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Abstract

An inequality index over p dimensions of well-being is decomposable by at-
tributes if it can expressed as a function of p unidimensional inequality indices
and a measure of association between the various dimensions of well-being.
We exploit this decomposition framework to derive joint hypothesis tests re-
garding the sources of multidimensional inequality, and present Monte Carlo
evidence on their finite sample behavior.
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Economists often study inequality in well-being using indices that satisfy known
sets of ethical axioms and/or statistical properties. The use of unidimensional in-
equality indices in the analysis of income distributions is well-established (e.g. Cowell
and Flachaire, 2007). Recently, multidimensional indices that measure inequality in
the joint distribution of several attributes (e.g. income and health) have also received
attention, in recognition of well-being as a multidimensional concept (e.g. Justino et
al., 2004; Zhong, 2009; Abu-Zaineh and Abul Naga, 2013).

There is an important class of multidimensional inequality indices that satisfy at-
tribute decomposability (Abul Naga and Geoffard 2006; Kobus, 2012). This property
allows a multidimensional index to be disaggregated as a function of unidimensional
indices for individual attributes and a measure of association between attributes. In-
tergroup or temporal variations in the overall multidimensional inequality can there-
fore be traced to variations in its unidimensional inequality and association measures.
The related statistical inference naturally entails joint hypothesis tests on particular
subsets of those components. But the inferential framework has not been developed
yet, and empirical results to date are presented without statistical tests.

This paper complements the existing literature on single hypothesis tests on uni-
dimensional indices (e.g. Davidson and Flachaire, 2007) and the aggregated forms of
multidimensional indices (Abul Naga, 2010), by developing a framework for testing
joint hypotheses on unidimensional indices and an association measure that arise
from decomposing a multidimensional index. Our Monte Carlo evidence suggests
that, combined with bootstrapping, the proposed chi-squared tests provide reliable
tools for drawing finite sample inferences.

1 Attribute decomposable inequality indices

Consider data on p attributes of well-being in a sample of n individuals. Individual
i has resources xi := (xi1, ..., xip), where xi ∈ Rp

++. We gather the data in a matrix

X :=



x1
...
xn


 ∈ Rn×p

++ , and let x̄ := 1
n

n∑

i=1

xi = (x̄1, ..., x̄p) denote the vector of

sample means.
Let ι̂ : Rn×p

++ → R+ denote a multidimensional inequality index, W : Rn×p
++ → R

be the social welfare function underlying the derivation of ι̂, and ω := W (X) be the
level of welfare attained byX. If W satisfies the standard axioms of anonymity, addi-
tivity across individuals, continuity, increasing monotonicity and equality preference,
one may define an increasing and concave utility function u(.) such that W (X) =
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1
n

∑n
i=1 u(xi), and a scalar θ̂(X) in the unit interval such that u(θ̂x̄) = 1

n

∑n
i=1 u(xi).

The scalar θ̂ is an index of multidimensional equality in X, and ι̂(X) := 1 − θ̂(X)
is the corresponding inequality index.

Assume furthermore that W is scale-invariant, and consider for expositional sim-
plicity the case of two attributes (p = 2) of well-being.1 Then the utility function
underlying the definition of W takes one of three possible forms (Aczél, 1988; ch. 4,
Corollary 4):

u(xi1, xi2) : = xαi1x
β
i2 α, β > 0, α + β ≤ 1 (1)

u(xi1, xi2) : = −xαi1xβi2 α, β < 0 (2)

u(xi1, xi2) : = α lnxi1 + β lnxi2 α, β > 0 (3)

A multidimensional Atkinson-Kolm-Sen (mAKS) inequality index arises from (1)
and (2), while a multidimensional mean-logarithmic deviation (mMLD) inequality
index arises from (3) (Tsui, 1995).

Abul Naga and Geoffard (2006) show that both mAKS and mMLD indices are
decomposable by attributes. The mAKS equality index can be written as a function
of three components, θ̂mAKS(X) = exp( α

(α+β)
ln δ̂1 + β

(α+β)
ln δ̂2 + 1

(α+β)
ln δ̂3) where

δ̂1 =

(
1

n

n∑

i=1

xαi1

)1/α

/x̄1 (4)

δ̂2 =

(
1

n

n∑

i=1

xβi2

)1/β

/x̄2 (5)

δ̂3 =

1

n

n∑

i=1

xαi1x
β
i2

(
1

n

n∑

i=1

xαi1

)(
1

n

n∑

i=1

xβi2

) . (6)

