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SPECIFICATION TESTS FOR LATTICE PROCESSES

JAVIER HIDALGO AND MYUNG HAWN SEO

Abstract. We consider an omnibus test for the correct specification of the

dynamics of a sequence {x (t)}t∈Zd in a lattice. As it happens with causal

models and d = 1, its asymptotic distribution is not pivotal and depends on

the estimator of the unknown parameters of the model under the null hy-

pothesis. One first main goal of the paper is to provide a transformation to

obtain an asymptotic distribution that is free of nuisance parameters. Sec-

ondly, we propose a bootstrap analogue of the transformation and show its

validity. Thirdly, we discuss the results when {x (t)}t∈Zd are the errors of a

parametric regression model. As a by product, we also discuss the asymptotic

normality of the least squares estimator of the parameters of the regression

model under very mild conditions. Finally, we present a small Monte Carlo

experiment to shed some light on the finite sample behaviour of our test.

JEL Classification: C21, C23.

1. INTRODUCTION

Random models for space or spatio-temporal data play an important role in

many disciplines, and in recent years it has become increasingly important in eco-

nomics, see e.g. Baltagi et al.’s (2007) special volume on the topic or Cressie (1993).

Applications cover various areas like environmental, urban, agricultural economics

as well as economic geography among others. In many circumstances data is actu-

ally collected in a regular lattice usually as a consequence of planned experiments

or because it is collected based on a systematic sampling scheme. Earlier exam-

ples are the celebrated paper by Mercer and Hall (1911) on wheat crop yield data

or Batchelor and Reed (1924), which were employed as examples and analyzed in

the pioneering paper by Whittle (1954). Other examples are given in Cressie and

Huang (1998), see also Fernandez-Casal et al. (2003), or within a view towards en-

vironmental economics by Mitchell et al. (2005), who employed a regression model
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of the type in (1.1) to analyze the effect of CO2 on crops. The latter might also

be of relevance in development economics. See also Genton and Koul (2008) on

yield of barley in UK and how the models can be useful when there is evidence

that there is spatial movement such as pollutants due to winds or ocean currents.

When the spatial dimension is one, we obtain the so-called noncasual models or

in Whittle’s terminology linear trascent models. These models can be regarded

as forward looking and have gained some consideration recently in economics, see

for instance Davis et al. (2001) or Lanne and Saikkonen (2011, 2013). In general,

we can think of lattice or random field models as very useful and practical models

to enable us to capture the spatial or the spatio-temporal dependence, see Cressie

(1993), Jenish and Prucha (2009), or the neighbourhood structure of the data as

in Zhu, Huang and Reyes (2010) among many others.

In particular, given a spatial process {x (t)}t∈Zd , d ≥ 1, it is agreed that one of

the main purposes is to obtain a correct description of its covariogram {γ (s)}s∈Zd ,

defined as γ (s) = Cov (x (t) , x (t+ s)). The importance of the covariogram relies

on the fact that it plays a key role to obtain good and accurate predictions and/or

interpolations. For instance, see Cressie (1993) in relation to the Gaussian Markov

random fields or conditional autoregressions in a lattice. In regression models it

enables either correct inferences on the parameters of the model or effi cient estima-

tion. When X = {x (t)}nt=1 are the errors in a regression model

(1.1) y (t) = β′0z (t) + x (t) , t = 1, ..., n,

where Z = {z (t)}nt=1 is a q-dimensional set of fixed regressors, we have that the

asymptotic covariance of the least squares estimator of β0 depends on {γ (s)}s∈Zd .

In addition, the predictor of say y (t∗) becomes in this case

E (y (t∗) | {y (t)}nt=1) = β′0z (t∗) + E (x (t∗) | X) ,

so that an accurate specification of γ (s) is the key to obtain a good predictor of

y (t∗) or we are just interested to examine the effect of some variables ony (t), see

Mitchell et al. (2005) who study the effect of CO2 on rice crops in Japan.

More specifically, we are interested to check whether the covariogram {γ (s)}s∈Zd
follows a particular parametric family, that is {γ (s)}s∈Zd = {γ (s;ϑ)}s∈Zd , where

ϑ =
(
θ′, σ2

ε

)′
is a (p+ 1)-dimensional vector of unknown parameters. Observing

that for any covariance stationary spatial lattice process {x (t)}t∈Zd , the spectral



SPECIFICATION FOR LATTICE DATA 3

density function f (λ) and the covariogram {γ (s)}s∈Zd are related by the expression

(1.2) γ (s) =

∫
Πd
e−is

′λf (λ) dλ; s ∈ Zd,

we might have formulated our interest on whether f (λ) = f (λ; θ) for all λ ∈ Πd.

Herewith “s′λ”means the inner product of two d-dimensional vectors s and λ and

Π = [−π, π].

Thus, one of the aims of the paper is to describe a Tp-type omnibus test for the

composite hypothesis that the covariogram of the sequence {x (t)}t∈Zd follows a

specified parametric model. One difference with previous work when d = 1 is that

we allow for models which are also forward looking, i.e. noncausal models or linear

trascent models. In addition, we examine the behaviour of the test when {x (t)}t∈Zd
is not observed but they are the errors of a parametric regression model. As a by-

product, we obtain the asymptotic distribution of the least squares estimator of β0

in (1.1) under mild conditions. In particular, we show the asymptotic normality

when the regressors are deterministic, without the need to assume that the process

{x (t)}t∈Zd is strong mixing as it was assumed in Bolthausen (1982) or more recently

in Jenish and Prucha (2009), although our conditions are quite similar to those

in Robinson and Thawornkaiwong (2012). Instead, we assume that the process

{x (t)}t∈Zd is a Generalized linear process in the sense put forward by Hannan

(1970, p. 210), see (1.3) below. The basic condition that we need to obtain the

asymptotic distribution of the least squares estimator of β0 in (1.1) is that the

jump of the spectral distribution function of {z (t)}t∈Zd does not coincide with the

discontinuity of the spectral density function of {x (t)}t∈Zd , so that we allow for

strong dependence, see also Yajima and Matsuda (2011).

All throughout the paper we shall assume that the spatial linear process {x (t)}t∈Zd
has a representation by the multilateral model

(1.3) x (t)− µ =
∑
s∈Zd

ψ (s) ε (t− s) ,
∑
s∈Zd

ψ2 (s) <∞, ψ (0) = 1,

for some sequence {ε (t)}t∈Zd satisfying E (ε (t)) = 0 and E (ε (0) ε (t)) = σ2
εI (t = 0),

where I (·) is the indicator function. Under (1.3), we have that

f (λ) =
σ2
ε

(2π)
d
|Ψ (λ)|2

where Ψ (λ) =
∑
s∈Zd ψ (s) e−is

′λ, which summarizes the covariogram structure of

{x (t)}t∈Zd as seen in (1.2).
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Denoting [0, π] × Πd−1 as Π̃d, that is λ ∈ Π̃d if λ [1] ∈ [0, π] and λ [`] ∈ Π for

` = 2, ..., d, where a [`] denotes the `-th coordinate of the vector a that belongs to

Zd (or Πd), we can write the null hypothesis as follows:

(1.4) H0 : ∀λ ∈ Π̃d and for some θ0 ∈ Θ, |Ψ (λ)|2 = |Ψθ0 (λ)|2 ,

where Θ ⊂ Rp is a compact parameter space and Ψθ (λ) =
∑
s∈Zd ψ (s; θ) e−is

′λ.

The alternative hypothesis is the negation of H0.

A particular parameterization of (1.3) is the ARMA (−k1, k2;−ı1, ı2) field model,

see Whittle (1954), defined as

k2∑
s=−k1

α (s) (x (t− s)− µ) =

ı2∑
s=−ı1

β (s) ε (t− s) α (0) = β (0) = 1,

whose spectral density function is given by

f (λ) =
σ2
ε

(2π)
d

∣∣∣∑ı2
s=−ı1 β (s) eis

′λ
∣∣∣2∣∣∣∑k2

s=−k1 α (s) eis′λ
∣∣∣2 .

Notice that the latter model is causal if ı1 = k1 = 0. It is worth mentioning that

Whittle (1954) showed that any given stationary multilateral scheme on a plane

lattice has a unilateral autoregression with the same spectral scheme, although not

necessarily of finite order as is the case when d = 1.

Another parametric model of interest is the extension to the lattice of the clas-

sical Bloomfield (1973)’s exponential model. In fact, it was introduced by Whittle

(1954, Sec. 6) beforehand and it was also named as the Cepstrum model by Solo

(1986). These models can be characterized as having a spectral density function

defined as

(1.5) fϑ (λ) = σ2
ε exp

{
−
∑
s≺0

a (s; θ) cos (s′λ)

}
,

where “≺”denotes the lexicographical (dictionary) ordering which is defined as

s ≺ k ⇔ (∃ι > 0) (∀i < ι) (s [i] = k [i] ∨ s [ι] < k [ι]) ,

that is, if one of the terms s [ι] < k [ι] and all the previous ones are equal. Observe

that if we allowed s in (1.5) to belong to Zd, the model would not be identified as

cos (s′λ) = cos (−s′λ) for all λ ∈ Πd and s. Solo (1986) notes that if 0 < fϑ (λ) < M

the representation of the spectral density in (1.5) exists.

Due to the complicated notation in this paper, we have decided to gather it at

this stage for convenience. The numbers 0, 1 and π can be either scalars or vectors

(of dimension d), which should be clear from the context, whereas π̊ = (0, π, ..., π)
′
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and e` denotes a vector in Zd whose `-th element is one and the other elements are

zero. For two vectors a and b, a∨ b and a∧ b represent the maximum and minimum

of the two, respectively, based on the lexicographical ordering, while a ≥ (≤) b

means that a [`] ≥ (≤) b [`] for all ` = 1, ..., d. For ñ = [n/2], denote

Πd
n =

{
λk [`] =

πk [`]

ñ [`]
, k [`] = 0,±1, ...,±ñ [`] , ` = 1, ..., d

}
,

where λk stands for the Fourier frequencies. Similarly to Π̃d, we define Π̃d
n ={

λk ∈ Πd
n : λk [1] > 0

}
. We use three different summation operators when they are

taken over the Fourier frequencies, namely

∑
λs

=
∑
λs∈Π̃dn

,

λ∑
λs

=
∑
λs∈Π̃dn
λs≤λ

, and
∑
λs≺λ

=
∑

λs∈Πdn;
0≺λs≺λ

,

Note that λs’s in the last summation are taken from Πd
n.

The remainder of the paper is organized as follows. In the next section, we

present the test and examine its asymptotic properties, showing that it is not pivotal

as its asymptotic distribution depends on H0 and on the estimator employed of the

unknown parameters ϑ0. Because the asymptotic critical values are diffi cult to

obtain, Section 3 describes a transformation in the spirit of Brown, Durbin and

Evans (1975) such that it converges to a functional of the “standard” Brownian

sheet in [0, 1]
d. The transformation mirrors that of Delgado, Hidalgo and Velasco

(2005) to the case when d > 1, or when d = 1 and the model is not causal. We also

describe a bootstrap algorithm, showing its validity, to compute the critical values

of the transformation. Section 4 describes the local alternatives and it also examines

the consequences, if any, when {x (t)}t∈Zd are the errors of a parametric regression

model. In addition, we show the asymptotic normality of the least squares estimator

of the parameters under mild conditions. Section 5 presents the results of a Monte

Carlo study to shed some light on the finite sample performance of our test and its

bootstrap analogue. Section 6 concludes. The proofs of our main results are given

in Appendix B, which uses a series of lemmas given in Appendix A.

2. THE TEST AND ITS PROPERTIES

Before we introduce and describe the test, we first observe that we can state the

null hypothesis (1.4) as

(2.1) H0 : ∀λ ∈ Π̃d and some θ0 ∈ Θ,
Gθ0 (λ)

Gθ0 (π)
=
λ [1]

π

d∏
`=2

(
1 +

λ [`]

π

)
,
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where

Gθ (λ) = 2

∫ λ

−π̊
|Ψθ (ω)|−2

f (ω) dω.

Under H0, Gθ0 (λ) / (2π)
d is the spectral distribution function of the lattice process

{ε (t)}t∈Zd and Gθ0 (π) = σ2
ε. Notice that by symmetry of f (λ), it does not matter

which coordinate we choose in the interval [0, π], as it will not affect the value of

Gθ (λ) and hence the test given below. We shall indicate though that for simplicity

of arguments, we focus in the case when d ≤ 3. Extensions to d > 3 can be adapted

easily under suitable modifications.

Let hn (t) = 2−d
∏d
`=1 h (t [`] /n [`]), where h (·) is a function in [0, 1], and define

the taper periodogram of a generic sequence {v (t)}nt=1 by

ITv (λ) =
1∑n

t=1 h
2
n (t)

∣∣∣∣∣
n∑
t=1

hn (t) v (t) e−it
′λ

∣∣∣∣∣
2

.

The motivation to employ the taper periodogram instead of the standard peri-

odogram, i.e. when h (·) = 1, is due to the adverse properties that ϑ̂ in (2.3) would

have with h (t) = 1 as Guyon (1982) observed. Recall that tapering is primarily

a technique employed to reduce the bias of the “standard”periodogram, although

it increases the variance by a factor P 2
4 =

(∫ 1

0
h4
)(∫ 1

0
h2
)−2

. Another possibility

is the one described by Robinson and Vidal-Sanz (2006), which would be helpful

when d ≥ 4. However as we only consider explicitly the most common scenario

when d ≤ 3, it then suffi ces to employ ITv (λs).

