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a  b  s  t  r  a  c  t

We  investigate  a  simple  dynamical  model  for  the  systemic  risk  caused  by the  use  of  Value-at-Risk,  as
mandated  by  Basel  II. The  model  consists  of  a  bank  with  a leverage  target  and  an unleveraged  funda-
mentalist  investor  subject  to exogenous  noise  with  clustered  volatility.  The  parameter  space  has  three
regions:  (i) a stable  region,  where  the  system  has  a  fixed  point  equilibrium;  (ii)  a locally  unstable  region,
characterized  by  cycles  with  chaotic  behavior;  and  (iii)  a globally  unstable  region.  A calibration  of  param-
eters to  data  puts  the model  in region  (ii). In  this  region  there  is  a  slowly  building  price  bubble,  resembling
the  period  prior  to the  Global  Financial  Crisis,  followed  by  a crash  resembling  the  crisis,  with  a  period  of
approximately  10–15  years.  We  dub  this  the Basel  leverage  cycle.  To  search  for an optimal  leverage  con-
trol  policy  we  propose  a criterion  based  on  the ability  to minimize  risk  for  a given  average  leverage.  Our
model  allows  us to vary  from  the  procyclical  policies  of Basel  II or III, in  which  leverage  decreases  when
volatility  increases,  to  countercyclical  policies  in  which  leverage  increases  when  volatility  increases.  We
find the best  policy  depends  on the  market  impact  of  the bank.  Basel  II is  optimal  when  the  exogenous
noise  is high,  the  bank  is  small  and  leverage  is low;  in  the  opposite  limit  where  the  bank  is  large  and

leverage  is  high  the  optimal  policy  is closer  to constant  leverage.  In the  latter  regime  systemic  risk  can  be
dramatically  decreased  by  lowering  the leverage  target  adjustment  speed  of  the  banks.  While our model
does  not  show  that the  financial  crisis  and  the  period  leading  up to it were  due  to VaR  risk  management
policies,  it does  suggest  that  it could  have been  caused  by VaR  risk  management,  and  that  the  housing
bubble  may  have  just been  the spark  that  triggered  the  crisis.

© 2016  Published  by  Elsevier  B.V.
. Introduction

Borrowing in finance is often called “leverage”, which is inspired
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

y the fact that it increases returns, much as a mechanical lever
ncreases force. But leverage also increases risk, which naturally

otivates lenders to limit its use.1 Because risk is time varying it

∗ Corresponding author at: Department of Computer Science, University College
ondon, London WC1E 6BT, UK. Tel.: +44 (0)20 3108 7104.

E-mail addresses: christoph.aymanns@gmail.com (C. Aymanns),
.caccioli@ucl.ac.uk (F. Caccioli), Doyne.Farmer@inet.ox.ac.uk (J.D. Farmer),
intwc@gmail.com (V.W.C. Tan).
1 Leverage constraints may arise in a number of ways. If the investor is using

ollateralized loans it must maintain margin on its collateral. Alternatively, a regu-
ator may  impose a risk contingent capital adequacy ratio. A third possibility is that
nternal risk management considerations may  lead the investor to adopt a Value-at-
isk constraint (in simple terms Value-at-Risk is a measure of how much the bank
ould lose with a given small probability). All of these cases effectively impose a risk
ontingent leverage constraint.

ttp://dx.doi.org/10.1016/j.jfs.2016.02.004
572-3089/© 2016 Published by Elsevier B.V.
is natural to let leverage limits adapt, making them dynamic. But
changing leverage has market impact, and as we show here, this
can cause systemic effects leading to booms and busts.

It is widely believed that high leverage caused or at least exacer-
bated the recent financial crisis. The problems are not just excessive
risk taking. Because leverage goes up when prices go down, a drop
in prices tightens leverage constraints, which may  force investors
to sell into falling markets, thereby amplifying declines in prices.2

This triggers a positive feedback loop in which selling drives prices
down, which causes further selling, which further tightens lever-
ing the Basel leverage cycle. J. Financial Stability (2016),

age constraints, etc. Similarly, positive news about prices causes
a decline in perceived risk, which loosens leverage constraints,

2 In principle, distressed banks can reduce their leverage in two  ways: they can
raise  more capital or sell assets. In practice most banks tend to do the latter, as
documented in Adrian and Shin (2008).

dx.doi.org/10.1016/j.jfs.2016.02.004
dx.doi.org/10.1016/j.jfs.2016.02.004
http://www.sciencedirect.com/science/journal/15723089
http://www.elsevier.com/locate/jfstabil
mailto:christoph.aymanns@gmail.com
mailto:f.caccioli@ucl.ac.uk
mailto:Doyne.Farmer@inet.ox.ac.uk
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Fig. 1. The leverage of US Broker-Dealers (solid black line) compared to the S&P500
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ndex (dashed blue line) and the VIX S&P500 (red dash-dotted line). Data is
uarterly.4 (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

riving prices up. Dynamics of this general type were termed the
everage cycle by Geanakoplos.3

The crisis has focused a great deal of attention on leverage cycles.
uring the period leading up to the financial crisis perceived volatil-

ty declined consistently over several years while asset prices and
everage of financial institutions consistently increased. We  refer to
his period as “Great Financial Moderation” in analogy to the Great

oderation – a period of low business cycle volatility starting in
he 1980s coined by Ben Bernanke.

This is illustrated in Fig. 1, where we show the behavior of the
IX index, the S&P500 index and the leverage of US security broker
ealers. These trends came to a sudden halt in 2008 when lever-
ge came plummeting down, dropping by almost a factor of two  in
he span of a quarter, while volatility rose dramatically and prices
ecreased.

