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1 The claims

This paper investigates the measure theoretic consistency of what we call the “Abstract

Principal Principle”. The consistency expresses that the Abstract Principal Principle is in

harmony with the basic structure of measure theoretic probability theory. This type of

consistency is tacitly assumed in the literature on the Principal Principle, although we will

see that the consistency in question is not trivial. The main philosophical significance of

proving such a consistency is that without making sure that such a consistency obtains, the

Abstract Principal Principle would be inconsistent as a general norm that guides forming

subjective degrees of belief (credences): Without such consistency a Bayesian Agent would

not always be able to adjust his degrees of belief to objective probabilities (e.g. chances) in

a Bayesian manner, via Bayesian conditionalization.

After stating the Abstract Principal Principle informally in section 2, we define formally the

weak and strong consistency of the Abstract Principal Principle (Definitions 3.1 and 3.3) in

section 3, and state weak and strong consistency of the Abstract Principal Principle

(Propositions 3.2 and 3.4). We will then argue that it is very natural to strengthen the

Abstract Principal Principle by requiring it to satisfy a stability property, which expresses

that conditional degrees of belief in events already equal (in the spirit of the Abstract

Principal Principle) to the objective probabilities of the events do not change as a result of

conditionalizing them further on knowing the objective probabilities of other events (in

particular of events that are independent with respect to their objective probabilities). We

call this amended principle the Stable Abstract Principal Principle (if stability is required

only with respect to further conditionalizing on values of probabilities of independent

events: Independence-Stable Principal Principle). This stability requirement leads to

suitably modified versions of both the weak and strong consistency of the

(Independence-)Stable Abstract Principal Principle (Definitions 5.1 and 5.4). We will prove



that the Stable Abstract Principal Principle is weakly consistent (Proposition 5.2). This

entails weak consistency of the Independence-Stable Abstract Principal Principle

(Proposition 5.3). The strong consistency of both the Stable and the Independence-Stable

Abstract Principal Principle remain open problems however; we conjecture that both

consistencies hold1.

Until section 6 no references are given. Section 6 puts the results into context, here we

discuss the relevance of strong consistency of the Stable Abstract Principal Principle from

the perspective of Lewis’ Principal Principle and its “debugged” versions. The details of all

the proofs are in the Appendix.

2 The Abstract Principal Principle informally

The Abstract Principal Principle regulates probabilities representing the subjective degrees

of belief psub j(A) of an abstract Bayesian agent by stipulating that psub j(A) are related to

the objective probabilities pob j(A) as

psub j(A|ppob j(A) = rq) = pob j(A) (1)

where ppob j(A) = rq denotes the proposition “the objective probability, pob j(A), of A is

equal to r”.

The formulation (1) of the Abstract Principal Principle presupposes that both psub j and pob j

are probability measures: additive maps defined on a σ-algebra taking values in [0,1]. pob j

is supposed to be defined on a σ-algebra Sob j of random events; and psub j is supposed to be

a map with a domain of definition being a σ-algebra Ssub j.

It is crucial to realize that the σ-algebras Sob j and Ssub j cannot be unrelated: for the

1G. Bana, in his contribution to the symposium and to the present volume proved this
conjecture.



conditional probability psub j(A|ppob j(A) = rq) in eq. (1) to be well-defined via Bayes’ rule,

the σ-algebra Ssub j must contain both the σ-algebra Sob j of random events and with every

random event A also the proposition ppob j(A) = rq — otherwise the formula

psub j(A|ppob j(A) = rq) cannot be interpreted as an expression of conditional probability

specified by Bayes’ rule.

It is far from obvious however that, given any σ-algebra Sob j of random events with any

probability measure pob j on Sob j, there exists a σ-algebra Ssub j meeting these algebraic

requirements in such a way that a probability measure psub j satisfying the condition (1) also

exists on Ssub j. If there exists a σ-algebra S∗ob j of random events with a probability measure

p∗ob j giving the objective probabilities of events for which there exists no σ-algebra Ssub j on

which a probability function psub j satisfying (1) can be defined, then the Abstract Principal

Principle would be inconsistent as a general norm: In this case the agent, being in the

epistemic situation of facing the objective facts represented by (S∗ob j, p∗ob j), cannot have

degrees of belief satisfying the Abstract Principal Principle for fundamental structural

reasons inherent in the basic structure of classical probability theory. We say that the

Abstract Principal Principle is weakly consistent if it is not inconsistent in the sense

described. (The adjective “weakly” will be explained shortly.)