Given a record {x (t)}nt=1, and denoting henceforth N = Πd
`=1n [`], a natural

estimator of Gθ0 (λ) is Gθ̂N (λ) for a given estimate θ̂, where

(2.2) GθN (λ) =
(2π)

d

N

λ∑
λs

ITx (λs)

|Ψθ (λs)|2
.

The summation in (2.2) is taken over Π̃d
n instead of the half space {λs � 0} to ease

notation and exposition.

For θ̂, we employ the Whittle’s (1954) estimator of ϑ0 =
(
θ′0, σ

2
ε

)′
defined as

(2.3) ϑ̂ = arg min
ϑ∈Θ×R+

QN (ϑ) ,

where

QN (ϑ) =
1

N

∑
λs

{
log fϑ (λs) +

ITx (λs)

(2π)
d
fϑ (λs)

}

with fϑ (λs) = σ2
ε |Ψθ (λs)|2 / (2π)

d. It is worth pointing out that because our

model is multilateral, one consequence is that {ε (t)}t∈Zd loses its interpretation as
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the “prediction”error or as the innovations. The implication of the latter is that

the standard least squares estimator of the parameters θ, that is

θ̂
LSE

= arg min
θ∈Θ

∑
λs

ITx (λs)

|Ψθ (λs)|2
,

is an inconsistent estimator of θ0, see Whittle (1954).

The formulation of H0 given in (2.1) suggests to use the Bartlett’s Tp − process

αθ̂N (λ) as the basis to test H0, where

(2.4) αθN (λ) =
1

2d/2P4
N1/2

[
GθN (λ)

GθN (π)
− λ [1]

π

d∏
`=2

(
1 +

λ [`]

π

)]
, λ ∈ Π̃d,

with GθN (λ) given in (2.2). From here, we can base the test for H0 using η
(
αθ̂N

)
for some continuous functional η : D

(
Π̃d
)
→ R+, where D

(
Π̃d
)
is the space of

càdlàg functions in Π̃d.

Let us introduce the following regularity conditions.

C1 : (a) {ε (t)}t∈Zd in (1.3) is a sequence of zero mean independent identi-

cally distributed random variables with E
(
ε2 (t)

)
= σ2

ε = 1 and finite 4th

moments, denoting its fourth cumulant by κε.

(b) The multilateral moving average representation of {x (t)}t∈Zd in (1.3)

can be written as a multilateral autoregressive model∑
s∈Zd

ξ (s)x (t− s) = ε (t) ξ (0) = 1,

where ξ (s) is the coeffi cient of zs in the Fourier expansion of ℘−1 (z), where

℘ (z) = ℘ (z [1] , ..., z [d]) =
∑
s∈Zd

ψ (s) zs

using the notation zs = Πd
`=1z [`]

s[`] and the convention 00 = 1,

C2 : n [`] � ~n↗∞ for ` = 1, ..., d, where “a � b”means that C−1 ≤ a/b ≤ C

for some finite positive constant C.

C3 : h (·) is the cosine-bell taper, that is,

h (z) = (1− cos (2πz)) .

C4 : θ0 is an interior point of the compact parameter set Θ ⊂ Rp.

C5 : |Ψθ (λ)| =
∣∣∣∑s∈Zd ψθ (s) e−is

′λ
∣∣∣ is a positive and twice continuously dif-

ferentiable function in θ on Π̃d and continuously differentiable in λ for all

θ ∈ Θ.

C6 : If θ1 6= θ2, thenΨθ1 (λ) 6= Ψθ2 (λ) in a set∆ ⊂ Π̃d with positive Lebesgue

measure.
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Conditions C1−C6 are similar to those in Hidalgo (2009) and so his comments

apply here. Notice that we write explicitly E
(
ε2 (t)

)
= σ2

ε as it is a parameter in

itself, although for notational simplicity we have assumed that its true value is 1, cf.

Condition C1 (a). Also note that the condition C1 (b) allows for forwarding looking

noncausal models, which draw some attention in econometrics as in e.g. Lanne and

Saikonnen (2011, 2013).

Let

(2.5) φϑ (λ) =
∂

∂ϑ
log fϑ (λ) =

(
ϕ′θ (λ) , σ−2

ε

)′
, ϕθ (λ) =

∂

∂θ
log |Ψθ (λ)|2

and

Φϑ (λ) = (2π)
−d
∫ λ

−π̊
φϑ (ω) dω and Λϑ = (2π)

−d
∫ π

−π̊
φϑ (ω)φ′ϑ (ω) dω.

C7 : Λϑ is a continuous positive definite matrix at ϑ = ϑ0.

Proceeding as in Hidalgo (2009), we have that the Whittle estimator ϑ̂ in (2.3)

satisfies the asymptotic linearization

θ̂ − θ0 = −Λ̃−1
θ0N

∫ π

−π̊
ϕ̃θ0 (λ)αθ0N (dλ) + op

(
N−1/2

)
,

where

ϕ̃θ (λ) = ϕθ (λ)− 2

(2π)
d

∫ π

−π̊
ϕθ (λ) dλ,

and defining ϕ̃θN (λs) = ϕθ (λs)− 2
N

∑
λs
ϕθ (λs),

Λ̃θN = N−1
∑
λk

ϕ̃θN (λk) ϕ̃′θN (λk) .

Let

(2.6) Ḃ (λ) = B

(
λ

π

)
−
{

λ [1]

π2d−1

d∏
`=2

(
1 +

λ [`]

π

)}
B (1) λ ∈ Π̃d,

where
{
B (u) : u ∈ [0, 1]× [−1, 1]

d−1
}
denotes a zero mean Gaussian process such

that

Cov (B (u) ,B (v)) = 21−d |u [1] ∧ v [1]|
d∏
`=2

|(u [`] ∧ v [`]) + 1| ,

that is, B is a time-changed Brownian sheet. Also let

Λ̃θ = (2π)
−d
∫ π

−π̊
ϕ̃θ
(
λ̄
)
ϕ̃′θ
(
λ̄
)
dλ̄

and define

(2.7) α0
N (λ) =

N1/2

2d/2P4

[
G0
N (λ)

G0
N (π)

− λ [1]

π

d∏
`=2

(
1 +

λ [`]

π

)]
, λ ∈ Π̃d,
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with G0
N (λ) = (2π)d

N

∑λ
λs
ITε (λs). Denoting

α∞ (λ) = Ḃ (λ)−
(

1

(2π)
d

∫ λ

−π̊
ϕ̃′θ0

(
λ̄
)
dλ̄

)
Λ̃−1
θ0

∫ π

−π̊
ϕ̃θ0

(
λ̄
)
Ḃ
(
dλ̄
)
,

we then have the following result.

Theorem 1. Under H0 and assuming C1 − C7 , uniformly in λ ∈ Π̃d, we have

that

αθ̂N (λ) = α0
N (λ)−

(
1

N

λ∑
λs

ϕ̃′θ0N (λs)

)
Λ̃−1
θ0N

1

N

∑
λs

ϕ̃′θ0N (λs) I
T
ε (λs)

+op (1)

⇒ α∞ (λ) .

Proof. See Hidalgo (2009). �

The main conclusion from Theorem 1 is that the asymptotic distribution of the

Tp − process αθ̂N (λ) depends on the model under H0 and also on the estimator of

θ0. So, the asymptotic critical values of η
(
αθ̂N

)
, for any continuous functional η (·),

cannot be easily tabulated. To circumvent this type of problem, several approaches

have been described. A first approach proposes to use bootstrap algorithms. This

is the route employed, among others, by Chen and Romano (2000) or Hainz and

Dahlhaus (2000) using the Up − process and by Hidalgo and Kreiss (2006) who

employed the Tp − process. Of course, all those works were for d = 1, whereas

Hidalgo (2009) extends the previous work when d ≥ 1. A second alternative com-

pares the parametric and nonparametric fits of the spectral density function. This

route was followed, among others, by Hong (1996) or Paparoditis (2000) for d = 1

and Crujeiras et al. (2008) when d > 1. However, the implementation of the test

depends on a bandwidth parameter and they are ineffi cient compared to tests based

on η
(
αθ̂N

)
due to the loss of local power proportional to the bandwidth parameter.

One additional disadvantage is that there is not a clear procedure as to how to

choose the bandwidth parameter that, keeping the correct size of the test, conveys

good power properties. A third approach is to employ a transformation of αθ̂N that

converges in distribution to the “standard”Brownian sheet. This is the route that

we follow in the next section.
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3. MARTINGALE TRANSFORMATION: ITS BOOTSTRAP

ANALOGUE

In this section we shall present and examine a martingale transformation LθN (·)

of αθ̂N (λ), as well as its bootstrap analogue, when d ≥ 1. The transformation

resembles ideas introduced by Brown, Durbin and Evans (1975) and examined in

depth by Khmaladze (1981) and Delgado, Hidalgo and Velasco (2005) when d = 1

and the model is causal. Our aim in this section is thus to extend the latter

approach to d > 1 and/or noncausal models. The approach parallels the existing

similarities between Khmaladze’s (1981) transformation and the CUSUM of least

squares residuals approach followed in Delgado et al. (2005) in that the latter

can be considered a discrete version of the former. In our context, as we will see

below, we will mirror the transformation given in McKeague et al.’s (1995). More

specifically, our aim shall be to show that the transformation Lθ̂N
(
αθ̂N

)
converges

weakly to the time-changed Brownian sheet B (·) defined in (2.6). In addition, we

describe a bootstrap analogue of Lθ̂N
(
αθ̂N

)
showing its validity.

For that purpose, it is worth first noticing that Theorem 1 part (a) indicates

that αθ̂N has the uniform asymptotic expansion

sup
λ∈Π̃d

∣∣∣∣∣αθ̂N (λ)− 2π

G0
N (π)

1

N1/2

λ∑
λs

uN (λs)

∣∣∣∣∣ = op (1) ,

where

uN (λs) = ĬTε (λs)− ϕ̃′θ0N (λs) Λ̃−1
θ0N

N−1
∑
λk

ϕ̃θ0N (λk) ĬTε (λk)

and ĬTε (λs) = ITε (λs)−σ̂2
ε. Here σ̂

2
ε = Gθ̂N (π) which is a N1/2-consistent estimator

of σ2
ε = 1, see Hidalgo (2009). Now observing that we can consider uN (s) as the

least squares residuals in the artificial regression model of ITε (λs) on
(
1, ϕ′θ0N (λs)

)′
,

it suggests employing the CUSUM of recursive least squares residuals to construct

asymptotically pivotal tests as originally proposed by Brown, Durbin and Evans

(1975). In our case, the recursive estimation is based on the lexicographic ordering

in Π̃d
n, whose minimum value is (π/ñ [1] ,−π, ...,−π)

′
.

Let Λ̃θN (λ) = N−1
∑
λk�λ ϕ̃θN (λk) ϕ̃′θN (λk) and assume the following condi-

tion.

C8 : Λ̃θ0N
(
(π/ñ [1] ,−π, ...,−π)

′) is non-singular a.s. for all n.
Condition C8 is very mild and satisfied for all common models used with real

data. Recall that p is the dimension of the parameter θ0. Also, notice that we can

directly compute from the model the deterministic matrix Λ̃θ0N (·).
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The (scaled) CUSUM of recursive least squares residuals is thus defined as

β0
N (λ) =

1

G0
N (π)

21/2

N1/2

λ∑
λs

eN (λs) , λ ∈ Π̃d,

where

eN (λs) = ĬTε (λs)− ϕ̃′θ0N (λs) bN (λs)

are the least squares residuals with

bN (λs) = Λ̃−1
θ0N

(λs)
1

N

∑
λk≺λs

ϕ̃θ0N (λk) ĬTε (λk) .

Of course, we could have used the forward least squares residuals, i.e.

efN (λs) = ĬTε (λs)− ϕ̃′θ0N (λs) bN (λs) , s ≺ p̊,

with p̊ = (ñ [1] , ñ [2] , ..., ñ [d− 1] , ñ [d]− p− 1) and

bfN (λs) = Λ̃−1
θ0N

(λs)
1

N

∑
λs≺λk

ϕ̃θ0N (λk) ĬTε (λk)

being the conclusions the same as with eN (λs).

The empirical process β0
N is a linear transformation of α0

N , i.e.

β0
N (λ) = Lθ0N

(
α0
N (λ)

)
, λ ∈ Π̃d,

where, for any function g ∈ D
(

Π̃d
)
,

LθN (g (λ)) = g (λ)− 1

N

λ∑
λs

ϕ̃′θN (λs) Λ̃−1
θN (λs)

1

N

∑
λk≺λs

ϕ̃θN (λk) g (λk) .

The transformation Lθ0N has the limiting version L0, defined as

L0 (g (λ)) = g (λ)− 1

(2π)
d

∫ λ

−π̊
ϕ̃θ0

(
λ
)

Λ̃−1
θ0

(
λ
)(∫

λ̃≺λ
ϕ̃θ0

(
λ̃
)
g
(
dλ̃
))

dλ.

