stadtmiiller (1987)
proposed to estimate o?(.) through a difference sequence. Their approach can be briefly described
as follows. Form an initial local variance estimate
m 2
()= > wi¥is | (3.3)
j=—m

where m > 0 is a prescribed integer, and the difference sequence {w;} satisfies the conditions

m m
dowj=0, Y wi=1 (3.4)

jzfm j:*m

By writing

o?(zi) = 6° () + &,
a kernel moother is applied to obtain the final estimator for o%(.) based on the above regression
relationship.

Estimators of this type have a long history in the time series context; see, for example,
Anderson (1971, p.66). The application in nonparametric homoscedastic regression includes Rice
(1984), Gasser et al. (1986), and Hall et al. (1990). It is shown by Hall et al. (1990) that if
the optimal difference sequence of {w;} is employed for a Gaussian model, the efficiency of the
estimator is 4m/(4m + 1).

In fact, the residual-based estimator 62(.) can be regarded as a generalized difference-based
estimator, and #; serves as a crude estimate of 02(X;). To make such a connection, we express

the local linear estimator of m(.) as



Then, it can be shown that Y ;" ; w;(xz) = 1. Write

2
n
s = (Vi — (X)) = (2 wi,m) ,
j=1

where w;; = 1 — w;(X;) and w; j = —w;(X;) for i # j. Obviously, {w; ;} is a difference sequence
satisfying >°7_; w; ; = 0. However, such a sequence of {w;;} does not exactly fulfil the second

condition in (3.4), but
> whj =1+ Op{(nha)~'}.
J

The effective length of the sequence is 2m = 2nhgy, which tends to infinity. This also explains why
the estimator 62(.) is efficient in contrast to such results as Hall et al. (1990).

Estimation of variance functions with more general weights was discussed by Miiller and
Stadtmuller (1993). The rates of convergence for this class of estimators were thoroughly in-
vestigated. In particular, Miiller and Stadtmiller (1993) find that it requires only very mild
smoothness condition on the regression function in order to obtain the iptimal rates for the vari-

ance estimation.

3.3 Maximum locally likelihood estimators

If the distribution of € is known, the locally maximum likelihood approach could be more efficient.
See §4.9 of Fan and Gijbels (1996) and the references therein. For example, if {¢;} are independent
and normal (or even approximately normal), the log likelihood function can be expressed as
_E Z L(U (XZ)7 sz - m(XZ))a
i=1
where L(a,y) = a~'y? +loga. The local maximum likelihood approach with the local constant

smoother leads to estimating o%(z) by @&, where

. L X, —=x
(a,a):argrgl,lanz;L(a,Yi—a)W( Zhl )
1=

It is easy to see that the resulting estimator for o?(.) is indeed the direct estimator 63(.) with
both 7(.) and ©(.) being the local constant estimators.

The approach with the local linear smoother needs to estimate four functions. To make it
more tractable, we substitute m(.) directly by its local linear estimator 7(.), derived from (2.2).

Let & and B be the minimizer of the residual-based likelihood function:

(é,8) = arglg}élgll{a + B(X; — z),Y; — m(X;) W (Xz‘hz :E) .

10



Then, the maximum local likelihood estimator is defined by &2 ,(z) = &. The estimator is also
residual-based, and therefore we would expect that it is adaptive to all unknown regression func-
tions in a similar way to what 62(-) does. However, L(a,y) is not a convex function of «, it might
need some delicate handling to establish the asymptotic normality of &72111(3“)- On the other hand,
following the approach suggested in §4.9 of Fan and Gijbels (1996), we can derive the approximate
bias and variance of the estimator, which entail the same leading terms as those for 67(z) given
in (2.5). In this sense, the local maximum likelihood estimator is also efficient. Unfortunately,

~2

6., (z) does not admit an explicit solution. The Newton-Raphson one-step iterative estimator can

be constructed, however. We do not go further in this direction, since 6%(.) derived from (2.3) is

more direct, distribution-free and efficient.