Remark 2.1. One can construe the Principal Principle differently: taking it as a norm that

regulates internal consistency of the Agent.2 Under this construal the subjective degrees of

belief should satisfy

psub j(A|ppob j(A) = rq) = r for all r ∈ [0,1] (2)

Here ppob j(A) = rq is the proposition that the Agent believes that the objective probability

2We thank C. Hoefer and G. Bana for pointing this out in the discussion in the sympo-
sium.



of A is equal to r, and (2) requires that the Agent’s subjective degrees of belief conditional

on this belief should be equal to r – otherwise the Agent is inconsistent in his thinking. The

difference between (1) and (2) is that r on the right hand side of (2) need not be equal to the

real objective probability pob j(A). The difference between these two interpretations plays

no role however from the perspective of the consistency problem we investigate here:

Because of the universal quantification over pob j in the consistency definitions and because

of the universal quantification over r in (2) the two construals lead to the same consistency

problem.

3 Weak and strong consistency of the Abstract Principal

Principle

(X ,S , p) denotes a classical probability measure space, where S is a σ-algebra of (some)

subsets of X and p is a probability measure on S . Given two σ-algebras S and S ′, the

injective map h : S → S ′ is a σ-algebra embedding if it preserves all Boolean-σ-operations.

The probability space (X ′,S ′, p′) is called an extension of (X ,S , p) with respect to h if h is a

σ-algebra embedding of S into S ′ that preserves the probability measure p:

p′(h(A)) = p(A) A ∈ S (3)

Definition 3.1. The Abstract Principal Principle is called weakly consistent if the following

hold: Given any probability space (Xob j,Sob j, pob j), there exists a probability space

(Xsub j,Ssub j, psub j) and a σ-algebra embedding h of Sob j into Ssub j such that

(i) For every A ∈ Sob j there exists an A′ ∈ Ssub j with the property

psub j(h(A)|A′) = pob j(A) (4)



(ii) If A,B ∈ Sob j and A 6= B then A′ 6= B′.

Definition 3.1 says: Given the “objective” probability space (Xob j,Sob j, pob j), the σ-algebra

Ssub j in (Xsub j,Ssub j, psub j) contains the “copies” h(A) of all the random events A ∈ Sob j and

also an element A′ to be interpreted as representing the proposition “the objective

probability, pob j(A), of A is equal to r” (this proposition we denoted by ppob j(A) = rq). If

A 6= B then A′ 6= B′ must hold because ppob j(A) = rq and ppob j(B) = sq are different

propositions – this is expressed by (ii) in the definition. The main content of the Abstract

Principal Principle is then expressed by condition (4), which states that the conditional

degrees of beliefs psub j(h(A)|A′) of an agent about random events h(A)↔ A ∈ Sob j are

equal to the objective probabilities pob j(A), where the condition A′ is that the agent knows

the values of the objective probabilities.

Proposition 3.2. The Abstract Principal Principle is weakly consistent.

The above proposition follows from Proposition 5.2 stating the weak consistency of the

Stable Abstract Principal Principle, which we state later.

Definition 3.3. The Abstract Principal Principle is defined to be strongly consistent if, in

addition to conditions (i)-(ii) in Definition 3.1, the following hold:

(iii) The probability space (Xsub j,Ssub j, psub j) is an extension of the probability space

(Xob j,Sob j, p0
sub j) with respect to h; i.e. we have

psub j(h(A)) = p0
sub j(A) A ∈ Sob j (5)

The content of this additional requirement is that the agent’s prior probability function psub j

restricted to the random events can be equal to probability measure p0
sub j on Sob j that can

differ from the objective probabilities of the random events given by pob j.



Proposition 3.4. The Abstract Principal Principle is strongly consistent if pob j is

absolutely continuous w.r.t. the agent’s prior degrees of beliefs p0
sub j.