Notice that for d = 1, L0 (α∞) is the martingale innovation of α∞, see Khmaladze

(1981). On the other hand, in our context, L0 (α∞) becomes the transformation

examined by McKeague et al. (1995). That is consider

η (λ) = B (λ)−K (λ) ξ,

where B (λ) is a Brownian sheet in [0, 1]
2 and K (λ) =

∫ λ[1]

0

∫ λ[2]

0
k (s, x) dsdx and

letting d = 2 for simplicity. Then, they show that

W (λ) = η (λ)−
∫ λ[2]

0

[∫ λ[1]

0

k (s, x)

{∫ 1

x
k (s, u) dη (s, u)∫ 1

x
k2 (s, r) dr

}
ds

]
dx

follows a Brownian sheet. In this sense, LθN (g (λ)) becomes the discrete version of

the latter. In our context k (s, x) = ϕ̃θ (s, x) and ξ is the asymptotic distribution
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of N1/2
(
θ̂ − θ0

)
. Also, it is worth mentioning that the transformation is valid

whether any other N1/2-consistent estimator of θ0 were employed.

Theorem 2. Under H0 and assuming C1− C8, β0
N (λ)⇒ B (λ/π); λ ∈ Π̃d.

Proof. The proof proceeds, if it is not easier, as that of Theorem 4 part (a) and

thus it is omitted. �

Because β0
N cannot be computed in practice, as it depends on θ0, we employ a

finite sample analogue. Let

I̊Tx,θ (λs) =
ITx (λs)

|Ψθ (λs)|2
− 1

J

∑
λk≺λs

ITx (λk)

|Ψθ (λk)|2

where J = #
{
λk ∈ Πd

n : 0 ≺ λk ≺ λs
}
, and introduce the recursive residuals in the

linear projection of
{
I̊Tx,θ (λk)

}
0≺λk≺λs

on {1, ϕθ (λk)}0≺λk≺λs , that is,

eθN (λs) = I̊Tx,θ (λs)− ϕ̃′θN (λs) bθN (λs) ,

where bθN (λs) = Λ̃−1
θN (λs)

1
N

∑
λk≺λs ϕ̃θN (λk) I̊Tx,θ (λk). Then, we consider βθ̂N =

Lθ̂N
(
αθ̂N (λ)

)
as the finite sample analogue of β0

N , where

βθN (λ) =
1

GθN (π)P4

2d/2

N1/2

λ∑
λs

eθN (λs) , λ ∈ Π̃d.

To establish the asymptotic equivalence between β0
N (·) and βθ̂N (·), we need an

extra smoothness condition on the model under H0.

C9 : For all λ ∈ Π̃d, ϕθ (λ) is twice continuously differentiable in θ.

Theorem 3. Assuming C1− C9, under H0,

sup
λ∈Π̃d

∣∣βθ̂N (λ)− β0
N (λ)

∣∣ = op (1) .

Proof. The proof proceeds, if it is not easier, as that of Theorem 4 part (b) and

thus it is omitted. �

From a computational point of view, it is worth observing that

Λ̃−1
θN (λs+1) = Λ̃−1

θN (λs)−
Λ̃−1
θN (λs) ϕ̃θN (λs+1) ϕ̃

′
θN (λs+1) Λ̃−1

θN (λs)

N + ϕ̃′θN (λs+1) Λ̃−1
θN (λs) ϕ̃θN (λs+1)

and, proceeding as in Brown, Durbin and Evans (1975),

bθN (λs+1) = bθN (λs) + Λ̃−1
θN (λs+1) ϕ̃θN (λs+1)

[
I̊Tx,θ (λs+1)− ϕ̃′θN (λs+1) bθN (λs)

]
,

where λs+1 = min
{
λk ∈ Π̃d

n : λk � λs
}
.
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Corollary 1. Let η : D
(

Π̃d
)
→ R+ be a continuous functional. Then, under H0

and the conditions in Theorem 3, we have that

η
(
βθ̂N

) d→ η (B) .

Proof. The proof is an immediate consequence of Theorems 2 and 3 and the con-

tinuous mapping theorem, so it is omitted. �

Two standard functionals η (·) are the Kolmogorov-Smirnov and the Cramer-von

Mises defined as

K̂N = sup
λs∈Π̃dn

∣∣βθ̂N (λs)
∣∣ d→ sup

λ∈Π̃d

∣∣∣∣B(λπ
)∣∣∣∣ ,

ĈN =
2

N

λ∑
λs

βθ̂N (λs)
2 d→ 2

(2π)
d

∫ π

−π̊
B2

(
λ

π

)
dλ.

Note that the limiting random variables can be represented as the supremum and

integral of the d-dimensional standard Brownian sheet by an appropriate change-

of-variable.

3.1. Bootstrap Approach.

As mentioned at the beginning of section 3, we shall present and examine the

bootstrap analogue of η
(
βθ̂N

)
. To that end, we define for a generic sequence

{v (t)}nt=1, the discrete Fourier transform as

wv (λ) =
1

N1/2

n∑
t=1

v (t) e−it
′λ.

The bootstrap analogue of βθN (λ) is described in the following 3 STEPS.

STEP 1: We first obtain the residuals {ε̂ (t)}nt=1 as

ε̂ (t) =
1

N1/2

ñ∑
s=−ñ

e−it
′λsΨ−1

θ̂
(λs)wx (λs) ,

and we obtain a random sample of size n̊ = (2n [1] , ..., 2n [d]) with replace-

ment from the empirical distribution function of {ε̂ (t)}nt=1. Denote the

sample by {ε∗ (t)}n̊t=1 and compute {x̃∗ (t)}n̊t=1 by

(3.1) x̃∗ (t) =
1

2(d+1)/2N1/2

ñ∑
s=−ñ

e−it
′λ̃sΨθ̂

(
λ̃s

)
wε∗

(
λ̃s

)
,

where λ̃s are

λ̃s [`] =
πs [`]

n [`]
; s [`] = 0,±1, ...,±n [`] , ` = 1, ..., d.

Finally, our bootstrap sample is {x∗ (t)}nt=1 = {x̃∗ (t+ n)}n̊t=n+1.
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Remark 1. (a) Notice that because βθ̂N = Lθ̂N
(
αθ̂N

)
is independent of the first

two moments of {ε (t)}t∈Zd , we do not need to standardize ε̂ (t) to obtain the boot-

strap sample. (b) The motivation to compute the residuals as in STEP 1 comes

from the observation that, for any generic sequence {v (t)}nt=1, we have the equality

v (t) =
1

N1/2

ñ∑
s=−ñ

eit
′λswv (λs) ,

and then that by Lemmas 2 and 3 of Hidalgo (2009), we have that wx (λs) '

Ψθ0 (λs)wε (λs), for all s.

STEP 2: The bootstrap analogue of ϑ̂ =
(
θ̂
′
, σ̂2
ε

)′
is given by

(3.2) ϑ̂
∗

= ϑ̂−
(∑

λs

φϑ̂ (λs)φ
′
ϑ̂

(λs)

)−1
∂

∂ϑ
Q∗N

(
ϑ̂
)
,

where

(3.3) Q∗N (ϑ) =
1

N

∑
λs

{
log fϑ (λs) +

ITx∗ (λs)

(2π)
d
fϑ (λs)

}
.

Remark 2. We can replace the estimator ϑ̂
∗
in (3.2) by

ϑ̂
∗

= arg min
ϑ∈Θ×R+

Q∗N (ϑ) .

However, for computational simplicity, see Shao and Tu (1995, p. 228 and p. 336),

we keep our definition of ϑ̂
∗
in (3.2).

STEP 3: Compute the bootstrap Tp − process α∗θ̂∗N (λ), where

(3.4) α∗θN (λ) =
N1/2

21/2P0

[
G∗θN (λ)

G∗θN (π)
− λ [1]

π

d∏
`=2

(
1 +

λ [`]

π

)]
, λ ∈ Π̃d,

with G∗θN (λ) = (2π)
d
N−1

∑λ
λs
|Ψθ (λs)|−2

ITx∗ (λs). Finally we compute

the bootstrap analogue of βθ̂N , β
∗
θ̂
∗
N
, as

β∗θN (λ) = LθN (α∗θN (λ))

=
1

G∗θN (π)

21/2

N1/2

λ∑
λs

e∗θN (λs) , λ ∈ Π̃d

with

e∗θN (λs) = I̊Tx∗,θ (λs)− ϕ̃′θ (λs) b
∗
θN (λs) ,

b∗θN (λs) = Λ̃−1
θN (λs)

1

J

∑
λk≺λs

ϕ̃θN (λk) I̊Tx∗,θ (λk) ,
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are the recursive residuals in the linear projection of
{
I̊Tx∗,θ (λk)

}
0≺λk≺λs

on {1, ϕθ (λk)}0≺λk≺λs with

I̊Tx∗,θ (λs) =
ITx∗ (λs)

|Ψθ (λs)|2
− 1

J

∑
λk≺λs

ITx∗ (λk)

|Ψθ (λk)|2
.

With G0∗
N (λ) = (2π)

d
N−1

∑λ
λs
ĬTε∗ (λs), λ ∈ Π̃d, let β0∗

N be as

β0∗
N (λ) =

1

G0∗
N (π)

21/2

N1/2

λ∑
λs

e∗N (λs) , λ ∈ Π̃d,

where

e∗N (λs) = ĬTε∗ (λs)− ϕ̃′θ̂N (λs) b
∗
N (λs) ,

b∗N (λs) = Λ̃−1

θ̂N
(λs)

1

J

∑
λk≺λs

ϕ̃θ̂N (λk) ĬTε∗ (λk) .

Here ĬTε∗ (λs) = ITε∗ (λs)−
(∑

λk≺λs I
T
ε∗ (λk)

)
/J . Let the notation ∗⇒ (and op∗ (1) ,

d∗−→

, etc ...) indicate respectively weak convergence (and convergence in probability,

distribution, etc... ) of a bootstrap statistic conditional on the observed data.

Theorem 4. Under the maintained hypothesis and C1− C9, we have that

(a) β0∗
N (λ)

∗⇒ B (λ/π) , λ ∈ Π̃d in probability.

(b) supλ∈Π̃d

∣∣β∗
θ̂
∗
N

(λ)− β0∗
N (λ)

∣∣ = op∗ (1) .

Corollary 2. Let η : D
(

Π̃d
)
→ R+ be as in Corollary 1. Then, under the

maintained hypothesis and conditions in Theorem 4, we have that

η
(
β∗
θ̂
∗
N

) d∗→ η (B) in probability.

Proof. The proof is an immediate consequence of Theorem 4 and the continuous

mapping theorem, so it is omitted. �

4. EXTENSION TO REGRESSION MODELS AND LOCAL

ALTERNATIVES

The aim of this section is twofold. On the one hand, we would like to describe the

consequences when the sequence {x (t)}nt=1 is not observable but they are the errors

of a parametric regression model. The second aim of this section is to describe the

type of local alternatives that η
(
βθ̂N

)
is able to detect.
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4.1. Regression models.

With regard to our first aim. Let’s consider the model in (1.1), that is

(4.1) y (t) = β′0z (t) + x (t) , t = 1, ..., n,

where z (t) is the q-dimensional regressor. Recall that as we have excluded the

frequency λ = 0 in the computation of η
(
βθ̂N

)
, we have effectively covered in the

previous section the scenario when z (t) = 1. In our present context and denoting

by β̂ the least squares estimator of β0, the test becomes η
(
βθ̃N

)
, where

ϑ̃ = arg min
ϑ∈Θ×R+

QN (ϑ)

with

QN (ϑ) =
1

N

∑
λs

{
log fϑ (λs) +

ITx̂ (λs)

(2π)
d
fϑ (λs)

}

and {x̂ (t)}nt=1 =
{
y (t)− β̂

′
z (t)

}n
t=1

is the set of the least squares residuals.

Before we state the asymptotic properties of the least squares estimator

β̂ =

(
n∑
t=1

z (t) z′ (t)

)−1 n∑
t=1

z (t) y (t) ,

let’s introduce the following condition denoted as Grenander condition on the de-

terministic regressors Z, which denotes the n× q matrix stacking z (t)’s.

Grenander Condition: Let zs (t) denote the s-th element of the vector z (t)

and An = diag
(√∑n

t=1 z
2
s (t)

)q
s=1
. Then, for all s = 1, ..., q, as n→∞,

(i)
∑n
t=1 z

2
s (t)→∞,

(ii) max1≤u≤n
z2s(u)∑n
t=1 z

2
s(t) → 0,

(iii) A−1
n

∑n
t=s+1 z (t− s) z′ (t)A−1

n → R (s) =
∫ π
−π̊ e

is′λM (dλ),

whereM (λ2)−M (λ1) is a Hermitian nonnegative matrix andR = R (0) >

0 and t− s = (t [`]− s [`])
d
`=1.

Examples of deterministic sequences {z (t)}t∈Zd satisfying the Grenander’s con-

ditions are spatial-trend polynomials, see e.g. §3.4 of Cressie (1993). That is, in

case of d = 2,

z (t) =
[
t [1]

s
t [2]

k
]

0≤s,k≤r
.

If r = 2,

(4.2) z (t) =
(

1, t [1] , t [2] , t [1]
2
, t [2]

2
, t [1] t [2]

)′
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and hence q = 6. In this case, using that

1

mκ+1

m∑
k=1

kκ →
m↗∞

1

κ+ 1
, κ > −1

we obtain

R (s) =



1 31/2/2 31/2/2 51/2/3 51/2/3 3/4

1 3/4 151/2/4 151/2/6 271/2/6

1 151/2/6 151/2/4 271/2/6

1 151/2/9 451/2/8

1 451/2/8

1


.

