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Existence of Monotone Equilibrium in First Price Auctions with

Private Risk Aversion and Private Initial Wealth∗

Matthew Gentry† Tong Li‡ Jingfeng Lu§

July 2015

Abstract

In this paper, we study the existence of monotone equilibrium in first price auctions where bidders have a

three-dimensional private type, i.e. their private values, degrees of risk aversion and initial wealth. Bidders’

utility functions belong to the class of constant relative risk aversion (CRRA) or constant absolute risk aversion

(CARA). The bidders’ types are independent across bidders, while a bidder’s private value, initial wealth and

degree of risk aversion are allowed to be correlated. We show that a monotone equilibrium always exists in

a general setting allowing for asymmetric bidders. Moreover, with symmetric bidders, a symmetric monotone

equilibrium strategy must exist. A bidder’s equilibrium strategy increases with bidders’ private values and

degrees of risk aversion. When bidders have CRRA utility, equilibrium bids decrease with initial wealth; when

bidders have CARA utility, equilibrium bids are invariant to initial wealth.

JEL Nos: C7, D7

Key Words: Constant absolute risk aversion (CARA), Constant relative risk aversion (CRRA), First price

auction, Initial wealth, Monotone equilibrium.

1 Introduction

Risk aversion is a core notion for analyzing economic agents’ decisions under uncertainty. Since Pratt

(1964)’s formalization of risk aversion, a rich literature has been devoted to analyzing behavior of risk

averse agents in a variety of situations. In particular, a large body of theoretical, experimental and empirical

research has demonstrated that bidders’ risk aversion is an important determinant of their bidding behavior

in auctions. As is well known, risk aversion leads bidders to bid more aggressively in first-price auctions

relative to other standard formats, helping to rationalize the extensively observed “overbidding” relative

to the risk-neutral Bayesian Nash equilibrium in experiments (e.g. Cox et al. (1988) and Goeree, Holt and

Palfrey (2002) among others). Adopting a structural approach, Bajari and Hortaçsu (2005) show that the

risk aversion model provides the best fit to experimental data among several competing models. Abundant
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evidence for bidders’ risk aversion has also been identified in field auction data, including Baldwin (1995),

Athey and Levin (2001), Perrigne (2003), Lu and Perrigne (2008), Campo, Guerre, Perrigne and Vuong

(2011), Campo (2012), Fang and Tang (2014), and Li, Lu and Zhao (2015) among others.

Two commonly adopted measures of risk aversion are the Arrow-Pratt coefficient of absolute risk

aversion and the Arrow-Pratt-De Finetti coefficient of relative risk aversion. A Bernoulli utility function

that generates a constant coefficient of absolute risk aversion is called a constant absolute risk aversion

(CARA) utility function, while a utility function that generates a constant coefficient of relative risk

aversion is called a constant relative risk aversion (CRRA) utility function. These two classes of utility

functions are the preeminent tools by which to model risk aversion in a wide range of settings, including

auctions in particular.

It has long been recognized in the auction literature that bidders’ risk preferences can be heterogeneous

and that such heterogeneous risk preferences can be bidders’ private information. Cox, Roberson, and

Smith (1982) and Cox, Smith and Walker (1982) provide the first characterizations of closed form pure

strategy equilibria in first-price auctions when bidders’ degrees of risk aversion are modeled as part of their

private types. Specifically, they adopt a constant relative risk aversion (CRRA) framework and assume the

bidders’ private values follow a uniform distribution. Cox, Smith and Walker (1988) further find that a

CRRA model with private degrees of risk aversion fits well the “overbidding” data generated by their first

price auction experiments. In these studies, however, the existence of a pure strategy equilibrium is not fully

established, since the hypothetical bidding strategy is only partially identified and it is thus difficult to verify

its monotonicity over the whole ranges of degrees of risk aversion and values. Van Boening, Rassenti and

Smith (1998) further explore numerically solving the differential equations that a hypothetical equilibrium

bidding strategy must satisfy. Their simulation results verify the existence of isotone equilibrium for a

specific CRRA model with four bidders whose values follow a uniform distribution and their degrees of

risk aversion follow a beta distribution on [0, 1]. The bidding strategies obtained increase in both bidders’

degrees of risk aversion and their values. In all these studies, the initial wealth of bidders is fixed at zero.

Assuming the existence of pure strategy equilibrium in the model of Cox, Smith and Walker (1988)

and Van Boening, Rassenti and Smith (1998), Pevnitskaya (2001) extends Levin and Smith (1994) by

allowing for bidders who hold private information on their degrees of risk aversion before making their entry

decisions. Potential bidders who observe their private degrees of risk aversion must decide simultaneously

whether to incur an entry cost to discover their values before bidding in a first price auction. Pevnitskaya

(2001) finds a self-selection effect that relatively more risk tolerant bidders choose to enter in a symmetric

entry equilibrium, and this effect increases with the entry cost. This self-selection effect leads to less

aggressive bids than those from an exogenous pool of bidders. The experimental study conducted by

Palfrey and Pevnitskaya (2008) confirms these theoretical predictions.

Nevertheless, even with fixed initial wealth for bidders, the existence of monotone equilibrium in first

price auction remains an open question in a general CRRA model with an arbitrary set of bidders whose

joint distributions of values and degrees of risk aversion are left unrestricted. Verifying the existence of

monotone equilibrium for a general model by checking the properties of the solution of the differential

equations that Cox, Smith and Walker (1988) and Van Boening, Rassenti and Smith (1998) identify is

not easy to implement. It is in general infeasible to study the properties of the hypothetical strategy for

a general model without solving these equations analytically. If instead the bidders’ utility functions are
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assumed to have a CARA form, this procedure would face new challenge since the linear segment of the

bidding strategy identified in the existing literature on the CRRA case no longer holds. More technical

complications could arise if correlation between bidders’ value and degree of risk aversion is introduced

into the CRRA or CARA model.

While values and private risk preferences have received relatively more attention in the literature, in

settings with risk aversion it is also natural to interpret bidders’ initial wealth levels as being private

information. With risk averse bidders, variation in initial wealth would in general affect bidding behavior,

but little is known about properties of equilibrium when wealth is private. In this study, we establish the

existence of isotone equilibrium in first price auctions when bidders have three dimensional private types,

i.e. their initial wealth levels, private values and degrees of risk aversion. To our knowledge, existence in

this setting has not been previously studied in general.

To avoid the difficulties of solving differential equations that a hypothetical equilibrium strategy must

satisfy, we follow an alternative approach along the lines of Reny (1999, 2011), Athey (2001) and McAdams

(2003) to address the existence of monotone equilibrium in first price auctions where bidders have three-

dimensional private information about their values, initial wealth and degrees of risk aversion. Our approach

accommodates both CRRA and CARA specifications with an arbitrary number of potentially asymmetric

bidders. We assume that private information – i.e. bidders’ values, degree of risk aversion, and levels of

initial wealth – is drawn independently across bidders, but leaves the joint distribution of values, initial

wealth, and risk aversion for each bidder unrestricted. We find that a pure strategy equilibrium that is

monotone in all three dimensions of private information must exist. Moreover, a symmetric pure strategy

monotone equilibrium must exist for symmetric bidders. Our results thus complement existing studies

on private risk aversion and strengthen the foundation for future theoretical, experimental and empirical

studies on first price auctions when bidders are endowed with private information on their risk attitudes

and/or initial wealth.