4 Applications and Simulations

In this section, we first apply the adaptive estimator 6%(.) derived from (2.3) to three real data
sets. The finding from these applications includes the validation of an existing structural model.
Then, extensive simulations are carried out to confirm the theoretical claim that the adaptive
estimator works almost as well as the ideal estimator 2(.) defined in (2.1). We use two simulated
models, one with i.i.d observatios and one nonlinear time series, for illustration, for which the
exact conditional variances can be evaluated at least numerically.

Throughout this section, the two dashed curves around a solided curve always indicate the one
standard deviation above and below the estimated curve. The conditional variance functions are
always estimated by the adaptive estimator 2(.) derived from (2.3) unless specified otherwise.
We always use the Epanechnikov kernel in our calculation. All bandwidths are selected using the

pre-asymtotic substitution method by Fan and Gijbels (1995).

4.1 Applications

Example 1. This example concerns the yields of the three month Treasury Bill from the sec-
ondary market rates (on Fridays). The secondary market rates are annualized using a 360-day
year of bank interest and quoted on a discount basis. The data consist of 1,735 weekly observa-
tions, from January 5, 1962 to March 31, 1995, and are presented in Figure 1(a). The data were
previously analyzed by various authors, including Andersen and Lund (1996a, b) and Gallant and

Tauchen (1996).

11



Three month T-Bill rate Residuals after an AR(5) fit
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Figure 1: Three-month Treasure Bill data. (a) Raw data; (b) Residuals after an AR(5) fit is
plotted against X; = z—1; solid curve is the regression curve. (c¢) The regression curve for the
data in (b). (d) The estimated volatility curve (thick curve) and the conditional variance function
(thin curve).

Let z; denote the time series presented in Figure 1(a). We first fitted an AR model with order
selected by the Akaike information criterion. This yields the following AR(5) model:

z¢ = 1.0733z¢—1 — 0.04232;_2 4 0.01652¢_3 + 0.02282;_4 — 0.07732;_5 + Y;.

The selection of AR(5) models coincides with that used by Andersen and Lund (1996b). The
‘residuals’ Y; are plotted against X; = z;_1 in Figure 1(b). Figure 1(c) depicts the estimated
mean regression function 7m(z) = E{Y;|z;—1 = z}. The nonlinearity with a slightly increasing
trend (up to z;—1 = 14) can be noted. The bandwidth selected by our software is 1.9535. The

residual-based estimator for the conditional variance of Y; given 2;_1 = z is denoted as 62(x) with

12



the automatically selected bandwidth 3.1461. The estimated volatility function &(z) is presented
in Figure 1(d). The overall fitted model is

2t = m(zt,l) + 1.07332z;_1 — 0.0423z;_9 + 0.01652;_3 + 0.02282;_4 — 0.0773z;_5 + &(zt,l)et,

in which F(et|z;—1) = 0, and Var(e;|z;—1) = 1. Note that the correlation coefficient between the
logarithm of z; 1 and logarithm of 6(z;_1) is 0.999. This lends a strong support to the structural
volatility model

o(z—1) = azﬂl,

which was considered by Andersen and Lund (1996b). Applying the least-square fit to the log-
transformed data, we found that o = 0.0169 and 8 = 1.380.

Example 2. The data presented in Figure 2(a) are the daily exchange rates (at closing time)
between the pounds sterling and US dollars at every business day between 2 March 1980 and 3
April 1993. The length of this time series {X;} is 3,306. To remove the linear trend, we take
the difference first. The difference Y; = X; 11 — X is plotted against X; in Figure 2(b). Figure
2(c) shows a nonparametric regression curve of Y; on X;, which is denoted by m(X};). Figure 2(d)

depicts the volatility curve §(X;). The fitted model is
Xt—l—l == Xt + m(Xt) + &(Xt)eta with E(€t|Xt) == 0, V&I‘(Ct‘Xt) =1.

Figure 2(d) shows clearly that the volatility function for exchange rate is not monotonic. This
is in marked contrast with the yields of the Treasure bill data. Ignoring the downward damping
on the right edge possibly due to the boundary effect, the volatility curve shows a U-shaped
structure, which is also called a ‘smiling face’. This implies that the risks of returns are much
higher for extreme values taken on the previous day. Héardle and Tsybakov (1996) observed a
similar pattern in the exchange rate between German Marks and US dollars.