One consequence of R (s) being independent of s is that M (λ) has a jump at

the origin, and the size of the jump is R. That is,

M (λ) =

 0 if λ [1] < 0 or λ [2] < 0

R (s) = R if λ [1] ≥ 0 and λ [2] ≥ 0.

Let’s now introduce a slightly milder condition on the spectral density function

of the sequence {x (t)}t∈Z2 . Hereafter, we restrict our discussion to d = 2 for the

clarity of our exposition.

C1’: (a) The Generalized Linear process {x (t)}t∈Z2 in (1.3) has a spectral

density function f (λ), which is positive and piecewise continuous.

(b) The jumps ofM (λ) do not coincide with the discontinuities of f (λ).

We have then the following proposition.

Proposition 1. Under C1′, C2 and the Grenander conditions, we have that

An

(
β̂ − β0

)
→ N

(
0,R−1

∫ π

−π
f (λ)M (dλ)R−1

)
.

We now comment on the condition C1′ and the results on Proposition 1. First, we

observe that C1′ indicates that the Generalized linear process {x (t)}t∈Z2 does not

need to satisfy the standard strong mixing conditions for the central limit theorem

of the least squares to hold true. Moreover, the condition that
∑
s∈Zd ψ

2 (s) < ∞

implies that it is possible to allow for long memory and still the results of the

latter proposition hold. Of course, the conditions in Jenish and Prucha (2009) rule

out long memory or jumps in the spectral density function, however they allow for

nonlinear processes, say the errors x (t) = g (x̌ (t)), where x̌ (t) is a Generalized

linear process. Recall that as we allow for the spectral density function to have

jumps, due to results of Ibragimov and Rozanov (1978), it implies that {x (t)}t∈Z2
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cannot be strong-mixing. Moreover, our results improve those given in Mardia and

Marshall (1984). Finally, the results of Proposition 1 indicates that the fast Fourier

transform at λ0 of {x (t)}nt=1 satisfies the central limit theorem if λ0 6= λ̆ where λ̆

is a jump/discontinuity point of f (λ).

From Proposition 1, we have the following corollary.

Corollary 3. Under C1′ and C1−C7 and the Grenander conditions, we have that

ϑ̃− ϑ̂ = Op
(
N−1

)
.

So, the first conclusion we have is that the asymptotic distribution of the Whit-

tle estimator of ϑ0 is unaffected by using the residuals instead of the (un)observable

X = {x (t)}nt=1 and that the asymptotic distribution ofAn
(
β̂ − β0

)
andN1/2

(
ϑ̃− ϑ0

)
are independent.

Denote

(4.3) α̂θN (λ) =
1

2d/2P4
N1/2

[
ĜθN (λ)

ĜθN (π)
− λ [1]

π

d∏
`=2

(
1 +

λ [`]

π

)]
, λ ∈ Π̃d,

where

(4.4) ĜθN (λ) =
(2π)

d

N

λ∑
λs

ITx̂ (λs)

|Ψθ (λs)|2

are (2.4) and (2.2) but with the residuals x̂ (t) instead of the errors x (t). Similarly,

introduce

I̊Tx̂,θ (λs) =
ITx̂ (λs)

|Ψθ (λs)|2
− 1

J

∑
λk≺λs

ITx̂ (λk)

|Ψθ (λk)|2
,

and the recursive residuals in the linear projection of
{
I̊Tx̂,θ (λk)

}
0≺λk≺λs

on {1, ϕθ (λk)}0≺λk≺λs ,

that is,

êθN (λs) = I̊Tx̂,θ (λs)− ϕ̃′θN (λs) b̂θN (λs) ,

where b̂θN (λs) = Λ̃−1
θN (λs)

1
N

∑
λk≺λs ϕ̃θN (λk) I̊Tx̂,θ (λk). Then, the martingale

transformation becomes

β̂θN (λ) =
1

ĜθN (π)P4

2d/2

N1/2

λ∑
λs

êθN (λs) , λ ∈ Π̃d.

With the help of Corollary 3, we have the following theorem:

Theorem 5. Under C1− C9 and the Grenander conditions, we have that

(a) sup
λ∈Π̃d

∣∣α̂θ̃N (λ)− αθ̂N (λ)
∣∣ = op (1)

(b) sup
λ∈Π̃d

∣∣∣β̂θ̃N (λ)− βθ̂N (λ)
∣∣∣ = op (1) .
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So, the conclusion from Theorem 5 is that, up to first order asymptotics, the

behaviour of the test based on functionals of αθN (λ) or βθN (λ) is unaltered. Fur-

thermore, the bootstrap can be performed by applying the same algorithm as de-

scribed in Section 3.1 to the regression residuals {x̂ (t)}nt=1 due to the asymptotic

independence implied by Corollary 3. Alternatively, we can add one more step be-

tween Step 1 and 2. That is, do Step 1 with the regression residuals {x̂ (t)}nt=1and

obtain {x∗ (t)}nt=1. Next, generate
{
y∗ (t) = z (t)

′
β̂ + x∗ (t)

}n
t=1

and compute the

OLS residuals {x̂∗ (t)}nt=1 by the OLS of {y∗ (t)}nt=1 on {z (t)}nt=1 . Finally, run Step

2 with {x̂∗ (t)}nt=1 there.

4.2. Local alternatives: Omnibus, Directional and Portmanteau Tests.

The aim of this section is twofold. On the one hand, we want to investigate the

relationship of our test in Section 3 with those based on, say, a Portmanteau scheme.

On the other hand, we would like also to describe the type of local alternatives that

η
(
βθ̂N

)
is able to detect. In particular, we will see that η

(
βθ̂N

)
is able to detect

local alternatives of the type

H1N : |Ψ(λ)|2 = |Ψθ0 (λ)|2
(

1 + τ
l (λ)

N1/2
+
sN (λ)

N

)
, λ ∈ Π̃d for some θ0 ∈ Θ,

where l (λ) satisfies the same properties as ϕθ0 in C9, τ is a constant, possibly

unknown, and for some finite N0, supN>N0
|sN (·)| is an integrable function. Let us

consider a couple of examples for d = 2.

Example 1. We wish to study departures of total independence (the white noise)

hypothesis in the direction of the first-order isotropic conditional autoregressive

(CAR) scheme

E {x (t) |...} =
θ0

N1/2
(x (t− e1) + x (t+ e1) + x (t− e2) + x (t+ e2)) .

In this case, we have that

|Ψ(λ)|2

|Ψθ0 (λ)|2
= 1− 2

θ0

N1/2
{cos (λ [1]) + cos (λ [2])} ,

so that l(λ) = −2 {cos (λ [1]) + cos (λ [2])} and τ = θ0, and the remainder function

sN (λ) being equal to zero.

(Recall that the general CAR formulation, see Besag (1974), is given by

(4.5) E {x (t) |x (r) : r 6= t} =
∑

s∈Zd\{0}

δ (s)x (t− s) .
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Example 2. Suppose now that we wish to study departures of total independence

(white noise) hypothesis in the direction of a first-order (isotropic) simultaneous

autoregressive (SAR) model, see Whittle (1954),

x (t) =
θ0

N1/2
(x (t− e1) + x (t+ e1) + x (t− e2) + x (t+ e2))

+ε (t) .

Then, we obtain that

|Ψ(λ)|2

|Ψθ0 (λ)|2
= 1− 2

θ0

N1/2
{cos (λ [1]) + cos (λ [2])}+

θ0

N
sN (λ) ,

so that, we have that

l(λ) = −2 {cos (λ [1]) + cos (λ [2])} and τ = θ0,

and sN (λ) is a function of cos (λ [1]) , cos (2λ [1]), cos (λ [2]) and cos (2λ [2]), which

satisfies that |sN (λ)| < C.

Remark 3. It is worth mentioning that the class of CAR models is more general

than the SAR models. In fact, as Cressie (1993, Ch.6) observed, any SAR model

has a CAR representation but not vice versa.

Now, for λ ∈ Π̃d, let us define

(4.6)

L (λ) =
1

(2π)
d

∫ λ

−π̊

{
l
(
λ
)
− γ′θ0

(
λ
)

Λ−1
θ0

(
λ
) 1

(2π)
d

∫
λ̃≺λ

γθ0

(
λ̃
)
l
(
λ̃
)
dλ̃

}
dλ,

where γ′θ0 (λ) =
(
1, ϕ′θ0 (λ)

)
and Λθ0 (λ) =

∫
λ̃≺λ γθ0

(
λ̃
)
γ′θ0

(
λ̃
)
dλ̃. Also denote

M (λ) = B (λ/π) + τ ·L (λ) , λ ∈ Π̃d.

Then, we have the following theorem.

Theorem 6. Assuming the same conditions of Theorem 3, under H1N , βθ̂N ⇒M .

Proof. The proof follows by Theorem 3 and standard arguments, so it is omitted.

�

As usual, L (λ) 6= 0 implies that under the alternative our test develops a mean

function, N1/2L (λ) which clearly increases to infinity in absolute value. It is obvi-

ous from (4.6) that L (λ) will be different than zero in a set with positive Lebesgue
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measure unless l (λ) is a constant or ϕθ0 (λ). If so, then H1N ⊆ H0. Indeed, con-

sider the model
∣∣Ψθ0+1/N1/2 (λ)

∣∣2. Then, it is easy to see by Taylor’s expansion
that ∣∣Ψθ0+1/N1/2 (λ)

∣∣2 = |Ψθ0 (λ)|2
(

1 + τ
l (λ)

N1/2
+
sN (λ)

N

)
,

so that we can conclude that H1N ⊆ H0.

We now turn our attention to the omnibus and directional tests. When d = 1,

using the fact thatM andB are identically distributed, except for the deterministic

shift τ · L, and taking into account that 21/2 sin ((j − 1/2)λ) and 1/ (j − 1/2)
2
π2

are the eigenfunctions and eigenvalues in the Kac-Siegert representation ofB (λ/π),

the orthogonal components ofM

m (j) = 21/2

(
j − 1

2

)∫ π

0

sin

((
j − 1

2

)
λ

)
M (λ) dλ, j = 1, 2, ...,

are distributed as independent N (τ · υ (j) , 1), where

υ (j) = 21/2

(
j − 1

2

)∫ π

0

sin

((
j − 1

2

)
λ

)
L (λ) dλ, j = 1, 2, ....

When d ≥ 1, the previous formulae become

m (j) = 2d/2
∏d

`=1

(
j [`]− 1

2

)∫ π

−π̊

∏d

`=1
sin

((
j [`]− 1

2

)
λ

)
M (λ) dλ, j = 1, 2, ...

which are distributed as independent N (τ · υ (j) , 1), where

υ (j) = 2d/2
∏d

`=1

(
j [`]− 1

2

)∫ π

−π̊

∏d

`=1
sin

((
j [`]− 1

2

)
λ

)
L (λ) dλ, j = 1, 2, ....

Using, the (asymptotically) orthogonal components of βθ̂N , for j = 1, 2, ...,

m̃N (j) = 2d/2
∏d

`=1

(
j [`]− 1

2

)∫ π

−π̊

∏d

`=1
sin

((
j [`]− 1

2

)
λ

)
βθ̂N (λ) dλ,

we obtain the spectral representation

βθ̂N (λ) = 2d/2
∞∑
j=1

m̃N (j)
∏d

`=1

sin
((
j [`]− 1

2

)
λ
)

π
(
j [`]− 1

2

) , λ ∈ Π̃d.

By Theorem 3 and the continuous mapping theorem, we have that finitely many of

the m̃N (j)́ s converge in distribution to the corresponding m (j)́ s under H1N , for

the Cramer-von Mises, using Parseval’s Theorem, we obtain

ĈN
d→
∞∑
j=1

m2 (j)

π2d
∏d

`=1
(j [`]− 1

2 )2

.

On the other hand, similar arguments to those in Eubank and LaRicca (1992)

imply that for a reasonable choice of q ≥ 1, tests based on

W̃qN =

q∑
j=1

m̃2
N (j)
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will lead to gains in power, compared to ĈN , in the direction of alternatives with

significant autocorrelations at high lags. These Portmanteau tests are related to

Neyman’s (1937) smooth tests, a compromise between omnibus and directional

tests, and for each q ≥ 1, under H1N , we have that

W̃qN
d→ χ2

q

τ2

q∑
j=1

υ2 (j)

 .
That is, tests based on W̃qN are asymptotically pivotal under H0 (τ = 0) for each

choice of q, and more importantly, they are able to detect local alternatives con-

verging to the null at the parametric rate N−1/2, provided that υ (j) 6= 0 for some

j = 1, ..., n. The latter is in contrast with the classical Portmanteau tests based on

Q̃qNN = N

qN∑
j=1

ρ̃2
N (j) ,

where ρ̃N (j) is some estimate of the “j − th” autocorrelation of {ε (t)}t∈Zd . It

can be shown (as in the case d = 1) that Q̃qNN is approximately distributed as

a χ2
qN−p under H0 and assuming that qN diverges with ~n. However, the resulting

test is able to detect alternatives converging to the null at the rate q1/4
N N−1/2 when

d = 1, which is slower than the rate N−1/2 of our tests. Moreover, the performance

of the test can be quite sensitive to the choice of qN as a particular choice of qN for

which the level of the test is close to the nominal one, it turns out that particular

choice delivers a test with low power.