The rest of the paper is organized as follows. Section 2 describes the model and outlines notation used

to unify discussion of the CARA and CRRA cases. Section 3 establishes existence of monotone equilibria in

the general model with asymmetric bidders. Section 4 specializes this to existence of symmetric monotone

equilibria in settings with symmetric bidders. Section 5 concludes. Some technical proofs are relegated to

the online appendix.

2 First Price Auctions with Private Values, Wealth and Risk

Aversion

In this paper, we consider a sealed-bid first price auction of a single item. A reservation price r is imposed.

Ties in winning bids are broken randomly. There are N potentially asymmetric bidders who are risk

averse. Each bidder is endowed with three-dimensional private information about his value, initial wealth

and degree of risk aversion.

Each bidder i enters the auction with private initial wealth wi, assigns private value vi to the object

being sold, and has preferences over final wealth realizations x described by a concave Bernoulli utility

function u(x; ai), where ai is a scalar parameter indexing bidder i’s private risk preferences. While the
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notation u(x; ai) is adopted to unify discussion, in practice we focus on cases where the utility function

u(x; ai) takes either CARA or CRRA form. This leads to two distinct specifications of the model, which

we refer to as private CRRA preferences and private CARA preferences, respectively.

Private CRRA preferences When bidders have private CRRA preferences, we take ai to be bidder i’s

level of constant relative risk aversion, assume that ai is supported on a closed interval Ai = [ai, āi] ⊂ [0, ā]

with ā < 1, and define u(·; ai) as follows:

u(x; ai) ≡

{
x1−ai

1−ai
if x ≥ 0,

x if x < 0.

The condition ai ≤ ā < 1 guarantees that u(·; ai) exists and is continuous on R+. The extension of u(·; ai)
to negative wealth values is made for technical convenience but is otherwise irrelevant for our results. In

particular, since in equilibrium bidders will never bid above their values, any equilibrium arising when

u(·; ai) is defined as above is also an equilibrium when u(·; ai) is restricted to R+. Furthermore, the form

of the extension is arbitrary; so long as u(·; ai) is continuous and increasing for all ai ∈ Ai, any other

extension to x < 0 would work equally well.

Private CARA preferences When bidders have private CARA preferences, we take ai to be bidder

i’s level of constant risk aversion, assume that ai is supported on a closed interval Ai = [ai, āi] ⊂ R+, and

define u(·; ai) as follows:

u(x; ai) =

{
1−exp(−aix)

ai
, ai > 0

x, ai = 0.

In this case continuity of u(·; ai) on R follows by construction, therefore no extension is required.

Distribution of private information Bidder i’s private type includes his value vi, initial wealth wi and

degree of constant risk aversion ai. Each bidder i draws his type vector (vi, ai, wi) from a joint distribution

described by cumulative distribution function Fi(v, a, w), with types drawn independently across bidders.

We assume the distribution Fi is supported on Vi × Ai × Wi and admits a bounded density fi(v, a, w)

everywhere positive on this support, where Vi = [vi, v̄i] with vi ≥ 0, Wi = [0, w̄i], and Ai is defined as

above depending on the class of risk preferences considered. Type draws (vi, ai, wi) are private information

of each bidder, but distributions F1, ..., FN are common knowledge to all players. The reservation price r

falls in [v, v] where v = mini vi and v = maxi vi, with ties broken randomly across relevant players.

Actions, strategies, payoffs, equilibria In developing our results, we employ the following (standard)

definitions:

• An action for player i is a bid bi ∈ R. Let Bi denote the set of feasible equilibrium bids for bidder i.

Without loss of generality, we can take Bi = B = [0, v̄]. Let BN=[0, v̄]N .

• We denote the type space for i by Ti ≡ Vi ×Ai ×Wi, the type space for the game by T ≡ ×i Ti. Let

F = ×i Fi be the measure over T induced by primitive distributions F1, ..., FN .
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• A pure strategy for player i is a map si : Ti → Bi, and a pure strategy profile is a vector s = (s1, ..., sN )

which specifies a strategy for each player. Let Si denote the set of pure strategies for player i and

S = S1 × · · · × SN denote the set of pure strategy profiles.

• Payoffs for player i are described by an ex ante expected utility function πi : S → R defined as

follows:

πi(s) = E(Vi,Ai,Wi)

{
u(Wi;Ai) · [1− pi(si(Vi, Ai,Wi); s−i)]

+u(Wi + Vi − si(Vi, Ai,Wi);Ai) · pi(si(Vi, Ai,Wi); s−i)
}
,

where pi(b; s−i) is the probability that bid b leads player i to win the auction when rivals draw from

distribution profile F−i and play according to strategy profile s−i. Let π(s) = (π1(s), ..., πN (s)) be

the ex ante vector payoff function for all players in the auction game. Note that with private CRRA

preferences the condition ā < 1 ensures that u(·; ·) is bounded.

• A pure strategy equilibrium is a strategy profile s∗ ∈ S such that s∗i is a best response to s∗−i for all

i. A restricted pure strategy equilibrium is a class of pure strategies SC ⊂ S plus a strategy profile

s∗ ∈ SC such that for each i,

πi(s
∗
i ; s∗−i) = sup

si∈SC
i

πi(si; s
∗
−i).

With these definitions established, we now turn to our main focus in this paper: existence of monotone

equilibria when bidders have private values, wealth, and risk preferences.

3 Existence of Monotone Equilibrium under Private CRRA Pref-

erences

We first establish that a monotone pure strategy equilibrium exists when bidders have private CRRA

preferences. In developing the argument, we rely heavily on the following monotonicity result: no matter

what strategies i’s rivals play, i’s best response bid must be increasing in vi, increasing in ai, and decreasing

in wi. We formalize this observation as follows:

Lemma 1. Suppose that bidders have private CRRA preferences. Let �R be the partial order on Ti,∀i
defined as follows: for all (v′i, a

′
i, w
′
i), (v′′i , a

′′
i , w

′′
i ) ∈ Ti,

(v′′i , a
′′
i , w

′′
i ) �R (v′i, a

′
i, w
′
i) iff v′′i ≥ v′i, a′′i ≥ a′i, w′′i ≤ w′i.

Consider any bidder i, any action space Bi ⊂ [0, v̄] and any rival strategy profile s−i defined on any action

space B−i ⊂ [0, v̄]N−1. Let (v′i, a
′
i, w
′
i), (v′′i , a

′′
i , w

′′
i ) ∈ Ti be any type realizations such that (v′′i , a

′′
i , w

′′
i ) �R

(v′i, a
′
i, w
′
i), and let b′i, b

′′
i be any best responses by i to s−i at types (v′i, a

′
i, w
′
i), (v′′i , a

′′
i , w

′′
i ) respectively.