θ̂mAKS(X) is the aggregated form and δ̂ = (δ̂1 δ̂2 δ̂3)
′ the disaggregated form of the

mAKS index. δ̂1 (δ̂2) is the unidimensional AKS index of equality in the first (second)
attribute, and δ̂3 is a measure of association between the two attributes.2 The

1Let Y ∈ Rn×p
++ be another data matrix and Λ be a p×p positive-definite diagonal matrix. W (.)

is scale-invariant when W (X) = W (Y ) if and only if W (XΛ) = W (Y Λ).
2As in the multidimensional case, 1− δ̂1 and 1− δ̂2 are the corresponding inequality indices.
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mMLD equality index can be written as a function of two components, θ̂mMLD(X) =
exp( α

(α+β)
ln δ̂1 + β

(α+β)
ln δ̂2), where

δ̂j = exp

[
1

n

n∑

i=1

ln(xij)− ln x̄j

]
j = 1, 2. (7)

δ̂1 and δ̂2 are unidimensional MLD equality indices. The mMLD index is strongly
decomposable à la Kobus (2012), because θ̂mMLD is entirely characterized by the two
equality indices pertaining to each attribute’s marginal distribution. Since the mAKS
and mMLD inequality indices are ι̂mAKS(X) := 1−θ̂mAKS(X) and ι̂mMLD(X) := 1−
θ̂mMLD(X), they are also decomposable by attributes.

2 Large sample distribution

Let δ̂(X) = (δ̂1, ..., δ̂k)
′ denote the vector of equality indices and measure of associ-

ation in the sample.3 For estimation and inference, it is convenient to define δ̂(X)
in relation to m sample moments of X,

s :=
[

1
n

∑n
i=1 g1(xi) · · · 1

n

∑n
i=1 gm(xi)

]
(8)

via a function F : Rm −→ Rk such that δ̂ = F (s).One can then define the population
indices δo in relation to m population moments,

σo :=
[
E[g1(xi)] · · · E[gm(xi)]

]
(9)

such that δo = F (σo). For instance, in the context of the mAKS index we have

s :=

[
x̄1 x̄2

1

n

n∑

i=1

xαi1x
β
i2

1

n

n∑

i=1

xαi1
1

n

n∑

i=1

xβi2

]
(10)

σo :=
[
E(x1) E(x2) E(xα1x

β
2 ) E(xα1 ) E(xβ2 )

]
(11)

and in the context of the mMLD index,

s :=

[
x̄1 x̄2

1
n

n∑

i=1

ln(xi1)
1
n

n∑

i=1

ln(xi2)

]
(12)

3In general, k = p + 1 as the decomposition produces p equality indices together with an asso-
ciation measure. However, k = p when the multidimensional index is strongly decomposable (as is
the case in the context of θ̂mMLD).
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σo :=
[
E(x1) E(x2) E(lnx1) E(lnx2)

]
. (13)

Let ḡj denote the jth component of s, i.e. ḡj =
∑n

i=1 gj(xi)/n, and Z be an
n×m matrix where

Z :=



g1(x1)− ḡ1 · · · gm(x1)− ḡm

...
...

g1(xn)− ḡ1 · · · gm(xn)− ḡm


 . (14)

Define also the k ×m Jacobian matrix J := ∂F /∂σ,

J :=




∂F 1/∂σ1 · · · ∂F 1/∂σm
...

∂F k/∂σ1 · · · ∂F k/∂σm


 . (15)

where σj refers to the jth component of σo.
Under appropriate assumptions, the Continuous Mapping Theorem ensures that

δ̂ = F (s) is a consistent estimator of δo = F (σo). Specifically, consider the following
assumptions:

[A1] The observations x1, ...,xn are independently and identically distributed
with cross-moment vector σo where σo is a finite m-dimensional vector.

[A2] plim
(

1
n
Z ′Z

)
= V o, where V o is a finite m×m positive definite matrix.

[A3] The vector function F (σ) does not involve n and is continuously differen-
tiable at the point σo.

[A4] The Jacobian matrix J has full rank k ≤ m at σo.