In practice, one might recommend to use the discrete version ŴqN =
∑q
j=1 m̂

2
N (j)

of W̃qN , with

m̂N (j) = 2d/2
{∏d

`=1

(
j [`]− 1

2

)}
πd

N

ñ∑
k=−ñ

∏d

`=1
sin

((
j [`]− 1

2

)
πk

ñ

)
βθ̂N

(
πk

ñ

)
.

Next, optimal tests of H0 in the direction H1N can be constructed applying

results in Grenander (1950), as was suggested by Stute (1997) in the context of

goodness-of-fit testing of a regression function. Asymptotically, testing for H0 in

the direction of H1N is equivalent to test H0 : E (m (j)) = 0 for all j ∈ Zd, against

H1 : E (m (j)) = τ · υ (j) for all j ≥ 1 with L known, but maybe with unknown τ .

Under H0, the distribution of {m (j)}j∈Zd is completely specified, as is also under

H1 when the parameter τ is known. Then we can compute an (asymptotically)

optimal Neyman-Pearson test in the direction ofH1N based on the first q orthogonal
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components of βθ̂N , using the test statistic

ψ̂qN =

∑q
j=1 υ (j) m̂N (j)(∑n
j=1 υ

2 (j)
)1/2

.

Arguing as in Schoenfeld’s (1977) Theorem 3, it can be shown the convergence in

distribution of ψ̂qNN when qN increases with N . Approximately optimal tests for

H0 in the direction of H1N reject H0 at the α significance level when
∣∣∣ψ̂qNN ∣∣∣ >

z1−α/2 if τ has unknown sign, ψ̂qNN > z1−α when τ > 0 and ψ̂qNN < −z1−α when

τ < 0.

5. MONTE CARLO EXPERIMENT

We examine the finite sample performance of our tests. In particular, we com-

pare Cramer-von Mises tests based on the Tp-process αθ̂N and the martingale trans-

formed process βθ̂N . Because the test based on αθ̂N is not pivotal, its critical value

is computed via bootstrap algorithms. On the other hand, for the test based on the

martingale transformation βθ̂N (λ) we employ both the asymptotic critical values

as well as those from its bootstrap approach. For all the specifications and sample

sizes considered in the experiment, the number of Monte Carlo simulations is 1000.

However, to simplify and speed up the computations, we have the bootstrap distrib-

ution G∗n be approximated by the WARP algorithm (Giacomini, Politis and White,

2013). The WARP algorithm permits to approximate the Monte Carlo distribu-

tion of the bootstrap test generating only one additional bootstrap replication for

each Monte Carlo sample, X ∗(1)
n,m , m = 1, . . . , 1000. Then the empirical distribution

of all 1000 bootstrap resamples of our statistic of interest from every independent

replication are used jointly to approximate the distribution of the bootstrap test.

The results are denoted by Tp, Ĉ∗N and ĈN , respectively in the Tables 5.1 through

5.4 below.

Three different models are considered for {x (t)}t∈Z as competing models. These

models are the first- and second-order simultaneous autoregressive model and the

first-order simultaneous moving average model, denoted by SAR (1), SAR (2) and
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SMA (1), respectively. Specifically, for d = 2, they are

SAR (1) :

x (t) = θ (x (t− e1) + x (t+ e1) + x (t− e2) + x (t+ e2)) + ε (t) ,

SAR (2) :

x (t) = θ (x (t− 2e1) + x (t+ 2e1) + x (t− 2e2) + x (t+ 2e2)) + ε (t) ,

SMA (1) :

x (t) = θ (ε (t− e1) + ε (t+ e1) + ε (t− e2) + ε (t+ e2)) + ε (t) ,

where ε (t) is an independent and identically distributed mean zero sequence in Z2.

For all the three specifications, we have considered θ = 0, 0.1 and 0.2 with sample

sizes n = (20, 20) , (20, 40) and (40, 40). Note that the white noise model is included

in our specification by choosing θ = 0. We consider two cases. First, we observe

{x (t)}nt=1 directly and second, we observe {y (t) , z (t)} as specified in Section 4.1.

The type I error is examined using three null models, namely the white noise

model, SAR (1) and SMA (1) with θ = 0.1 and 0.2. The white noise model is

estimated under both SAR (1) and SMA (1) specifications.

TABLE 5.1 ABOUT HERE

Table 5.1 reports the rejection frequencies of the three tests for three different sig-

nificance levels, 0.1, 0.05 and 0.01. The true data generating processes are indicated

in each panel and the white noise cases are indicated by SMA (1) and SAR (1),

respectively, depending on which model is used in the estimation. The outcome of

the Monte-Carlo experiment seems to indicate that our procedure performs reason-

able well. All the tests exhibit rejection rates similar to corresponding levels for all

the scenarios. The bootstrap test, Ĉ∗N , appears to be more conservative than its

corresponding asymptotic one ĈN , while there is some variation in the performance

of the Tp test across different scenarios. All the results seem to be within Monte

Carlo error band.

Table 5.2 reports empirical powers of the tests. We considered three scenarios.

In the first one, we generated the sample from a SMA (1) process but we wrongly

estimated a SAR (1) model. The second scenario we generated a SAR (1) process

but we estimated a SMA (1) model; and finally in the third scenario we generated

a SAR (2) model but we estimated a SAR (1).

TABLE 5.2 ABOUT HERE
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We can signal out some features of the tests. First, the power of each test increases

as the sample size increases excluding some exception in the Tp test when θ = 0.1;

second, the power also increases as the alternative model deviates more from the

null model; and third, it appears that neither of the tests dominates the others.

The tests based on the transformed process has more power than the Tp test when

the true data generating process is SMA (1) or SAR (1). On the other hand, the

latter has more power than the former when it is SAR (2). While the ĈN test shows

more rejection than the Ĉ∗N test, it seems to be a reflection of the under-rejection

tendency of the bootstrap test over the asymptotic test as noted in Table 5.1.

TABLE 5.3 and 5.4 ABOUT HERE

Finally, Tables 5.3 and 5.4 report the empirical sizes and powers of the test when

{x (t)} is the error sequence of the linear regression model described in Section 4.1.

In particular, z (t) is specified as in (4.2) and the true regression coeffi cients are set

as β0 = (1, ..., 1)
′. As predicted by our theory, the error in estimating β0 does not

seem to affect the performance of our test much at least in our simulation design

so that the discussion given for the previous tables apply here as well.

6. CONCLUSION

We have described and examined a distribution free test for the correct speci-

fication of the dynamics in a lattice model. The methodology employed extends

existing one in the situation where the data follows a casual model developed in

Delgado et al. (2005). To that end, we present a martingale-type transformation

when the dimension of “time” could be greater than one, so that the asymptotic

distribution of the test becomes just a functional of a standard Brownian sheet.

We also look at a bootstrap analogue in the spectral domain of the test showing

its asymptotic validity. In addition we demonstrate that the asymptotic behaviour

of the test remains the same even if the process that we are concerned with is not

observed but it is the error term in a linear trending regression model. Both the as-

ymptotic and bootstrap tests seem to work well in small samples as demonstrated

by a set of Monte Carlo simulations and, as anticipated from the theoretical re-

sults, there is no difference on whether we use the true errors or the residuals of the

trending regression model. Moreover, the results are encouraging to practitioners

in that the test has reasonable finite sample size when using the critical values

from the asymptotic distribution. Finally one issue of interest, which we have not
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explored in the paper, is to examine the behaviour of the least squares estimator

of the parameters in the linear trending regression model given in (4.1), where the

regressors z (t) might take the form
[
t [1]

α
, t [2]

β
]
with α < −1/2 and/or β < −1/2.

This would extend results in Robinson (2012). However, in this scenario we will

need to develop new results for the asymptotic behaviour of the estimators of the

parameters and this goes beyond the scope of this paper.
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7. APPENDIX A

We first introduce some more notation. For a generic function g (λ), we abbre-

viate g (λs) by gs and C will denote a generic positive and finite constant. Then,

∑
v≤λs≤u

gs =
∑

λs∈Π̃dn;v[`]≤λs[`]≤u[`],∀`

g (λs) ,

for example. We also drop for simplicity any reference to “T”in wTξ or I
T
ξ , and we

shall denote ζ (λ; θ) : Π̃d × Θ → Rp a function twice continuously differentiable in

λ and θ, abbreviating ζ (λ; θ0) and ζ
(
λ; θ̂
)
respectively by ζ (λ) and ζ̂ (λ).
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Lemma 1. Assume C1− C8. Then,

(a) ϑ̂
∗
− ϑ̂ = op∗ (1)

(b) N1/2
(
θ̂
∗
− θ̂
)

=

(
1

N

∑
λs

ϕ̃θ̂sϕ̃
′
θ̂s

)−1
1

N1/2

∑
λs

ϕ̃θ̂sIε∗s + op∗ (1) .

Proof. Part (a). The proof is quite immediate. Indeed, (3.3) is

(7.1)
1

N

∑
λs

fϑ̂s
fϑs

(
Ix∗s

(2π)
d
fϑ̂s
− 1

)
+

1

N

{∑
λs

fϑ̂s
fϑs
− log

fϑ̂s
fϑs

+ log fϑ̂s

}
.

Now, the difference between the second term of (7.1) and∫ π

−π̊

{
fϑ̂ (λ)

fϑ (λ)
− log

(
fϑ̂ (λ)

fϑ (λ)

)}
dλ+

∫ π

−π̊
log fϑ̂ (λ) dλ

converges to zero in probability using Brillinger (1981, p.15) and that uniformly

in λ,
∣∣fϑ̂ (λ)− fϑ0 (λ)

∣∣ = op (1) by the mean value theorem and C5. Moreover,

the last displayed expression is greater than or equal to (2π)d

2 +
∫ π
−π̊ log fϑ̂ (λ) dλ

with equality when fϑ̂ (λ) = fϑ (λ) for all λ ∈ Π̃d, which is the case only if ϑ = ϑ̂

by C6. On the other hand, the first term of (7.1) converges to zero uniformly

in ϑ by Lemma 15 of Hidalgo (2009) because f−1
ϑ (λ) fϑ̂ (λ) is a twice continuos

differentiable function by C5. From here the conclusion of the lemma proceeds as

in Theorem 1 of Hannan (1973), so we omit its details.

Part (b). It follows by an obvious extension of Lemma 14 of Hidalgo (2009), and

thus it is omitted. �

Lemma 2. Assume C1− C8. Under H0, uniform in λ ∈ Π̃d,

1

N1/2

λ∑
λs

ζs

(
Ix∗s∣∣Ψθ̂
∗
s

∣∣2 − Iε∗s
)

= −
(

1

N

λ∑
λs

ζsϕ
′
θ̂s

)
N1/2

(
θ̂
∗
− θ̂
)

+op∗ (1) .(7.2)

Proof. See Lemma 17 of Hidalgo (2009). �

We now introduce the following notation. For v1 ≺ v2 ∈ Π̃d, with ε̇∗ (t) =

h (t) ε∗ (t),

(7.3) E∗1,N (v1, v2) =

 1

N

∑
v1≤λs≤v2

ζs

( N1/2∑n
t=1 h

2 (t)

n∑
t=1

(
ε̇∗ (t)

2 − h2 (t) σ̂2
ε

))

(7.4) E∗2,N (v1, v2) =
1

N

∑
v1≤λs≤v2

ζs
N1/2∑n
t=1 h

2 (t)

n∑
t1 6=t2=1

ε̇∗ (t1) ε̇∗ (t2) ei(t1−t2)′λs .
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Observe that E∗1,N (v1, v2) + E∗2,N (v1, v2) = N−1/2
∑
v1≤λs≤v2 ζs

(
Iε∗s − σ̂2

ε

)
. Also

for ` = 1, ..., d, we define

E∗(`)1,N (v1 [`] , v2 [`]) =

 1

n [`]

[ñv2[`]/π]∑
s[`]=[ñv1[`]/π]

ζs[`]

( N1/2∑n
t=1 h

2 (t)

n∑
t=1

(
ε̇∗ (t)

2 − h2 (t) σ̂2
ε

))

E∗(`)2,N (v1 [`] , v2 [`])

=
1

N

∑
λs;[ñv1[`]/π]<s[`]<[ñv2[`]/π]

ζs
N1/2∑n
t=1 h

2 (t)

n∑
t1 6=t2=1

ε̇∗ (t1) ε̇∗ (t2) ei(t1−t2)′λs .

We define HN (·, ·) as a Op (1) sequence of random variables.

Next we prove that the processes

(
λ [1]

d∏
`=2

(π + λ [`])

)−υ
E∗c,N (−π̊ [`] , λ), c =

1, 2, are tight for some value of υ > 0. From Bickel and Wichura (1971), it suffi ces

to show the following lemma.

Lemma 3. Assuming C1, for any 0 ≤ ν < 1/4 and ` = 1, ..., d,

(a) E∗
(
E∗(`)1,N (−π̊ [`] , λ1 [`])

λν1 [`]
−
E∗(`)1,N (−π̊ [`] , λ2 [`])

λν2 [`]

)2

= HN (λ1 [`] , λ2 [`]) (λ2 [`]− λ1 [`])
2−2ν

(b) E∗
(
E∗(`)2,N (−π̊ [`] , λ1 [`])

λν1 [`]
−
E∗(`)2,N (−π̊ [`] , λ2 [`])

λν2 [`]

)4

= HN (λ1 [`] , λ2 [`]) (λ2 [`]− λ1 [`])
2−4ν

for all 0 < λ1 [1] < λ2 [1] < π and −π < λ1 [`] < λ2 [`] < π for ` = 2, ..., d.