The cause of these events has been a matter of great debate,
ith many theories being offered. Prior to the crisis, displaying

emarkable prescience, several authors worried that the Basel II
egulations were dangerous because of their potential to cause or
t least exacerbate financial instability,5 and since the crisis sev-
ral models have been developed that support this conclusion.6
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

ur paper adds to this literature by refining an earlier model
y Aymanns and Farmer (2015) and making it more quantita-
ive. The model endogenously generates a leverage cycle whose

3 Minsky (1992) was the first to describe leverage cycles in qualitative terms.
n  early model discussing the destabilizing effects of leverage was presented by
ennotte and Leland (1990); see also work by Shleifer and Vishny (1992) on fire
ales debt capacity over the business cycle; a literature review is given in Shleifer
nd  Vishny (2011). The first quantitative model of the leverage cycle per se is due to
eanakoplos (1997, 2003); See also Fostel and Geanakoplos (2008) and Geanakoplos

2010). Brunnermeier and Pedersen (2008) investigate the destabilizing feedback
etween funding liquidity and market liquidity, and the destabilizing effects of
argin are discussed in Gorton and Metrick (2010). Other mechanisms for lever-

ge cycles include Aikman et al. (2015), de Nicolo et al. (2012) and Gennaioli et al.
2012).

4 It should be noted that US security broker dealers are a somewhat extreme
xample of leveraged financial institutions and are not representative for the behav-
or  of commercial banks. Here we use their example to illustrate the stark correlation
etween leverage, volatility and asset prices in an anecdotal way. A more nuanced
valuation can be found in (Adrian et al., 2010). The data on US Security Broker Dealer
everage, (defined as Assets/(Assets-Liabilities), is from US Federal Reserve Flow of
unds Data Package F.128 available at www.federalreserve.gov/datadownload/.
5 Authors who  presaged the potential of Basel II to amplify financial instability

nclude Danielsson et al. (2001), Van den Heuvel (2002), Danielsson et al. (2004)
nd Estrella (2004).
6 See for example Adrian and Shin (2008), Shin (2010), Zigrand et al. (2010),

hurner et al. (2010), Adrian et al. (2012), Tasca and Battiston (2012), He and
rishnamurthy (2012), Adrian and Boyarchenko (2012, 2013), Poledna et al. (2013),
drian and Shin (2014), and Brummitt et al. (2014).
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al Stability xxx (2016) xxx–xxx

properties roughly match the Great Financial Moderation and sub-
sequent crisis, including the correct timescale, based on simple
assumptions.

Our model has only two representative investors, a bank and
a fundamentalist fund, whose portfolios consist of a risky asset
and cash. The fund buys the risky asset when it is undervalued
and sells it when it is overvalued. The bank follows a leverage tar-
get based on a Value-at-Risk criterion, as recommended by Basel
II7. Risk is estimated by a moving average of historical volatil-
ity. The risk appetite of the bank is controlled by a parameter
˛. When  ̨ is small, leverage, prices and volatility converge to
a stable fixed point equilibrium. But at a critical value of  ̨ the
equilibrium becomes unstable and the dynamics suddenly become
chaotic, making a finite amplitude oscillation. When this happens
the behavior resembles that shown in Fig. 1: prices and lever-
age slowly rise while volatility falls, as they did during the Great
Financial Moderation, and then a crisis occurs in which prices and
leverage abruptly drop while volatility spikes upward. This cycle
repeats itself indefinitely, but with chaotic variations from period
to period.

Following Aymanns and Farmer we  call this the Basel leverage
cycle. Perhaps the most surprising aspect is that it persists even
in the limit where there is no exogenous noise. A simple calibra-
tion based on reasonable values of the parameters yields a period
of oscillation of roughly 10–15 years. This suggests that VaR as
mandated by Basel II was sufficient to cause the Great Financial
Moderation and the subsequent crash, and the collapse of the hous-
ing bubble might have just been one of several possible triggers
for the crisis. The Aymanns and Farmer model was  inspired by the
empirical findings of Adrian and Shin (2008), who pointed out that
investors such as investment banks are actively procyclical,  i.e. they
lower leverage targets when prices fall and raise them when prices
rise. They argued that this is due to regulatory risk management
based on Value-at-Risk. In the following we  use their terminology
a bit differently, and refer to a procyclical leverage control policy
as one for which banks are required to reduce their target lever-
age when volatility increases, and are allowed to increase it when
volatility decreases. Since volatility and returns are negatively cor-
related (Black, 1976; Christie, 1982; Nelson, 1991; Engle and Ng,
1993), leverage procyclicality induces a positive feedback between
the demand for an asset and its return, which is what we wish to
capture here.

We  refer to the opposite case in which leverage and volatil-
ity go up and down together as a countercyclical leverage control
policy. The leverage control policy used in our model contains a
parameter that makes it possible to move continuously between
these two extremes. Not surprisingly, countercyclical leverage con-
trol policies can also generate instabilities. The challenge for policy
makers is to find a policy that avoids the Scylla and Charybdis of
excessively procyclical behavior on one side or excessively coun-
tercyclical behavior on the other.8

A key enhancement of the Aymanns and Farmer model that we
ing the Basel leverage cycle. J. Financial Stability (2016),

make here is that the exogenous noise affecting the risky asset
has clustered volatility, i.e. the amplitude of the noise varies in
time. This allows us to study the tradeoff between micro and

7 An external regulator is not necessary – prudent risk managers may choose to
use  VaR on their own, while failing to take the systemic consequences into account.

