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Abstract

Patrolling games were recently introduced by Alpern, Morton and Papadaki to model

the problem of protecting the nodes of a network from an attack. Time is discrete and in

each time unit the Patroller can stay at the same node or move to an adjacent node. The

Attacker chooses when to attack and which node to attack, and needs m consecutive time

units to carry it out. The Attacker wins if the Patroller does not visit the chosen node

while it is being attacked; otherwise the Patroller wins. This paper studies the patrolling

game where the network is a line graph of n nodes, which models the problem of guarding

a channel or protecting a border from infiltration. We solve the patrolling game for any

values of m and n, providing an optimal Patroller strategy, an optimal Attacker strategy

and the value of the game (optimal probability that the attack is intercepted).

Subject classifications: Search and surveillance: patrolling.

Area of review : Military and Homeland Security



1 Introduction

This paper applies the theory of patrolling games on networks, as introduced by Alpern et

al. (2011), to the classical problems of guarding a channel or patrolling a border. We adopt

a discrete model in which an antagonistic Attacker has the choice of where to attempt an

infiltration: in particular, which node of the Line graph Ln (nodes 1, 2, . . . , n) to attack. He

can also choose when to attack, i.e. any discrete time interval of m consecutive periods, where

m represents the difficulty of infiltration. To thwart the attack or attempted infiltration, the

Patroller walks along the line, hoping to be at the attacked node at some time within the attack

period. If she thus intercepts the attack, she wins the game; otherwise the attack is successful

and she loses (the Attacker wins). This is a win-lose game, which is a finite zero-sum game

with payoff 1 to the maximizing Patroller if she wins, otherwise payoff 0. Clearly both players

must adopt mixed strategies. The solution depends in a delicate way on the two parameters n

and m and hence covers an infinite number of cases.

The situation is familiar from the context of national border security as many borders

have well defined end points (the US-Mexican or US-Canadian borders, the former border

between East and West Berlin, the “Greenline” in Cyprus patrolled by UN peace keeping

troops). However it is also familiar in more abstract settings, as in the military operations

research problem of “patrolling a channel” introduced in the classic early text of Morse and

Kimball (1951) in which an aircraft patrols a channel with a view to intercepting a submarine.

Related problems are described in our literature review.

Our discrete model considers a setting for which the border can be penetrated at designated

points along its length. A classic example would be checkpoints on the Berlin Wall, but for

a more contemporary example consider the problem faced by an airport dog patrol which has

to cover a bank of security checkpoints at the entrance to the departure lounge. Consider also

the example that when animals cross a river, there are limited locations where the slope down

from the higher land is such that river level can be reached. These locations are well known

to the Patrollers (predators in that context). A final interpretation is that IEDs (Improvised

Explosive Devises) can be placed at certain points along a road where they are hidden from

sight – they must be found before they explode.

We view this paper as having a similar role to that of Gal (1979) in the related field of search

1



games for an immobile hider on a network, with our Patroller analogous to his Searcher and

our Attacker analogous to his Hider. In that field, early work began in a rough way for general

networks, and then went forward to special classes of networks: trees and Eulerian. These

were then put together to cover weakly cyclic networks and then weakly Eulerian networks by

Gal (2000) and others. See Alpern (2013) for a discussion of this history. The introduction of

Patrolling Games in Alpern et al. (2011) gave a rough outline of the patrolling game theory for

general graphs and started the particular theory by covering cycle graphs. This paper gives a

complete solution for the Line graph. We plan to extend this work to trees in the first instance

and then to more general classes of graphs. But we also believe that the Line graph is of interest

in itself, as it models the classic problem of guarding a border.

The reason that the results in this paper are complex and varied is that the “obvious”

solution for patrolling a line - simply going back and forth - is not optimal. It leaves nodes near

the ends especially vulnerable to attack. See Figure 3 for an illustration. An anecdote from the

second author illustrates this problem: “I was watching my daughter taking a group swimming

lesson. The teacher lined up seven children along the short side of the pool and went back and

forth, taking a child for a short swim before replacing her back on the poolside. After a while

I realized that my daughter (at position 7 on the end) was getting only half the attention of

her neighbour, who always got to swim immediately before and after my daughter. However

I was unable to convince the swimming teacher that there was a problem with her method.”

The significance of this anecdote for patrolling the line is not the frequency with which a patrol

visits an end but rather the gap between visits, particularly the size of this gap relative to m,

the length of an attack.

Game theory plays an important role in the study of security problems, for instance the work

of Pita et al (2008) which created randomized security policies at Los Angeles Airport. Other

important applications of game theory to security problems can also be found in Baykal-Gürsoy

et al (2014) and Fokkink and Lindelauf (2013).

2 Literature Review

We divide our literature review into two parts. First we review the literature on preventing

an infiltrator from crossing a boundary or perimeter, or guarding a channel, which relates to
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the Line graph on which we concentrate. Then we review the literature on patrolling a general

graph or network that has developed since our introduction of patrolling games in Alpern et

al. (2011).

2.1 Guarding a channel or infiltrating a border

Since the original work in the classic text of Morse and Kimball (1951), several authors have

modeled the problem of guarding a channel or border. Washburn (1982) estimates the detection

probability obtainable by a channel patroller. Baston and Bostock (1987) consider a problem

where the Attacker has to cross from the left side to the right side of a rectangle while avoiding

static blocks of the Patroller (in our terminology). This work is extended in Baston and

Kikuta (2009) to the case where the Attacker has a non-zero width (maybe in our format this

might correspond to requiring attacks on adjacent nodes rather than at a single node). Baston

and Kikuta (2004) consider the possibility of several attackers. Washburn (2010) considers

conditions under which the Attacker can get through observable moving barriers in the case of

a line or circle.

Collins et al. (2013) suppose that only some portions of a boundary of a region are important

to protect and show how multiple patrollers should optimally patrol individual sections of the

search space separately. Zoroa et al. (2012) also consider a guarding a boundary (cycle graph),

but against multiple attacks. Chung et al. (2011) consider multiple patrollers of a channel with

periodic trajectories. Szechtman et al. (2008) model the problem faced by a moving Patroller

(a sensor) on a border trying to detect infiltrators who arrive according to a Poisson process.

None of these papers use our graph patrol model, but they give fairly similar models to ours

of the infiltration game on a line or circle.

2.2 Patrolling games on a graph

Since our introduction of patrolling games in Alpern et al. (2011), a number of papers have a

Patroller on a general graph or network. Lin et al. (2013) have a graph model similar to ours

and apply approximate methods for a wider class of problems than ours. They consider targets

(nodes) which can have different values. Their algorithms seem to work very well for complex

problems, for both random and strategic attacks. This work is further extended in Lin et al.
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(2014). Basilico et al. (2012, 2015) apply simulation techniques to large scale problems, also

obtaining robust algorithms. Hochbaum et al. (2014) use a Stackelberg approach to solve the

games where the attacks are nuclear threats on edges of the network, with theoretical results

on the k-vehicle rural Chinese Postman Path.

3 Model and preliminary results

This section recalls the definition of patrolling games on general graphs and specializes to the

case of a Line graph. Some general properties of the game for general graphs are stated, and

some new ones established.

3.1 Defining the Discrete Patrolling Game

As introduced in Alpern et al. (2011), a patrolling game is based on the following given

data: a graph Q with n nodes N and edges E, an attack duration m and a time horizon

T = {1, 2, . . . , T} of length T. The Attacker chooses an attack (i, I) where i is the attacked

node and I ⊂ T is a subinterval of size m, which implies that T ≥ m. The time duration

m represents the time required to carry out an attack, or perhaps if G is a border, the time

required cross it. The Patroller chooses a patrol, a walk w : T → N. This means that w (t) and

w (t+ 1) are the same or adjacent nodes. The Patrolling game is a win-lose game; the Patroller

wins if he successfully intercepts the attack, that is, if w (t) = i for some t ∈ I. The Attacker

wins if he is undisturbed while carrying out his attack. In zero-sum notation, the Patroller is

the maximizer, with payoff 1 if she wins and payoff 0 otherwise. Thus the value V = V (Q)

of the game is the optimal probability that the Patroller intercepts the attack. In this paper

we shall solve the patrolling game on the Line graph Ln, with nodes N = {1, 2, . . . , n} and

consecutive numbers considered adjacent. The two significant parameters will be the size n of

the line and the attack duration m – the time horizon T will not be important as the solution

will be constant for T sufficiently large, namely for T ≥ 2m. This is because some optimal

attacker strategies take 2m periods to complete and none of them need more than 2m periods

to complete. If T < m the attacker will never succeed because there is not enough time to

carry out the attack. For m ≤ T < 2m, then in some cases the attacker’s optimal strategy

becomes unavailable. In these cases the probability of a successful attack is bounded above by
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the values that we give in this paper, since the value of the game is non-increasing with T (see

Alpern et al. (2011), Proposition 3.1).

It is clear that in patrolling games it is not sufficient for the players to adopt pure strategies.

However finite mixtures of pure strategies are sufficient. In some cases, for example in describing

mixed attack strategies, it is useful to mention multiple attacks with the understanding that

each of these is adopted with a given probability.