Then b′′i ≥ b′i.

Proof. See online Appendix.

5



The implications of Lemma 1 are three-fold: Firstly, it implies that any equilibrium will be in monotone

strategies, hence will involve pure strategies almost everywhere. Secondly, there is no non-monotone pure

strategy equilibrium. Thirdly, in any monotone pure strategy equilibrium, the bid must increase with the

value and degree of risk aversion, and decrease with the wealth.

It remains to show, however, that such an equilibrium exists. Our basic proof strategy proceeds in

two steps. We first restrict the space of feasible bids to be discrete, noting that in this case existence

follows immediately from Reny (2011). Alternatively, one can invoke Theorem 4 of Milgrom and Weber

(1985) to obtain existence of a pure strategy equilibrium, then note that any such equilibrium is necessarily

monotone by Lemma 1. In the second step, building on Reny (1999, 2011),1 we then use this result on

existence in discrete spaces to construct a sequence of monotone ε-equilibria in the unrestricted bid space

B, which converges to a monotone equilibrium in the unrestricted game.

3.1 Existence of Monotone Equilibrium on a Finite Grid

We first establish that a monotone pure strategy equilibrium exists when the bid space is restricted to be

discrete. In particular, given any positive integer K, let BK = {b1, ..., bK} be any size-K grid on B = [0, v̄],

where bk+1 ≥ bk for all k ≤ K − 1. We establish the existence of a monotone equilibrium on BK .

Athey (2001) first establishes two sufficient non-primitive conditions for the existence of monotone pure

strategy equilibrium with finite-action space: (a) (non-empty monotone best replies) each player has a

monotone best response when others adopt monotone strategies; (b) (convex monotone best replies) the

set of monotone best replies is convex. McAdams (2003) generalizes Athey’s approach to settings with

multidimensional actions and multidimensional types, with sufficient non-primitive conditions still being

that there are non-empty and convex monotone best replies.2 Reny (2011) insightfully points out that

convexity of the monotone best-reply set is not indeed needed and contractibility is sufficient. Moreover,

Reny (2011) showed by an ingenious argument that contractibility is automatically satisfied given any non-

empty monotone best-replies. Therefore, to establish existence of a monotone pure strategy equilibrium

with finite-action space, it suffices to show that each player has a monotone best reply whenever others

adopt monotone strategies.3

In this paper’s setting with a finite bid-grid, the existence of a monotone best reply comes essentially

automatically in view of Lemma 1. Note that finiteness of BK implies player i’s best response set will be

nonempty for all type realizations ti ∈ Ti and all rival strategy profiles s−i. Furthermore, by Lemma 1

above, player i’s interim best response to any rival strategy profile s−i is monotone in his type realization

ti, where monotonicity is defined relative to the relevant partial order defined in Lemma 1. By Proposition

4.4 in Reny (2011), it follows that player i’s set of monotone pure strategy best replies is nonempty and

join-closed.4

We then can establish the existence of a monotone equilibrium on BK by invoking Theorem 4.1 of

Reny (2011). For this purpose, it suffices to verify Conditions G.1-G.6 of Reny (2011). Those conditions

are defined to apply to settings where action spaces may not even be a lattice (only semi-lattice struc-

1Specifically, we apply the standard methods as in Reny (2011) for establishing his Corollary 5.2.
2Much as in Athey (2001), the key insight of McAdams (2003) is in how to establish convexity of the monotone best-reply

set.
3We thank an anonymous referee for suggesting us to provide the explanations in this paragraph.
4Condition (ii) of Proposition 4.4 in Reny (2011) holds.
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ture is applied). Among other things, this paper’s model lies squarely in the more “traditional” sort of

multidimensional example as in McAdams (2003), with the extra simplification that the action space is

one-dimensional. To avoid cluttering the text and adding unnecessary burden on the reader, we can rewrite

Reny’s Conditions G.1-G.6 as the following three conditions using relatively familiar terms for our first

price auction setting.

Recall player i’s type space is Ti = Vi ×Ai ×Wi = [vi, vi]× [ai, ai]× [0, wi] ∈ R3, and T =×i Ti. Let

�R be the partial order as defined in Lemma 1.

• H.1: The probability measure on Ti is atomless.

• H.2: BK is a compact subset of Euclidean space R, and the maximum of two bids is itself a feasible

bid.

• H.3: Player i’s Bernoulli utility function u(·; ai) is bounded, jointly measurable, and continuous in

bids b = (bi) ∈ (BK)N for every type t =(ti) ∈ T .

H.1, which is G.2 in Reny (2011), is satisfied since density fi is everywhere positive over Ti. Given

H.1 is satisfied and that Ti is a rectangle in R3, G.1 and G.3 in Reny (2011) automatically hold.5 Thus

given our specification of Ti, there is no need to write conditions to check G.1 and G.3 as they are implied

by H.1. By Proposition 3.1 in Reny (2011), H.2 implies G.4 and G.5 in Reny (2011). H.2 is trivially

satisfied since BK is finite. H.3 is identical to G.6 in Reny (2011). H.3 trivially holds as the action space

BK is a totally ordered finite set. Because of one-dimensionality, the quasisupermodularity assumption in

McAdams (2003) is automatically satisfied.

Hence by Theorem 4.1 of Reny (2011), there exists a monotone pure strategy equilibrium on the

restricted action space BK .

Proposition 1. Suppose that bidders have private CRRA preferences. Then a monotone pure strategy

equilibrium exists for any discrete bid space BK , with monotonicity interpreted relative to the partial order

�R on Ti,∀i defined in Lemma 1.

3.2 Extension to Existence on Continuous B

Following Athey (2001), McAdams (2003), and Reny (2011), we next extend existence of monotone equi-

librium on the restricted bid spaces BK to existence of monotone equilibrium on the continuous bid space

B.6 Feasibility of this extension follows from two auxiliary results due to Reny (1999, 2011):

• Suppose the unrestricted game is better-reply secure in the sense of Reny (1999). By Remark 3.1 on

page 1038 in Reny (1999), better-reply security implies that the limits of a convergent sequence of

pure-strategy ε-equilibria, as ε tends to zero, are pure strategy equilibria.

• Let M denote the set of monotone functions from T → BN . Under Conditions G.1, G.3, and G.4,

Appendix A.3 in Reny (2011) shows how to construct a metric δ onM such that the resulting metric

5G.3 holds since H.1 holds and since we can pick the subset {ti = (vi, ai, wi) ∈ Ti : vi, ai, wi ∈ Q}, which is countable
and dense in Ti when the metric is the Euclidean metric.

6See, for instance, the proof of Corollary 5.2 in Reny (2011).
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space (M, δ) is the space of equivalence classes of monotone functions that are equal µ-a.e., where

µ is the measure on T induced by F. By Lemma A.13 in Reny (2011), the metric space (M, δ) is

compact.