4 The Stable Abstract Principal Principle

Once the agent has adjusted his subjective degree of belief by conditionalizing,

psub j(h(A)|ppob j(A) = rq) = r, he may then learn the value of another objective probability,

ppob j(B) = sq, in which case he must conditionalize again. What should be the result of

this second conditionalization? Since the agent’s conditional degrees of belief

psub j(h(A)|ppob j(A) = rq) in A are already correct (equal to the objective probabilities), it

would be irrational to change his already correct degree of belief about A upon learning an

additional truth, namely the value of the objective probability pob j(B). So a rational agent’s

conditional subjective degrees of belief should be stable in the sense of satisfying the

following condition:

psub j
(
h(A)|ppob j(A)= rq

)
= psub j

(
h(A)|ppob j(A)= rq∩ppob j(B)= sq

)
(∀B∈ Sob j) (6)

If A and B are independent with respect to their objective probabilities

pob j(A∩B) = pob j(A)pob j(B), then, if the conditional subjective degrees of belief are stable



in the sense of (6), then (assuming the Abstract Principal Principle) one has

psub j(h(A)∩h(B)|ppob j(A) = rq∩ppob j(B) = sq∩ppob j(A∩B) = tq) (7)

= psub j(h(A∩B)|ppob j(A) = rq∩ppob j(B) = sq∩ppob j(A∩B) = tq)

= psub j(h(A∩B)|ppob j(A∩B) = tq)

= pob j(A∩B)

= pob j(A)pob j(B)

= psub j(h(A)|ppob j(A) = rq)psub j(h(B)|ppob j(B) = sq)

= psub j(h(A)|ppob j(A) = rq∩ppob j(B) = sq∩ppob j(A∩B) = tq) (8)

·psub j(h(B)|ppob j(A) = rq∩ppob j(B) = sq∩ppob j(A∩B) = tq) (9)

Equations (7) and (8)-(9) mean that if the conditional subjective degrees of belief are stable,

then, if A and B are objectively independent, then they (their isomorphic images h(A),h(B))

are also subjectively independent: independent also with respect to the probability measure

that represents conditional subjective degrees of belief, where the condition is that the agent

knows the objective probabilities of all of A, B and (A∩B). In this case the conditional

subjective degrees of beliefs properly reflect the objective independence relations of

random events – they are independence-faithful. Note that for the subjective degrees of

belief to satisfy the independence-faithfulness condition expressed by eqs. (7) and (8)-(9), it

is sufficient that stability (6) only holds for the restricted set of elements B in the

σ-subalgebra S A,ind
ob j of Sob j generated by the elements in Sob j that are independent of A with

respect to pob j.

This motivates to amend the Abstract Principal Principle by requiring stability of the

subjective probabilities, resulting in the “Stable Abstract Principal Principle”:

Stable Abstract Principal Principle The subjective probabilities psub j(A) are related to



the objective probabilities pob j(A) as required by equation (1); furthermore, the subjective

probability function is stable in the sense that the following holds:

psub j
(
h(A)|ppob j(A) = rq

)
= psub j

(
h(A)|ppob j(A) = rq∩ppob j(B) = sq

)
(∀B ∈ Sob j)

(10)

If the subjective probability function is only independence-stable in the sense that (10)

above holds for all B ∈ S A,ind
ob j , then the corresponding Stable Abstract Principal Principle is

called the Independence-Stable Abstract Principal Principle.

5 Is the Stable Abstract Principal Principle strongly

consistent?

Definition 5.1. The Stable Abstract Principal Principle is defined to be weakly consistent if

it is weakly consistent in the sense of Definition 3.1 and the subjective probability function

psub j is stable: it satisfies condition (10). The Independence-Stable Abstract Principal

Principle is defined to be weakly consistent if it is weakly consistent in the sense of

Definition 3.1 and the subjective probability function psub j is independence-stable: it

satisfies (10) for all B ∈ S A,ind
ob j .

Proposition 5.2. The Stable Abstract Principal Principle is weakly consistent.

The above proposition entails

Proposition 5.3. The Independence-Stable Abstract Principal Principle is weakly

consistent.

Definition 5.4. The Stable Abstract Principal Principle is defined to be strongly consistent

if it is strongly consistent in the sense of Definition 3.3 and the subjective probability



function psub j is stable. The Independence-Stable Abstract Principal principle is strongly

consistent if it is strongly consistent in the sense of Definition 3.3 and the subjective

probability function psub j satisfies (10) for all B ∈ S A,ind
ob j .

Problem 5.5. Is the (Independence-)Stable Abstract Principal Principle strongly consistent?

The problem of strong consistency of both the Stable and the Independence-Stable Abstract

Principal Principle remain open3.