8 It has to be stressed that the concept of cyclicality we refer to in this paper is
with respect to risk, not with respect to the behavior of macroeconomic indicators.
For example, Drehmann and Gambacorta (2012) provide counterfactual simulations
showing how leverage control policies that are countercyclical with respect to the
difference between the credit-to-GDP ratio and its long-run average can help making
the economy more stable. The focus of our paper, however, is on the circumstances in
which leverage control can cause financial instability, and how to make an effective
tradeoff between systemic vs. individual risk.

dx.doi.org/10.1016/j.jfs.2016.02.004
http://www.federalreserve.gov/datadownload/
http://www.federalreserve.gov/datadownload/
http://www.federalreserve.gov/datadownload/
http://www.federalreserve.gov/datadownload/
http://www.federalreserve.gov/datadownload/
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Fig. 2. Diagrammatic representation of the model: The bank and the fund interact
through price formation. The bank’s demand for the risky asset depends on its esti-
mated risk based on historical volatility and on its capital requirement. The demand
of  the fund consists of a mean reverting component that tends to push the price
towards its fundamental value; in addition there is a random exogenous shock to
the fund’s demand that has clustered volatility. Price adjustments affect the bank’s
estimation of risk and the mean reverting behavior of the fund. The cash flow consis-

convenience, we  assume the bank always targets its maximum
allowed leverage �(t).10 This depends on the bank’s estimate of the
volatility of the risky asset, i.e. �(t) = F(�2(t)), where F is a function

9 We use this definition of leverage in analogy to the Tier 1 regulatory leverage
ratio (Tier 1 capital over bank total assets).

10 A cap on leverage is equivalent to a minimum capital buffer. Conditional on the
leverage constraint the return on equity of the bank is maximized if �(t) = �(t) (see
for instance Shin (2010)). In reality banks usually keep more capital than required
ARTICLEFS-422; No. of Pages 15
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acroprudential regulation. In the limit where the bank is small
he optimal policy is Basel II. As the bank becomes larger, however,
here is the potential for the system to endogenously generate sys-
emic risk, and things become more complicated. The best policy
epends on the parameters of the system. We  also make several
thers changes to their model, making the noise trader a funda-
entalist, and restructuring the model so that it has a continuum

imit and so the parameters are easier to interpret, allowing a better
atch to real data.
We  formulate a criterion for an optimal leverage control policy.

quity capital is widely regarded by practitioners as expensive (see
owever Admati and Hellwig (2014)). We  assume that this leads
anks to choose policies that maximize leverage at a given level of
verall risk. This is desirable because this means that the capital of
he financial system is put to full use in providing credit to the real
conomy. In fact, for reasons of convenience it is more feasible for us
o minimize risk at a given leverage, which is essentially equivalent.

e  measure risk in terms of realized shortfall, i.e. the average of
arge losses to the financial system as a whole.

One of the main results of this paper is that the optimal policy
epends critically on three parameters: (1) the average leverage
sed by the bank, (2) the relative size of the bank and the fundamen-
alist and (3) the amplitude of the exogenous noise. A procyclical
everage control policy such as that of Basel II is optimal when
he exogenous noise is high and the volatility is strongly clustered,
he bank is small and leverage is low; in the opposite limit where
hese conditions are not met  the optimal policy is closer to constant
everage.

We explicitly assume bounded rationality, using assumptions
hat are simple, plausible and supported by empirical evidence.
n Section 6.2 we argue that this is justifiable for several reasons,
ncluding the manifest failure of rationality in the period leading
p to the crisis of 2008.

This paper is organized as follows: In Section 2 we describe the
odel in broad terms, leaving some of the details to Appendix A.

n Section 3 we discuss how the parameters affect the behavior of
he model and present an overview of its behavior. In Section 4 we
erform a stability analysis. In Section 5 we present our criterion for
n optimal leverage policy and study how the best policy depends
n the circumstances. Finally in Section 6 we give a summary and
efend our choice of bounded rationality.

. A simple model of leverage cycles

.1. Sketch of the model

We  consider a financial system composed of a leveraged
nvestor, which we call the bank, an unleveraged fund investor,

hich we call the fund, and a passive outside lender that pro-
ides credit as required by the bank. The bank and the fund make

 choice between investing in a risky asset whose price is deter-
ined endogenously vs. a risk free asset with fixed price, which we
ill call cash. The market clearing price of the risky asset is deter-
ined by the excess demand of the fund and the bank. Fig. 2 shows

 diagrammatic representation of the model.
We focus on risk management by assuming the bank holds the

elative weight of the risky asset and cash fixed. The bank’s risk
anagement consists of two components. First, the bank estimates

he future volatility of its investment in the risky asset through
n exponential moving average of historical returns. Second, the
ank uses the estimated volatility to set its desired leverage. If the
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

ank is below its desired leverage, it will borrow more and use the
dditional funds to expand its balance sheet; if it is above its desired
everage, it will liquidate part of its investments and pay back part
f its debt. We  call this leverage targeting.
tency in the model is enforced by equity flowing between the bank and the fund in
equal amounts. The driver of the endogenous dynamics is the feedback loop between
price changes, volatility and demand for the risky asset.

The fund is a proxy for the rest of the financial system. Leverage
targeting creates inherently unstable dynamics, as it implies buy-
ing into rising markets and selling into falling markets. Thus, it is
necessary to have at least one other investor to stabilize the system.
The fund plays this role, holding the risky asset when it is under-
priced and shorting it when it is overpriced. The fund’s investment
decisions are perturbed by exogenous random shocks with clus-
tered volatility, based on a GARCH model, reflecting information
flow or decision processes outside the scope of the model.

The bank tries to maintain a constant equity target. This is
consistent with the empirical observation that the equity of com-
mercial and investment banks is roughly constant over time; see
Adrian and Shin (2008). In order to conserve cash flow in our model,
dividends paid out by the bank when the equity exceeds the target
are invested in the fund, while new capital invested in the bank
when the equity is below the target is withdrawn from the fund.
This prevents wealth from accumulating with either the bank or
the fund and makes the asymptotic dynamics stationary.