3.2 Decomposition results

A notion introduced in Alpern et al. (2011) is the decomposition of a graph Q = (N,E) into

simpler graphs Qj = (Nj , Ej) where ∪Nj = N and nodes in Qj are adjacent if they are adjacent

in Q. The Patroller has the option of choosing each graph Qj with some probability and then

patrolling optimally on Qj with some probability pj . Thus an attack on a node in Qj will be

intercepted with probability at least pjVj , where Vj is the value of the patrolling game on Qj .

By choosing the pj to equalize these probabilities, the following result was obtained as Lemma

6 of Alpern et al. (2011).

Lemma 1 (Patroller Decomposition Lemma) Suppose a graph Q is decomposed into graphs

Qj , j = 1, . . . , J. Then the value V of the patrolling game on Q satisfies

V ≥ 1∑J

j=1
1/Vj

.

We now introduce a new decomposition result from the point of view of the Attacker, which will

be needed in later sections. First observe that for any graph Q the value V (Q) can be written

as a rational number a/b, where the Attacker has an optimal strategy of equiprobably choosing

among b attacks, no more than a of which can be intercepted by a single patrol. To see this

observe that as the patrolling game is a finite game with rational payoffs it has a rational value

and the Attacker can choose among the finite number of attacks such that the probability of

choosing attack j is a rational number pj . Write the rationals p1, p2, . . . as pj = aj/b with a

common denominator b. In this way the Attacker chooses equiprobably between the b attacks

of which aj attacks are of type j.
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Now suppose that the nodes N of a graph Q are the union of two node sets N1 and N2. It

turns out that attack strategies on the associated graphs Q1 and Q2 can be usefully combined

to form an attack strategy on N if they agree on the intersection nodes N1 ∩ N2. This is

analogous to the result that two continuous functions form a continuous function on the union

of their domains, as long as they agree on the intersection. We also need a condition that

attacked nodes which are not in the intersection are not too close to the intersection. The

precise formulation is as follows.

Lemma 2 (Attacker Decomposition Lemma) Suppose the graph Q = (N,E) is the union

of two connected graphs Qi, i = 1, 2, whose intersection is the set of nodes S. That is, N =

N1 ∪ N2, N1 ∩ N2 = S. For i = 1, 2, write Vi = V (Qi) = a/bi as rationals with the same

numerator so that there are optimal attack strategies on Qi which equiprobably use bi attacks

(some with duplication) of which at most a can be intercepted by a single patrol. Suppose the

following two conditions hold:

1. The two optimal attack strategies on Q1 and Q2 have the same c pure attacks (at the same

times, same nodes) on S.

2. If a patrol intercepts one of b1 attacks in Q1 and one of the b2 attacks in Q2, then one of

these must be in S.

Then the value V of the patrolling game on Q satisfies the inequality

V ≤ a

b1 + b2 − c
=

1
1
V1

+ 1
V2
− c

a

.

Proof. It is easy to combine the two optimal attack strategies for Q1 and Q2 as a feasible

attack strategy for Q. Simply make all the b1 attacks on Q1 and all the b2 attacks on Q2,

equiprobably, without duplicating the c attacks on S. This makes b1 + b2 − c attacks, by item

1. By item 2, the number of these that can be intercepted by a single patrol is still at most a.

To illustrate Lemma 2 with an example, consider Q = Q1 ∪ Q2 with m = 4 as in Figure

1, with S = {C,F} = {Z,W}. Clearly V (Q1) = V (Q2) = 2/3 = a/b, because the Attacker

can attack equiprobably at the 3 nodes X,Z,W at the same time, say 1, and no patrol can
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Figure 1: Q can be decomposed as Q1 ∪Q2.

intercept more than 2 of them. This gives c = 2. The Patroller can equiprobably adopt the

periodic patrols XY ZY X, ZYWY Z, WYXYW , two of which intercept any attack. It follows

from the above result that

V (Q) ≤ a

b+ b− c
=

2

3 + 3− 2
=

1

2
.

Note that the Patroller cannot use Lemma 1 to obtain an optimal strategy, as that estimate

gives only

V (Q) ≥ 1
1

2/3 + 1
2/3

=
1

3
.

In fact, V (Q) = 1/2, as can be seen by considering that the Patroller equiprobably adopts

the periodic walk ABCBA and the 3 others symmetric to it. An attack at any node is inter-

cepted by two of these four patrols.

3.3 Oscillations and Random Oscillations

Oscillations will play an important role in patrolling the Line graph Ln.

Definition 3 An oscillation on a subinterval Lj = {k+1, . . . , k+j} for any 0 ≤ k ≤ n−j of

the Line graph Ln is a walk starting at any node in Lj, going in either direction (unless starting

at an endpoint), and turning around whenever reaching an endpoint of Lj (reflecting). Note

that there are two oscillations starting at each interior node of Lj and one starting at each end

node. In total this makes 2j− 2 oscillations. A random oscillation is an equiprobable choice

between these 2j − 2 oscillations.
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The use of oscillations in patrolling strategies will become clearer later in this section. Note

that a random oscillation is a mixed strategy.

There are two general observations about oscillations. The first is that if n is sufficiently

small with respect to m, then an oscillation on Ln intercepts all possible attacks on Ln. The

second is that when n is large with respect to m, a random oscillation has constant probability

of intercepting attacks near the middle of Ln, tailing off at the ends. (This can be seen in

equation (1) on the calculation of ω(i), as plotted in Figure 3.)

To analyze the first observation, note that when leaving a node of Lj an oscillation is away

for at most 2 (j − 2) + 1 = 2j − 3 periods before returning, with this maximum achieved when

the node is an endpoint. The first term 2 (j − 2) counts the periods away at one of the j − 2

interior points of Lj , and the second term counts the single period the oscillation is away at the

opposite endpoint. Thus if m > 2j − 3 the attack interval is too long to be contained in one of

these periods away from a node, and will be intercepted. Thus we have shown the following.

Lemma 4 (Oscillation Lemma) Suppose that j ≤ (m+ 2) /2. Then

1. An oscillation on Lj intercepts any attack on Lj, and therefore

2. V (Lj) = 1 (any oscillation is a winning pure strategy).

Observe that the second part of the lemma shows that we need only consider cases n >

(m + 2)/2 or equivalently n > m̂ =
⌊
m+2
2

⌋
(where bkc and dke are respectively the floor and

ceiling of an integer k), as the Patroller can surely win otherwise.

To analyze the second observation (on random oscillations), we calculate the probability

that a random oscillation on Ln intercepts an attack at node i.

Suppose the attack is at a node i near the middle of Ln as pictured in Figure 2(a) for

i = 5. The oscillations can be viewed as clockwise movements of period 2 (n− 1), starting at

a random node. We label nodes on the circle where the oscillation is moving left with a star.

Suppose the attack is at node i on the line starting at some time t. Then it will be intercepted

by oscillations located at the 2m(= 6) nodes labeled with x or y at time t. For example the

oscillation at location i − 1(= 4) at time t will intercept the attack at time t + 1. Thus here

the intercepting oscillations are described by two disjoint arcs of size m(= 3) and since the
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sample space has size 2 (n− 1) the probability that an attack at i = 5 is intercepted is given by

(2m) / (2 (n− 1)) = m/ (n− 1). When i is small with respect to m the two arcs (determined

by the nodes labeled x and those labeled y) overlap, as shown in Figure 2(b), where there are 5

starting points which intercept an attack on node 2, which gives value 5/18 where 18 = 2(10)−2

is the total number of oscillations.

(a) (b)

Figure 2: (a) An attack at i = 5 is intercepted with probability 6/18, m = 3. (b) An attack at
i = 2 is intercepted with probability 5/18, m = 3.

Thus the probability that an attack at node i of Ln is intercepted by a random oscillation

on Ln is given by ω (i) , where

ω (i) =
min (m+ 2 (i− 1) , 2m)

2 (n− 1)
for i ≤ n+ 1

2
, with ω (i) = ω (1 + (n− i)) for i >

n+ 1

2
.

(1)

For the case n = 10 and m = 3 illustrated in the two previous figures, the interception

probabilities ω (i) are shown in Figure 3.

Figure 3: Probabilities ω(i) of intercepting attack at i for n = 10,m = 3.

9



3.4 Independence and covering strategies

We now describe a pair of strategies that give further bounds on the value of the game. A patrol

w is called intercepting if it intercepts every attack on a node that it visits. We emphasize that

whether or not w is intercepting depends on the value of m. For example, Lemma 4 says that if

j ≤ (m+ 2)/2 then any oscillation on Lj is intercepting. A set of intercepting patrols is called

a covering set if every node of Q is visited by at least one of the patrols. The covering number

Cm is the minimum cardinality of any covering set. We use the subscript of m to indicate the

dependence of the covering number on the length of the attack period. We define the covering

strategy as an equiprobable choice between the intercepting patrols of a minimum covering set.

Note that intercepting patrols may visit overlapping sets. For example when n = 5 and m = 4

the oscillations on {1, 2, 3} and on {3, 4, 5} form a covering set. But so do the oscillations on

{1, 2, 3} and {4, 5}.

A set of nodes is called an independent set if no two attacks at two nodes of the set taking

place in the same time interval (simultaneously) can be intercepted by the same patrol. This

means that the nodes are at least m edges apart. The independence number Im = Im(Q) is the

cardinality of a maximum independent set. We define the Attacker’s independent strategy as

an equiprobable choice of attacks on a maximum independent set during a fixed time interval.

