
 

 

Jouni Kuha and Patrick Sturgis  

Comment on ‘What to do instead of 
significance testing? Calculating the 
“number of counterfactual cases needed to 
disturb a finding”’ by Stephen Gorard and 
Jonathan Gorard  
  
Article (Accepted version) 
(Refereed) 
 
 

 

Original citation: Kuha, Jouni and Sturgis, Patrick (2016) Comment on ‘What to do instead of 
significance testing? Calculating the “number of counterfactual cases needed to disturb a finding”’ 
by Stephen Gorard and Jonathan Gorard. International Journal of Social Research Methodology. 19 
(4). pp. 491-495. ISSN 1364-5579 
 
DOI: 10.1080/13645579.2015.1126495 

© 2016 Taylor & Francis 

This version available at: http://eprints.lse.ac.uk/66035/ 
 
Available in LSE Research Online: April 2016 
 
LSE has developed LSE Research Online so that users may access research output of the School. 
Copyright © and Moral Rights for the papers on this site are retained by the individual authors 
and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE 
Research Online to facilitate their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any profit-making activities or any 
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research 
Online website.  
 
This document is the author’s final accepted version of the journal article. There may be differences 
between this version and the published version.  You are advised to consult the publisher’s version 
if you wish to cite from it. 
 
 
 

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=j.kuha@lse.ac.uk
http://www.tandfonline.com/loi/tsrm20#.VwvKM_krLGg
http://dx.doi.org/10.1080/13645579.2015.1126495
http://www.tandfonline.com/
http://eprints.lse.ac.uk/66035/


 

 1 

[Comment on “What to do instead of significance testing? Calculating the 'number of counterfactual 

cases needed to disturb a finding'” by Stephen Gorard and Jonathan Gorard] 

 
Jouni Kuha 
Department of Statistics, London School of Economics and Political Science 
 
Patrick Sturgis 
Department of Social Statistics, University of Southampton 
 
Introduction 
Stephen Gorard has been a vociferous and vocal critic of conventional frameworks for statistical 
inference. His criticisms have focused more on their common mis-application and misinterpretation 
than on inherent flaws in the methods themselves. However, it is clear that even if correctly applied 
and interpreted, Gorard regards the entirety of sampling theory and classical inferential statistics to 
be a misleading enterprise, which should be abandoned (Gorard 2015). What has been less 
evident in his published writings in this area is what he believes researchers who wish to use 
sample data to understand population characteristics should do instead. We therefore welcome 
this latest contribution, in which he (with J Gorard, henceforth G&G) sets out and demonstrates a 

new procedure – the number needed to disturb (NNTD) – which is described by G&G as offering “a 

superior alternative to the failed approach of significance testing and confidence intervals, and the 

limitations of ‘effect’ sizes” (2015, px).  

 
In this note we comment on this proposed new method. We do not discuss the statements about 
significance tests, effect sizes, and missing data that appear in the first section of G&G. This is not 

because we agree with these points – in fact we disagree with most of them – but because a short 

note like is not the appropriate place for repeating standard explanations of the motivations, 
assumptions, and logic of conventional statistical inference. 
 

In the remainder of the space available to us, we show that G&G’s suggested methods for 

calculating their own statistic are cumbersome and inaccurate; we give a simple exact formula 
instead. Next, we demonstrate that, far from being a novel calculation, the NNTD is actually a 
simple function of the t-statistic and the standardized effect size and therefore behaves in ways 
that are already well understood within conventional frameworks. We go on to show how the NNTD 
does depart from conventional statistical inference in its reliance on the logic of sensitivity analysis.  
We argue that this renders it arbitrary as a basis for making decisions about the magnitude and 
importance of sample values. We finish by demonstrating that under plausible conditions, 
application of the NNTD will lead researchers to draw incorrect conclusions about the properties of 
samples and of the populations from which they were drawn. It goes without saying that this is a 
highly undesirable property of any statistic.  
 
Defining the NNTD 
An assessment of the utility of the NNTD in the terms set out in G&G is difficult because the way 
the method is described and evaluated in the paper is imprecise and unclear in important ways. 

Terms such as ‘robustness’, ‘security’, ‘trustworthiness’, and ‘meaningfulness’ of findings are used 

interchangeably but without any proper definition of what they mean.  Therefore, to be clear about 
what we are commenting on, we begin by re-stating the NNTD procedure in our own conceptual 
and formal terms. 
 