Existence on BK can then be extended to existence on B in four steps. First, building on Reny (1999),

we establish that the auction game is better-reply secure. Second, as in Reny (2011), we use existence of

equilibrium for each BK to construct a sequence of ε-equilibria on B for which ε tends to zero. Third, by

compactness of (M, δ), this sequence of ε-equilibria has a convergent subsequence. Finally, by better-reply

security, the limit of this subsequence is a monotone pure strategy equilibrium.

We first verify that the auction game is better-reply secure in the sense of Reny (1999). Reny (1999)

defines the concept of better-reply security formally as follows:

Definition 1 (Secure a Payoff). Player i can secure a payoff of α ∈ R at s ∈ S if there exists s̄i ∈ Si such

that πi(s̄i, s−i) ≥ α for all s′−i in some open neighborhood of s−i.

Definition 2 (Better-Reply Secure). A game G = (Si, πi)Ni=1 is better-reply secure if whenever (̃s, π̃) is

in the closure of the graph of the vector payoff function π(·) and s̃ is not an equilibrium, some player i can

secure a payoff strictly above π̃i at s̃.

Building on the arguments in Reny (1999), it is straightforward to show that our auction game is better-

reply secure. For completeness, we state this fact formally as a lemma.

Lemma 2. The first price auction of Section 2 is better-reply secure.

Proof. See online Appendix.

Following Reny (2011), we next apply Proposition 1 (existence of monotone equilibria in discrete bid

spaces) to establish a second intermediate result: for each ε > 0, there exists a monotone ε-equilibria in

the continuous bid space B.

Lemma 3. For each ε > 0, there exists an ε-equilibrium sε = (sε1, ..., s
ε
N ) of the auction with private CRRA

preferences, where each sεi : Vi ×Ai ×Wi → B = [0, v] is monotone in the sense of Lemma 1.

Proof. See online Appendix.

Having established Lemmas 2 and 3, we are now in position to complete the proof. Recall that by

Remark 3.1 of Reny (1999), if a game satisfies better-reply security then the limit of any convergent

sequence of ε-equilibria for which ε → 0 will be an equilibrium. Lemma 2 establishes that our auction

game is better-reply secure, and Lemma 3 shows existence of a sequence of monotone ε-equilibria for which

ε→ 0. Hence to complete the proof it only remains to establish that the sequence of equilibria in Lemma

3 has a convergent subsequence. But in light of Appendix A.3 in Reny (2011) this follows automatically

from monotonicity: there exists a metric δ under which the space of monotone functions from T to BN

is compact, with equality under δ implying equality almost everywhere with respect to the measure on T
induced by F . Hence for any sequence of monotone ε-equilibria {sk}∞k=1 constructed above there will exist

a subsequence {skj}∞j=1 such that skj converges (with respect to δ) to a limit s∗ ∈M, and by Remark 1 in

Reny (1999) this limit s∗ will be an equilibrium of the underlying auction game. We therefore conclude:
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Theorem 1. In the first-price auction game with private CRRA preferences, there exists a monotone pure

strategy equilibrium. Furthermore, in any such equilibrium, bids are increasing in values, increasing in

private risk aversion, and decreasing in private wealth.

4 Existence of Monotone Equilibrium under Private CARA Pref-

erences

We now turn to consider existence of equilibrium under private CARA preferences. The proof strategy in

this case is essentially identical; one first establishes existence of a monotone equilibrium on discrete bid

spaces, then extends this to the continuous case via the limiting arguments above. However, the proof

involves two differences in detail, which we outline briefly here.

First, as is well known, when bidders have CARA utility initial wealth wi is irrelevant for bidding in the

sense that realizations of wi do not affect bidder i’s set of best responses. We therefore restrict attention

to “natural” equilibria in which equilibrium bidding strategies are constant over wi. Note that any such

equilibria will be trivially monotone in wi, thus will fulfill the objectives of this study.

Second, since the Bernoulli utility function u(x; ai) is now CARA rather than CRRA, the arguments

used to establish existence of ε-equilibrium differ slightly from those underlying Lemma 3. We thus provide

a separate proof of existence of ε-equilibrium for the CARA case. We refer interested readers to the online

appendix for details.

Monotonicity of best responses Under private CARA preferences, best responses for bidder i are

again increasing in both vi and ai for any initial wealth wi and rival strategies s−i. In contrast to the

CRRA case above, however, i’s best-response set is now invariant to wi, so that a best response at wealth

wi = w0 is also a best response for any other initial wealth. Formally:

Lemma 4. Suppose that bidders have private CARA preferences. Consider any bidder i, any bid space

B̃ ⊂ R+ and any rival strategy profile s−i : V−i × A−i ×W−i → B̃N−1. Fixing wi = w0, let (v′i, a
′
i) and

(v′′i , a
′′
i ) be any points in Vi ×Ai such that (v′i, a

′
i) ≤ (v′′i , a

′′
i ), and let b′i, b

′′
i be any interim best responses

by i to s−i at type realizations (v′i, a
′
i, w0), (v′′i , a

′′
i , w0) respectively. Then b′i ≤ b′′i . Furthermore, for all

(vi, ai) ∈ Vi ×Ai, if bi is an interim best response to s−i at (vi, ai, w0) then bi is an interim best response

to s−i at (vi, ai, wi) for any wi ∈ Wi.

Proof. See online Appendix.

Existence of monotone equilibrium The second half of Lemma 4 implies that if there exists a best

response strategy s∗i to s−i, then there exists a best response strategy s∗′i which is invariant (hence trivially

monotone) in wi. With this modification, the argument in Section 3.1 can be applied to establish existence

of a monotone equilibrium on any discrete bid space BK , with the additional property that bidding strategies

in this equilibrium are invariant to wi for all i. The argument in Lemma 2 then establishes the game is

better-reply secure, so to complete the proof we need only construct a sequence of ε-equilibria for which

ε→ 0. The technical argument underlying this construction is slightly different than that used to establish
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Lemma 3, so we provide a separate proof in the online appendix. Again, however, it is straightforward to

show that for any ε > 0 there exists an ε-equilibrium of the continuous auction game.

After accounting for these minor technical differences, the existence argument in Section 3 applies

directly to the case of private CARA preferences. We therefore conclude:

Theorem 2. In the first-price auction game with private CARA preferences, there exists a monotone pure

strategy equilibrium such that bids are increasing in values, increasing in private risk aversion, and constant

in initial wealth.

5 Existence of Symmetric Monotone Equilibrium with Symmet-

ric Bidders

Finally, we consider the special case in which bidders are symmetric: Vi = V, Ai = A, Wi = W, and

Fi = F for all i = 1, ..., N . We seek to show that in environments with symmetric bidders there exists a

symmetric monotone equilibrium. Toward this end, we refine the arguments above as follows.