Proof. The proof proceeds, with standard modifications, as that of Lemma 9 of

Hidalgo (2009) and thus it is omitted. �

In what follows we shall abbreviate ϕ̃′θqΛ̃
−1
θN (λq) by =θN (q) and we write

(7.5) κ∗s =
Ix∗s∣∣Ψθ̂
∗
s

∣∣2 − Iε∗s; ∗s = Iε∗s − σ̂2
ε.

Lemma 4. Assuming C1− C9, for all ε > 0, in probability

(7.6)

lim
λ0→−π̊

lim−→n→∞
Pr∗

 sup
−π̊≺λ�λ0

∣∣∣∣∣∣ 1

N

∑
λ≤λk≤λ0

=θ̂N (k)

N1/2

∑
λs≺λk

ϕ̃θ̂N (λs) (κ∗s + ∗s)

∣∣∣∣∣∣ > ε

 = 0.
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Proof. Take λ0 ≺ −π̊/2 without loss of generality. The triangle inequality implies

that

(7.7) sup
−π̊�λ�λ0

∣∣∣∣∣∣ 1

N

∑
λ≤λk≤λ0

=θ̂N (k)

N1/2

∑
λs≺λk

ϕ̃θ̂N (λs) (κ∗s + ∗s)

∣∣∣∣∣∣

≤ C

N

∑
λ≤λk≤λ0

∥∥=θ̂N (k)
∥∥ gN (k)

δ
2

{
sup

−ñ≤k≤[λ0ñ]

∥∥∥∥∥gN (k)
− δ2

N1/2

∑
λs≺λk

ϕ̃θ̂N (λs)κ∗s

∥∥∥∥∥
+ sup
−ñ<k≤[λ0ñ]

∥∥∥∥∥gN (k)
− δ2

N1/2

∑
λs≺λk

ϕ̃θ̂N (λs) 
∗
s

∥∥∥∥∥
}
,

for any 0 < δ < 1, where gN (k) = N−1 (k [1] /n [1])

d∏
`=2

|1 + k [`] /n [`]|. First C7

implies that
∥∥∥Λ̃θ0 (λ)

∥∥∥ ≥ C−1 |λ0 [`] + π̊ [`]| and hence because θ̂−θ0 = Op
(
N−1/2

)
we have that

∥∥∥Λ̃θ̂N (λk)− Λ̃θ0 (λk)
∥∥∥ = op (1) . So,

(7.8)
∥∥∥Λ̃−1

θ̂N
(λk)

∥∥∥ ≤ CgN (k)
−1

which implies that the first factor on the right of (7.7) is bounded by

C

∣∣∣∣∣ 1

N

λ0∑
λk

∥∥ϕ̃θ̂k∥∥ gN (k)
δ
2−1

∣∣∣∣∣ = Op

(
d∏
`=1

|λ0 [`] + π̊ [`]|
δ
2

)
.

Next, by Lemma 3, the second term inside the braces on the right of (7.7) is

Op (1) for δ > 0 small enough, whereas Lemmas 3 and 1 imply that the first term

on the right of (7.7) is bounded by

sup
−ñ<k≤[λ0ñ]

∥∥∥∥∥gN (k)
− δ2

N

λk∑
λs

ϕ̃θ̂sϕ̃
′
θ̂s

∥∥∥∥∥Op∗ (1) + op∗

(
sup

−ñ<k≤[λ0ñ]

gN (k)
− δ2

Nδ

)

= Op∗

(
d∏
`=1

|λ0 [`] + π̊ [`]|
δ
2

)

because n−1 [`] ≤ ñ−1 [`] ≤ inf−ñ<k≤[λ0ñ] (k [`] /ñ [`]), 0 < δ < 1 and an obvious ex-

tension of Brillinger (1981, p.15). So we conclude that (7.7) = Op∗

(
d∏
`=1

|λ0 [`] + π̊ [`]|
δ
2

)
and hence (7.6) holds true because δ > 0. �

Lemma 5. Assuming C1− C8,

(7.9) sup
λ∈Π̃d

∥∥∥∥∥
λ∑
λs

(
ϕθ̂∗N (λs)− ϕθ̂N (λs)

)
(κ∗s + ∗s)

∥∥∥∥∥ = Op∗ (1) .
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Proof. The expression inside the norm on the left of (7.9) is

λ∑
λs

∂

∂θ
ϕθ̂N (λs)κ∗s

(
θ̂
∗
− θ̂
)

+

λ∑
λs

∂

∂θ
ϕθ̂N (λs) 

∗
s

(
θ̂
∗
− θ̂
)

+

λ∑
λs

(
ϕθ̂∗N (λs)− ϕθ̂N (λs)−

∂

∂θ
ϕθ̂N (λs)

(
θ̂
∗
− θ̂
))

(κ∗s + ∗s) .(7.10)

By C9 and then noting that |a− b| ≤ (a− b) + 2b for a > 0 and b > 0, the norm

of the third term of (7.10) is bounded by

C
∥∥∥θ̂∗ − θ̂∥∥∥2∑

λs

|κ∗s + ∗s| = Op

(∥∥∥θ̂∗ − θ̂∥∥∥2
){∑

λs

(κ∗s + ∗s) +
σ̂2
ε

π

∑
λs

1

}
= Op∗ (1)

by Lemma 1 and then using Lemmas 3 and 18 of Hidalgo (2009). So, uniformly in

λ, the third term of (7.10) is op∗ (1). Likewise, the first term of (7.10) is Op∗ (1)

uniformly in λ using Lemma 4 with ζ̂ (λ) = ∂
∂θϕθ̂ (λ) and Lemma 1. Finally, the

second term of (7.10) is Op∗ (1) by Lemma 18 of Hidalgo (2009) with ζ̂ (λ) =

∂
∂θϕθ̂ (λ). �

Lemma 6. Assuming C1− C9, for all ε > 0, in probability

(7.11)

lim
λ0→−π̊

lim
~n→∞

Pr∗

 sup
−π̊≺λ�λ0

∣∣∣∣∣∣ 1

N

∑
λ≤λk≤λ0

=θ̂∗N (k)

N1/2

∑
s≺k

ϕ̃θ̂∗N (λs) (κ∗s + ∗s)

∣∣∣∣∣∣ > ε

 = 0.

Proof. Notice that Lemma 1 implies that it suffi ces to show (7.11) in the set{∥∥∥θ̂∗ − θ̂∥∥∥ < CN−1/2m−1
N

}
, where mN + m−1

N N−1/2 → 0. On the other hand,

Lemmas 2 and 3 imply that, uniformly in k,

1

N1/2

∑
s≺k

ϕ̃θ̂∗N (λs)κ∗s = −
(
σ̂2
ε

N

∑
s≺k

ϕ̃θ̂∗N (λs) ϕ̃
′
θ̂
∗
N

(λs)

)
N1/2

(
θ̂ − θ̂

∗)
+ op∗ (1)

(7.12)
1

N1/2

∑
s≺k

ϕ̃θ̂∗N (λs) 
∗
s =

1

N1/2

∑
s≺k

ϕ̃θ̂∗N (λs) 
∗
s +Op∗

(
n−1/2

)
proceeding as in the proof of (7.9) but with κ∗s + ∗s replaced by 

∗
s there. Observe

that we can take λ0 ≺ −π̊/2. Next, C8 implies that

sup
−ñ<k≤[λ0ñ]

∥∥∥Λ̃θ̂∗N (k)− Λ̃θ̂N (k)
∥∥∥ = Op∗

(∥∥∥θ̂∗ − θ̂∥∥∥) d∏
`=1

|λ0 [`] + π̊ [`]|

which, together with (7.8), implies that
∥∥∥Λ̃−1

θ̂
∗
N

(k)
∥∥∥ = Op

(
gN (k)

−1
)
.
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So, we have that for 0 < δ < 1/2,

(7.13) sup
−π̊≺λ�λ0

∥∥∥∥∥∥ 1

ñ

∑
λ≤λk≤λ0

=θ̂∗n (k)

N1/2

∑
s≺k

ϕ̃θ̂∗N (λs) (κ∗s + ∗s)

∥∥∥∥∥∥

= Op∗ (1) sup
−π̊≺λ�λ0

∣∣∣∣∣∣ 1

N

∑
λ≤λk≤λ0

∥∥ϕ̃θ̂N (k)
∥∥ gN (k)

(−1+δ/2)

∣∣∣∣∣∣
×
{

sup
λk≤λ0

∥∥∥∥∥gN (k)
−δ/2 1

N1/2

∑
s≺k

ϕ̃θ̂N (λs) 
∗
s

∥∥∥∥∥+Op∗

(
d∏
`=1

|λ0 [`] + π̊ [`]|
δ
2

)}
,

by (7.12) and because C2 implies that −→n ≤ infλk≤λ0 (k [`] /ñ [`]). But Lemma

4 implies that supλk≤λ0

∥∥∥gN (k)
−δ/2

N−1/2
∑
s≺k ϕ̃θ̂N (λs) 

∗
s

∥∥∥ = Op∗ (1) and C3

implies that

sup
−π̊≺λ�λ0

1

N

∑
λ≤λk≤λ0

∥∥ϕ̃θ̂N (k)
∥∥ gN (k)

(−1+δ/2)
= Op

(
d∏
`=1

|λ [`] + π̊ [`]|
δ
2

)
,

so it is the left side of (7.13). From here, we conclude because δ > 0. �

8. APPENDIX B

8.1. PROOF OF THEOREM 4.

We begin with part (a). UsingG∗N (π) = σ̂2
ε+op∗ (1) and recalling that =θN (λs) =

ϕ̃′θN (λs) Λ̃−1
θN (λs), we obtain that, uniform in λ ∈ Π̃d,

(8.1) α̂∗
θ̂
∗
N

(λ) =
(2π)

2d

σ̂2
ε

1

N1/2

λ∑
λs

∗s −
(2π)

2d

σ̂2
ε

Υ̂N (λ) + op∗ (1) ,

where Υ̂N (λ) = N−3/2σ̂−2
ε

∑λ
λs

(
=θ̂N (λs)

∑[λ]
p∗≺s ϕ̃θ̂N (k) ∗k

)
and ∗k as defined in

(7.5).

Suppose, to be shown later, that the convergence in λ � λ0 holds true for any

λ0 ∈ Π̃d. Then, because the Brownian sheet B (λ/π) and the limit of N−1/2
∑λ
λs
∗s

are continuous in Π̃d, Billingsley’s (1968) Theorem 4.2 implies that it suffi ces to

show that for all ε > 0,

lim
λ0→−π̊

lim
~n→∞

Pr∗
{

sup
−π̊≺λ�λ0

∣∣∣Υ̂N (λ0)− Υ̂N (λ)
∣∣∣ > ε

}
= 0,

in probability. But this holds true by Lemma 5, cf. the second term on the right

of (7.7).

So, to complete the proof we need to show that, for any λ0 ∈ Π̃d, the first two

terms on the right of (8.1) converge in bootstrap to π−d/2B (λ/π) in −π̊ ≺ λ � λ0
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in probability. Fidi’s convergence follows by Lemma 18 Hidalgo (2009) part (b)

after we write Υ̂N (λ) as

(2π)
2d

σ̂2
ε

1

N1/2

∑
λk

(
1

N

λk∧λ∑
λs

=θ̂N (s)

)
ϕ̃θ̂N (k) ∗k

and
(
N−1

∑λk∧λ
λs

=θ̂N (s)
)
ϕ̃θ̂N (k) satisfies the same conditions of Lemma 18 Hi-

dalgo (2009) for ζ̂ (λ). Then, it suffi ces to prove tightness. Since N−1/2
∑λ
λs
∗s is

tight by Lemma 2, we only need to show the tightness condition of Υ̂N (λ). By

Billingsley’s (1968) Theorem 15.6, it suffi ces to show that

E∗
(∣∣∣Υ̂N (ϑ)− Υ̂N (µ)

∣∣∣ ∣∣∣Υ̂N (λ)− Υ̂N (ϑ)
∣∣∣) = Op (1)

d∏
`=1

|λ [`]− µ [`]|2δ

for all −π̊ [`] ≤ µ [`] < ϑ [`] < λ [`] ≤ π and some δ > 1/2. Observe that we

can take ñ−1 < |λ [`]− µ [`]| since otherwise the last inequality is trivial. Because

(λ− ϑ) (ϑ− µ) < (λ− µ)
2 by the Cauchy-Schwarz’s inequality, it suffi ces to show

the last displayed equality holds for E∗
∣∣∣Υ̂N (λ)− Υ̂N (µ)

∣∣∣2 which is
1

σ̂4
ε

1

N3

∑
µ≤λs,λk≤λ

=θ̂N (s)
∑
`1≺s

∑
`2≺k

ϕ̃θ̂N (`1) ϕ̃′
θ̂N

(`2)E∗
(
∗`1
∗
`2

)
=′
θ̂N

(k)

= HN (λ, µ)
1

N2

∑
µ≤λs,λk≤λ

∥∥=θ̂N (s)
∥∥∥∥=θ̂N (k)

∥∥
= HN (λ, µ)

(∣∣∣=̃θ̂ (µ, λ)
∣∣∣2 +N−2

)
,

because
∥∥∥N−1

∑λ
λs

∥∥=θ̂N (s)
∥∥− =̃θ̂ (λ)

∥∥∥ = Op
(
N−1

)
by Lemma 12 of Hidalgo

(2009) with =̃θ̂ (µ, λ) = π−1
∫ λ
−µ=θ̂ (w) dw. From here we conclude the proof of part

(a) by Billingsley’s (1968) Theorem 15.6, because =̃θ (λ) is a monotonic, continuous

and nondecreasing function such that
∣∣∣=̃θ̂ (λ)− =̃θ̂ (µ)

∣∣∣ = Op (1)

d∏
`=1

|λ [`]− µ [`]|δ,

δ > 1/2 and ñ−1 [`] ≤ |λ [`]− µ [`]|. To show part (b), by definition of β∗θN and β
∗
N ,

it suffi ces to show that

(8.2)

∣∣∣∣∣ 1

N1/2

λ∑
λk

κ∗k −=θ̂N (k)
1

N

λk∑
λs

ϕ̃θ̂N (s)κ∗s

∣∣∣∣∣
(8.3)

1

Gθ̂∗N (π)

(
1

N

λ∑
λk

=θ̂N (k)
1

N1/2

∑
s≺k

ϕ̃θ̂N (s)

(
Ix∗s∣∣Ψθ̂
∗
s

∣∣2 − Gθ̂∗N (π)

2π

))

− 1

Gθ̂∗N (π)

(
1

N

λ∑
λk

=θ̂∗N (k)
1

N1/2

∑
s≺k

ϕ̃θ̂∗N (s)

(
Ix∗s∣∣Ψθ̂
∗
s

∣∣2 − Gθ̂∗N (π)

2π

))
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converge to zero uniformly in λ ∈ Π̃d. Expression (8.2) is op∗ (1), uniformly in

λ ∈ Π̃d, because as we argued with (57) in Delgado et al. (2011)

−
ϕ̃′
θ̂
∗
N

(s)

Gθ̂∗N (π)
=−1

θ̂
∗
N

1

N1/2

∑
s≺k

ϕ̃θ̂∗N (k) Iε∗k = 0.