We take the spirit of the NNTD to be based on the following rationale. The researcher conjectures 
that the sample data she has observed are, hypothetically, supplemented by additional 
observations with particular characteristics. She calculates the smallest number of these additional 
observations that would be needed to render the point estimate of a particular parameter of 
interest, say the difference between two means, to be of a specified null value which might be, for 
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instance, zero. She then uses this number of additional hypothetical cases to assess the strength 
of the conclusions it is reasonable to draw about the parameter, based on the observed sample 
data. If the number is large then she can be confident that the point estimate is of substantive 
interest and has not arisen due to biases or chance variability across samples.  
 
How this general procedure is operationalized in practice depends on the measurement level of the 
data, the parameter of interest, and the null value specified by the researcher. It seems unlikely 
that extending the NNTD beyond comparisons of group means would be as straightforward as is 
stated in G&G. For example, it is not obvious how the additional hypothetical observations would 
be constructed to reduce an estimated regression coefficient in a multiple linear regression model 
to zero. However, we do not seek to demonstrate this lack of generality here as the two-group 
mean comparison, which is the only case described in detail in G&G, is sufficient for illustrating the 
general limitations of the approach that we wish to note. 
 
Both of the real-data examples in G&G are described as 'interventions', which we take to mean 
randomised experiments, although the procedure need not be limited to experimental designs. 
Suppose that each of Nt subjects is randomly assigned to a treatment or a control condition. The 
value of an outcome variable Y (e.g. a literacy score) is then recorded for a total of N=N1+N2 of the 
subjects, N1 from the control group and N2 from the treatment group. We denote the smaller of N1 

and N2 (or both, if they are of equal size) by 𝑓𝑁 where 0 < 𝑓 ≤ 1/2. There may also be Nm = Nt – N 

missing cases, i.e. subjects who were assigned to a condition but for whom Y was subsequently 

not recorded due to attrition or other factors. Let 𝑌̅1 and 𝑌̅2 denote the observed sample means of Y 
among the control and treatment groups respectively, and s the sample standard deviation of Y in 
the two groups combined. In G&G these quantities are denoted 𝜇1, 𝜇2 and 𝜎 respectively but we 
use the more conventional notation for the sample quantities, reserving the use of Greek letters for 
the unknown values of the corresponding parameters. 
 
Let 𝜇1 denote the average of the values of Y for all the Nt subjects who were initially included in the 
experiment if, hypothetically, they were all assigned to the control condition. In other words, 𝜇1 is 
the average of the potential outcomes under the control condition among the subjects in the 
experiment and 𝜇2 is the average of the potential outcomes under the treatment condition (Imbens 

and Rubin, 2015). A common parameter of interest in this situation is the difference 𝜇2 − 𝜇1, the 
so-called average treatment effect (ATE) among the experimental subjects, compared to the 

control condition. The sample mean difference 𝑌̅2 − 𝑌̅1 is typically used as the point estimate of 
𝜇2 − 𝜇1. The null value of special interest is taken to be 𝜇2 − 𝜇1 = 0.  
 
Following G&G, we consider the version of the NNTD where the hypothetical additional 

observations are all equal to 𝑐 = 𝑌̅𝐿 + sign(𝑌̅𝐿 − 𝑌̅𝑆)𝑠, where 𝑌̅𝐿  denotes the value of the sample 

mean (𝑌̅1 or 𝑌̅2) in the group where the observed sample size (N1 or N2) is larger and 𝑌̅𝑆 the mean 
in the group where the sample size is smaller. The additional hypothetical observations are all 
added to the smaller group.   
 
Comparing the NNTD to the t-test 

We observe at this point that, despite G&G’s trenchant critique of classical inference, their NNTD 

procedure has a similar aim to statistical significance testing (though not to point or interval 
estimation of parameters, which it does not aim to do). This is to say, the NNTD is intended to aid 
the researcher in coming to a judgement about whether patterns and differences observed in 
sample data are also likely to be evident in the population from which the sample was drawn. It is 
therefore illustrative to compare the NNTD to the two-group t-test as a means of clarifying exactly 
how it differs from the sorts of conventional methods G&G propose that it should replace.  
 