These notions of the independence and covering number are taken from Alpern et al. (2011)

and they can be seen to be equivalent to the well-known graph-theoretic definitions of indepen-

dence and covering numbers for a suitably defined hypergraph.

These strategies give the following bounds, obtained in Alpern et al. (2011), Lemma 12.

Lemma 5 (Covering-Independence Lemma) The value satisfies

1

Cm
≤ V ≤ 1

Im
, (2)

where the upper bound is guaranteed by the Attacker using the independent strategy and the

lower bound is guaranteed by the Patroller using the covering strategy.

We also have Im ≤ Cm. This follows from Lemma 5, but it can also be argued using the

definition of independent and covering sets: each node in an independent set is covered by

at least one patrol from a covering set and at the same time each intercepting patrol in a
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covering set cannot cover more than one node from an independent set, thus there are no fewer

intercepting patrols than there are independent nodes.

3.5 Division of (n,m) space and main results

The aim of this paper is to solve the patrolling game on the line Ln with attack duration m

for arbitrary values of n and m. The solution comes in several types, according to a partition

of (n,m) space. For n ≤ (m+ 2) /2 the game is trivial, as the Patroller can intercept every

possible attack by simply going back and forth between the end nodes (see Lemma 4). So we

assume throughout that n ≥ (m+ 2) /2. For n < m + 1 the solution is also fairly simple, as

shown in Theorem 16 Alpern et al. (2011): the optimal strategy for the Attacker is to attack

simultaneously at the ends (diametrical strategy), the optimal strategy for the Patroller is the

random oscillation and the value of the game is given by

V (Ln) =
m

2 (n− 1)
, when

m+ 2

2
≤ n < m+ 1. (3)

For the purposes of this paper, we partition the (n,m) space into five regions: regions S1 and

S2 are described above and we partition the remaining region n > m + 1 into three further

regions which will have separate solution types. (Actually the previous paper covered the case

n = m+ 1 as well, but we shall cover that case differently in this paper.)

Figure 4: (n,m) space partitioned in sets S1, S2, S3, S4, and S5.
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S1 = {(n,m) : n < (m+ 2)/2} ,

S2 = {(n,m) : (m+ 2)/2 ≤ n < m+ 1} ,

S3 = {(n,m) : m = 2, n ≥ 3} ,

S4 = {(n,m) : n = m+ 1, or n = m+ 2 and m ≥ 3 is even} ,

S5 = {(n,m) : n ≥ m+ 3, or n = m+ 2 and m ≥ 3 is odd} .

The partition of (n,m) space into these regions is shown in Figure 4.

The two cases S3 and S4 will be solved by similar techniques (a kind of covering-independence

argument) in Section 4, summarized as Theorem 10. The remaining case S5 will be solved in

Sections 5 and 6, summarized as Theorem 13, with detailed proofs of the subcases outlined in

Section 6 and proved in the Appendix.

In the following result two derived parameters that are important are ρ = (n− 1) modm

and V̄ = m/ (n+m− 1) . Further, S1 is trivial, S2 has been proved in [2] and S3, S4, S5 cover

all the results of this paper.

Theorem 6 The solution to the Patrolling Game on the Line graph Ln, for attack duration

m, is given in the following three cases:

(n,m) ∈ S1 The value of the game is given by V = 1; the oscillation strategy is optimal for

the Patroller and all strategies are optimal for the Attacker.

(n,m) ∈ S2 The value of the game is given by V = m
2(n−1) ; the random oscillation strategy

is optimal for the Patroller and equiprobably attacking at the endpoints (diametrical) is

optimal for the Attacker.

(n,m) ∈ S3 The value of the game is given by V = 1
dn/2e ; the covering strategy is optimal for

the Patroller and the independent strategy is optimal for the Attacker.

(n,m) ∈ S4 The value of the game is V = 1
2 = 1

Im = 1
Cm , and the covering and independent

strategies are optimal for the players.
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(n,m) ∈ S5 The value of the game is V̄ = m/ (n+m− 1), the end-augmented oscillation

strategy (as defined later in Definition 11) is optimal for the Patroller and the optimal

Attacker strategy depends on m and the parameter ρ = (n− 1) modm.

4 Optimal Patroller and Attacker strategies on S3 and S4

In this section we solve the patrolling game on Ln for sets S3 and S4. The main tool is Lemma

5.

4.1 Independence and Covering numbers for the line

For the game played on Ln we can explicitly calculate the independence number and covering

number, as defined in Subsection 3.2. This will be useful in the next section when we give

optimal strategies for the Patroller. We denote the independence number and covering number

of Ln by Im,n and Cm,n respectively.

Lemma 7 When Q is the Line graph Ln, the covering and independence numbers are given by

Cm,n =

⌈
n

bm/2c+ 1

⌉
and Im,n =

⌊
n+m− 1

m

⌋
. (4)

Proof. From the Oscillation Lemma (Lemma 4, part 1), we see that if n = cm̂, where

m̂ =
⌊
m+2
2

⌋
, we can cover Ln with c disjoint intercepting patrols and hence Cm,n ≤ c = n/m̂.

This clearly still holds for smaller n, n ≤ cm̂. Since an intercepting patrol cannot cover an

interval of size larger than m̂, it follows that

Cm,n =
⌈ n
m̂

⌉
=

⌈
n

bm/2c+ 1

⌉
.

To calculate the independence number, we obtain a maximally independent set by placing i

attacks at 1, 1 +m, 1 + 2m, . . . , 1 + (i− 1)m, where

1 + (i− 1)m ≤ n ≤ 1 + im, and hence

i = Im,n =

⌊
n+m− 1

m

⌋
.
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Since we know Im,n and Cm,n we have bounds on the value V from Lemma 5. A particularly

useful and easy application of Lemmas 5 and 7 occurs when the fraction involved in the formula

(4) for Im is an integer, that is, when n = qm+ 1 for some integer q and so (n+m− 1) /m =

(q + 1)m/m = q + 1. In this case we have V̄ ≡ m/ (n+m− 1) = 1/Im. For purposes related

to the statement of Theorem 13, we write the condition n = qm+ 1 as ρ ≡ (n− 1) modm = 0.

Corollary 8 If ρ ≡ (n− 1) modm = 0, then the independent strategy ensures an expected

payoff not exceeding V̄ ≡ m/ (n+m− 1) and hence V ≤ V̄ .

Proof. By Lemma 7 it is sufficient to prove that 1/Im,n = V̄ . However the hypothesis

implies that (n+m− 1) /m is an integer, and so Im,n can be calculated from Lemma 4 as

Im,n = 1/ b(n+m− 1) /mc = 1/V̄ .

It turns out that V̄ ≡ m/ (n+m− 1) is the value of the game for n ≥ m+3, and the above

result provides the (tight) upper bound.

4.2 When are Cm,n and Im,n equal?

According to the Lemma 5, the value of the patrolling game on the line is simply V = 1/Im,n =

1/Cm,n when Cm,n = Im,n, with the optimal mixed strategies for the Patroller and Attacker

being the covering strategy and the independent strategy, respectively. As formula (4) in

Lemma 7 gives Cm,n and Im,n in terms of m and n, it is not difficult to identify all the cases

in which the patrolling game on the line can be simply solved in this manner. In particular we

find Cm,n = Im,n on S3 and S4 (and in one other case). We begin by calculating a table with

entries Cm,n − Im,n for some small values of n and m, n ≥ m+ 1.

The 0s in the table obviously correspond to the Cm,n = Im,n cases. They come in the four

types: a diagonal of 0s with n = m + 1; a diagonal n = m + 2 with alternating 0s and 1s,

the column for m = 2 and the apparently anomalous 0 at (9, 4). We explain these 0s and

furthermore show that there are no others, in the following result.

Proposition 9 Suppose m ≥ 2 and n ≥ m+ 1. Then the covering number Cm,n and indepen-

dence number Im,n are equal in the following four cases:
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n\m 2 3 4 5 6 7 8 9 10
3 0
4 0 0
5 0 1 0
6 0 1 0 0
7 0 1 1 1 0
8 0 1 1 1 0 0
9 0 2 0 1 1 1 0
10 0 1 1 2 1 1 0 0
11 0 2 1 1 1 1 1 1 0

Table 1: Cm,n − Im,n

(a) m = 2 (Cm,n = Im,n = dn/2e),

(b) n = m+ 1 (Cm,n = Im,n = 2),

(c) n = m+ 2 and m is even (Cm,n = Im,n = 2),

(d) n = 9 and m = 4 (Cm,n = Im,n = 3).

Furthermore,

(e) Cm,n > Im,n in all other cases.

Proof.

Case (a) follows from the observation that for m = 2, by Lemma 7, Cm,n = dn/2e =

b(n+ 1)/2c = Im,n.

For cases (b) and (c) we have following: If n = m+ 1 then Im,n =
⌊
(m+1)+m−1

m

⌋
= b2c = 2

and if n = m + 2 we have Im,n =
⌊
(m+2)+m−1

m

⌋
=
⌊
2m+1
m

⌋
=
⌊
2 + 1

m

⌋
= 2. If m is even

then Cm,n =
⌈

2n
(m+2)

⌉
. If also n = m + 1 then Cm,n =

⌈
2m+2
m+2

⌉
=
⌈
2− 2

m+2

⌉
= 2, and if

instead n = m + 2 then Cm,n =
⌈
2(m+2)
m+2

⌉
= 2. If m is odd and n = m + 1 then Cm,n =

d2(m+ 1)/ (m+ 1)e = 2.