2.2. Leverage regulation

The most important ingredient of our model is the fact that the
bank has a capital requirement. The leverage ratio9 is defined as

�(t) = Total Assets
Equity

, (1)

and the capital requirement policy implies a constraint of the form
�(t) ≤ �(t), i.e. the bank is allowed a maximum leverage �(t). For
ing the Basel leverage cycle. J. Financial Stability (2016),

by  regulation in order to reduce the cost of recapitalization or portfolio adjustments
associated with violation of the minimal capital requirement. Using this perspective,
Peura and Keppo (2006) explain the pattern of capital buffers observed in a sample
of US commercial banks. Our results remain valid even if we assume that banks
hold more capital than required by the regulator. We only require that the resulting

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 3. Illustration of target leverage as a function of perceived risk based on Eq. (2)
with �2

0 > 0. Continuous blue line: procyclical policy with b =−0.5. Dashed green
line: constant leverage policy with b = 0. Dotted red line: countercyclical policy with
b = 0.5. Continuous grey lines illustrate the role of �0, which acts as a upper bound
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f the bank’s perceived risk at time t denoted as �2(t). Although
othing we do here depends on this, to gain intuition it is useful
o compute the function F under the special case of a Value-at-
isk constraint with normally distributed log returns. In this case
he bank’s target leverage is given by (see for example Corsi et al.
2013)):

(t) = FVaR(�2(t)) = 1
�(t)˚−1(a)

∝ 1
�(t)

,

here  ̊ is the cumulative distribution of the standard normal, a is
he VaR quantile, and � is the volatility of the risky asset. Under this
pecification the bank increases its leverage when the volatility of
he risky asset diminishes and decreases its leverage in the opposite
ase. Motivated by Adrian and Shin (2014), we classify leverage
olicies as follows:

efinition 1. A leverage policy F(�2(t)) is procyclical if dF/d�2 < 0
nd countercyclical if dF/d�2 > 0.11

A class of leverage control policies that allows us to interpolate
etween procyclical and countercyclial leverage control policies is
iven by

(t) = F(˛,�2
0

,b)(�(t)) := ˛(�2(t) + �2
0 )

b
, (2)

here  ̨ > 0, �2
0 > 0 and b ∈ [−0.5, 0.5]. We  refer to  ̨ as the bank’s

iskiness. The larger  ̨ the larger the bank’s target leverage for a
iven level of perceived risk �2(t).12 We  illustrate the range of
everage control policies in Fig. 3.13

The parameter b is called the cyclicality parameter,  due to the
act that F(˛,�2

0
,b) is procyclical for b < 0 and countercyclical for b > 0

see Definition 1). For procyclical policies the leverage is inversely
elated to risk, i.e. leverage is low when risk is high and vice versa.
or countercyclical policies the opposite is true; when risk is high
everage is also high, see Fig. 3. It is important to note that our
efinition of policy cyclicality does not refer to macroeconomic
easures such the credit-to-GDP ratio or asset prices. Instead, it is

efined solely by the bank’s response to changes in perceived risk.
n this sense, the countercyclical policies proposed in this model
iffer from the countercyclical capital buffer proposed by the Bank
f England, which keys off the credit-to-GDP ratio (see FPC (2014)).

.3. Asset price dynamics

The bank’s target leverage �(t) at time t defines a target portfolio
alue AB(t) = �(t)EB(t), where EB(t) is the equity of the bank. The
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

ifference between the target portfolio and the current portfolio
hen determines the change of the balance sheet �B(t) required
or the bank to achieve its target leverage:

ank capital buffer responds to changes in perceived risk in a well defined way, as
hanges in the capital buffer are more important than its level.
11 This definition could be generalized for any risk measure; we use the standard
eviation � for simplicity.
12 Note that under standard Value-at-Risk the bank’s leverage depends on the vari-
nce of its entire portfolio which in our model includes non-risky cash holdings.
sually the portfolio variance is computed as the inner product of the covariance
atrix with the portfolio weights. In our case this implies that the portfolio vari-

nce is simply �2(t) scaled by the bank’s investment weight in the risky asset wB.
owever, since we take wB constant throughout, the resulting risk rescaling factor
an be absorbed into  ̨ without loss of generality. Therefore, we make F(˛,�2

0
,b) only

 function of �(t).
13 The additional scaling parameter �2

0 > 0 is included to bound the cyclical vari-
tion in target leverage when perceived risk is very low, giving an upper bound in
he procyclical case b < 0 and a lower bound in the countercyclical case b > 0.
on  leverage when b < 0 and a lower bound when b > 0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web  version of
this article.)

• If �B(t) > 0, the bank will borrow �B(t) and invest this amount
into the risky and the risk free asset according the bank’s portfolio
weights.

• If �B(t) < 0, the bank will liquidate part of its portfolio and pay
back �B(t) of its liabilities.

The evolution of the fund’s portfolio weight in the risky asset
depends on the asset’s price relative to a constant fundamental
value �, and also on random innovations. The fund investor there-
fore combines two  economic mechanisms: (1) The price of the risky
asset is weakly anchored by the performance of unmodeled macro-
economic conditions, which we  assume are effectively constant
over the length of one run of our model. To achieve this the fund
invests a fraction wF(t) of its total assets in the risky asset, where
wF(t) follows a random process that reverts to the fundamental
value �.  (2) We allow random innovations in the portfolio weight
that reflect exogenous shocks. This is done by making the noise
term a GARCH(1,1) process. Thus, the fundamentalist investor pro-
vides a source of time varying exogenous volatility to the model, to
which the bank reacts by adjusting its estimate of risk and conse-
quently its leverage.

Given the aggregate demand of the bank and the fund, and
assuming for simplicity that there is a supply of exactly one unit
of the risky asset that is infinitely divisible, the price of the risky
asset is determined through market clearing by equating demand
and supply.