Next, because

1

N

λ∑
λk

∥∥ϕ̃θ̂N (k)
∥∥∥∥∥Λ̃−1

θ̂N
(k)
∥∥∥ 1

N

∑
s≺k

∥∥ϕ̃θ̂N (s)
∥∥

≤ C
1

N

λ∑
λk

∥∥ϕ̃θ̂N (k)
∥∥ ∥∥∥Λ̃−1

θ̂N
(k) gN (k)

∥∥∥ ≤ C 1

N

λ∑
λk

∥∥ϕ̃θ̂N (k)
∥∥ = Op (1)

by integrability of ϕθ̂∗ (λ) and (7.8), it implies that the contribution into (8.2) due

to the term op∗ (1) on part (a) of Theorem 1 is negligible.

Next we examine (8.3). Because Gθ̂∗N (π)−Gθ̂N (π) = op∗
(
N−1/2

)
by Lemma

3 and Gθ̂N (π)−Gθ0N (π) = op
(
N−1/2

)
by Lemma 15 of Hidalgo (2009), it suffi ces

to show that

(8.4)

1

N

λ∑
λk

{
=θ̂N (k)

N1/2

∑
λk≺λs

ϕ̃θ̂N (s) (κ∗s + ∗s)−
=θ̂∗N (k)

N1/2

∑
s≺k

ϕ̃θ̂∗N (s) (κ∗s + ∗s)

}

converges to zero uniformly in λ ∈ Π̃d after observing that

sup
λ∈Π̃d

∣∣∣∣∣
λ∑
λk

=θ̂∗N (k)
∑
s≺k

ϕ̃θ̂∗N (s)−
λ∑
λk

=θ̂N (k)
∑
s≺k

γθ̂s

∣∣∣∣∣ = 0.

First, we observe that Lemmas 3 and 5 imply that it suffi ces to show the uniform

convergence in −π̊ ≺ λ � λ0 for any λ0 ≺ 0. But (8.4) is

(8.5)
1

N

λ∑
λk

=θ̂∗N (k)
1

N1/2

∑
s≺k

(
ϕ̃θ̂N (s)− ϕ̃θ̂∗N (s)

)
(κ∗s + ∗s)

(8.6) +
1

N

λ∑
λk

(
=θ̂N (k)−=θ̂∗N (k)

) 1

N1/2

∑
s≺k

ϕ̃θ̂N (s) (κ∗s + ∗s) .

So, the theorem follows if (8.5) and (8.6) are both op∗(1) uniformly in −π̊ ≺ λ � λ0.

To that end, we first show that

sup
λ∈Π̃d

1

N

λ∑
λs

∥∥ϕ̃θ̂N (s)− ϕ̃θ̂∗N (s)
∥∥ = op∗ (1) ,(8.7)

sup
−π̊≺λ�λ0

∥∥∥Λ̃−1

θ̂N
(λ)− Λ̃−1

θ̂
(λ)
∥∥∥ = op (1) ,(8.8)

sup
−π̊≺λ�λ0

∥∥∥Λ̃−1

θ̂
∗
N

(λ)− Λ̃−1

θ̂N
(λ)
∥∥∥ = op∗ (1) .(8.9)
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First, (8.7) follows proceeding as with the proof of (7.9) in Lemma 5 but without

the factor κ∗s + ∗s, (8.8) follows because C8 implies that Λ̃θ0 (λ0) > 0 and because

by C3
∥∥ϕ̃θ̂ (λ) ϕ̃′

θ̂
(λ)
∥∥ satisfies the same conditions of ζ (λ) in Lemma 12 of Hidalgo

(2009), so that

sup
−π̊≺λ�λ0

∥∥∥Λ̃θ̂ (λ)− Λ̃θ̂N (λ)
∥∥∥ = O

(
n−1

)
,

whereas (8.9) follows proceeding as with the proof of (8.7) and (8.8).

Now we show that (8.5) is op(1) uniformly in −π̊ ≺ λ � λ0, which follows by

Lemma 5 and (8.7)−(8.9) noting that
(
ϕ̃′
θ̂N

(s)− ϕ̃′
θ̂
∗
N

(s)
)

=
(
φ′
θ̂N

(s)− φ′
θ̂
∗
N

(s) , 0
)
,

so does (8.6) by (8.7) and (8.9) and that

sup
−π̊≺λ�λ0

∣∣∣∣∣ 1

N1/2

λ∑
λs

ϕ̃θ̂s (κ∗s + ∗s)

∣∣∣∣∣ = Op∗ (1)

by Lemmas 1 and 2 with ζ̂ (λ) = ϕ̃θ̂ (λ) there and observing Lemma 1 and that

Lemma 12 of Hidalgo (2009) implies thatN−1
∑λ
λs
ϕ̃θ̂N (s) ϕ̃′

θ̂N
(s)→P

∫ λ
−π ϕ̃θ0 (ω) ϕ̃′θ0 (ω) dω.�

8.2. PROOF OF PROPOSITION 1 AND COROLLARY 3.

8.2.1. Proof of Proposition 1.

First we notice that it suffi ces to show that

(8.10) A−1
n

n∑
t=1

z (t)x (t)
d→ N

(
0,

∫ π

−π
f (λ)M (dλ)

)
.

To that end, we shall show first that

A−1
n E

(
n∑
t=1

z (t)x (t)

n∑
t=1

z′ (t)x (t)

)
A−1
n →

∫ π

−π
f (λ)M (dλ) .

For that purpose, we first notice that by Weierstrass approximation Theorem, we

have that we can find two trigonometric polynomials f (1)
x (λ) and f

(2)
x (λ) such

that f (2)
x (λ) − f

(1)
x (λ) ≤ ε and f

(1)
x (λ) ≤ f (λ) ≤ f

(2)
x (λ). When the spectral

density function is not continuous, we can employ the construction given in Hannan

(1970, pp.216− 218). Observe that the latter implies that

f (1)
x (λ)Z (λ)Z∗ (λ) ≤ f (λ)Z (λ)Z∗ (λ) ≤ f (2)

x (λ)Z (λ)Z∗ (λ) ,

where Z (λ) = A−1
n

∑n
t=1 z (t) eit

′λ and∫ π

−π

(
f (2)
x (λ)− f (1)

x (λ)
)
Z (λ)Z∗ (λ) dλ ≤ ε

∫ π

−π
Z (λ)Z∗ (λ) dλ

= εA−1
n

n∑
t=1

z (t) z′ (t)A−1
n .(8.11)

→ εR.
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So, it suffi ces to show (8.10) with x (t) being replaced by ẍ (t), where

ẍ (t) =
∑
s∈Md

ψ (s) ε (t− s)

and Md = {s : |s [`]| < J , ` = 1, ..., d}. This is a moving average of finite order.

Now, by standard algebra,

α′A−1
n

n∑
t=1

z (t) ẍ (t) =
∑
s∈Md

ψ (s)

n∑
t=1

(
q∑
r=1

α [r]
zr (t)

An [r]

)
ε (t− s) ,

where α is a q-dimensional vector with norm 1. Now, for each s ∈ Md, the term

on right side of the last displayed equation,
∑n
t=1

(∑q
r=1 α [r] zr(t)

An[r]

)
ε (t− s), con-

verges in distribution to a normal random variable if the Lindeberg’s condition

is satisfied. However, this is the case as ε (t) is iid and thus ε2 (t) is uniformly

integrable, and for any δ > 0

n∑
t=1

E

(
zs (t)

2

An [s]
2

)
ε2 (t− s) I

{(
zs (t)

2

An [r]
2

)
ε2 (t− s) > δ

}

≤ Eε2 (t) I

{
ε2 (t) > min

u

An [r]
2

z2
u,r

δ

}
→ 0

since
(∑n

t=1 zr (t)
2
An [r]

−2
)

= 1 and maxu z
2
r (u)

(∑n
t=1 zr (t)

2
)−1

→ 0 for all

r = 1, ..., q, and where we have employed I (·) for the indicator function.

8.2.2. Proof of Corollary 3.

We now show that

ϑ̂− ϑ̃ = Op
(
N−1

)
.

To that end, it suffi ces to check Robinson (1988), that is

(8.12)
1

N

∑
λs

φϑ̂,s

{
Ix̂,s

(2π)
d
fϑ̂,s
− 1

}
= Op

(
N−1

)
.

The left side of (8.12), except the multiplicative constant (2π)
−d, is

1

N

∑
λs

φϑ̂,s
Ix̂,s − Ix,s

fϑ̂,s
=
(
β̂ − β

)′ 1

N

∑
λs

φϑ̂,s
Iz,s
fϑ̂,s

(
β̂ − β

)
−2
(
β̂ − β

)′ 1

N

∑
λs

φϑ̂,s
Re (wz,swx,s)

fϑ̂,s
.(8.13)

First by standard linearization and that ϑ̂− ϑ0 = Op
(
N−1/2

)
, we have that

1

N

∑
λs

φϑ̂,s
Iz,s
fϑ̂,s

=
1

N

∑
λs

φϑ0,s
Iz,s
fϑ0,s

(
1 +Op

(
N−1/2

))
.
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Next Proposition 1 implies that the behaviour of

(
β̂ − β

)′ 1

N

∑
λs

φϑ0,s
Iz,s
fϑ0,s

(
β̂ − β

)
,

where ζϑ (λ) = f−1
ϑ (λ)φϑ (λ), is that of

A−1
n

1

N

∑
λs

ζϑ0,sIz,sA
−1
n =

1

N2

∑
λs

n−1∑
r=−n+1

eir
′λsζϑ0,sA

−1
n

n−r∑
t=1

z (t) z′ (t+ r)A−1
n

by standard algebra. But by Grenander conditions, the right side of the last dis-

played expression is

1

N

∫ π

−π̊
ζϑ0 (λ)M (dλ) .

So, the first term of the right of (8.13) is Op
(
N−1

)
. Next as we have done with the

first term on the right of (8.13), the second term is governed by the behaviour of

A−1
n

1

N

∑
λs

ζ ϑ̂,swz,swx,s = A−1
n

1

N

∑
λs

ζϑ0,swz,swx,s

+Op

(
N−1/2

)
A−1
n

1

N

∑
λs

(
∂

∂ϑ
ζϑ0,s

)
wz,swx,s

+Op
(
N−1

)
A−1
n

1

N

∑
λs

∥∥∥∥( ∂2

∂ϑ2 ζ ϑ̌,s

)
wz,swx,s

∥∥∥∥ ,
where ϑ̌ is an intermediate point between ϑ̂ and ϑ0. From here it is standard to

conclude that

A−1
n

1

N

∑
λs

ζ ϑ̂,swz,swx,s = Op
(
N−1

)
because

(8.14) E

∣∣∣∣∣A−1
n

1

N

∑
λs

{
ζϑ0,s +

∂

∂ϑ
ζϑ0,s

}
wz,swx,s

∣∣∣∣∣
2

= Op
(
N−2

)
as we now prove. First, by Lemma 3 of Hidalgo (2009),

E

∣∣∣∣∣A−1
n

1

N

∑
λs

ζϑ0,swz,swx,s

∣∣∣∣∣
2

= E

∣∣∣∣∣A−1
n

1

N

∑
λs

φϑ0,s

f
1/2
ϑ0,s

wz,swε,s

∣∣∣∣∣
2

(1 + o (1)) .

Now, form here it is obvious that (8.14) holds true as E (wε,swε,k) = I (s = k). So,

we have that second term of the right of (8.13) is also Op
(
N−1

)
and hence (8.12)

is shown.