Case (d) follows from Lemma 7, which implies that C4,9 = I4,9 = 3.

The proof of result (e) is in the Appendix, since we don’t use that in the rest of the paper.

Note the one additional 0 for m = 4 and n = 9, where Cm,n = Im,n = 3 and V = 1/3. Here

the independent set is {1, 5, 9} , and the covering intervals are [1, 3] , [4, 6] and [7, 9] , as shown
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in Figure 5. So the attacks are equiprobable on the independent set (denoted by x below) and

the Patroller oscillates equiprobably on the three stated intervals.

←−−→
1
x

2 3
←−−→
4 5

x
6
←−−→
7 8 9

x

Figure 5: Solution for m = 4, n = 9.

Combining Proposition 9 with Lemma 5 in cases S3 and S4 we get that the value of the

game is 1
Cm,n

.

Theorem 10 For S3 and S4 the value of the patrolling game on Ln is 1
Cm,n

, which for S3 is

dn/2e and for S4 is 1
2 . Furthermore, the optimal strategies are the covering and the independent

strategies.

This establishes the first two cases of our main theorem (Theorem 6).

It is interesting to see how the part of the above result, for the case n = m + 2 where m

even, can be obtained from the Patroller Decomposition Lemma (Lemma 1). We decompose

Ln into two copies of Ln/2, that is into La and Lb where a = b = n/2. Since n/2 = (m+ 2) /2,

it follows from Lemma 4 that V (La) = 1. Hence the Patroller Decomposition Lemma says that

V (Ln) ≥ 1/ (1/V (La) + 1/V (Lb)) = 1/2.

5 Optimal Patroller strategy on S5

This section considers the Patroller’s strategy when the parameters (n,m) belong to the set S5,

that is, n ≥ m+ 3, or n = m+ 2 and m > 2 is odd. In the first instance, the Patroller might

consider simply adopting a random oscillation on the full line. However, as seen in Figure 3,

this strategy gives a poor interception probability near the ends. So one solution, which turns

out to be optimal, is to add to the mixed Patroller strategy random oscillations on intervals of

size m̂ =
⌊
m+2
2

⌋
. Since in particular m̂ ≤ m+2

2 , the first part of the Oscillation Lemma (Lemma

4) shows that the oscillation on such intervals intercept any attack in that interval (they are

intercepting patrols).

We state the Patroller strategy more precisely below.
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Definition 11 We define the end-augmented oscillation strategy on Ln as follows. With proba-

bility p = (n− 1) / (m+ n− 1) the Patroller adopts the random oscillation on Ln and with prob-

ability q = m/ (2 (m+ n− 1)) adopts any oscillation on the left interval of size m̂ =
⌊
m+2
2

⌋
and

also with probability q adopts any oscillation on the right interval of size m̂. (Note p+ 2q = 1.)

The left interval of size m̂ is the interval {1, . . . , m̂} and the right interval is {n−m̂+1, . . . , n}.

Lemma 12 For n ≥ m + 2, the end-augmented oscillation strategy ensures that the value V

satisfies V ≥ m/ (n+m− 1) ≡ V̄ .

Proof. We give the proof for even m, where m̂ = (m+ 2) /2. Note that the end oscillations

intercept every attack in their interval and that the full random oscillation intercepts an attack

at node i with probability ω (i) as defined in (1). Thus an attack at any node i ≤ m̂ or i > n−m̂

(in the two end intervals) is intercepted with probability

q ∗ 1 + p ∗ ω (i) ≥ q ∗ 1 + p ∗ ω (1)

=
m

2 (m+ n− 1)
+

n− 1

(m+ n− 1)

m

2 (n− 1)

= V̄ .

An attack at any middle node m̂ < i ≤ n−m̂ is intercepted with probability ω (i) = m/ (n− 1)

if the Patroller is adopting the full random oscillation on Ln, and thus with probability

p ∗ m

n− 1
=

n− 1

(m+ n− 1)

m

n− 1
= V̄ .

The proof for odd m, where m̂ = (m+ 1) /2, is similar.

It is interesting to compare the end-augmented oscillation strategy in the case n = 9 and

m = 4 to the covering strategy, which we saw was optimal for these parameters in Section 4.2.

The end-augmented oscillation strategy chooses random oscillations on L9 with probability

p = 2/3 and with probability q = 1/6 adopts an oscillation on each of the intervals [1, 3] and

[7, 9]. In Figure 6 we show the probability the attacks at each of the nodes are intercepted

when the Attacker uses each strategy. Even though both strategies are optimal, the end-

augmented oscillation strategy weakly dominates as it detects attacks at some nodes with

probability strictly higher than 1/3, whereas the covering strategy detects attacks at all nodes
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(a) (b)

Figure 6: Probability of interception of an attack at node i for (a) the covering strategy and
(b) the end-augmented oscillation strategy (n = 9,m = 4).

with probability exactly 1/3.

6 Optimal Attacker strategies on S5

This section states the main theorem for the patrolling game on the line for S5. We consider

five types of attack strategies (A,B,C,D,E) and show that one of these always guarantees that

V ≤ V̄ ≡ m/ (m+ n− 1). Since we already showed in the previous section that the Patroller

can insure that V ≥ V̄ by adopting the end-augmented oscillation, this will establish that

V = V̄ .We have already shown (Corollary 8) that if ρ ≡ n−1 modm = 0 then V ≤ 1/Im,n = V̄

and thus the independent attack strategy (A) is optimal. We will describe the other four attack

strategies (B-E) in the subsections below. Each of these attack strategies is optimal for certain

pairs of m and n, as described in the following main result.

Theorem 13 Consider the patrolling game on the line Ln with attack duration m. If n ≥

m + 3 ≥ 6, or n = m + 2 and m is odd, the value is given by V = V̄ ≡ m/ (m+ n− 1) and

the end-augmented oscillation is an optimal patrol. The type of optimal attack strategy is either

the independent attack (A), the horizontal attack (B), the vertical attack (C), the zig-zag attack

(D) or the extended zig-zag attack, depending on the values of m and ρ ≡ (n− 1) modm as

follows:
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m \ ρ 0 1 even, ≥ 2 odd, ≥ 3

even A E B D

odd A B C B

Table 2: The partition of (m, ρ) space depending on optimality of attack strategies

The partition of (m, ρ) space into regions where the various attack types are optimal can be

seen in Tables 2 and 3. The pattern of letters is easy to describe. Aside from the top row of A’s

ρ/m 3 4 5 6 7 8 9 10 11
0 A A A A A A A A A
1 B E B E B E B E B
2 C B C B C B C B C
3 D B D B D B D B
4 C B C B C B C

Table 3: Partition of (m, ρ) space into optimal attack types.

and the second row of alternating B and E, the remaining grid can be viewed as a chessboard,

with the corner (2,3) a white square. Then all the black squares have B and the white squares

alternate C and D along diagonals. Clearly the squares with ρ ≥ m are empty, as ρ is a number

modulo m.

6.1 Outline of proof of Theorem 13

We already know from Lemma 12 that V ≥ V̄ = m/ (n+m− 1) , which means that the

Patroller can guarantee winning with probability V̄ . So we need to show that in all cases there

is an Attacker mixed strategy which intercepts any attack with probability at least V̄ .

The proof of Theorem 13 will be carried out in five parts, corresponding to each of the

cases in Table 3. As we will see below, the case A with ρ = 0 is easily proved. So for each

pair n,m with n > m + 2 and ρ ≥ 1 we decompose the line Ln into two lines Q1 = Lr (with

nodes 1, . . . , r) and Q2 = Lqm+1 (with nodes r, . . . , n) which overlap at the single node r. Thus

n = qm+ r and the choice of r determines q. For cases B, C and D, we take r = m+ ρ+ 1 and

for case E we take r = 2m+ ρ+ 1. In each case we explicitly define a family of b1 = r+m− 1

attacks on Q1 = Lr, of which at most m can be intercepted by a single patrol (walk) and such

that there are exactly m attacks at node r, either (i) one each at times 1, 2, . . . ,m or (ii) two

each at times 2, . . . ,m (this requires m is even). We then use Lemma 15 to cover the graph
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Q2 = Lqm+1 (where q is defined by the equation n = qm + r) with b2 = (q + 1)m attacks, of

which at most m can be intercepted by any patrol and such that the attacks at the end node r

are of the same type A(i) or A(ii) as the c = m attacks on Q1 = Lr. As in the proof of Lemma

2, with a = m, this gives a total of

b1 + b2 −m = (r +m− 1) + (q + 1)m−m = n+m− 1

attacks on Ln, of which at most m can be intercepted by a single patrol. Or, to use the

inequality in Lemma 2, we have

V (Ln) ≤ 1
1

V (Lr)
+ 1

V (Lqm+1)
− m

m

=
1

r+m−1
m + (q+1)m

m − m
m

=
m

(r +m− 1) + (q + 1)m−m

=
m

n+m− 1
.

The significance of this Attacker decomposition is that we only have to describe the optimal

attack strategy on the short line Lr, rather than on the full line Ln.

Thus the proof of Theorem 13 reduces to Lemmas 15, 19, 22, 25 and 28, which are dealt

with in separate subsections below.