Proposition 1 Under Assumptions [A1 − A4], δ̂(X) = F (s) converges in dis-
tribution to a k−variate normal vector such that :

n1/2[F (s)− F (σo)] −→ N (0,JoV oJ
′
o) (16)

where Jo is the Jacobian matrix given by

Jo :=
∂F

∂σ
|σ=σo

Proof From [A1], the Law of Large Numbers implies that plim(s) = σo and the

Central Limit Theorem ensures that n1/2(s−σo) converges to a normal distribution,
N (0,V o). Given [A3], the delta method applies and n1/2[F (s) − F (σo)] converges
to a multivariate normal distribution N (0,JoV oJ

′
o), which is non-degenerate due

to [A2] and [A4]. �
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2.1 Covariance matrices

The formula JoV oJ
′
o of the asymptotic covariance matrix (16) is generally applicable

to all attribute decomposable indices, though the specific components of V o and
Jo would vary from index to index depending on the underlying moments and the
functional form of F . In empirical work, one can construct a consistent estimator of

JoV oJ
′
o using the matrix Ĵ V̂ Ĵ

′
where

V̂ : = Z ′Z/n (17)

Ĵ : =
∂F

∂σ
|σ=s . (18)

Constructing Ĵ however requires an analytic derivation of the Jacobian J := ∂F /∂σ,
prior to its evaluation at σ = s. Our purpose here is to derive the Jacobian matrices
of the disaggregated forms of the mAKS and mMLD families, in the context of two
attributes of well-being. For the mAKS family (4–6), J is the following rank three
matrix

J =




−σ
1/α
4

σ2
1

0 0
1

α

σ
(1/α−1)
4

σ1

0

0 −σ
1/β
5

σ2
2

0 0
1

β

σ
(1/β−1)
5

σ2

0 0
1

σ4σ5

− σ3

σ2
4σ5

− σ3

σ4σ2
5



. (19)

For the mMLD family (7) the Jacobian J is the following rank two matrix

J =



−exp(σ3 − lnσ1)

σ1

0 exp(σ3 − lnσ1) 0

0 −exp(σ4 − lnσ2)

σ2

0 exp(σ4 − lnσ2)


 .

(20)

2.2 Test statistics

Proposition 1 provides a basis for carrying out Wald-type joint hypothesis tests on
the vector of k indices δo. Let η be an l × 1 vector and let A denote a matrix that
satisfies the following assumption:
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[A5] A is a l × k non-random matrix of rank l ≤ k.

Consider a test of l ≤ k hypotheses of the form H0 : Aδo = η. The corresponding
test statistic is of the form

ς =
(
Aδ̂ − η

)′ [
A

(
1

n
Ĵ V̂ Ĵ

′
)
A′
]−1 (

Aδ̂ − η
)

. (21)

Next consider a joint hypothesis involving two different population vectors, for ex-
ample as in an analysis of urban-rural differences in inequality structures. Let su-
perscript a (b) denote parameters and estimates specific to population a (b). For a
test of the form H0 : A(δao − δbo) = η, consider the test statistic

τ =
(
A
(
δ̂
a − δ̂b

)
− η

)′ [
A

(
1

na
Ĵ
a
V̂ aĴ

a′
+

1

nb
Ĵ
b
V̂ bĴ

b′
)
A′
]−1

· (22)

·
(
A
(
δ̂
a − δ̂b

)
− η

)
.

On the basis of [A5] and Proposition 1, we readily obtain:

Corollary 2 Under Assumptions [A1 − A5], each of the test statistics ς and τ
is asymptotically distributed as a χ2(l) variate.

3 Monte Carlo experiments

Our Monte Carlo study considers a multidimensional inequality index defined over
household expenditure (EXP ) and nutritional health (HLT ), and a joint hypothesis
test comparing urban and rural populations. We base our Monte Carlo populations
on 1066 women (374 from urban areas, 692 from rural areas) from The Egyptian
Integrated Household Survey (EIHS) 1997-1999: each urban (rural) observation i,
xi := (EXPi,HLTi), is independently drawn from a discrete uniform distribution
whose support points are data points in the urban (rural) EIHS sample.

Table 1 summarizes the population inequality structures for our experiments.
The mAKS indices vary with parameters α and β, where a larger absolute value of
α (β) reflects greater aversion to inequality in EXP (HLT ). We explore several
alternative configurations of α and β based on the existing empirical applications
(Zhong, 2009; Abu-Zaineh and Abul Naga, 2013).

We consider two different joint hypotheses of the form (22). HALL
0 states that the

urban-rural difference in inequality structures is as shown in Table 1. For instance, in
the context of the mAKS index with (α, β) = (−0.5,−0.5), A is an identity matrix,
and η = (0.38− 0.50 0.03− 0.02 1.00− 1.00)′ = (−0.12 0.01 0.00)′. The resulting
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test statistic is asymptotically distributed as a χ2(3) variate in the context of mAKS
indices and a χ2(2) variate in the mMLD family. The hypothesis H−EXP0 states
that the urban-rural difference of the HLT component and that of the association
component are as shown in Table 1: it is only relevant to the mAKS indices and
leads to an asymptotic χ2(2) statistic.