By hypothesis, neither the auctioneer’s allocation rule nor the bid spaces B and BK defined above

depends on bidder identities, and we are now assuming type spaces and distributions over types to be

symmetric. Hence the ex ante payoff vector π is exchangeable in type-action pairs, and the auction game

as a whole is therefore symmetric as defined in Section 4.2 of Reny (2011). Furthermore, for any discrete bid

space BK , the argument in Section 3.1 established that bidder i’s set of monotone best replies is nonempty

and join-closed for arbitrary rival strategies, hence in particular this set is nonempty and join-closed when

rivals employ the same pure strategy. Theorem 4.5 of Reny (2011) then implies existence of a symmetric

monotone pure strategy equilibrium on any discrete bid space BK :

Proposition 2. Suppose that potential bidders are symmetric and have either private CRRA or private

CARA preferences. Then there exists a symmetric monotone pure strategy equilibrium on any discrete bid

space BK .

In turn, application of the arguments in Section 3.2 to symmetric equilibria of the form in Proposition

2 yields existence of a sequence of symmetric monotone ε-equilibria converging to an equilibrium of the

symmetric auction game. Noting that the limit of any sequence of symmetric strategy profiles will be

symmetric, we therefore conclude:

Theorem 3. Suppose that potential bidders are symmetric and have either private CRRA or private CARA

preferences. Then there exists a symmetric monotone pure strategy equilibrium of the first-price auction

game.

The nature of monotonicity in wi will of course be determined by the specification of either CRRA or

CARA preferences, but in either case there will exist an equilibrium in which bids are increasing in values,

increasing in private risk aversion, and at least weakly decreasing in private wealth.
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6 Concluding Remarks

In this paper, we establish the existence of monotone equilibrium in first price auctions when bidders’ values,

degrees of risk aversion, and levels of initial wealth are all private information. Furthermore, when bidders

are symmetric, a symmetric monotone equilibrium must exist. Both CRRA and CARA specifications are

accommodated in our study. For both specifications, the equilibrium bidding strategies increase with values

and degrees of risk aversion. For CRRA, the equilibrium bidding strategies decrease with initial wealth,

while for CARA the equilibrium bids do not depend on initial wealth.

We followed a procedure along the lines of Reny (1999, 2011), Athey (2001) and McAdams (2003) to

establish the equilibria. We considered an environment where no mass points exist in either dimension

of the type space, i.e. value, degree of risk aversion and wealth. In principle, the approach applies in

general when any one or two of these three variables are discretely distributed. To apply Reny (2011), the

joint distribution needs only be atomless and satisfies Reny’s condition G.3.7 In particular, we can allow

one or two variable to be public information. Nevertheless, one has to be cautious about some technical

caveats that might have to be observed when applying the procedure to extend the existence of monotone

equilibrium to continuous bids. For example, when initial wealth has a mass point at zero and the utility

function takes a CRRA form, then a technical issue arises when establishing the ε-equilibria of the game

since the first order derivative of the utility function is not bounded. This is the case considered by Cox,

Smith and Walker (1988) and Van Boening, Rassenti and Smith (1998). More work needs to be done to

fully resolve this case.

As evidenced in experimental and empirical studies on auctions, it is important to take risk aversion

into account and also consider a general setting with multi-dimensional private information as considered

in this paper. Our theoretical results on existence of monotone equilibrium when values, degree of risk

aversion, and initial wealth are all bidder’s private information make progress in providing the theoretical

foundation for further facilitating experimental and empirical research on auctions in environments with

private risk aversion and/or private initial wealth.

References

[1] Athey, S., and J. Levin (2001): Information and Competition in U.S. Forest Service Timber Auctions,

Journal of Political Economy, 109, 375-413.

[2] Athey, S., (2001): Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games

of Incomplete Information, Econometrica, 69, 861–889.
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Online Appendix for “Existence of Monotone Equilibrium in First
Price Auctions with Private Risk Aversion and Private Initial
Wealth”by Matthew Gentry, Tong Li and Jingfeng Lu

Proof of Lemma 1

Proof. Recall pi(b; s−i) be the winning probability of bidder i if he bids b given rival strategy profile

s−i. Given the first price auction rule, pi(b; s−i) is increasing in b.

[Monotonicity in value]: Take fixed ai and wi and consider two values v′i < v′′i . We want to show

b′′i ≥ b′i. Clearly we should have b
′
i ≤ v′i, b

′′
i ≤ v′′i . If b

′′
i ≥ v′i, then clearly b

′′
i ≥ b′i. We now assume

b′′i ≤ v′i. Incentive compatibility conditions give

(v′i−b′i+wi)1−aipi(b
′
i; s−i)+wi

1−ai [1−pi(b′i; s−i)] ≥ (v′i−b′′i +wi)
1−aipi(b

′′
i ; s−i)+wi

1−ai [1−pi(b′′i ; s−i)]

and

(v′′i −b′′i +wi)
1−aipi(b

′′
i ; s−i)+wi

1−ai [1−pi(b′′i ; s−i)] ≥ (v′′i −b′i+wi)1−aipi(b
′
i; s−i)+wi

1−ai [1−pi(b′i; s−i)].

We thus have

(v′i − b′i + wi)
1−ai − wi1−ai

(v′i − b′′i + wi)1−ai − wi1−ai
≥ pi(b

′′
i ; s−i)

pi(b′; s−i)
≥ (v′′i − b′i + wi)

1−ai − wi1−ai
(v′′i − b′′i + wi)1−ai − wi1−ai

,

i.e.
(v′i − b′i + wi)

1−ai − wi1−ai
(v′′i − b′i + wi)1−ai − wi1−ai

≥ (v′i − b′′i + wi)
1−ai − wi1−ai

(v′′i − b′′i + wi)1−ai − wi1−ai
.

We only need to show that

Ψ(b) =
(v′i − b+ wi)

1−ai − wi1−ai
(v′′i − b+ wi)1−ai − wi1−ai

decreases with b ≤ v′i < v′′i .

Note that

ln Ψ(b) = ln[(v′i − b+ wi)
1−ai − wi1−ai ]− ln[(v′′i − b+ wi)

1−ai − wi1−ai ].

Thus

d ln Ψ(b)

db
=

−(1− ai)(v′i − b+ wi)
−a

(v′i − b+ wi)1−ai − wi1−ai
− −(1− ai)(v′′i − b+ wi)

−a

(v′′i − b+ wi)1−ai − wi1−ai

=
(1− ai)

(v′′ − b+ wi)a[(v′′i − b+ wi)1−ai − wi1−ai ]
− (1− ai)

(v′i − b+ wi)a[(v′i − b+ wi)1−ai − wi1−ai ]
< 0,

1
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as required.

[Monotonicity in risk aversion]: Take fixed vi and wi and consider two values a′i < a′′i . We

want to show b′′i ≥ b′i. Clearly we should have b′i, b′′i ≤ vi. Incentive compatibility conditions gives

(vi−b′i+wi)1−a′ipi(b
′
i; s−i)+wi

1−a′i [1−pi(b′i; s−i)] ≥ (vi−b′′i +wi)
1−a′ipi(b

′′
i ; s−i)+wi

1−a′i [1−pi(b′′i ; s−i)]

and

(vi−b′′i +wi)
1−a′′i pi(b

′′
i ; s−i)+wi

1−a′′i [1−pi(b′′i ; s−i)] ≥ (vi−b′i+wi)1−a′′i pi(b
′
i; s−i)+wi

1−a′′i [1−pi(b′i; s−i)].