6.2 Case A: refining the independent attack strategy

For the case ρ = 0, that is, n = qm + 1, we have already shown in Corollary 8 that the

independent strategy is optimal, and so in this case V ≤ 1/Im,n = V̄ . However, for later

purposes it is useful and maybe necessary to have two additional optimal strategies, which we

will call A(i) and A(ii).

Definition 14 (Attack Strategies A (i) and A (ii) .) The attack strategies A (i) and A (ii)

on Ln, n = qm+ 1 (where ρ = 0) each place m attacks at each node km+ 1, k = 0, 1, 2, . . . , q,

so (q + 1)m attacks in all, equiprobably. Strategy A (i) starts the m attacks at each node at

times 1, 2, . . . ,m. Strategy A (ii) is only defined when m is even, and starts the m attacks with

two each at times 2, 4, . . . ,m.
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Lemma 15 Assume n = qm+ 1, or equivalently ρ = 0. Of the (q + 1)m attacks in the attack

strategy A (i) , at most m can be intercepted by a single patrol. If m is even, the same statement

holds for the attack strategy A (ii).

Proof. The claim of the lemma is easy to verify directly, as if a patrol is last at an attacked

node km + 1 at time t (intercepting at most t attacks there) then the earliest it can arrive at

an “adjacent” attacked node (k ± 1)m+ 1 is at time t+m. In this case it can intercept attacks

there starting after time t, so at most m− t such attacks. Thus in total it can intercept at most

t+ (m− t) = m attacks.

(a) (b)

Figure 7: Attack strategies (a) A(i) and (b) A(ii) on Ln for n = 13,m = 4.

The lemma can also be established by induction on q, using the Attacker Decomposition

Lemma (Lemma 2).

The importance of these two attack strategies on Lqm+1 is that all of the later attack

strategies B,C,D,E attack one of the end nodes of Lr in the same manner as either A (i) or

A (ii) and consequently the overlapping node of the decomposition of Ln into Lqm+1 and Lr,

qm+ r = n, satisfies the condition on S in the Attacker Decomposition Lemma.

Example 16 (n = 13, m = 4) In Figure 7 we illustrate the attack strategies A(i) and A(ii)

on L13, where 13 = mq + 1 with m = 4 and q = 3. In each case, we show with a dotted line a
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patrol that clearly intercepts only 4 of the attacks.

The attack strategy A(i) will be used for cases B and C and the attack strategy A(ii) for

cases D and E.

6.3 Case B of m+ ρ even, ρ > 0: horizontal attack strategies

We first consider the horizontal strategy (B), which is optimal when both m and ρ are positive

and even or when they are both positive and odd. In this case we define r by

r = m+ ρ+ 1, which is odd and denote by

k = (1 + r) /2, the middle node of Lr.

Note that Lr has even length 2d = r − 1, where

d = (m+ ρ) /2.

In this case the optimal attack strategy on Lr is as follows.

Definition 17 (Horizontal Strategy) The horizontal attack strategy on an odd size interval

Lr consists of 2m + ρ = r + m − 1 attacks. Of these, m start at each end (nodes 1 and r) at

times 1, 2, . . . ,m. Also there are ρ attacks at the middle node, node k, at the middle ρ of the

times 1, . . . ,m. These times go from time M − δ to time M + δ, where M = (1 +m) /2 and

δ = (ρ− 1) /2.

Note that the horizontal strategy has a time symmetry property, in that for any given node

the number of attacks that are taking place at a time t is equal to the number of attacks taking

place at time 2m − t (note that we do not mean the number of attacks that start at time t).

In other words there is symmetry around time t = m. In fact, all the attack strategies in cases

B, C, D and E have a similar time symmetry property, and we will exploit this to simplify the

analysis.

Example 18 (n = 14, m = 5, r = 9) We note that ρ = 13 mod 5 = 3 and hence r = 5+3+1 =

9, as shown in Figure 8. In Figure 8 the top six nodes 9− 14 represent L6 = Lm+1 with attack
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Figure 8: Horizontal strategy on Lr for n = 14,m = 5, r = 9

strategy A(ii). Using the decomposition result, we take q = 1. The middle node of Lr is

k = (1 + 9) /2 = 5. So the attacks on Lr for the horizontal strategy are at the ends, nodes 1 and

9 and at the middle node k = 5. At the ends, the start times of the attacks (indicated by solid

circles in the space-time diagram) are 1, 2, 3, 4, 5 = m. The middle of these times is M = 3

and the ‘radius’ δ = (ρ− 1) /2 = 1. Hence the middle attacks go from the integers M − δ = 2

to M + δ = 4. In all there are r + m − 1 = 13 attacks. From Figure 8, it is easy to see that

no more than m = 5 of these can be intercepted by a single patrol. Note that an attack whose

start is indicated by a solid black circle will be intercepted by a walk that reaches that height

(node) at a time no more than m− 1 = 4 periods after the start of the attack. The number of

attacks intercepted by a walk arriving at an attacked node (1,5,9) is indicated by a red integer.

For example the patrol (walk) staying at node 1 till time 2 and then moving to the right in each

period (shown by a dashed line in the figure) intercepts two attacks at node 1, three attacks at

middle node 5 and no attacks at node 9. By our decomposition result, we only need to show

that no patrol can intercept more than m = 5 of the attacks on Lr. Note also that the time

symmetry property holds: the number of attacks taking place at a node x at time t is equal to

the number of attacks at x taking place at time 2m − t = 10 − t. Because of this vertical line

of symmetry shown in Figure 8 at t = m = 5, the second dashed line in the figure starting at

node 8 and going to node 5 and then node 1 intercepts the same number of attacks as the first

23



dashed line.

The importance of the horizontal strategy lies in the following.

Lemma 19 Consider the horizontal strategy on Lr, r = m+ ρ+ 1 for Case B: m+ ρ even. Of

the 2m+ ρ = r +m− 1 attacks, at most m can be intercepted by any walk w of the Patroller.

The proof is in the Appendix.

6.4 Case C of m odd, ρ even: vertical attack

We now consider the case ofm odd and ρ even, where we define r = m+ρ+1 and k = (1 + r) /2

as in the previous subsection. Observe that now r is even and k lies between two integers. In

this case the following attack strategy is optimal.

Definition 20 (the vertical attack strategy) For m odd and ρ even, the vertical attack

strategy consists of r + m − 1 = 2m + ρ attacks. Of these, m start at each end (nodes 1 and

r) at times 1, 2, . . . ,m. Also there are ρ attacks at the middle time M = (1 +m) /2, one each

at the middle ρ nodes of Lr. These middle nodes go from node k − δ to node k + δ, where

δ = (ρ− 1) /2.

Figure 9: Vertical strategy on Lr for n = 13,m = 5, r = 8

Example 21 (n = 13,m = 5) We illustrate the vertical strategy in Figure 9 for the case n = 13

and m = 5. We have ρ = 12 mod 5 = 2 and we take r = m + ρ + 1 = 8 (giving q = 1 again).

Here the middle of the nodes of Lr = L8 are at k = 4.5 and the middle of the time 1, . . . ,m = 5

is the integer time M = 3. So the attacks at the ends 1 and 8 of L8 start at times 1 to m = 5
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and the attacks at the middle nodes start at time M = 3. We have δ = (ρ− 1) /2 = 1/2, so the

attacked middle nodes go from k − δ = 4 to k + δ = 5.

As in the previous subsection, the importance of this strategy is shown in the following

lemma.

Lemma 22 Consider the vertical strategy on Lr, r = m + ρ + 1 for Case C: ρ even and m

odd. Of the 2m + ρ = r + m − 1 attacks, at most m can be intercepted by any walk w of the

Patroller.

The proof is in the Appendix.

6.5 Case D of m even, ρ > 1 odd: zig-zag attack

In the case D of m even and ρ odd, we write ρ = 2s+ 1 and take

r = m+ ρ+ 1 = 2k, as r is even. (5)

Thus the two middle nodes of Lr are those labeled k and k + 1. The middle ρ periods

of the time interval M = {1, . . . ,m+ 1} can be labelled as t1, t2, . . . , tρ, centered so that

(t1 + tρ) /2 = (1 + (m+ 1)) /2, given by

ti =
m− ρ+ 1

2
+ i, i = 1, . . . , ρ. (6)

Definition 23 (the zig-zag attack strategy) For m even, ρ odd and r = m + ρ + 1 = 2k,

the zig-zag strategy places r +m− 1 = 2m+ ρ equiprobable attacks on Lr as follows:

bottom We place m attacks on the bottom node 1 one each starting at times 1 and m+ 1, and

two each starting at odd times 3, 5, . . . ,m− 1.

top We place m attacks at the top node r, two each starting at even times 2, 4, . . . ,m.

middle We place ρ attacks at the middle nodes k and k + 1, starting at the middle times

ti, i = 1, . . . , ρ, given by (6). The attacks at k start at the s + 1 odd indexed times ti,

i = 1, 3, . . . , ρ; those at k + 1 start at the s even indexed times ti, i = 2, 4, . . . , ρ− 1.
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Figure 10: Zig-zag strategy on Lr for n = 18,m = 6, r = 12

Example 24 (n = 18,m = 6) We illustrate the zig-zag strategy in Figure 10 for the case n =

18 and m = 6. We have ρ = 17 mod 6 = 5 and we take r = m + ρ + 1 = 12 (once again

giving q = 1). The two middle nodes of Lr = L12 are at k = 6 and k + 1 = 7 and the middle

time periods are given by t1 = 2, t2 = 3, . . . , t5 = 6. The bottom attacks comprise one starting

at times 1 and m + 1 = 7 and two starting at the odd times, 3 and 5 between 1 and 7. The

top attacks comprise two starting at each of the even times between 2 and m = 6. The middle

attacks comprise one attack starting at each of the s + 1 = 3 odd indexed times t1, t3, t5 at

node k = 6 and one attack starting at each of the s = 2 even indexed times t2 and t4 at node

k + 1 = 7.