Example 3. Instead of considering large time series data sets, we now consider a ‘cross-
sectional’ data set. Presented in Figure 3(a) are 133 observations of motorcycle data from Schmidt,
Mattern and Schiiler (1981). The time (in milliseconds) after a simulated impact on motorcycles
was recorded and serves as the covariate X;. The response variable Y; is the head acceleration
(in gram) of a test object. We fit the data with model (1.1). The estimated regression function
m(.) is depicted in Figure 3(a). Figure 3(b) describes the residuals and the estimated conditional

standard deviation &(.). The bandwidths selected for estimating the regression function and
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Figure 2: Ezchange rates between the pounds sterling and US dollars. (a) Raw data. (b) The
difference series {X;y1 — Xy} is plotted against X;. (c) The regression curve for the data in (b).
(d) The estimated volatility curve.

the conditional variance function are 3.230 and 6.293 respectively. Figure 3(b) shows that 2(.)
captures the changes of variability in the data.
4.2 Simulations
Example 4. We simulated 400 random samples of size n = 200 from the model
Y; = a{X; + 2exp(—16X)} + 0(X;)e;, with o(z) = 0.4exp(—22%) + 0.2,

where {X;} and {¢;} are two independent i.i.d. sequences, and X; ~ U[—-2,2] and ¢ ~ N(0,1).
Four different values of a, namely a = 0.5,1, 2,4, are used in the simulation. For each simulated

sample, the performance of the estimator is evaluated by the Mean Absolute Devation Error
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Motorcycle data and regression function Residuals and estimated volatility
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Figure 3: Motorcycle data (a) Raw data and their estimated regression function. (b) The residuals
and the estimated volatility function.

(MADE):

Ngrid

MADE = 1,4 Zl |6(z) — o(z;)],

i—
where {z;,j = 1,---,ngria} are the grid points on [—1.8,1.8] with ngiq = 101. The results are
summarized in Figure 4. Figure 4(a) compares the adaptive variance estimator with the ideal
variance estimator 67(.) which does not vary with different values of a. Presented there are the
boxplots of MADEs based on 400 simulations. The first four boxplots are the MADEs of the
adaptive estimator 62(.) for a = 0.5,1,2,4 in order, and the last one is that of the ideal estimator
65(.). As anticipated, the adaptive estimator performs almost as well as the ideal one.

To get further insights, we consider the specific case ¢ = 1. The scenario is similar for other
cases. Figure 4(b) plots the MADE based on the adaptive estimator versus the MADE based
on the ideal estimator, using the same sample data. Clearly, there is about equal chance that
one estimator beats the other. The marginal densities of MADE of the adaptive estimator (thick
curve) and of the ideal estimator (thin curve) are also depicted in Figure 4(b). This shows again
that the performance of the two estimators is comparable. Figure 4(c) presents a typical simulated
sample with its corresponding estimated regression function. The typical sample was selected in
such a way that the corresponding MADE is equal to its median among the 400 simulations. The
sample residuals and the estimated conditional standard deviations are plotted in Figure 4(d).
The bandwidths are automatically selected by the procedure outlined in §2.4 and are 0.1867 for

the mean regression and 0.4841 for the conditional variance function respectively.

15



MADE based 400 simulations MADE versus Ideal MADE
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Figure 4: Simulation results for Example 4. (a) Bozplots of the MADEs for the adaptive estimator
with a = 0.5,1,2,4, and for the ideal estimator (from left to right). (b) The scatter plot of the
MADE of 6%(.) versus the MADE of 63(.); the straight line marks the position where the two
MADEs are equal. Thick curve — the p.d.f. of the MADE of 6%(.); thin curve — the p.d.f. of
the MADE of 62(.). (c) A representative sample, the corresponding estimated regression curve
(thin curve), and the true regression curve (thick curve). (d) The sample residuals from (c), the
estimated volatility (thin curve), and the true volatility (thick curve).

Example 5. Consider the following nonlinear time series:
X1 = 0.235X4(16 — Xy) + ey,

where ey, e, ..., are independent with the same distribution as N(0,0.32). The skeleton of this
model exhibits chaos and has been used by Yao and Tong (1994) to illustrate the influence of the
initial values on nonlinear prediction.