6 Relation to other works

Lewis (1986) introduced the term “Principal Principle” to refer to the principle linking

subjective beliefs to chances. In the context of the Principal Principle psub j(A) is called the

“credence”, Crt(A), of the agent in event A at time t, pob j(A) is the chance Cht(A) of the

event A at time t, and the Principal Principle is the stipulation that credences and chances

are related as

Crt(A|pCht(A) = rq∩E) =Cht(A) = r (11)

where E is any admissible evidence the agent has at time t in addition to knowing the value

of the chance of A.

Proposition pCht(A) = rq is clearly admissible evidence for (11), and, substituting

E = pCht(A) = rq into equation (11), we obtain

Crt(A|pCht(A) = rq) =Cht(A) = r (12)

which, at any given time t, is an instance of the Abstract Principal Principle if we make the

identifications pob j(A) =Cht(A), psub j(A) =Crt(A). By Proposition 3.4 we know that, for

any time parameter t, relation (12) is consistent with probability as measure.
3See footnote 1.



If, however, admissibility of evidence E is defined in such a way that propositions stating

the values of chances of other events B at time t (i.e. propositions of the form pCht(B) = sq)

are admitted as E, then (11) together with (12) entail that we also should have

Crt(A|pCht(A) = rq∩pCht(B) = sq) =Cht(A) = r (13)

The relation (13) together with equation (12) is, at any given time t, an instance of the

Stable Abstract Principal Principle if we make the identifications pob j(A) =Cht(A),

psub j(A) =Crt(A) and pob j(B) =Cht(B). Thus whether relations (13) and (12) can hold at

all is exactly the question of whether the Stable Abstract Principal Principle is strongly

consistent. If one allows as evidence E in (13) only propositions stating the value of

objective chances of events B that are objectively independent of A, then the question of

whether relations (13) and (12) can hold in general is exactly the question of whether the

Independence-Stable Abstract Principal Principle is strongly consistent. Since Lewis

regarded admissible all propositions containing information that is “irrelevant” for the

chance of A (Lewis 1986, 91), for Lewis, admissible evidence should include propositions

about values of chances of events that are independent of A with respect to the probability

measure describing their chances. Under this interpretation of “irrelevant” information, the

consistency of Lewis’ Principal Principle as a general norm needs proving consistency of

the Independence-Stable Abstract Principal Principle. It should be emphasized that this

kind of consistency has nothing to do with any metaphysics about chances or with the

concept of natural law that one may have in the background of the Principal Principle; in

particular, this inconsistency is different from the one related to “undermining” (see below).

This consistency expresses a simple but fundamental compatibility of the Principal

Principle with the basic structure of probability theory.

Lewis himself saw a consistency problem in his Principal Principle (he called it the “Big



Bad Bug”): If A is an event in the future of t that has a non-zero chance r > 0 of happening

at that later time but we have knowledge E about the future that entails that A will in fact

not happen, E ⊂ A⊥, then substituting this E into (11) leads to contradiction if r > 0. Such

an A is called an “unactualized future that undermines present chances” – hence the phrase

“undermining” to refer to this situation. Since certain metaphysical arguments led Lewis to

think that one is forced to admit such an evidence E, he tried to “debug” the Principal

Principle (Lewis 1994); the same sort of debugging was proposed simultaneously by Hall

(1994) and Thau (1994). Other debugging attempts have followed (Black 1998; Roberts

2001; Loewer 2004; Hall 2004; Hoefer 2007; Ismael 2008; Meacham 2010; Glynn 2010;

Nissan-Rozen 2013; Pettigrew 2013; Frigg–Hoefer 2015), and to date no consensus has

emerged as to which of the debugged versions of the Principal Principle is tenable: Vranas

(2004) claims that there was no need for a debugging in the first place; Briggs (2009) argues

that none of the modified principles work; Pettigrew (2012) provides a framework that

allows to choose the correct Principal Principle depending on one’s metaphysical concept of

chance.

Papers aiming at “debugging” Lewis’ Principal Principle typically combine the following

three moves (a), (b) or (c):

(a) Restricting the admissible evidence in (11) to a particular class AA of propositions in

order to avoid “undermining” (Hoefer 2007).

(b) Modifying the Principal Principle by replacing Cht(A) on the right hand side of (11)

with a value F(A) given by a function F different from the objective chance function

(New Principle by Hall (1994); General Principal Principle by Lewis (1980) and by

Roberts (2001)).