We use three different types of p-values to test each hypothesis. These are con-
structed from (i) an asymptotic test (ASYM), (ii) a bootstrap test (BOOT), and (iii)
a fast-double bootstrap test (FDB). BOOT utilizes critical values generated from a
non-parametric bootstrapping scheme as described in Horowitz (2001, p.3181), and
offers asymptotic refinement over ASYM.4 Davidson and MacKinnon (2007) suggest
that the FDB test sometimes achieves better finite sample accuracy than BOOT, as
approximation errors from two stages of bootstrapping offset each other.

Table 2 reports the empirical rejection frequency of each test at the nominal
rejection probability of 0.05. Each empirical rejection frequency is calculated using
1000 Monte Carlo samples of n = 1066 observations, comprising 374 observations
from the urban population and 692 from the rural population. The BOOT and FDB
procedures use B = 999 bootstrapping repetitions. Our findings can be summarized
as follows:

1. ASYM is correctly sized for the mMLD index, but is over-sized for mAKS
indices except when |α| < 1. The log-transformation of expenditure and height
data involved in the calculation of the mMLD index may explain the good finite
sample behavior of ASYM.

2. BOOT however does allow a correctly sized test on mAKS indices in most
cases. Even where it does not, it achieves substantial accuracy gains over
ASYM. FDB does only as well as BOOT, and sometimes worse.

3. The size accuracy of ASYM deteriorates as |α| and |β| increase. It is more
sensitive to changes in α than to changes in β. Comparing HALL

0 and H−EXP0 ,
the influence of α on the size inaccuracy of ASYM (that operates through
the association measure) is also substantial, even when the null excludes the
expenditure data.

4This scheme generates a bootstrap sample by randomly drawing with replacement from the
estimation sample. A bootstrap sample’s test statistic is computed by comparing the bootstrap
sample’s inequality structure against the estimation sample’s inequality structure, not against the
population inequality structure. The quantiles of the distribution of bootstrap test statistics com-
puted in this manner provide critical values for BOOT. As Horowitz (2001) summarizes, for an
asymptotically chi-squared distributed test statistic, the approximation error of BOOT is O(n−2)
whereas that of ASYM is O(n−1).
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As Schluter and van Garderen (2009) recommend in the unidimensional context,
it thus seems prudent to select the smallest values of |α| and |β| from a set of ac-
ceptable configurations. Existing empirical applications of mAKS indices (Zhong,
2009; Abu-Zaineh and Abul Naga, 2013) focus on |α| ≤ 2 and |β| ≤ 4: for such con-
figurations, BOOT addresses the potential size inaccuracy of ASYM adequately. In
the online appendix, we report results based on other conventional nominal rejection
probabilities (0.10 and 0.01), and samples of n = 356 (≈ 1/3× 1066) and n = 3198
(= 3× 1066) observations.5 These results convey similar major lessons as Table 2.

Overall, we may conclude from our Monte Carlo experiments that, combined with
nonparametric bootstrapping, our proposed chi-square tests provide reliable tools for
finite sample inference.

4 References

Abu-Zaineh M. and R. Abul Naga (2013): “Wealth, health and the measurement of
multidimensional inequality: evidence from the Middle East and North Africa”, in
O’Donnell O. and P. Rosa-Dias editors: Research on Economic Inequality, 21.

Abul Naga R. and P.-Y. Geoffard (2006): “Decomposition of bivariate inequality
indices by attributes”, Economics Letters 90, 362-367.

Abul Naga R. (2010): “Statistical inference for multidimensional inequality in-
dices”, Economics Letters, 107, 49-51.

Aczel J. (1988): A short course on functional equations, Reidel.
Cowell F. and E. Flachaire (2007): “Income distribution and inequality measure-

ment: the problem of extreme values”, Journal of Econometrics 141, 1044-1072.
Davidson R. and E. Flachaire (2007): “Asymptotic and bootstrap inference for

inequality and poverty measures”, Journal of Econometrics 141, 141-166.
Davidson R, and J. MacKinnon (2007): “Improving the reliability of bootstrap

tests with the fast double bootstrap”, Computational Statistics & Data Analysis 51,
3259-3281.

Horowitz J.L. (2001): “The Bootstrap”, in: Heckman, J.J., Leamer, E.E. (Eds.),
Handbook of Econometrics, Elsevier.

Justino P., J. Litchfield and Y. Niimi (2004): “Multidimensional Inequality: An
empirical Application to Brazil”, University of Sussex.