For this nonlinear time series, we consider the two-step and three-step forecasting by taking
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A segman of a typical simulated data Distributions of MADE and Ideal MADE
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Figure 5: Simulation results for Example 5. (a) A fraction of the simulated time series. (b)
Bozplots of the MADEs for the adaptive estimator and for the ideal estimator; the left two panels
are for 2-step ahead prediction and the right two panels are for the 3-step ahead prediction. (c)
The scatter plot of the MADE versus the ideal MADE for 2-step ahead prediction. (d) The scatter
plot of the MADE versus the ideal MADE for 3-step prediction. (In both (c) and (d), the straight
line marks the position where the two MADEs are equal.)

respectively Y; = X;19 and Y; = Xy43. Note that the conditional variance functions concerned
are not constant. On the other hand, the conditional variance of the one-step prediction is a
constant, and is therefore not presented here.

Figure 5(b) compares the ideal estimator with the adaptive estimator based on 400 simulations
with n = 500. As we can see, the adaptive estimator works almost as well as the ideal estimator.
Figures 5(c) and 5(d) give the scatter plot of MADE for the adaptive estimator and the ideal

estimator, using the same sample data. A typical simulated data set and the corresponding

17



2-step ahead regression Residuals and Volatility (2-step ahead)
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Figure 6: The results for a representative sample of Example 5. (a) A representative sample and
its estimated 2-step ahead regression curve. (b) The sample residuals of (a), the true volatility
function (thick curve), and estimated volatility function. (c) A representative sample and its esti-
mated 3-step ahead regression curve. (b) The sample residuals of (c), the true volatility function
(thick curve), and estimated volatility function.

estimated curves are presented in Figure 6. The criterion used to choose a typical sample is again
the one for which the MADE is equal to its median among the 400 simulations. Figures 6(a) and
6(c) present the estimated regression functions for 2-step and 3-step ahead prediction respectively,
where bandwidths 0.6705 and 0.5577 were selected by our procedure. Their estimated volatility
functions are presented in Figures 6(b) and 6(d). The selected bandwidths are 0.6705 and 0.8165
respectively.
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Appendix: Proof of Theorem 1

We use the same notation as in §2. In the sequel, 771(.) denotes the local linear estimator derived
from (2.2). We always assume that conditions (C1) — (C5) hold. We call that B,(z) = B(z) +
op(by) (or Op(by)) uniformly for z € G if

sup |Bn(z) = B(z)| = 0p(ba) (or Op (b)),

and a,, ~ by, if a, /b, — 1. The proof is based on the following lemma which follows from Lemma

2 of Yao and Tong (1996) directly.

Lemma 1. Let G C {p(z) > 0} be a compact subset. As n — oo, uniformly for z € G,

52(z) — 0%(x) = .
52(z) - 0*(a) {nhlp > (Z

){n o*(z) 62(56)(Xi—$)}}{1+0p(1)}, (A.1)

ie) —m(@) = {nh;(w) iK(XhQ ){Y m(z) — m(w)(Xi—m)}}{l—l—op(l)}A.Q)
- 7nh21)($) i:zlo'(Xi)GiK (Xih;$> + h2;K (z) + 0p <\/%h2 +h§) . (A.3)

Proof of Theorem 1. Note that
fi = {Yi—m(Xi)}? = {o(Xi)e +m(X;) — m(X;)}?
= o%(Xy)el + 20(X;)ei{m(X;) — (X))} + {m(X;) — m(X)}>.
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It follows from (A.1) that

6%(z) — o*(x) = {I1 + I — I3 + Is}{1 + 0p(1)},

where
ho= gw (B=2) (02X - @) - @)X - o)),
I, = nh;)(x) iéw (Xih: x) o*(Xi)(ef = 1),
L - nh; @ ; W (Xih: ‘”) (X)) erdi(X;) — m(X)}, (A.4)
W= gw (F222) i) - mxy?