(c) Modifying the Principal Principle by replacing the conditioning proposition

pCht(A) = rq∩E on the left hand side of (11) by a different conditioning proposition



CA, which is a conjunction of some propositions from Sob j, AA, and propositions of

form ppob j(B) = rq (Conditional Principle and General Principle by Vranas (2004));

General Recipe by Ismael (2008)).

To establish a theory of chance along a debugging strategy characterized by a combination

of (a), (b) and (c), it is not enough to show however that undermining is avoided: one has to

prove that the debugged Principal Principle is consistent in the sense of Definition 6.1

below, which is in the spirit of the notion consistency investigated in this paper:

Definition 6.1. We say that the “(AA,CA,F)-debugged” Principal Principle is strongly

consistent if the following hold:

Given any probability space (Xob j,Sob j, pob j) and another probability measure p0
sub j on

Sob j, there exists a probability space (Xsub j,Ssub j, psub j) and a σ-algebra embedding h of

Sob j into Ssub j such that

(i) For every A ∈ Sob j the set AA is in Ssub j, and for every A ∈ Sob j there exists a

CA ∈ Ssub j with the property

psub j(h(A)|CA) = F(A) (14)

(ii) If A,B ∈ Sob j and A 6= B then CA 6=CB.

(iii) The probability space (Xsub j,Ssub j, psub j) is an extension of the probability space

(Xob j,Sob j, p0
sub j) with respect to h; i.e. we have

psub j(h(A)) = p0
sub j(A) A ∈ Sob j (15)



(iv) For all A ∈ Sob j and for all B ∈ AA we have

psub j(h(A)|CA) = psub j
(
h(A)|CA∩B) (16)

We say that the “(AA,CA,F)-debugged” Principal Principle is weakly consistent if (i),(ii)

and (iv) hold.

Taking specific CA, and F , one obtains particular consistency definitions expressing the

consistency of specific debugged Principal Principles. For instance, stipulations

CA = B∩ppob j(A|B) = rq (17)

F(A) = pob j(A) (18)

yield Vranas’ Conditional Principle (Vranas 2004, 370); whereas Hall’s New Principle

(Hall 1994, 511) can be obtained by

CA = Ht,w∩Tw (19)

F(A) = pob j(A|Tw) (20)

where Ht,w is “the proposition that completely characterizes w’s history up to time t” (Hall

1994, 506) and Tw is the “proposition that completely characterizes the laws at w” (Hall

1994, 506) (w being a possible world).

Proving consistency of the (AA,CA,F)-debugged Principal Principles is necessary for the

respective debugged Principal Principles to be compatible with measure theoretic

probability theory. To our best knowledge such consistency proofs have not been given: it

seems that this type of consistency is tacitly assumed in the works analyzing the modified

Principal Principles, although, as the propositions and their proofs presented in this paper



show, the truth of these types of consistency claims are far from obvious.

The problem of strong consistency of the Stable Abstract Principle is also relevant from the

perspective of existence of particular models of the axioms of higher order probability

theory (HOP) suggested by Gaifman (1988). If one regards the theory of HOP as an

axiomatic theory, then the question arises whether models of the theory exist. Gaifman

provides a few specific examples that are models of the axioms (Gaifman 1988, 208–10) but

he does not raise the general issue of what kind of models exist. What one would like to

know is whether any objective probability theory can be made part of a HOP in such a way

that the objective probabilities are related to the subjective ones in the manner required by

the HOP axioms. Proving the existence of such HOPs entail that the Stable Abstract

Principal Principle is strongly consistent.

7 Appendix

7.1 Proof of strong consistency of the Abstract Principal Principle

(Proposition 3.4)

The statement follows from Proposition 7.1 below if we make the following identifications:

• (Xob j,Sob j, pob j)↔ (X ,S , p̂)

• (Xob j,Sob j, p0
sub j)↔ (X ,S , p)

• (Xsub j,Ssub j, psub j)↔ (X ′,S ′, p′)

Proposition 7.1. Let (X ,S , p) be a probability space and let p̂ be another probability

measure on S such that p̂ is absolutely continuous with respect to p. Then there exists an

extension (X ′,S ′, p′) of (X ,S , p) with respect to the embedding h : S → S ′ having the

following properties:



(i) For all A ∈ S there is A′ ∈ S ′ such that

p′
(
h(A)|A′

)
= p̂(A)

(ii) A 6= B implies A′ 6= B′

Proof. We distinguish two cases: (i) the σ-algebra S is finite (ii) non-finite.