2.4. Time evolution

The model evolves in discrete time-steps of length �. We  make
this a free parameter so that the model has well-defined dynamics
in the continuum limit � → 0, which is useful for calibration. At
each time-step the bank and the fund update their balance sheets
as follows:

• The bank updates its historically-based estimate of future volatil-
ing the Basel leverage cycle. J. Financial Stability (2016),

ity and computes its new target leverage accordingly. Volatility
estimation is done using an exponential moving average with an
approach similar to RiskMetrics (see Longerstaey (1996)).

• The bank pays dividends or raises capital to reach its target
equity E.

dx.doi.org/10.1016/j.jfs.2016.02.004
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Timescale parameters
The first five parameters listed in Table 1 play a dominant role

in determining the timescale of the cycle that we  observe. We  have
carefully constructed the model so that it reaches a continuum limit

Table 1
Overview of parameters for the numerical model solution.
In  the default column, a “(v)” indicates that this is the default value, but that the
parameter is sometimes varied (as noted in the text); a unit of “1” indicates that the
parameter is dimensionless and $ that it has monetary units.

Symbol Description Default Unit
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The bank determines how many shares of the risky asset it needs
to trade to reach its target leverage.
At the same time, the fundamentalist fund submits its demand
for the risky asset.
The market clearing price for the risky asset is computed and
trades occur.14

.5. The model as a dynamical system

The dynamics of our model can be described as an iterated map
or the state variable x(t), defined as

(t) = [�2(t), wF(t), p(t), n(t), LB(t), p′(t)]
T
. (3)

 is the historical estimation of the volatility of the risky asset; wF
s the fraction of wealth invested by the fund in the risky asset; p is
he current price of the risky asset; n is the share of the risky asset
wned by the bank; LB are the liabilities of the bank; and p′ is the
agged price of the asset, i.e. the price at the previous time-step. A
etailed derivation of the model is presented in Appendix A. Here
e simply present the model and provide some basic intuition. Let
s introduce the following definitions:

Bank assets : AB(t) = p(t)n(t)/wB,

Target leverage : �(t) = ˛(�2(t) + �2
0 )

b
,

Leverage adjustment : �B(t) = ��(�(t)(AB(t) − LB(t)) − AB(t)),

Equity redistribution : �B(t) = −�F(t) = �	(E − (AB(t) − LB(t))),

Bank cash : cB(t) = (1 − wB)n(t)p(t)/wB + �B(t),

Fund cash : cF(t) = (1 − wF(t))(1 − n(t))p(t)/wF(t) + �F(t).

B is the assets of the bank, �B is the equity adjustment of the bank
n a given time-step, �F is the equity adjustment of the fund, wB
s the portfolio weight of the bank, E is the bank’s equity target, cB
s the bank’s cash and cF is the fund’s cash. The parameters � and

 determine how aggressive the bank is in reaching its targets for
everage and equity, i.e. the bank aims at reaching the targets on
ime horizons of the order 1/�  and 1/	.

The model can be written as a dynamical system in the form

(t + �) = g(x(t)), (4)

here the function g is the following 6-dimensional map:

2(t + �) = (1 − �ı)�2(t) + �ı
(

log
[

p(t)
p′(t)

]
tVaR

�

)2

, (5a)

F(t + �) = WF(t) + WF(t)
p(t)

[�
(� − p(t)) + √
�s(t)�(t)], (5b)

(t + �) = wB(cB(t) + �B(t)) + wF(t + �)cF(t)
1 − wBn(t) − (1 − n(t))wF(t + �)

, (5c)

w (n(t)p(t + �) + c (t) + �B(t))
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

(t + �) = B B

p(t + �)
, (5d)

B(t + �) = LB(t) + �B(t), (5e)

′(t) = p(t + �). (5f)

14 It is important to note that the decision concerning equity and investment
djustments is taken before the current trading price of the risky asset is revealed.
e  therefore assume that the bank uses the price of the previous time-step as

 proxy for the expected trading price, and acts accordingly. This assumption of
yopic expectations marks a significant departure of our model from the general

quilibrium setting of Adrian and Boyarchenko (2012) and Adrian and Boyarchenko
2013), but it is common in the literature on heterogeneous agents in economics
see for instance Hommes (2006)).
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Each of these equations can be understood as follows:

a) The expected volatility �2 of the risky asset is updated through
an exponential moving average. The parameter �ı ∈ (0, 1)
defines the length of the time-window over which the histori-
cal estimation is performed, while the parameter tVaR represents
the time-horizon used by the bank in the calculation of VaR.

b) The adjustment of the fund’s risky asset portfolio weight wF
drives the price towards the fundamental value �, with an
adjustment rate �
 ∈ (0, 1). The demand of the fund also
depends on exogenous noise, which is assumed to be a nor-
mal  random variable �(t) with amplitude s(t) ≥ 0. The amplitude
varies in time so that the variable �(t) = s(t)�(t) follows a
GARCH(1,1) process. The factors of � guarantee the correct scal-
ing as � → 0.

c) The market clears.
d) The bank ownership of the risky asset n(t + 1) adjusts according

to market clearing.
e) Bank liabilities are updated to account for the change �B(t) in

the asset side of the balance sheet.
(f) Due to the dependence of Eq. (5d) on the lagged price p(t + �),

we must define an additional variable p′(t) to make the map  a
first order dynamical system.

3. Overview of model behavior

In order to explore the dynamical behavior of the model, we
solve it numerically. We  begin by studying fully procyclical lever-
age control policies corresponding to risk management under VaR,
i.e. we choose b =−0.5 throughout this section. A summary of the
parameters is provided in Table 1.