Both the NNTD and the two-group t-test can be described as comprising three steps. Step 1 is the 
definition of a statistic, that is, a number which can be calculated from the observed data. For the t-
test, this is the two-sided p-value 𝑝 = 2 ∗ [1 − 𝐹𝑁−2(|𝑡|)], where FN-2 is the cumulative distribution 
function of the t-distribution with N-2 degrees of freedom, and |t| is the absolute value of the test 

statistic 𝑡 = (𝑌̅2 − 𝑌̅1)/(𝑠√1/𝑁1 + 1/𝑁2). For the NNTD, the statistic is the NNTD itself, which we 
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denote by N* and which can be calculated as 𝑁∗ = 𝑓𝑁|𝑌̅2 − 𝑌̅1|/𝑠 . G&G propose both an 
approximate formula and an iterative algorithm to calculate N*, although it is not obvious why, 
given this simple exact formula is available.  
 
To be useful as a means of detecting differences between groups (whether or not one considers 
the magnitude of the difference to be substantively important) a statistic should have the property 

of being an increasing (or decreasing) function of all of |𝑌̅2 − 𝑌̅1|, 1/𝑠 and N. Both N* and p (as well 

as |t|) satisfy this condition. It is worth pointing out at this first step that |𝑡| = √𝑓(1 − 𝑓)𝑁 |𝑑|, 𝑁∗ =

𝑓𝑁 |𝑑| and 𝑁∗ = √𝑓𝑁/(1 − 𝑓) |𝑡|, where |𝑑| = |𝑌̅2 − 𝑌̅1|/𝑠 is a commonly used sample measure of 

the absolute value of ‘effect size’. Thus, rather than being a substantially new or different kind of 

statistic, the NNTD for the two-group mean comparison is in fact a simple function of the effect size 
and the t statistic.   
 
Step 2 in both procedures is to make an interpretation of the value of the calculated statistic in 

terms of a hypothetical scenario. For NNTD, the ‘what if’ is that the sample mean difference would 

have been zero if the sample had, in addition to the cases actually observed, included N* 
observations with the value c in the group with the smaller number of actually observed cases. For 

the t-test, the hypothetical is that the data were drawn from a population where 𝜇2 − 𝜇1 = 0, and p 
is the probability that a population with this characteristic would yield a value of |t| which is equal to 
or larger than the value of |t| for the observed sample data.  
 
Steps 1 and 2 on their own are correct but essentially inconsequential mathematical statements 
about p and N*. Step 3 is the crucial one because this is where a researcher makes a claim about 
how the hypothetical of step 2 relates to the real process that produced the observed data and 
uses this evidence to draw conclusions about the value of the population parameter. Step 3 may 
be done, broadly speaking, with a stronger or a weaker level of commitment. The stronger one is to 
assume that the hypothetical scenario corresponds in some sense to the real data-generating 
process. The weaker is the logic of sensitivity analysis, where the hypothetical is treated as a 
scenario that could have been real, followed by an assessment of how different choices for this 
scenario would affect conclusions about the parameters of interest (see for example Molenberghs 
and Kenward, 2007 and Rosenbaum, 2010).   
 
The NNTD as a Sensitivity Analysis 
Significance testing is normally done under the stronger level of commitment, that is supposing that 
the assumptions under which the p-value is calculated are an adequate representation of the 
process that actually generated the observed data. Conclusions about population parameters can 

then be drawn under the familiar logic of statistical inference – provided the assumptions of the test 

actually do represent the data-generating process sufficiently well.  
 
For a two-group randomised experiment, the two key assumptions are that the subjects actually 
received the treatments assigned to them, and that any missing data are missing at random 
(MAR). The MAR assumption is that the probability that the outcome Y was not observed for a 
subject depends only on the group to which the subject was assigned (see Little and Rubin (2002) 
for more on the conventional frameworks and terminology for missing data). The adequacy of such 
assumptions cannot of course be guaranteed in general, neither here nor in any other types of 
experimental or observational research designs. An inevitable implication of the stronger level of 
commitment to inference, and a key responsibility for the empirical researcher, is thus concern 
about the validity of the assumptions of inference in each individual analysis. It is for good reason 
that a very large part of research methodology is devoted to this concern; to clarifying 
assumptions, devising diagnostic methods for assessing their adequacy, and developing research 
designs and methods of analysis which require minimal assumptions and/or are robust to their 
violation.  
 
The NNTD is not meant to be employed with the strong logic of inference (this would require an 
assumption that if we had actually observed a further N* observations, these would all have been 
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equal to c).  Instead, it is a sensitivity analysis and thus shares the inherent strengths and 
weaknesses of this approach. Its strengths are that it is always feasible and typically 
straightforward to carry out. It also cannot be wrong, in the sense that it is not required to represent 
the true data-generating processes. For these same reasons, however, sensitivity analysis 
provides only an arbitrary and inconclusive basis for inference. Many different plausible scenarios 
can generally be considered, their degree of plausibility will always be at least partially subjective, 
and they will generally imply different conclusions. For the NNTD procedure, only one particular 
value for the hypothetical additional observations was proposed in G&G, but other plausible ones 
could be used instead and would yield different values of N*.  
 