When S is finite, the proof consist of two steps. In the first step we choose an arbitrary

element A ∈ S and construct an extension (X∗,S∗, p∗) of (X ,S , p) with respect to an

embedding h∗ in such a manner that in this extension this particular event A has a pair

A′ = A∗ with the required properties. In step 2 we repeat this step n−1 times, choosing

each time another element from S until we exhaust S and obtain the extension (X ′,S ′, p′) of

(X ,S , p).

Step 1. Take any A ∈ S . We wish to construct a space (X∗,S∗, p∗) and a function

h∗ : S → S∗ such that

• h∗ : (S , p)→ (S∗, p∗) is a measure preserving, injective Boolean algebra

homomorphism.

• There is A∗ ∈ S∗ such that p∗
(
h∗(A)|A∗

)
= p̂(A).

Let let (X1,S 1) and (X2,S 2) be two disjoint copes of (X ,S), and fix the algebra

isomorphisms h1 : (X ,S)→ (X1,S 1) and h2 : (X ,S)→ (X2,S 2). Put X∗ = X1∪X2 and

define

S∗ =
{

h1(A)∪h2(B) : A,B ∈ S
}

(21)

It is a routine task to verify that S∗ is a Boolean algebra of subsets of X∗ with respect to the

usual set theoretical operations ∪, ∩, \ (below we also use the notation A⊥ to refer to the set

theoretical complement of an element A with respect to a set which is fixed by the context).



Define the map h∗ : S → S∗ by

h∗(A) = h1(A)∪h2(A) A ∈ S (22)

h∗ is a homomorphism between S and S∗.

Let 0≤ α≤ 1 be any number and define p∗ on S∗ by

p∗
(
h1(A)∪h2(B)

) .
= α · p(A)+(1−α) · p(B) A,B ∈ S (23)

For each A ∈ S we have then

p∗
(
h∗(A)

)
= α · p(A)+(1−α) · p(A) = p(A) (24)

Consequently, h∗ : (S , p)→ (S∗, p∗) is a measure preserving, injective Boolean algebra

homomorphism.

For any fixed A ∈ S define A∗ by

A∗ .
= h1(A)∪h2(A⊥) (25)

Our aim now is to choose α in such a way that the following is true:

p∗(h∗(A)|A∗) = p̂(A) (26)

Some basic algebra shows that

p∗(h∗(A)|A∗) =
α · p(A)

α · p(A)+(1−α) · (1− p(A))
(27)



Thus in order to satisfy (26) we have to choose α to guarantee

α · p(A)
α · p(A)+(1−α) · (1− p(A))

= p̂(A) (28)

By assumption, if p(A) = 1 then p̂(A) = 1, and thus any α 6= 0 makes (28) true. Similarly, if

p(A) = 0, then p̂(A) = 0, which means that any α 6= 1 will do. Also, if p̂(A) = 0, then

α = 0 will do. Therefore we may assume 0 < p(A)< 1 and 0 < p̂(A)≤ 1. By re-ordering

equation (28) and using the notation p = p(A), r = p̂(A) we obtain

α =
rp− r

rp− r+ pr− p
(29)

To guarantee (28) we only have to show that α in equation (29) is between 0 and 1. Since

0 < p < 1 and 0 < r ≤ 1 we have rp < r and pr ≤ p. This means that both the numerator

and the denominator of the fraction in (29) is negative, whence α is positive. On the other

hand, we have

0 ≥ pr− p

rp− r ≥ rp− r+ pr− p

rp− r
rp− r+ pr− p

≤ 1

Thus 0≤ α≤ 1 can always be chosen so that equation (26) holds.

Step 2. We obtain (X ′,S ′, p′) by iterating Step 1. Let A1, . . . ,An be an enumeration of S .

Applying Step 1. with A1 in place of A, one finds a space (X1,S1, p1) = (X∗,S∗, p∗), an

event A∗1 ∈ S1 and an embedding h1

(X ,S , p)
h1−→ (X1,S1, p1),



such that

p1
(
h1(A1)|A∗1

)
= p̂(A1) (30)

Continuing in this way, we get elements
(
hi−1 · · ·h1(Ai)

)∗ ∈ Si and a chain of extensions

(X ,S , p)
h1−→ (X1,S1, p1)

h2−→ (X2,S2, p2)
h3−→ ·· · hn−→ (Xn,Sn, pn)

such that

pn

(
hn · · ·h2h1(Ai)

∣∣∣hn · · ·hi+1

((
hi−1 · · ·h1(Ai)

)∗))
= p̂(Ai)

holds for all Ai. Therefore we can complete the proof by letting

(X ′,S ′, p′) = (Xn,Sn, pn)

h = hnhn−1 · · ·h1

A′i = hn · · ·hi+1

((
hi−1 · · ·h1(Ai)

)∗)

One has to verify that the extension in step j does not destroy the result of the previous one.