3.1. How we chose parameters

While this model is too stylized to expect a perfect match to real
data, it has the advantage that its most important parameters can be
estimated a priori, and once these parameters are fixed its behavior
is fairly robust for reasonable values of the other parameters. In the
following we briefly discuss how we choose the key parameters
and how they affect the behavior.
ing the Basel leverage cycle. J. Financial Stability (2016),

Bank � Time-step 0.1 year
ı  Memory for volatility estimation 0.5 year−1

tVaR Horizon for VaR calculation 0.1 year
�  Leverage adjustment speed 10 (v) year−1

	 Equity redistribution speed 10 year−1

b Cyclicality of leverage control −0.5 (v) 1
�2

0 Risk offset 10−6 1
˛  Risk level 0.075 (v) 1
E Bank’s equity target 2.27 (v) $
wB Bank’s weight for risky asset 0.3 (v) 1

Fund � Fundamental value 25 $

  Mean reversion 0.1 year−1

GARCH a0 Baseline return variance 10−3 1
a1 Error autoregressive term 0.016 1
b1 Variance autoregressive term 0.87 1

dx.doi.org/10.1016/j.jfs.2016.02.004


 IN PRESSG Model
J

6 inancial Stability xxx (2016) xxx–xxx

a
c
t
y
l

a
m
t
M
m
c
o

c
o
A
n
a
s
t
A

r
i
t
f
t
v
d

w
a
m
p
t
b
a
w
w
u

M

t
i
s
b

a
w
l
c

s
t
w
t
f
o
t

t
y

Fig. 4. Time series of price and leverage in the deterministic case. Left panel: sce-
nario (i) – microprudential, the fund dominates the bank (E = 10−5), i.e. the bank
has no significant market impact. In this case, the system goes to a fixed point equi-
librium where the leverage and price of the risky asset remain constant. Right panel:
scenario (ii) – macroprudential, the bank has significant market impact (E = 2.27).
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s the elementary time-step � → 0. For computational efficiency we
hoose � to be the largest possible value with behavior similar to
hat in the continuum limit, which results in a time-step of � = 0.1
ears. As long as � is this size or smaller the results change very
ittle.

The parameter ı sets the timescale for the exponential moving
verage used to estimate volatility, and is the most important deter-
inant of the overall timescale of the dynamics. The characteristic

ime for the moving average is tı = 1/ı.15 According to the Risk-
etrics approach Longerstaey (1996), the typical timescale used by
arket practitioners is tı ≈ 2 years. We  therefore set ı = 0.5 year−1,

orresponding to a two year timescale, and keep it fixed through-
ut.

The parameter tVaR is the time horizon over which returns are
omputed for regulatory purposes. In practice this varies depending
n the liquidity of the asset portfolio and ranges from days to years.

 good rule of thumb is to choose tVaR roughly equal to the time
eeded to unwind the portfolio. We  assume tVaR = � = 0.1 years, i.e.

 little more than a month. Changing the level of tVaR essentially
cales the level of perceived risk. Therefore, via the bank’s leverage,
he effects of tVaR and  ̨ on the model dynamics are tightly linked.
n increase in tVaR is equivalent to a corresponding decrease in ˛.

The parameters � and 	 define how aggressive the bank is in
eaching its targets for leverage and equity. Our default assumption
s that the bank tries to meet its target on a timescale of about one
ime-step of the dynamics, and so unless otherwise stated, in the
ollowing we set � = 10 year−1 and 	 = 10 year−1. This ensures that
he bank’s realized leverage is always close to its target. We  will
ary the parameter � and discuss how it affects the stability of the
ynamics in Section 4.3.

The mean reversion parameter 
 determines the aggressiveness
ith which the fund responds to deviations in the price of the risky

sset from its fundamental value �. We  take 
 = 0.1, i.e. an adjust-
ent rate for the fund’s weight wF of the risky asset of about 10%

er time-step �; see Equation (5b). This parameter does not affect
he dynamics very much as long as 
 < 1. In the extreme case when 

ecomes large and the fund has sufficient market power, price devi-
tions from the fundamental value will become small. Conversely,
hen 
 is very small, price deviations from the fundamental value
ill be allowed to become large and the system will become more
nstable.

arket impact of the bank
The dynamics of this model depend on the competition between

he stabilizing properties of the fundamentalist and the destabiliz-
ng properties of the bank. The market impact of the bank is roughly
peaking the product of the leverage � and the relative size of the
anking sector R.

The target leverage is proportional to ˛, with �0 determining
n upper bound when b < 0, as given in Eq. (2). We  take �0 = 10−3,
hich means that the upper bound is seldom met, and control the

everage by varying ˛. A typical value of  ̨ that yields a leverage
ycle is  ̨ = 0.075.

The relative size of the bank R is important in determining the
tability of the model. We  show in Eq. (A.10) in Appendix A that at
he fixed point equilibrium the parameters E, wB, �, �0, and ˛, as
ell as the initial condition wF(0), jointly determine the fraction of

he risky asset R owned by the bank. The numerical values chosen
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

or the target equity E and the fundamental price � are arbitrary –
nly the ratio between them is important. We  choose the ratio E/�,
he bank’s portfolio weight wB and the fund’s initial weight wF(0)

15 The contribution to the moving average of a squared return y(t) observed at time
 is y(t + �t) = (1 − �ı)�t/� y(t) at time t + �t. We define the typical time tı such that
(t  + tı)/y(t) = 1/e. Thus, tı =− �/log [1 − �ı]  ≈ 1/ı  for �ı � 1.
In this case, the bank’s risk management leads to persistent oscillations in leverage
and  price of the risky asset with a time period of roughly 15 years.

in order to get a sensible value for the relative size of the bank, and
use E to vary this as needed. Bear in mind that the bank represents
all investors with leverage targets.

Finally, we pick parameters for the fund GARCH process a0, a1
and b1 in order to achieve a reasonable level of clustered volatil-
ity and to permit leverage cycles even in the presence of noise as
observed in Fig. 1.

3.2. Overview of model dynamics

We  now build some intuition about the model dynamics. First,
consider the extreme case where E → 0, i.e. where the market
impact of the bank is negligible so that the price dynamics are dom-
inated by the fund. This is the purely microprudential case where
the bank’s actions have no significant effect on the market. With
s > 0 the exogenous volatility perturbs the system away from its
equilibrium and the price performs a mean reverting random walk
around the fundamental price �. In the deterministic case, i.e. s = 0,
the fund quickly drives the dynamics to the fundamental price and
the system settles to a fixed point equilibrium.