We thus have

(vi − b′i + wi)
1−a′i − wi1−a

′
i

(vi − b′′i + wi)1−a′i − wi1−a
′
i

≥ pi(b
′′
i ; s−i)

pi(b′i; s−i)
≥ (vi − b′i + wi)

1−a′′i − wi1−a
′′
i

(vi − b′′i + wi)1−a′′i − wi1−a
′′
i

,

which is
(vi − b′i + wi)

1−a′i − wi1−a
′
i

(vi − b′i + wi)1−a′′i − wi1−a
′′
i

≥ (vi − b′′i + wi)
1−a′i − wi1−a

′
i

(vi − b′′i + wi)1−a′′i − wi1−a
′′
i

.

We only need to show that

Ψ(b) =
(vi − b+ wi)

1−a′i − wi1−a
′
i

(vi − b+ wi)1−a′′i − wi1−a
′′
i

decreases with b ≤ vi.
Note that

ln Ψ(b) = ln[(vi − b+ wi)
1−a′i − wi1−a

′
i ]− ln[(vi − b+ wi)

1−a′′i − wi1−a
′′
i ].

Thus

d ln Ψ(b)

db
=

−(1− a′i)(vi − b+ wi)
−a′i

(vi − b+ wi)1−a′i − wi1−a
′
i

− −(1− a′′i )(vi − b+ wi)
−a′′i

(vi − b+ wi)1−a′′i − wi1−a
′′
i

=
(1− a′′i )(vi − b+ wi)

−a′′i

(vi − b+ wi)1−a′′i − wi1−a
′′
i

− (1− a′i)(vi − b+ wi)
−a′i

(vi − b+ wi)1−a′i − wi1−a
′
i

=
1

wi
[

(1− a′′i )
vi−b+wi

wi
− ( vi−b+wiwi

)a
′′
i

− (1− a′i)
vi−b+wi

wi
− ( vi−b+wiwi

)a
′
i

]

=
1

vi − b+ wi
[

(1− a′′i )

1− ( wi
vi−b+wi )

1−a′′i
− (1− a′i)

1− ( wi
vi−b+wi )

1−a′i
].

Define ϕ(x) = x
1−αx where α ∈ [0, 1], x ∈ (0, 1]. We need to show that ϕ′(x) > 0.
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Note that

ϕ′(x) =
1

1− αx +
x(lnα)αx

(1− αx)2

=
1

(1− αx)2
[(1− αx) + x(lnα)αx].

Let y = αx ∈ [α, 1), i.e. x = ln y
lnα . Term [(1− αx) + x(lnα)αx] can be written as

η(y) = (1− y) +
ln y

lnα
(lnα)y

= (1− y) + y ln y;

η′(y) = ln y < 0, where y ∈ [α, 1),

η(1) = 0.

Thus η(y) ≥ 0. We thus have d ln Ψ(b)
db ≤ 0 as required.

[Monotonicity in initial wealth]: Take fixed vi and ai and consider two values w′i > w′′i . We

want to show b′′i ≥ b′i. Clearly we should have b′i, b′′i ≤ vi. Incentive compatibility conditions gives

(v−b′+w′i)1−aipi(b
′; s−i)+w

′
i
1−ai [1−pi(b′; s−i)] ≥ (v−b′′+w′i)1−aipi(b

′′; s−i)+w
′
i
1−ai [1−pi(b′′; s−i)]

and

(v−b′′+w′′i )1−aipi(b
′′; s−i)+w

′′
i

1−ai [1−pi(b′′; s−i)] ≥ (v−b′+w′′i )1−aipi(b
′; s−i)+w

′′
i

1−ai [1−pi(b′; s−i)].

We thus have

(v − b′ + w′i)
1−ai − w′i1−ai

(v − b′′ + w′i)
1−ai − w′i1−ai

≥ pi(b
′′; s−i)

pi(b′; s−i)
≥ (v − b′ + w′′i )1−ai − w′′i 1−ai

(v − b′′ + w′′i )1−ai − w′′i 1−ai
,

which is
(v − b′ + w′i)

1−ai − w′i1−ai
(v − b′ + w′′i )1−ai − w′′i 1−ai

≥ (v − b′′ + w′i)
1−ai − w′i1−ai

(v − b′′ + w′′i )1−ai − w′′i 1−ai
,

We only need to show that

Ψ(x) =
(x+ w′i)

1−ai − w′i1−ai
(x+ w′′i )1−ai − w′′i 1−ai

increases with x ≥ 0.

Note that

ln Ψ(x) = ln[(x+ w′i)
1−ai − w′i1−ai ]− ln[(x+ w′′i )1−ai − w′′i 1−ai ].
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Thus

d ln Ψ(x)

dx
=

(1− ai)(x+ w′i)
−ai

(x+ w′i)
1−ai − w′i1−ai

− (1− ai)(x+ w′′i )−ai

(x+ w′′i )1−ai − w′′i 1−ai

= (1− ai)[
1

(x+ w′i)− (x+ w′i)
aiw′i

1−ai
− 1

(x+ w′′i )− (x+ w′′i )aiw′′i
1−ai

].

Define ϕ(z) = (x+ z)− (x+ z)aiz1−ai where x ≥ 0, z ≥ 0. We need to show that ϕ′(z) ≤ 0.

We have

ϕ′(z) = 1− ai(x+ z)ai−1z1−ai − (1− ai)(x+ z)aiz−ai .

Let λ = (x+ z)z−1 ≥ 1. Then

ai(x+ z)ai−1z1−ai + (1− ai)(x+ z)aiz−ai

= aiλ
ai−1 + (1− ai)λai = ξ(λ).

We next show ξ(λ) is minimized at λ = 1. This actually is clear as ξ′(λ) = ai(1−ai)λai−2[λ−1] ≥ 0

when λ ≥ 1. We thus have ϕ′(z) ≤ 0, which leads to d ln Ψ(x)
dx ≥ 0 and Ψ(x) increases with x ≥ 0.

Therefore, b′ ≤ b′′.

Proof of Lemma 2

Proof. Let (̃s, π̃) be any point in the closure of the graph of π(·). By definition, there exists a
sequence of strategies {sm}∞m=1 converging to s̃ such that π̃ = limm→∞ π(sm). Now focus on the

limit strategy s̃, and consider possible cases.

First suppose relevant ties occur with probability zero at s̃. Then π(·) is also continuous at
s̃, which in turn implies π(̃s) = π̃. Recall that π̄i(̃s−i) is player i’s supremum payoff at s̃−i. By

hypothesis, s̃ is not an equilibrium, which implies π̄i(̃s−i) > πi(̃s) = π̃i for at least one bidder i.

From above, for any ε > 0 there exists a strictly monotone strategy sεi yielding a payoff within ε of

π̄i(̃s−i), with πi(sεi , ·) continuous in s−i at (sεi , s̃−i). In particular, for small enough ε, we will have

πi(s
ε
i , s̃−i) > π̃i. By definition of continuity, it follows that there exists an open neighborhood of

s̃−i in S−i such that πi(sεi , s′−i) > π̃i for all s′−i in this neighborhood.