The importance of the zig-zag attack lies in the following.

Lemma 25 Consider the zig-zag strategy on Lr, r = m+ ρ+ 1 for Case B: m even and ρ odd.

Of the r +m− 1 attacks, at most m can be intercepted by any walk w of the Patroller.

The proof is in the Appendix.

6.6 Case E of m even, ρ = 1: the extended zig-zag strategy

Finally, we illustrate the case E where m = 2a is even and ρ = n − 1 modm = 1. We take

r = 2m+2, which differs from the common r value used in the previous three cases. In this case

the extended zig-zag attack strategy is optimal. This strategy uses the same 2m end attacks
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as the zig-zag strategy (case D). The middle attacks are on the middle m nodes of Lr defined

by

xi = a+ 1 + i, i = 1, . . . ,m.

For example, the middle 4 nodes of L10 with m = 4 are 4, 5, 6, 7.

Definition 26 (Extended zig-zag) When m = 2a is even and ρ = 1 (Case E), we define

the extended zig-zag strategy on Lr, r = 2m+ 2 as follows. We place r+m− 1 = 2m+ (m+ 1)

equiprobable attacks, m at each of the ends and m+1 in the middle m nodes of Lr. The 2m end

attacks are placed in the same way as for the zig-zag attack (two each at even times 2, 4, . . . ,m

at node r; two each at odd times 3, . . . ,m − 1 and one each at times 1 and m + 1 at node 1).

The m + 1 = 2a + 1 middle attacks are as follows. One attack is at time a + 1 at node xm

(the top middle node) and the others are at the nodes x1, x3, . . . , xm−1, one each at times a and

a+ 2.

Example 27 Let n = r = 10 and m = 4. So ρ = 1. Figure 11 illustrates the m + n − 1 = 13

equiprobable attacks, of which no more than m = 4 can be intercepted by any walk. The middle

attacks are at times a, a+ 1, a+ 2, that is, times 2, 3, 4. The middle nodes are those from 4 to

7, with two attacks at nodes x1 = 4 and x3 = 6 and one attack at node x4 = 7.

Figure 11: Extended zig-zag strategy on Lr for n = 10,m = 4, r = 10.
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Lemma 28 Consider the extended zig-zag strategy on Lr, r = 2m+ 2 for Case E: m even and

ρ = 1. Of the r +m− 1 = 3m+ 1 attacks, at most m can be intercepted by any walk w of the

Patroller.

The proof is in the Appendix.

7 Redundant Edges and Perfect Decomposition

In the patrolling literature, for example in Collins et al. (2013) an important qualitative ques-

tion is whether the network under attack can be defended with non overlapping patrols, either

by separate patrollers (when there are several) or when the patrols are mixed probabilistically.

To deal with this question, we first introduce a new concept in patrolling games on a network

Q = (N,E) .We say that an edge e ∈ E of Q is redundant if the value of the patrolling game on

the graph Q− e = (N,E − e) is the same as that of the original network Q. The Patroller can

avoid traversing a redundant edge without reducing her chances of intercepting the attack. In

general, removing edges cannot help the Patroller, as it reduces her pure strategies; but it can

hurt her and reduce the value. Similarly, we say that Q can be perfectly decomposed into Q1

and Q2 if the inequality in the Patroller Decomposition Lemma (Lemma 1) holds with equality.

That is, if

V (Q) =
1

(1/V (Q1)) + (1/V (Q2))
. (7)

For the Line graphs the decomposition equation (7) becomes

V (La+b) =
1

1/V (La) + 1/V (Lb)
. (8)

Clearly if Q is the Line graph Ln and an edge e = (i, i+ 1) is redundant then equation (8)

holds for a = i and b = n − i. Note that if Ln is a case of Cm,n = Im,n for some m, as in

Proposition 9 (for example (n,m) ∈ S3 ∪ S4), then Ln can be perfectly decomposed, possibly

in several ways. For example, if m = 4 and n = 9 (where Cm,n = Im,n = 3) we can take

a = 3 and b = 6 and decompose {1, 2, . . . , 9} into {1, 2, 3} and {4, 5, 6, 7, 8, 9} . It turns out that

there are some classes of parameters (n,m) ∈ S5 for which Cm,n 6= Im,n but nevertheless the

Patroller can perfectly decomposed the line Ln and patrol each part separately. In this section
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we completely determine those parameters (n,m) .

For example when m = 7 and n = m+ 2 = 9, we can perfectly decompose L9 into L4 and

L5. We have V (L4) = 1, V (L5) = 7/(2 ∗ 4) = 7/8 and (8) is satisfied because

V (L9) = V̄ =
7

9 + 7− 1
=

7

15
=

1

1 + 8/7
=

1

1/V (L4) + 1/V (L5)
.

This is a particular case of the class n = m + 2, m odd. Thus the two ‘middle edges’, those

between nodes 4 and 5 and between nodes 5 and 6, are each redundant. Of course we cannot

simultaneously remove both edges without changing the value.

Next consider the same attack duration m = 7 but now n = 10. Here we take a = b = 5,

with the same calculation V (La) = 7/8 and so

V (L5+5) = V̄ =
7

10 + 7− 1
=

7

16
=

1

8/7 + 8/7
=

1

1/V (L5) + 1/V (L5)
.

This is a particular case of the other class, n = m + 3. In this case the unique middle edge is

redundant, the one between 5 and 6.

Figure 12 shows the value function V (Ln) (top) and V̂ (Ln) (bottom), the best that can be

obtained by a non-trivial decomposition of Ln,

V̂ (Ln) ≡ max
1<a<n

1

1/V (La) + 1/V (Ln−a)
.

The plot on the left considers the case m = 7 and n from 9 to 15.When n is 9 the lines coincide

because n = m + 2 and m is odd. When n is 10, they again coincide because n = m + 3. For

larger n, decomposing the line is suboptimal. The case of m = 4 is plotted on the right, with

V (Ln) on top and V̂ (Ln) below. The curves (defined only for integers) can be seen to intersect

at n = m+ 3 = 7 and for the anomalous case n = 9 where Cm,n = Im,n = 3.

It turns out that the cases we have just considered, n = m+2 whenm is odd, and n = m+3

without any restriction, together with the anomalous case n = 9, m = 4, are exhaustive.

Theorem 29 For (n,m) ∈ S5 there are three cases where it can be optimal for the Patroller to

decompose the line Ln into two lines La and Lb, a+b = n, a ≤ b. Otherwise, such decomposition

is always suboptimal.
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(a) (b)

Figure 12: Plots of V (Ln) and V̂ (Ln), where V ≥ V̂ ,m = 7, n = 9 to 15 (left), andm = 4, n = 7
to 15 (right).

1. n = m + 3: In this case the perfect decomposition is into two equal sized sets, a = b =

(m+ 3) /2 when m is odd; or a = m/2 + 1 and b = m/2 + 2 if m is even. If n is even,

the middle edge is redundant; if n is odd, the two middle edges are redundant.

2. m is odd and n = m + 2: In this case a = (m+ 1) /2 and b = (m+ 3) /2. The two

middle edges are redundant.

3. m = 4 and n = 9: This is an instance of Cm,n = Im,n. In this case a = 3 and b = 6.

(Note that here L6 can be further partioned into two copies of L3.)

The proof is in the Appendix.

8 Discussion and Conclusions

We see our work as an important building block to building general theory of patrolling games.

From an application point of view, one might argue that there are two canonical cases: patrolling

a perimeter and patrolling a line, ie a border with endpoints. Alpern et al. (2011) provide a

complete solution to the first problem, and in this paper we provide a complete solution to the

second. As can be seen, the problem poses a surprising level of complexity, and the strategies

involved are subtle and sometimes counterintuitive. However, we consider that the work of

this paper provides the groundwork necessary to embark on a solution framework for patrolling

tree graphs; and subsequently for more general graphs consisting of tree-like structures which
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link up multiple embedded Hamiltonian graphs (this might model the situation of a security

guard who has to patrol multiple buildings on a site). We are currently unsure how far analytic

results will be possible and how far optimal strategies will have to be computed by black box

algorithms. Either way, the results of the current paper can be expected to provide a critical

piece of the puzzle. Other interesting avenues for exploration are as follows:

• there could be several patrollers, who may have responsibility for different (perhaps over-

lapping) sections of the border;

• there may be multiple attackers, who may or may not be able to coordinate their attacks;

• there could be variable (rather than constant) distance between crossing points, or cross-

ing times could be different at different points along the border;

• attackers may be partially detectable (that is, when they start to cross the guard becomes

aware and can move towards them);

• patrollers might be restricted to starting at certain locations, known to the attacker;

• we could consider the problem where the utility to the attacker of a successful attack at

node i depends on i.