When the bank’s equity target E is large enough that the bank
has a significant impact on the price process, the dynamics are
less straightforward. We  refer to this scenario as the macropru-
dential case. The destabilizing market impact of the bank can drive
chaotic endogenous oscillations, as described below, which intro-
duce endogenous volatility on top of exogenous volatility.

We investigate the following four scenarios:

(i) Deterministic, microprudential: E = 10−5 and s = 0.
(ii) Deterministic, macroprudential: E = 2.27 and s = 0.
iii) Stochastic, microprudential: E = 10−5 and s > 0.

(iv) Stochastic, macroprudential: E = 2.27 and s > 0.

Unless otherwise stated, all parameters are as specified in Table 1.
The first two  cases are for the deterministic limit with s = 0.
ing the Basel leverage cycle. J. Financial Stability (2016),

Although the deterministic limit is unrealistic, it is useful to gain
intuition, and in particular to understand the nature and origin of
the endogenous oscillation observed in cases (ii) and (iv). The last
two cases are with more realistic levels of exogenous noise. We

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 5. Time series of price and leverage in the stochastic case. Left panel: scenario
(iii) – microprudential, the fund dominates the bank (E = 10−5), i.e. the bank has
no  significant market impact. In this case, the price is driven by the fund’s trading
activity and performs a mean reverting random walk around the fundamental value
� = 25. Right panel: scenario (iv) – macroprudential, the bank has significant market
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every time the trajectory crosses the hyper-plane p(t) = 20 with the
price increasing. The Poincaré section shows the characteristic frac-
tal structure, and shows the stretching and folding that makes the
mpact (E = 2.27). In this case, the bank’s risk management leads to irregular oscil-
ations in leverage and price of the risky asset that are similar to the deterministic
ase.

ummarize our results for scenarios (i) and (ii) in Fig. 4 and for
cenarios (iii) and (iv) in Fig. 5.

The microprudential scenarios (i) and (iii) behave as expected: In
he deterministic limit the system simply settles into a fixed point
ith prices equal to fundamental values. When there is exogenous
oise the system makes excursions away from the fixed point but
ever drifts far away from it, and the dynamics remain relatively
imple.

In contrast, the macroprudential scenarios (ii) and (iv) display
arge oscillations both in leverage and price. We  refer to this oscilla-
ion as the Basel leverage cycle. Notably, the oscillations occur even
n the deterministic limit, i.e. without any external shocks. During
he cycle the price and leverage slowly rise and then suddenly fall,
ith a period of about �t  ≈ 15 years in the deterministic case.

The oscillations have the following economic interpretation,
hich is easiest to understand in the deterministic limit: Suppose
e begin at about t = 140 years in the right panels of Fig. 4, with

everage low, perceived risk high, and prices low but increasing.16

oing forward in time the perceived risk slowly decreases as the
emory of the past crisis fades. From a mechanical point of view,

his is due to the smoothing action of the exponential moving aver-
ge – as long as the change in price is lower than the current
istorical average the volatility �2 continues to drop. This causes
he leverage to increase under the procyclical leverage policy. The
ank buys more shares to meet its new leverage target, driving
rices up. This process continues for many years, generating a grad-
al rise in both prices and leverage. The system slowly approaches

ts equilibrium, but the equilibrium is now unstable due to the
igh leverage. Eventually, the amplification of price due to lever-
ge is sufficiently large that the volatility begins to increase. This
rives the leverage down, which causes selling, driving prices down
nd volatility up. The strong positive feedback generates a sharp
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

rash that ultimately comes to an end due to the increasingly heavy
nvestment of the fundamentalist fund. After the crash volatility is
igh and leverage is low, and the cycle repeats itself, except that

16 We begin at a time where t is substantially greater than zero in order to let
ransients die out so that the system has settled onto its attractor.
 PRESS
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because the dynamics are chaotic the precise details of the subse-
quent “Great Financial Moderations” and crashes vary from cycle to
cycle.

From a dynamical systems point of view, the equilibrium is
a hyperbolic fixed point.17 During the “Great Financial Modera-
tion”, when prices are steadily rising, the system approaches the
equilibrium along its stable manifold. However, because it never
approaches it exactly, it eventually veers away and exits along the
unstable manifold, generating a crisis.

The behavior in the stochastic case is similar, except that, in
addition to generating an endogenous oscillation, the instabilities
creating the chaotic behavior also strongly amplify the exogenous
noise. This creates the possibility that chance events may  signifi-
cantly modify the basic cycle.

We stress that this behavior is not due to a fine tuning of the
model specifications, but rather appears to be a robust property
that emerges from the combination of a historical estimation of
risk, and an active portfolio management that is based on VaR. We
have observed similar cycles in different models, ranging from an
extremely simple two  dimensional map as given in Aymanns and
Farmer (2015), to more complex settings involving multiple banks
and assets, cf. Aymanns and Farmer (2015).

The fragility that drives the crashes comes from the fact that at
high levels of leverage a small increase in risk is sufficient to cause
a drastic tightening of the leverage constraint. This intuition can be
made precise by comparing the derivative of the leverage control
policy for high vs. low leverage. For convenience, we take �2

0 � 1,
which under the assumption that b =−1/2 means that leverage is
very large.18 The result is that

dF (˛,�2
0

,−0.5)

d�2(t)
(�2(t))

=
{

−0.5/�3
0 � 0 for �2(t) → 0 ∧ �2

0 � 1,
0 for �2(t) → ∞ ∧ �2

0 � 1.