In the best case, sensitivity analysis can suggest that qualitative conclusions about parameters of 
interest (e.g. the direction of an average treatment effect) remain unchanged under all plausible 
scenarios for the data-generating process, but this is rare. Perhaps more commonly, this type of 
analysis may reveal that all conclusions are possible under some plausible assumptions. 
Significance tests could also be interpreted as a special case of sensitivity analysis, that is, as an 
assessment of what we would conclude from the test if its assumptions were satisfied. This is not 
often done in practice, although it is quite standard for inference to be combined with elements of 
sensitivity analysis with regard to auxiliary assumptions. For example, it is recommended for 
examining the consequences of deviations from the MAR assumption for inference in the presence 

of missing data (i.e. `missingness not at random’; see e.g. Molenberghs and Kenward, 2007).  

 
However, the NNTD as proposed in G&G is problematic even as a sensitivity analysis and, if 
implemented as they suggest, risks leading researchers to draw incorrect conclusions. This is 
because they consider only one value of c for the hypothetical additional observations. To illustrate 
the problem, consider a two-group randomised experiment where N is large and the true treatment 

effect is close to zero. Suppose further that there is missing data in the treatment group, so that 𝑌̅2 
is based on a subset of the cases that were originally randomised to the treatment condition, and 
that cases with lower values of Y in the treatment group are more likely to drop out of the study. 

The sample mean difference 𝑌̅2 − 𝑌̅1 is now expected to be positive, and so is N*. If N* is much 
larger than the number of missing cases, which it could be, applying the NNTD would lead the 

researcher to conclude that the observed difference between groups is ‘robust’ and should be 

‘taken seriously’. However, the difference between groups is in fact primarily due to the bias arising 

from the missing-data mechanism and, the bigger this bias, the larger the NNTD will be.  
 
A final important limitation of the NNTD is the lack of any explicit guidance for how researchers 
should interpret different values of the statistic, a point acknowledged by G&G themselves in the 
concluding section of their article. For the two examples in G&G, the p-value for the t-test are 
p=0.034 for Table 2 and p=0.259 for Table 3. Of course, p-values closer to zero indicate stronger 
evidence against the null hypothesis of no average treatment effect and discrete decisions, should 
they be required, could be made based on the conventional levels of significance. The 
corresponding integer values of the NNTD statistic are N*=38 for Table 2 (not 36, as stated in 
G&G) and N*=21 for Table 3 (before subtracting the number of missing cases in the smaller 

group).  Here, larger values of N* indicate stronger evidence in favour of a ‘robust’ or ‘meaningful’ 

treatment effect. However, G&G give no explicit suggestions about how different values of N* 

should be interpreted relative to one another. Does a value of 38 indicate an ‘important’ difference 

and a value of 21 an unimportant one? Can these numbers be interpreted in the same way 
irrespective of the underlying sample size? On these key matters, the reader is left completely in 
the dark.  
 
Conclusion 
G&G argue that conventional methods of statistical inference are widely mis-used and 
misinterpreted by researchers, a point which has also been made in a number of previous 
publications by the first author. Rather than advocating the correct use of conventional statistics, 

G&G propose what they claim is a new and superior approach to assessing the ‘importance’ of 
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research findings, the NNTD. However, we have shown that the NNTD procedure is actually a form 
of sensitivity analysis, based on a simple function of the effect size and the t statistic. It is our view 
that the logic of sensitivity analysis does not provide a general replacement for statistical inference; 
it is simply too weak and arbitrary for that purpose. Sensitivity analysis does have an important 
supporting role to play in data analysis, particularly in assessing how substantive conclusions 
might be affected by empirically un-verifiable assumptions, but this has long been well understood. 
The NNTD procedure is one means of implementing such an analysis. However, we are not 
tempted to recommend its use it in this context either, not least because there is currently no 
explicit guidance on how different values of the statistic should be interpreted. In summary, our 
assessment is that the NNTD as proposed by G&G is fundamentally flawed as a general 
replacement for existing methods of statistical inference and is problematic for more limited 
application as a variant of sensitivity analysis. 
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