Next suppose that ties occur with positive probability at s̃. Then πi(·) may be discontinuous
in s, so in general π(̃s) 6= π̃ = limm→∞ π(sm). Now consider the set of bidders who tie with

positive probability at s̃. By construction, at each point sm along the sequence {sm}∞m=1, at least

one bidder tying at s̃ must lose with probability bounded away from 0. The identity of this bidder

could conceivably change across points in {sm}∞m=1. However, we can always select a subsequence

{smk}∞k=1 such that a fixed (set of) bidders who tie at s̃ lose with probability bounded away from 0

on {smk}∞k=1. Let i denote any such bidder, and π̃i = limk→∞ πi(s
mk) be the limit of this bidder’s

payoffs along the sequence {smk}∞k=1. By construction, s
mk → s̃. Hence for each ε > 0, there will

be a K < ∞ and a strategy s′i such that for each k > K, s′i is within ε of s
mk
i (i.e. satisfying
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δ(s′i, s
mk
i ) < ε) such that every tie at (s̃i, s̃−i) becomes a win at (s′i, s

mk
−i ). For a tie to occur with

positive probability, bidder i must submit the same bid on a set of types of positive measure. Since

bidders never bid above their values, bidder i must be bidding below value on almost every element

of this set. The strategy s′i described above yields a discrete increase in winning probability at

every such point, which for large enough k (and small enough ε) must yield a discrete increase in

expected payoffs. Hence for large enough k player i’s supremum payoff π̄ki = supsi∈Si πi(si, s
mk
−i )

must be bounded away from πi(s
mk
i , smk

−i ). Since this is true at each point in {smk}∞k=1, it is also

true at the limit π̃i = limk→∞ πi(s
mk). From above, player i can attain a payoff within ε of his

supremum at s̃−i by employing some strictly increasing strategy sεi , and for this strategy πi(s
ε
i , ·)

will be continuous in s−i at s̃−i. It follows that player i can secure a payoff strictly above π̃i at s̃−i.

Combining these cases, we conclude that our auction game is better-reply secure.

Proof of Lemma 3

Proof. The proof builds on arguments in Reny (2011), but involves substantial differences in detail.

For each integer k ∈ {1, ...,∞}, define the k + 1 element grid Bk = {0, 1
kv,

2
kv, ...,

k
kv}. From

Proposition 1, we know there exists a monotone pure strategy equilibrium sk corresponding to each

Bk thus defined. We wish to show that for k suffi ciently large these sk are ε-equilibria on the

unrestricted bid space B = [0, v].

Fix player i. It suffi ces to show that for all k suffi ciently large and all monotone pure strategies

si : Ti → B for player i, there is a monotone pure strategy si,k : Ti → Bk such that player i’s utility
loss from using si,k instead of si is no greater than ε uniformly in rival strategies.

Let s∗i,k be the unrestricted best response of bidder i given strategies s−i,k played by rivals.

By Lemma 1, we have that s∗i,k is monotone. Define an approximation s̃i,k (on Bk) of s∗i,k as
follows: set s̃i,k(vi, ai, wi) equal to the lowest l

kv that is weakly higher than s
∗
i,k(vi, ai, wi). Thus

s̃i,k(vi, ai, wi) is weakly monotone. Furthermore, since sk is an equilibrium on Bk, we must have
πi(si = si,k; s−i = s−i,k) ≥ πi(si = s̃i,k; s−i = s−i,k).

We next show that ∀ε > 0, there exists a K > 0 such that when k ≥ K we have πi(si =

s∗i,k; s−i = s−i,k)− πi(si = s̃i,k; s−i = s−i,k) ≤ ε. We consider three events which could arise for a

given type profile realization (v,a,w).

First, consider the event that bidder i does not win under strategy s̃i,k. In this case, he also

does not win under strategy s∗ik as s̃i,k(vi, ai, wi) ≥ s∗ik(vi, ai, wi). Hence in this event bidder i’s

payoff does not change.

Second, consider the event that bidder i wins under strategy s∗i,k. In this case, he must also win

under strategy s̃i,k as s̃i,k(vi, ai, wi) ≥ s∗i,k(vi, ai, wi). Note that 0 ≤ s̃i,k(vi, ai, wi)−s∗ik(vi, ai, wi) ≤
1/k by construction. Therefore, for these events, bidder i’s payoff decreases by at most 1/k.

Third, consider the event that bidder i wins under strategy s̃i,k but not under strategy s∗i,k.

In this case, bidder i’s payoff is 0 under strategy s∗i,k. If bidder i wins under strategy s̃i,k with a

bid lower than vi, then his gain is positive. If bidder i wins under strategy s̃i,k with a bid higher
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than vi, then his gain is negative. We next bound this loss. Note s∗i,k(vi, ai, wi) ≤ vi, and thus

s̃i,k(vi, ai, wi) ≤ vi + 1/k. This fact means that his gain is higher than (−1/k). In summary, for

these events, bidder i’s gain under strategy s̃i,k is at most lower by 1/k than his gain under strategy

s∗i,k.

Now consider large k. When wi ∈ [0, 1
k ], the utility loss of bidder i is bounded by u( 1

k ; a) −
u(0; a) ≤ u( 1

k ; a). When wi ∈ [ 1
k , 1 + 1

k ], the utility loss of bidder i is bounded by u(wi; a)− u(wi −
1
k ; a) ≤ 1

ku
′(wi − 1

k ; a) = 1
k (wi − 1

k )−a. When wi > 1 + 1
k , the utility loss of bidder i is bounded by

u(wi; a)− u(wi − 1
k ; a) ≤ 1

ku
′(wi − 1

k ; 0) = 1
k .

Let Φi denote the marginal cumulative distribution function of wi. Based on the above ar-

guments, when k is large the expected utility of bidder i under strategy s̃i,k is at most lower by

u( 1
k ; a)Φi(

1
k ) +

∫ 1+ 1
k

1
k

1
k (wi− 1

k )−adΦi(wi) +
∫ w̄i

1+ 1
k

1
kdΦi(wi) than his expected utility under strategy

s∗i,k, i.e. 0 ≤ πi(si = s∗ik; s−i = s−i,k) − πi(si = s̃i,k; s−i = s−i,k) ≤ u( 1
k ; a)Φi(

1
k ) + 1

k [
∫ 1+ 1

k
1
k

(wi −
1
k )−adΦi(wi) +

∫ w̄i
1+ 1

k
dΦi(wi)]. As density fi(·, ·, ·) is bounded, we have Φ′i(wi) is bounded. There-

fore,
∫ 1+ 1

k
1
k

(wi − 1
k )−adΦi(wi) +

∫ w̄i
1+ 1

k
dΦi(wi) is bounded for large k. Note

∫ 1

0
(wi)

−adwi < +∞,
and u( 1

k ; a)Φi(
1
k ) converges to zero when k goes to infinity. Thus for all ε > 0, there exists K <∞

such that 0 ≤ πi(si = s∗ik; s−i = s−i,k)− πi(si = s̃i,k; s−i = s−i,k) ≤ ε for all k > K.