Schluter C. and K.J. van Garderen (2009): “Edgeworth expansions and normal-
izing transforms for inequality measures”, Journal of Econometrics 150, 16-29.

5The online appendix can be accessed at: https://goo.gl/EE2EXE.

9



Tsui K.Y. (1995): “Multidimensional generalizations of the relative and absolute
inequality indices: The Atkinson-Kolm-Sen Approach”, Journal of Economic Theory
67, 251–265.

Zhong, H. (2009): “A multivariate analysis of the distribution of individual’s
welfare in China: What is the role of health?” Journal of Health Economics, 28,
1062-1070.

Acknowledgements

This work has been undertaken with the support of the A*MIDEX project (n◦

ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Govern-
ment program, managed by the French National Research Agency (ANR). We are
grateful to Julian Williams, Editor Badi H. Baltagi and an anonymous referee for
helpful comments. We are responsible for any errors.

10



Table 1: Monte Carlo population characteristics and inequality indices

A. Population characteristics

Urban population Rural population
EXP HLT Height EXP HLT Height

Mean 908.91 121.03 157.82 807.18 130.75 157.13
Std. Dev. 621.56 21.98 6.32 579.98 20.14 5.43
C.V. 0.68 0.18 0.04 0.72 0.15 0.04

B. Population inequality structures

Urban population Rural population
ιEXP ιHLT δASC ιEXP ιHLT δASC

mMLD 0.22 0.02 N/A 0.26 0.01 N/A
mAKS: (-0.5,-0.5) 0.38 0.03 1.00 0.50 0.02 1.00
mAKS: (-1.0,-1.0) 0.58 0.04 0.98 0.75 0.03 1.00
mAKS: (-2.0,-2.0) 0.85 0.06 0.83 0.93 0.05 0.92
mAKS: (-0.5,-1.0) 0.38 0.04 1.00 0.50 0.03 1.00
mAKS: (-1.0,-2.0) 0.58 0.06 0.95 0.75 0.05 0.99
mAKS: (-2.0,-4.0) 0.85 0.10 0.68 0.93 0.10 0.77
mAKS: (-1.0,-0.5) 0.58 0.03 0.99 0.75 0.02 1.00
mAKS: (-2.0,-1.0) 0.85 0.04 0.91 0.93 0.03 0.96
mAKS: (-4.0,-2.0) 0.95 0.06 0.64 0.98 0.05 0.82

Based on adult female respondents of the Egyptian Integrated Household Survey 1997-1999. EXP
is monthly non-durable household expenditure (in the Egyptian pounds) divided by the square-root
of household size. HLT is BMI-adjusted height, a measure of nutritional health. Height is raw
height in centimeters. Std. Dev. and C.V. are the standard deviation and coefficient of variation
respectively. ιEXP (ιHLT ) is the unidimensional index of inequality in EXP (HLT ). δASC is the
mAKS measure of association between EXP and HLT . mAKS: (α,β) denotes mAKS indices where
α and β are the inequality aversion parameters on EXP and HLT respectively.
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Table 2: Empirical rejection frequency at the nominal significance level of 5%

HALL
0 H−EXP0

ASYM BOOT FDB ASYM BOOT FDB

mMLD 0.05 0.04 0.05 N/A N/A N/A
mAKS: (-0.5,-0.5) 0.06 0.05 0.05 0.05 0.05 0.05
mAKS: (-1.0,-1.0) 0.09 0.04 0.04 0.07 0.04 0.05
mAKS: (-2.0,-2.0) 0.19 0.06 0.07 0.13 0.06 0.07
mAKS: (-0.5,-1.0) 0.06 0.05 0.05 0.06 0.04 0.05
mAKS: (-1.0,-2.0) 0.08 0.04 0.05 0.07 0.04 0.04
mAKS: (-2.0,-4.0) 0.19 0.05 0.06 0.13 0.04 0.05
mAKS: (-1.0,-0.5) 0.09 0.05 0.05 0.07 0.05 0.05
mAKS: (-2.0,-1.0) 0.20 0.07 0.08 0.14 0.07 0.07
mAKS: (-4.0,-2.0) 0.42 0.10 0.13 0.32 0.07 0.10

The null hypothesis HALL
0 states the true urban-rural difference in each of ιEXP , ιHLT , and δASC .

H−EXP
0 states the true urban-rural difference in each of ιHLT and ιASC . ASYM, BOOT, FDB

are rejection frequencies based on the asymptotic, bootstrap and fast-double bootstrap p-values
respectively. Each rejection frequency is calculated using 1000 samples of 374 urban observations
and 692 rural observations.
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