We leave these as challenges which may be of interest to future researchers in this area.
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Patrolling the Line: Online Appendix

In this section we complete the proof of Proposition 9 part (e). Then we present the proofs of

cases B − E for the Attacker strategies described in Section 6 for set S5. Finally, we present

the proof of Theorem 29.

Proof of Proposition 9 part (e)

To prove part (e), we consider three sub-cases which we deal with separately.

The first sub-case is when n = m+ 2 but m = 2k+ 1 is odd. In this case, bm/2c = k so by

Lemma 7,

Cm,n =

⌈
n

bm/2c+ 1

⌉
=

⌈
2k + 3

k + 1

⌉
=

⌈
2 +

1

k + 1

⌉
= 3.

But

Im,n =

⌊
n+m− 1

m

⌋
=

⌊
4k + 3

2k + 1

⌋
=

⌊
2 +

1

2k + 1

⌋
= 2.

The second sub-case is n/2 ≤ m ≤ n− 3. In this case, 2m ≤ n+m− 1 ≤ 3m, so

2 ≤ n+m− 1

m
≤ 3 and by Lemma 7, Im,n =

⌊
n+m− 1

m

⌋
= 2

Also, since bm/2c ≤ (n− 3)/2, Lemma 7 also implies that

Cm,n =

⌈
n

bm/2c+ 1

⌉
≥
⌈

2n

n− 1

⌉
= 3 > Im,n.

The final sub-case is n/2 > m. We consider the difference, Cm,n − Im,n, which by Lemma

7 satisfies

Cm,n − Im,n ≥
2n

m+ 2
− n+m− 1

m

=
n(m− 2)

m(m+ 2)
+

1−m
m

>
2(m− 2)

m+ 2
+

1−m
m

since n/m > 2

=
1

m(m+ 2)
(m2 − 5m+ 2)

≥ 0 if m ≥ 5.
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We just need to check that if m = 3 or 4 then Cm,n > Im,n. First suppose m = 3. Then it

is easy to verify that Cm,n = dn/2e > b(n+ 2)/3c = Im,n for n/2 > m = 3. If m = 4, then it is

easy to verify that unless n = 9, we have Cm,n = dn/3e > b(n+ 3)/4c = Im,n for n/2 > m = 4.

Proof of Lemma 19

Any walk w first intercepts an end attack (say at node 1) or a middle attack (node k). In

the latter case, since ρ < m, in order to intercept at least m attacks, a patrol would have to

proceed to travel to either node 1 or r. By the time symmetry property, we need not consider

this case since the “time reverse” patrol first intercepts an end attack.

So consider the former case and let x denote the last time w is at node 1 from that first

visit, with 1 ≤ x ≤ m, so that w (x) = 1 and

w (t) ≤ 1 + (t− x) for t ≥ x. (9)

The walk w reaches middle point k not earlier than time x+ d and reaches the top node r not

before time x + 2d. Let A1, Ak and Ar denote the attacks intercepted by w at nodes 1, k, r,

respectively. We may as well assume the walk w intercepts the attacks at node 1 which start

at times 1, . . . , x so number of attacks intercepted at node 1 is

# (A1) = x. (10)

After reaching node k the patrol could continue to the top node r or return to node 1 at some

future point. By symmetry of the attack patterns at nodes 1 and r, we need only consider the

case that the patrol continues to node r. The proof now divides into two cases, depending on

whether or not w intercepts any attacks at the top node r.

1. No attacks at top node r are intercepted. This is the case where x+ 2d (the earliest

possible arrival time of w at r) is larger than 2m− 1 (the last time an attack at r can be

intercepted), or simply

x ≥ 2m− 2d. (11)

Since the walk w reaches the middle node k not before x + d, it intercepts the attacks
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there which start not earlier than (x+ d)− (m− 1). Since the last attack at k is at time

M + δ, the number # (Ak) attacks intercepted by w at node k satisfies

# (Ak) ≤ (M + δ)− ((x+ d)− (m− 1)) + 1 = m− x (12)

Hence the total number of attacks that can be intercepted in this case is

# (A1) + # (Ak) ≤ m, by (10) and (12).

2. Attacks at top node r are intercepted Since x takes integer values, the negation of

condition (11) is given by

x ≤ 2m− 2d− 1 = m− ρ− 1 (13)

In this case only attacks starting at the top node r at times from (x+ 2d) − (m− 1) to

m are intercepted so

# (Ar) ≤ m− ((x+ 2d)− (m− 1)) + 1 = m− x− ρ. (14)

At most ρ attacks at k are intercepted,

# (Ak) = ρ. (15)

So we have by (10), (15) and (14), that

# (A1) + # (Ak) + # (Ar) ≤ (x) + (ρ) + (m− x− ρ)

= m.

So we are done.
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Proof of lemma 22

As in the previous section, we consider walks w satisfying (9). For small x (small enough

that attacks at node r are intercepted), those satisfying (13), at most ρ middle attacks are

intercepted, as well as x attacks at node 1. As in the case of the horizontal attack, w reaches

node r not before time x + 2d and as in that case it intercepts at most m − x − ρ attacks at

node r as shown in (14). In total, the number of attacks intercepted by a walk w is at most

(x) + (ρ) + (m− x− ρ) = m.

The calculations for large x, those satisfying (11) are slightly different than the previous

case. Suppose we label the ρ middle nodes as

zi = k − δ − 1 + i, i = 1, . . . , ρ. (16)

The walk w reaches node zi at time ti given by

zi = w (ti) ≤ 1 + (ti − x) , by (9), or

ti ≥ zi + x− 1. (17)

Suppose that w intercepts the attack at zi which starts at time M . Then we must have:

ti −M ≤ m− 1, or

(zi + x− 1)−M ≤ m− 1, by (17), or

zi + x ≤ M +m, or

(k − δ − 1 + i) + x ≤ M +m, by (16), or

i+ x ≤ M +m− k + δ + 1 = m

But if i is the highest index of an attack at node zi which is intercepted by w, then i+ x is the

total number of attacks intercepted by w, which is bounded above by m.
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Proof of lemma 25

First observe that no patrol can intercept attacks at both ends 1 and r of Lr. There are three

cases to consider, where the first attack to be intercepted by a patrol w (t) is at the bottom,

middle or top. If the first attack to be intercepted is in the middle, then since the total number

of attacks at the middle node is ρ < m, we can assume the patrol continues to the top or

bottom node. Hence by the time symmetry property we need not consider this case.

1. Bottom attack intercepted first Suppose the first attack intercepted by w is at node 1

and the last time w is at 1 is time j ≤ m. We can assume j is odd, as otherwise just

as many attacks can be intercepted by leaving at time j − 1. Such a patrol will intercept

exactly j attacks at the bottom node 1. In this case the most attacks will be intercepted

if w moves up in every period, that is, if w (t) = t− j + 1 for all t ≥ j. Thus the patrol w

arrives at node k at time tk = k+ j− 1 and at node k+ 1 at time tk+1 = k+ j. All these

times are at least tρ, so all the middle attacks have already started by the time nodes k

and k+ 1 are reached. The patrol intercepts attacks at node k starting after time tk −m

and attacks at node k+ 1 starting after time tk+1−m. Thus it intercepts middle attacks

starting after time ti, where ti = tk+1 −m. By (6), i is given by

m/2− s+ i = (k + j)−m, or

i = k + j + s− 3m/2.

Thus the walk intercepts attacks at middle nodes starting at times ti+1 through tρ, or

ρ− i attacks at middle nodes. We evaluate

ρ− i = (2s+ 1)− (k + j + s− 3m/2)

= 3m/2 + s− k − j + 1 (18)

Since this patrol intercepted j attacks at node 1, in all it will intercept j+(ρ− i) attacks,
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and by (18)

j + (ρ− i) = 3m/2 + s− k + 1

= m+
1

2
(m+ ρ+ 1− r)

= m, as r = m+ ρ+ 1.

Thus is this case at most m attacks can be intercepted by any patrol.

2. Top attack intercepted first We can assume the patrol intercepts an even number j of

top attacks starting at times 2, 4, . . . , j. The earliest such a patrol can reach node k + 1

is at even indexed time

t̃ = j + (k − 1) .

It will intercept middle attacks (earliest one is at node k+ 1) starting from even indexed

time

ti = t̃−m+ 2. (19)

Thus the total number of middle attacks which will be intercepted is given by

ρ− (i− 1)

and the total number of attack intercepted (at top and middle) will be

# = j + ρ− (i− 1) = (j − i) + (ρ+ 1)

It remains to determine i from the above equations. We have

ti =
m− ρ+ 1

2
+ i = t̃−m+ 2, or

m− ρ+ 1

2
+ i = j + (k − 1)−m+ 2, or

j − i =
m− ρ+ 1

2
+ (m− k − 1) .
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So we have

# = (j − i) + (ρ+ 1)

=
m− ρ+ 1

2
+ (m− k − 1) + ρ+ 1

=
m+ ρ+ 1

2
+m− k

=
r

2
+m− r

2

= m.

Proof of lemma 28

Once again we divide the proof up into three cases: where the first attack to be intercepted

by a patrol w(t) is at the bottom, middle or top, noting that w(t) certainly cannot intercept

attacks both at the bottom and the top.