Finally, observe that for k > K we have πi(si = s∗i,k; s−i = s−i,k) ≥ πi(si = sk; s−i = s−i,k) ≥
πi(si = s̃i,k; s−i = s−i,k). Hence 0 ≤ πi(si = s∗i,k; s−i = s−i,k) − πi(si = sk; s−i = s−i,k) ≤ ε. We

conclude that for any ε > 0 there exists K <∞ such that sk is an ε-equilibrium for each k > K.

Proof of Lemma 4

Proof. [Monotonicity in value vi]: Take fixed ai and wi. Suppose v′i < v′′i . We want to show

b′i ≤ b′′i . Clearly we should have b′i ≤ v′i, b′′i ≤ v′′i .
If b′′i ≥ v′i, then clearly b

′′
i ≥ b′i. We now assume b

′′
i ≤ v′i. Incentive compatibility conditions

gives

[1− exp(−ai(v′i − b′i + wi))]pi(b
′
i; s−i) + [1− exp(−ai(wi))][1− pi(b′i; s−i)]

≥ [1− exp(−ai(v′i − b′′i + wi))]pi(b
′′
i ; s−i) + [1− exp(−ai(wi))][1− pi(b′′i ; s−i)].

and

[1− exp(−ai(v′′i − b′′i + wi))]pi(b
′′
i ; s−i) + [1− exp(−ai(wi))][1− pi(b′′i ; s−i)]

≥ [1− exp(−ai(v′′i − b′i + wi))]pi(b
′
i; s−i) + [1− exp(−ai(wi))][1− pi(b′i; s−i)]

We thus have
1− exp(−ai(v′i − b′i))
1− exp(−ai(v′i − b′′i ))

≥ pi(b
′′
i ; s−i)

pi(b′i; s−i)
≥ 1− exp(−ai(v′′i − b′i))

1− exp(−ai(v′′i − b′′i ))
,
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which leads to

[exp(−aiv′i)− exp(−aiv′′i )][exp(aib
′′
i )− exp(aib

′
i)] ≥ 0,

as required.

[Monotonicity in risk aversion ai]: Fixed vi and wi. Suppose a′i < a′′i . We want to show b
′
i < b′′i .

Note b′i, b
′′
i ≤ vi. Incentive compatibility conditions give

[1− exp(−a′i(vi − b′i + wi))]pi(b
′
i; s−i) + [1− exp(−a′i(wi))][1− pi(b′i; s−i)]

≥ [1− exp(−a′i(vi − b′′i + wi))]pi(b
′′
i ; s−i) + [1− exp(−a′i(wi))][1− pi(b′′i ; s−i)].

and

[1− exp(−a′′i (vi − b′′i + wi))]pi(b
′′
i ; s−i) + [1− exp(−a′′i (wi))][1− pi(b′′i ; s−i)]

≥ [1− exp(−a′′i (vi − b′i))]pi(b′i; s−i) + [1− exp(−a′′i (wi))][1− pi(b′i; s−i)]

We thus have
1− exp(−a′i(vi − b′i))
1− exp(−a′i(vi − b′′i ))

≥ pi(b
′′
i ; s−i)

pi(b′i; s−i)
≥ 1− exp(−a′′i (vi − b′i))

1− exp(−a′′i (vi − b′′i ))
,

which gives
1− exp(−a′′i (vi − b′i))
1− exp(−a′i(vi − b′i))

≤ 1− exp(−a′′i (vi − b′′i ))

1− exp(−a′i(vi − b′′i ))
.

We only need to show that γ(x) =
1−exp(−a′′i x)
1−exp(−a′ix) decreases with x > 0 when a′′i > a′i, which is verified

below.

Note that

γ′(x) =
a′′i exp(−a′′i x)

1− exp(−a′ix)
− [1− exp(−a′′i x)]a′i exp(−a′ix)

[1− exp(−a′ix)]2

=
[1− exp(−a′ix)]a′′i exp(−a′′i x)− [1− exp(−a′′i x)]a′i exp(−a′ix)

[1− exp(−a′ix)]2

=
[a′′i exp(a′ix)− a′i exp(a′′i x)]− (a′′i − a′i)

[1− exp(−a′ix)]2 exp(a′′i x) exp(a′ix)

=
a′′i [exp(a′ix)− 1]− a′i[exp(a′′i x)− 1]

[1− exp(−a′ix)]2 exp(a′′i x) exp(a′ix)
.

We next show that
exp(a′ix)− 1

a′ix
<

exp(a′′i x)− 1

a′′i x
,

i.e. function λ(z) = exp(z)−1
z increases with z > 0, which clearly holds as λ′(z) = exp(z)

z − exp(z)−1
z2 =

(z−1) exp(z)+1
z2 > 0. β(z) = (z − 1) exp(z) + 1. β′(z) = z exp(z) ≥ 0. β(0) = 0.

The second half of the Lemma 4 is clear as the solution of a bidder’s expected utility maximiza-

tion problem does not depend on the initial wealth.
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Existence of Monotone ε-Equilibria under Private CARA Preferences

Proof. Define a sequence of bid spaces Bk, a corresponding sequence of equilibrium strategy profiles
sk on Bk, a best response s∗i,k to s−i,k and a candidate strategy s̃i,k for each i, k as in the proof of
Lemma 3. By analogous arguments, the final wealth of bidder i under strategy s̃i,k is at most lower

by 1/k than his final wealth under strategy s∗i,k, provided other bidders play s−i,k. Furthermore,

by form of the CARA utility function u(x; ai), we have for all ai ∈ [0, ā]:1

ux(x; ai) =

{
exp(−aix) ≤ 1 ∀x ≥ 0.

exp(−aix) ≤ exp( āk ) ∀x ∈ [− 1
k , 0].

Since the final wealth induced by s̃i,k is at most lower by 1/k than that induced by the supremum

payoff s∗i,k, and final wealth from s∗i,k is non-negative, final wealth from s̃i,k must be higher than

−1/k even when initial wealth wi = 0. Hence from above we have 0 ≤ πi(si = s∗i,k; s−i = s−i,k)−
πi(si = s̃i,k; s−i = s−i,k) ≤ (1/k) exp( āk ) < (1/k) exp(ā). Noting that πi(si = s∗i,k; s−i = s−i,k) ≥
πi(si = sk; s−i = s−i,k) ≥ πi(si = s̃i,k; s−i = s−i,k), it follows that 0 ≤ πi(si = s∗i ; s−i =

s−i,k) − πi(si = sk; s−i = s−i,k) ≤ (1/k) exp(ā). From this, it follows that for each ε > 0 there

exists K <∞ such that s∗k is a monotone ε-equilibria for each k > K. This establishes existence of

a sequence of ε-equilibria for which ε→ 0, as was to be shown.

1Here, we use ā ∈ R+ to denote a uniform upper bound for all ai. ā is not restricted to be smaller than 1 for
CARA preferences.
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