In the sequel, we will establish:

(a) I = 31352 (@)o%, + 0p(h2),

(b) VahiTy < N(0, o*(2)\*(z) [ W?(t)dt/p(x)),

(c) I3 = oy (hi + h3),

(d) Is = 0p(hf + h3).
It is easy to see that the theorem follows from (a) — (d) directly.

It is easy to see that (a) follows from a Taylor’s expansion, and a direct application of the

ergodic theorem. Conditions (C2) and (C3) imply that E{W (%‘g—“) o?(X;) (€2 — 1)}*H/? < 0.
Note that the condition of absolutely regular implies a-mixing with a(j) < 8(j). By (C4) and

Theorem 1.7 of Peligrad (1986), I, is asymptotically normal with mean 0 and variance o2 /nhy

when § > 0, where
2
1 X —z\ o%(X)
= —E{W (—) 21
hy { h p(X) (e )}

" —z\ o2 —z\ o2(X;
b oE {W(thl )p((X)?))(e%_”W (" )p(())(?))(eg_l)'} (A.5)

* N

It is easy to see that the first term in the above expression converges to o (z)\2(x) [ W2(t)dt/p(z).

Note that E{W (3z2) (- 1)} =0, B ‘W (322) 258 - 1)\1” — O(h1), and for any

h1 p(X) p(X)
1> 2,

X1 —2) *(Xy) Xi —z\ o*(Xy) e
E{W< h1 ) p(X1) (el — 1)W< hy > (X)) (€ — 1)} = O(h)).
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It follows from (C4) and Lemma 1 Yoshihara (1976) that the absolutely value of the second term
in (A.5) is bounded by ch{'~?/(9) 7211 8755 () — o(1). Hence (b) holds when & > 0. In the
case that 6 = 0, the asymptotic normality follows from a simple application of the standard
small-block and large block arguments (see Remark 1).

Below we prove (c) for the case that 6 > 0. The case with § = 0 can be dealt in a more direct
and simpler way. Note that W(.) has bounded support, contained in the inverval (—s, $y,), say.
Therefore in the summation on the RHS of (A.4), only those terms with X; € (z —hasy, £+ hasy)
might not be 0. It follows from (A.2) that

Iy ~ Wélw(&h: )K(XhQX) (( )) {ejo(X;) +m(X;)

—m(X;) — m(X;)(X; — X')}

2

T T + O
’n2h1h2p( )1<Z;<n¢z] h —),

where Yij = ¢ij + ’lﬁji, and

by = K (T ) w (T T o () 4 m(X,) - m(X) — (X)X, - X))

ha h1 p(X;)
Performing Hoeffding’s projection decomposition of U-statistic, we express
2
B~ o hop(@) + Op( A6
> 2Ry hop( )1<§<n{§% pi i}t nhihap(z) h Z% (A.6)
where
o(Xiei oo, (Xi—x / (z - XZ-) .
= K —m(X;) — m(X)(z — X; d
o = S (G ) {m(@) = m(Xs) = () (z = X)p(2)dz

x

= Woko(al () i) + (49,

By (C2), (C4) and Theorem 1.7 of Peligrad (1986), the second term on the RHS of (A.6) is
Op(h3/+v/nhy). Tt follows from Lemma A(ii) of Hjellvik et al. (1996) that for any &y > 0 and

e >0,
p : > (i — i —wj)| > €
n(h1h2)(llﬁ_go)/2 i<j v Z !
2
c(hi1h9)t0 1
< (1 22) E — > (i — i — ;) ¢ = 0((h1h2)*°).
" (h1hg)20+8) o

: -1 —(3EZ +e0)/2
Therefore, the first term on the RHS of (A.6) is op{n™"(h1he) T+ -%/“}. Thus

1 h3 1
I = +0, [ 2] +0 (—)
3 Op (n(h1h2)( 11-:255 —I—E())/ ) p < /nh1> p nh2
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Condition (C5) implies that all the three terms on the RHS of the above expression is of the order
0, (h? + h3) if we choose g9 < (1 + &)~!. This completes the proof of (c).
To prove (d), we apply asymptotic expression (A.3) directly. Using the similar argument as

above, we can show that

I4—Op (m—i-n—hl‘Fn—h%) +Op (%—i_hq —Op(h1+h2).

Therefore, (d) holds.
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