But this is a consequence of h j being an embedding that preserves the probability.

When the σ-algebra S is not finite, we take the extension (X ′,S ′, p′) to be the product space

(X ,S , p)~ ([0,1],L ,λ) = (X ~ [0,1],S ~L , p~λ)

where ([0,1],L ,λ) is the standard Lebesgue space over the unit interval, and where ~

denotes the special product of two probability spaces introduced in (Gyenis–Rédei 2011).

The elements of S ~L are certain [0,1]→ S functions, the embedding

h : (X ,S , p)→ (X ′,S ′, p′) is via the constant function

h(A)(x) = A (x ∈ [0,1])



The extension of p:

p′(h(A)) =
∫ 1

0
p◦h(A)dλ =

∫ 1

0
p(A)dλ = p(A).

Fix a real number α ∈ [0,1] and take any Lebesgue-measurable subset B⊆ [0,1] with

measure λ(B) = α. Write A′ for the function A′ : [0,1]→ S

A′(x) =

 A if x ∈ B

A⊥ otherwise.

Then A′ ∈ S ′ and one can verify easily that

p′
(
h(A)|A′

)
=

α · p(A)
α · p(A)+(1−α) · (1− p(A))

. (31)

It follows that if we choose α such that

α · p(A)
α · p(A)+(1−α) · (1− p(A))

= p̂(A), (32)

then we get

p′
(
h(A)|A′

)
= p̂(A)

That we can choose α to satisfy (32) is contained in the proof of the finite case.



7.2 Proof of weak consistency of the Stable Abstract Principal

Principle (Proposition 5.2)

The statement of weak consistency of the Stable Abstract Principal Principle follows from

Proposition 7.2 below if we make the following identifications:

• (Xob j,Sob j, pob j)↔ (X ,S , p)

• (Xsub j,Ssub j, psub j)↔ (X ′,S ′, p′)

Proposition 7.2. Let (X ,S , p) be a probability space. Then there exists an extension

(X ′,S ′, p′) of (X ,S , p) with respect to a σ-algebra homomorphism h : S → S ′ such that

(i) For all A ∈ S there is A′ ∈ S ′ such that

p′
(
h(A)|A′

)
= p(A)

(ii) A 6= B implies A′ 6= B′

(iii)

p′(h(A)|A′) = p′
(
h(A)|A′∩B′

)
(∀B′ ∈ S) (33)

Proof. Let (X ,S , p) be a probability space and Y0 be a set disjoint from S and having the

same cardinality as the cardinality of S . We can think of Y0 as having elements yA labeled

by elements A ∈ S . Consider the set

Y .
= Y0∪{y}= {yA : A ∈ S}∪{y}

where y is an auxiliary element different from every yA. Take the powerset P (Y ) and let q

be any probability measure on P (Y ) such that q({y}) 6= 0. Then (Y,P (Y ),q) is a probability



space and we can form the product space

(X ′,S ′, p′) = (X×Y,S ⊗P (Y ), p×q)

with p′ = (p×q) being the product measure on S ⊗P (Y ). The map h : S → S ′ defined by

h(A) .
= A×Y is an injective, measure preserving σ-algebra embedding. For each A ∈ S put

A′ .= X×{yA,y}

It is clear that (ii) in the proposition holds for A′,B′ so defined. Utilizing that p′ is a product

measure one can verify by explicit calculation that both (i) and (iii) hold.
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Frigg, R. and Hoefer, C. (2015). The best Humean system for statistical mechanics.

Erkenntnis, 80:551–574.

Gaifman, H. (1988). A theory of higher order probabilities. In B. Skyrms and W.L.

Harper, editors, Causation, Chance, and Credence. Proceedings of the Irvine

Conference on Probability and Causation, Volume 1, volume 41 of The University

of Western Ontario series in philosophy of science, pages 191–219. Kluwer

Academic, Dordrecht.

Glynn, L. (2010). Deterministic chance. The British Journal for the Philosophy of

Science, 61(51-80).
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