SPECIFICATION FOR LATTICE DATA 39

8.3. PROOF OF THEOREM 5.

We will only show part (a) as part (b) is handled similarly. The proof proceeds

very similarly to Corollary 3. Indeed, except multiplicative constants,

sup
λ∈Π̃d

∣∣α̂θ̃N (λ)− αθ̂N (λ)
∣∣ ĜθN (λ) =

(2π)
d

N

λ∑
λs

ITx̂ (λs)

|Ψθ (λs)|2
,

where

α̂θ̃N (λ)− αθ̂N (λ) = N1/2

(
Ĝθ̃N (λ)

Ĝθ̃N (π)
−
Gθ̂N (λ)

Gθ̂N (π)

)
.

Now, by standard delta methods, it suffi ces to show that

sup
λ∈Π̃d

∣∣∣N1/2
(
Ĝθ̃N (λ)−Gθ̂N (λ)

)∣∣∣ = op (1) .

But,

N1/2
(
Ĝθ̃N (λ)−Gθ̂N (λ)

)
=

1

N1/2

λ∑
λs

 Ix̂,s∣∣∣Ψϑ̃,s

∣∣∣2 −
Ix,s∣∣∣Ψϑ̂,s

∣∣∣2


=
1

N1/2

λ∑
λs

Ix̂,s − Ix,s∣∣∣Ψϑ̂,s

∣∣∣2(8.15)

+
1

N1/2

λ∑
λs

Ix̂,s

 1∣∣∣Ψϑ̃,s

∣∣∣2 −
1∣∣∣Ψϑ̂,s

∣∣∣2
 .

First, it is straightforward to show that

sup
λ∈Π̃d

∣∣∣∣∣∣∣
1

N1/2

λ∑
λs

Ix̂,s

 1∣∣∣Ψϑ̃,s

∣∣∣2 −
1∣∣∣Ψϑ̂,s

∣∣∣2

∣∣∣∣∣∣∣ = op (1)

because

sup
λ∈Π̃d

∣∣∣∣∣∣∣Ψϑ̃,s

∣∣∣2 − ∣∣∣Ψϑ̃,s

∣∣∣2∣∣∣∣ =
(
ϑ̃− ϑ̃

)
sup
λ∈Π̃d

∣∣∣∣ ∂∂ϑ |Ψϑ̌ (λ)|2
∣∣∣∣

= Op

(∣∣∣ϑ̃− ϑ̃∣∣∣) .
In addition

sup
λ∈Π̃d

∣∣∣∣∣ 1

N

λ∑
λs

Ix̂,s

∣∣∣∣∣ =
1

N

∑
λs

Ix̂,s

=
1

N

∑
λs

(Ix̂,s − Ix,s) +
1

N

∑
λs

Ix,s

= Op (1)

as a consequence of Corollary 3.
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To conclude the proof it remains to show that the first in the far right of (8.15)

satisfies that

(8.16) sup
λ∈Π̃d

∣∣∣∣∣∣∣
1

N1/2

λ∑
λs

Ix̂,s − Ix,s∣∣∣Ψϑ̂,s

∣∣∣2
∣∣∣∣∣∣∣ = op (1) .

Now as in (8.13),

1

N1/2

λ∑
λs

Ix̂,s − Ix,s∣∣∣Ψϑ̂,s

∣∣∣2 =
(
β̂ − β

)′ 1

N1/2

λ∑
λs

Iz,s∣∣∣Ψϑ̂,s

∣∣∣2
(
β̂ − β

)
(8.17)

−2
(
β̂ − β

)′ 1

N1/2

λ∑
λs

Re (wz,swx,s)∣∣∣Ψϑ̂,s

∣∣∣2 .

The contribution of the first term on the right of (8.17) into the left of (8.16) is

bounded by

A−1
n

1

N1/2

∑
λs

Iz,s

|Ψϑ0,s|
2A
−1
n = op (1)

as we showed in Corollary 3. Finally, the contribution of the second term on the

right of (8.17) into the left of (8.16) is given by that of

sup
λ∈Π̃d

∣∣∣∣∣A−1
n

1

N1/2

λ∑
λs

wz,swε,s
|Ψϑ0,s|

∣∣∣∣∣
proceeding as in Lemma 3 of Hidalgo (2009). Now,

E

∣∣∣∣∣A−1
n

1

N1/2

λ∑
λs

wz,swε,s
|Ψϑ0,s|

∣∣∣∣∣
2

= o (1)

because E (wε,swε,k) = I (s = k). On the other hand,

E

∣∣∣∣∣∣A−1
n

1

N1/2

∑
λ1≤λs≤λ2

wz,swε,s
|Ψϑ0,s|

∣∣∣∣∣∣
2

≤ C |λ2 − λ1|1+δ

proceeding as in Lemma 9 of Hidalgo (2009). This concludes the proof of part (a)

and the theorem.
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Table 5.1

SIZE OF THE TESTS

White Noise

SMA(1) SAR(1)

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.119 0.098 0.105 0.087 0.097 0.106

0.05 0.046 0.043 0.065 0.043 0.047 0.065

0.01 0.016 0.012 0.02 0.015 0.01 0.022

(20, 40) 0.1 0.102 0.103 0.121 0.097 0.108 0.121

0.05 0.048 0.052 0.074 0.045 0.057 0.082

0.01 0.015 0.008 0.021 0.006 0.012 0.021

(40, 40) 0.1 0.089 0.111 0.123 0.097 0.107 0.123

0.05 0.055 0.078 0.076 0.057 0.068 0.078

0.01 0.005 0.024 0.020 0.012 0.006 0.020

SMA(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.110 0.095 0.107 0.082 0.079 0.088

0.05 0.054 0.050 0.064 0.044 0.044 0.052

0.01 0.019 0.015 0.021 0.005 0.008 0.009

(20, 40) 0.1 0.093 0.104 0.126 0.102 0.109 0.112

0.05 0.045 0.037 0.066 0.047 0.048 0.061

0.01 0.008 0.008 0.015 0.005 0.013 0.018

(40, 40) 0.1 0.088 0.082 0.101 0.111 0.103 0.116

0.05 0.042 0.044 0.052 0.051 0.052 0.066

0.01 0.011 0.017 0.021 0.011 0.013 0.021

SAR(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.101 0.099 0.121 0.079 0.104 0.092

0.05 0.047 0.046 0.066 0.038 0.048 0.048

0.01 0.009 0.010 0.021 0.008 0.012 0.012

(20, 40) 0.1 0.106 0.092 0.104 0.095 0.092 0.098

0.05 0.067 0.053 0.055 0.050 0.044 0.059

0.01 0.015 0.018 0.025 0.010 0.004 0.025

(40, 40) 0.1 0.105 0.112 0.111 0.110 0.103 0.109

0.05 0.049 0.05 0.055 0.059 0.055 0.064

0.01 0.01 0.004 0.011 0.011 0.007 0.015
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Table 5.2

POWER OF THE TESTS

SMA(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.119 0.125 0.143 0.270 0.320 0.334

0.05 0.063 0.054 0.088 0.158 0.211 0.225

0.01 0.021 0.014 0.033 0.044 0.090 0.100

(20, 40) 0.1 0.165 0.130 0.151 0.394 0.405 0.460

0.05 0.096 0.079 0.102 0.233 0.294 0.342

0.01 0.025 0.017 0.046 0.089 0.173 0.205

(40, 40) 0.1 0.154 0.149 0.160 0.493 0.685 0.705

0.05 0.104 0.083 0.094 0.328 0.569 0.556

0.01 0.031 0.023 0.033 0.145 0.323 0.345

SAR(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.109 0.118 0.128 0.431 0.597 0.601

0.05 0.047 0.066 0.074 0.320 0.443 0.496

0.01 0.007 0.014 0.022 0.086 0.243 0.334

(20, 40) 0.1 0.106 0.118 0.127 0.704 0.793 0.821

0.05 0.050 0.071 0.074 0.547 0.695 0.733

0.01 0.004 0.014 0.022 0.267 0.476 0.592

(40, 40) 0.1 0.088 0.136 0.149 0.917 0.977 0.980

0.05 0.042 0.077 0.087 0.831 0.955 0.961

0.01 0.004 0.027 0.027 0.618 0.866 0.891

SAR(2)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20, 20) 0.1 0.323 0.139 0.153 0.994 0.874 0.872

0.05 0.204 0.070 0.086 0.926 0.662 0.682

0.01 0.101 0.014 0.025 0.601 0.124 0.308

(20, 40) 0.1 0.509 0.216 0.262 1.000 0.998 0.998

0.05 0.361 0.090 0.152 1.000 0.980 0.988

0.01 0.124 0.010 0.036 0.996 0.628 0.858

(40, 40) 0.1 0.811 0.458 0.541 1.000 1.000 1.000

0.05 0.543 0.231 0.306 1.000 1.000 1.000

0.01 0.205 0.067 0.095 1.000 1.000 1.000
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Table 5.3

SIZE OF THE TESTS (FROM THE RESIDUALS)

White Noise

SMA(1) SAR(1)

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.101 0.102 0.106 0.091 0.093 0.107

0.05 0.049 0.053 0.062 0.050 0.042 0.065

0.01 0.018 0.011 0.021 0.014 0.011 0.023

(20,40) 0.1 0.100 0.098 0.118 0.094 0.110 0.116

0.05 0.055 0.041 0.064 0.048 0.054 0.062

0.01 0.009 0.009 0.022 0.007 0.023 0.023

(40,40) 0.1 0.093 0.090 0.105 0.104 0.084 0.106

0.05 0.039 0.051 0.055 0.044 0.047 0.056

0.01 0.013 0.020 0.024 0.015 0.019 0.023

SMA(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.086 0.086 0.086 0.084 0.060 0.090

0.05 0.043 0.032 0.046 0.033 0.025 0.039

0.01 0.005 0.009 0.011 0.003 0.006 0.011

(20,40) 0.1 0.109 0.093 0.107 0.106 0.094 0.106

0.05 0.047 0.048 0.064 0.049 0.045 0.064

0.01 0.009 0.008 0.014 0.007 0.009 0.023

(40,40) 0.1 0.088 0.108 0.119 0.128 0.093 0.109

0.05 0.047 0.062 0.077 0.057 0.047 0.056

0.01 0.014 0.012 0.018 0.012 0.011 0.020

SAR(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.105 0.097 0.119 0.082 0.093 0.093

0.05 0.048 0.051 0.067 0.032 0.043 0.054

0.01 0.009 0.010 0.019 0.008 0.011 0.012

(20,40) 0.1 0.101 0.097 0.105 0.116 0.098 0.111

0.05 0.047 0.043 0.063 0.056 0.057 0.068

0.01 0.007 0.016 0.020 0.014 0.015 0.024

(40,40) 0.1 0.107 0.083 0.094 0.096 0.099 0.117

0.05 0.054 0.037 0.047 0.048 0.035 0.072

0.01 0.010 0.008 0.014 0.011 0.008 0.018
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Table 5.4

POWER OF THE TESTS (FROM THE RESIDUALS)

SMA(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.113 0.106 0.116 0.252 0.320 0.323

0.05 0.061 0.062 0.071 0.167 0.203 0.234

0.01 0.013 0.014 0.022 0.053 0.056 0.110

(20,40) 0.1 0.136 0.148 0.151 0.343 0.440 0.466

0.05 0.060 0.078 0.081 0.246 0.320 0.356

0.01 0.014 0.010 0.033 0.096 0.126 0.203

(40,40) 0.1 0.147 0.162 0.175 0.510 0.684 0.721

0.05 0.073 0.073 0.092 0.387 0.543 0.575

0.01 0.027 0.022 0.035 0.217 0.286 0.379

SAR(1)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.102 0.122 0.124 0.378 0.581 0.581

0.05 0.043 0.071 0.070 0.249 0.425 0.470

0.01 0.009 0.014 0.019 0.084 0.194 0.314

(20,40) 0.1 0.068 0.111 0.124 0.681 0.762 0.811

0.05 0.029 0.059 0.074 0.542 0.682 0.714

0.01 0.003 0.008 0.018 0.275 0.436 0.565

(40,40) 0.1 0.068 0.142 0.142 0.923 0.969 0.975

0.05 0.027 0.072 0.075 0.857 0.937 0.951

0.01 0.003 0.009 0.018 0.611 0.882 0.905

SAR(2)

θ = 0.1 θ = 0.2

n level Tp Ĉ∗N ĈN Tp Ĉ∗N ĈN

(20,20) 0.1 0.328 0.143 0.146 0.987 0.837 0.857

0.05 0.180 0.079 0.088 0.918 0.580 0.682

0.01 0.053 0.013 0.027 0.580 0.199 0.327

(20,40) 0.1 0.554 0.232 0.278 1.000 0.998 0.999

0.05 0.365 0.121 0.159 1.000 0.968 0.987

0.01 0.145 0.021 0.048 0.987 0.673 0.859

(40,40) 0.1 0.851 0.482 0.530 1.000 1.000 1.000

0.05 0.687 0.232 0.295 1.000 1.000 1.000

0.01 0.327 0.030 0.079 1.000 1.000 1.000



SPECIFICATION FOR LATTICE DATA 45

Economics Department, London School of Economics, Houghton Street, London

WC2A 2AE, U.K.

E-mail address : f.j.hidalgo@lse.ac.uk

Economics Department, London School of Economics, Houghton Street, London

WC2A 2AE, U.K.

E-mail address : m.seo@lse.ac.uk


	Hidalgo_Specification tests_2016_cover
	Hidalgo_Specification tests_2016_author