1. Bottom attack intercepted first As for the zig-zag attacks, let j ≤ m be the last time

w is at node 1. As before, we can assume that j is odd and that w intercepts j attacks

at node 1. To intercept the largest number of attacks, w must reach node xi at time

j + xi − 1 for each i = 1, . . . ,m. For i odd, the attack at node xi at time a is therefore

intercepted by w if and only if a ≤ j + xi − 1 ≤ a+m− 1, or

a+ 1− j ≤ xi ≤ a+m− j. (20)

The odd values of i for which xi satisfies (20) are i = 1, 3, . . . ,m− j−2, the total number

of which is (m− j − 1)/2.

Similarly, the attack at node xi at time a + 2 is detected by w if and only if a + 2 ≤

j + xi − 1 ≤ a+m+ 1, or

a+ 3− j ≤ xi ≤ a+m− j + 2, (21)

and the odd values of i for which xi satisfies (21) are i = 1, 3, . . . ,m− j, the total number

of which is (m− j + 1)/2. This sums to a total of (m− j − 1)/2 + (m− j + 1)/2 = m− j
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middle attacks intercepted. (It is clear that the attack at node xm is not intercepted.)

Added to the j attacks intercepted at node 1, this gives (m− j) + j = m attacks in total.

2. Top attack intercepted first Next suppose the first attack to be intercepted is at node

r, and let j ≤ m be the last time w is at this node. We can assume that j is even and

that j attacks are intercepted at node r. We can also assume that w(t) = 2m+ 2 + j − t

for t ≥ j, so that the most number of attacks possible are intercepted.

First note that at time t = j+a+ 1 the patrol is at node w(j+a+ 1) = a+ 1 +m = xm.

The attack at xm happens from time a + 1 to time a + m, and t is within this range if

and only if j ≤ m− 1. So there are two sub-cases: j = m and j ≤ m− 2. In the former

case, it is clear that not only is the attack at xm not intercepted, but neither are any of

the other middle attacks, so m attacks in total are intercepted.

In the latter case when j ≤ m− 2, the patrol reaches a node xi at time 2m+ 2 + j − xi.

So for odd i, the attack at node xi at time a is intercepted by w if and only if a ≤

2m+ 2 + j − xi ≤ a+m− 1 or

a+ j + 3 ≤ xi ≤ 2m− a+ j + 2. (22)

The odd values of i for which xi satisfies (22) are i = j + 3, j + 5, . . . ,m − 1, which are

(m− j − 2)/2 in number.

The attack at node xi at time a+2 is intercepted by w if and only if a+2 ≤ 2m+2+j−xi ≤

a+m+ 1 or

a+ j + 1 ≤ xi ≤ 2m− a+ j. (23)

The odd values of i for which xi satisfies (23) are i = j + 1, j + 3, . . . ,m − 1, which are

(m− j)/2 in number. So the total number of attacks intercepted at odd indexed middle

nodes is (m− j − 2)/2 + (m− j)/2 = m− j − 1.

Adding this number to the j attacks intercepted at node r and the 1 attack intercepted

at node xm gives a grand total of
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(m− j − 1) + j + 1 = m.

3. Middle attack intercepted first Finally, suppose the first attack to be intercepted is one

of the m+ 1 middle nodes. By time symmetry we can assume that no attacks at node 1

or 2m+ 2 are intercepted. The only way all of the middle nodes could be intercepted is

if w intercepts both attacks at node x1 and the attack at node xm. We can assume, by

time symmetry, that w goes from x1 to xm. In order to intercept both the attacks at x1,

the patrol must be at x1 at some time t ≥ a + 2, which means it cannot reach xm until

at least time t+m− 1 ≥ a+m+ 1. But the attack at xm only lasts between times a+ 1

and a+m, so it cannot be intercepted. Hence all the attacks at the middle nodes cannot

be intercepted, to the number of them that can be intercepted is at most m.

Proof of Theorem 29

The proof of Theorem 29 uses the formulae that we have derived for the value for various

parameter pairs (n,m) . We list these formulae in the following table. Since the theorem

assumes that (n,m) belongs to S5 we can assume that m > 2 so the row for S3 will not be

needed, and is included only for completeness.

set of (n,m) V Cm,n = Im,n optimal attack optimal patrol
S1 : n < (m+ 2) /2 1 no all attacks fail oscillation

S2 : (m+ 2) /2 ≤ n < m+ 1 m/ (2 (n− 1)) no diametrical random oscillation
S3 : m = 2, n ≥ 3 (the rest have m > 2) 1

dn/2e yes independent covering
S4 : n = m+ 2, m even; n = m+ 1 1/2 yes independent covering
S5 : n = m+ 2, m odd; n ≥ m+ 3 m/ (n+m− 1) (9, 4) only five classes (Theorem 16) end augmented osc.

Table 4: Summary of results.

Proof. Since we are assuming that (a+ b,m) is in S5 we have

V (La+b) =
m

a+ b+m− 1
. (24)

The proof considers the possibilities that (b,m) belongs to the sets S5, S4, S2 and S1 in turn.

Case (i): (b,m) ∈ S5. In this case we have by the table that V (Lb) = m/ (b+m− 1) . Then
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by (8)
m

a+ b+m− 1
=

1
1

V (La)
+ b+m−1

m

, or

V (La) =
m

a
.

If (a,m) is in S1, V (La) = 1 so a = m and hence m < (m+ 2) /2, or m/2 < 1, or m < 2,

which is excluded.

If (a,m) is in S2, this means that m/a = m/ (2 (a− 1)) , or a = 2 (a− 1) , so a = 2 and

m ≤ a = 2 is also excluded.

If (a,m) is in S4, this means that m/a = 1/2, or a = 2m. But since a is m + 1 or m + 2, it

follows that m is 1 or 2, which are excluded.

If (a,m) is in S5, this means that m/a = m/ (a+m− 1) , or m = 1, which is excluded. So

there are no cases of decomposition with (b,m) in S5.

Case (ii): (b,m) ∈ S4. In this case V (Lb) = 1/2.

If (a,m) is in S2, we have V (Lb) = 1/2 and V (La) = m/ (2 (a− 1)). So the decomposition

equation gives

m

a+ b+m− 1
=

1
2a−2
m + 2

=
m

2a− 2 + 2m
, or

a = b−m+ 1

There are two cases for (b,m) ∈ S4: if b = m+ 2, m even, then a = 3. Since (a,m) ∈ S4,

we have (m+ 2) /2 < 3 = a, or m < 4, which means m ≤ 2, which is excluded. If

b = m+ 1 then a = 2 so (m+ 2) /2 < 2, or m < 2, which is excluded.

If (a,m) is also in S4 then V (La) = 1/2 so by (8), V (La+b) = 1/ (2 + 2) = 1/4. So

m/ (n+m− 1) = 1/4, or 4m = n + m − 1, n = a + b = 3m + 1. But a and b are

both either m+ 1 or (if m even) m+ 2. If m is odd then a = b = m+ 1 so a+ b = 2m+ 2

and hence 3m+ 1 = 2m+ 2, or m = 1, which is excluded. So assume m is even, in which

case a+ b is one of the numbers 2m+ j, j = 2, 3 or 4. Hence 3m+ 1 = 2m+ j, m is j− 1,

which is 1, 2 or 3. The only one of these which is even is m = 2, which is excluded.
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If (a,m) is in S1 then V (La) = 1 and hence the decomposition equation gives V (La+b) =

1/ (1 + 2) = 1/3. Equating this with (24), m/ (n+m− 1) = 1/3, or 3m = n + m − 1,

n = 2m + 1. So we either have a = m − 1 and b = m + 2 and m is even or a = m and

b = m + 1. In the former case a = m − 1 ≤ (m + 2)/2 gives m ≤ 4 and hence m = 4.

Then a = 3 and b = 6 and a + b = 9. This is item 3 of the theorem. In the latter case

m ≤ (m+ 2) /2 gives m ≤ 2, which is excluded.

Case (iii): (b,m) ∈ S2. In this case V (Lb) = m/ (2 (b− 1)) .

If (a,m) is also in S2 then V (La) = m/ (2 (a− 1)) and the decomposition equation gives

V (La+b) = m/ (2 (b− 1) + 2(a− 1)) . Equating this with (24) gives a + b + m − 1 =

(2 (b− 1) + 2(a− 1)) = 2 (a+ b)−4. So n = a+b = m+3. By the definition of S2 we have

(m+ 2) /2 ≤ a, b. If m is even the only solution is a = (m+ 2) /2 and b = (m+ 2) /2 + 1,

with n odd. If m is odd (and n is even) the only solution is a = b = (m+ 3) /2. This is

item 1 of the theorem.

If (a,m) is in S1 then V (La) = 1 and by (8) we have V (La+b) = m/ (m+ 2 (b− 1)). Equating

this with (24) gives a + b + m − 1 = m + 2 (b− 1), or b − a = 1. Since (a,m) ∈ S1 we

must have a ≤ (m+ 1) /2 and hence b = a + 1 ≤ (m+ 3) /2. Consequently a + b ≤

(2m+ 4) /2 = m+ 2. Since (a+ b,m) ∈ S5, this implies that m is odd and a+ b = m+ 2,

so a = (m+ 1) /2 and b = (m+ 3) /2. This is item 2 of the theorem.

Case (iv): (b,m) ∈ S1 Since we are assuming a ≤ b, we have that a, b < (m+ 2) /2 and hence

a+ b ≤ m+ 1. It follows that (a+ b,m) cannot belong to S5 violating the hypothesis of

the theorem.
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