In the high leverage limit, i.e. when � is small, the sensitivity of the
leverage target F to variations in risk tends to infinity. In contrast,
the sensitivity is zero in the opposite limit where leverage is low
and perceived risk is large. Thus, when the leverage is high, only
a small increase in volatility is needed to cause a large change in
leverage, causing a large effect on prices, which further increases
volatility, creating a feedback loop that suddenly drives leverage
and prices down. Therefore, increasing leverage of the banking
system has a two-fold destabilizing effect: It makes the dynamics
unstable and leads to chaos, but it also makes the system more sen-
sitive to shocks, which can result in sudden deleveraging triggered
by external events (such as the collapse of a housing bubble).

The leverage cycles are not strictly periodic due to the fact that
the oscillations are chaotic. This becomes clearer by plotting the
dynamics in phase space and then taking a Poincaré section, as illus-
trated in Fig. 6. The phase plot makes the cyclical structure clearer.
The 3D representation in the left panel shows how the ownership
of the risky asset n, the perceived risk � and the price p vary dur-
ing the course of the leverage cycle. The Poincaré section in the
right panel is constructed by plotting ownership vs. perceived risk
ing the Basel leverage cycle. J. Financial Stability (2016),

17 A hyperbolic fixed point is a fixed point that is unstable in some directions but
stable in others. Loosely speaking the stable manifold is the set of points that asymp-
totically reach the fixed point and the unstable manifold is the set corresponding to
iteration of the unstable eigenvector.

18 For b < 0 the parameter �0 imposes a cap on the target leverage; larger values
for  �2

0 would make this unrealistically low.

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 6. Left panel: Three dimensional phase plot of the chaotic attractor underlying the Basel leverage cycle for the deterministic case, plotting the price p, the bank’s
o is constructed by recording values for the bank ownership of the risky asset (y-axis) and
t  defined by p(t) = 20. This is repeated for 106 time-steps. This exhibits the characteristic
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Fig. 7. A bifurcation diagram showing the three regimes in the deterministic case.
The  risk parameter  ̨ and the cyclicality parameter b are varied while holding the
other parameters constant at the value in Table 1. The white region corresponds
to  a stable fixed point equilibrium, the light gray region to leverage cycles and the
dark gray region to global instability. The solid blue line corresponds to the critical

∗

for low leverage the system is stable and for higher leverage it is
unstable. Somewhat surprisingly, the critical leverage �∗

c is inde-
pendent of b, and consequently the size of the regime with the

19 While  ̨ tends to increase leverage, when the leverage control policy is pro-
cyclical the behavior is not always monotonic. This is because increasing  ̨ tends to
increase volatility, but increasing volatility drives the target leverage down, so the
wnership of the asset n, and the perceived risk �. Right panel: A Poincaré section 

he  perceived risk (x-axis) whenever the price is increasing as it crosses the plane
tretching and folding associated with chaotic dynamics.

ynamics chaotic. The fact that these dynamics are chaotic is con-
rmed in the next section, where we do a stability analysis and
ompute the Lyapunov exponent.

In summary, depending on the choice of parameters, the model
ither goes to a fixed point (scenario (ii)) or shows chaotic irregular
ycles (scenarios (i) and (iii)). As expected, the dynamics become
ore complicated when noise is added, but the essence of the Basel

everage cycle persists even in the zero noise limit.

. Determinants of model stability

.1. Deterministic case

In the deterministic case the standard tools of linear stability
nalysis can be used to characterize the boundary between the fixed
oint equilibrium and leverage cycles. In this section we will use
his to characterize the behavior of the system as the risk parameter

 and the cyclicality parameter b are varied. We  begin by studying
he deterministic case, where we can draw analytical insights, and
hen present numerical results for the stochastic case. The details
f the stability analysis are presented in Appendix A.

The dynamical system has a unique fixed point equilibrium x*,
iven by

∗ = (�2∗, w∗
F, p∗, n∗, L∗

B, p′∗)

=
(

0, wF(0), �,
1
�

˛�2b
0 EwB, (˛�2b

0 − 1)E, �
)

. (6)

his corresponds to a leverage �* and relative size of bank to fund
(x*), given by

�∗ = ˛�2b
0 ,

R(x∗) = A∗
B

A∗
F

= �∗E∗
B

(1 − n∗)p∗/w∗
F

.
(7)

t the equilibrium x* the price is constant at its fundamental value
nd the bank is at its target leverage. The stability of the equilibrium
epends on the parameters. Regime (i) observed in the numerical
imulations of the previous section corresponds to the stable case.
n this case, regardless of initial conditions, the system will asymp-
otically settle into the fixed point x*. In contrast, when the fixed
oint x* is unstable there are two possibilities. One is that there is a
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

everage cycle, in which the dynamics are locally unstable but exist
n a chaotic attractor that is globally stable; the other is that the
ystem is globally unstable, in which case the price either becomes
nfinite or goes to zero.
leverage �c in Eq. (7) at the critical value ˛c where the fixed point becomes unstable.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In Fig. 7, we show the results of varying the risk parameter ˛
and the cyclicality parameter b. The risk parameter  ̨ provides the
natural way  to vary the risk of the bank, but the realized risk for a
given  ̨ depends on other factors such as changes in volatility. For
diagnostic purposes, leverage is a better measure.19 Fig. 7 shows
each of the three regimes, corresponding to (i) stable equilibrium,
(ii) leverage cycles and (iii) global instability, as a function of the
leverage and the cyclicality parameter b.20

This diagram reveals several interesting results. As expected,
ing the Basel leverage cycle. J. Financial Stability (2016),

two  effects compete with each other.
20 The boundary where the fixed point equilibrium becomes unstable is computed

analytically based on the leverage �∗
c where the modulus of the leading eigenvalue

is one. The boundary for globally unstable behavior is more difficult to compute as
it  requires numerical simulation.

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 8. A comparison of stability when the dynamics are deterministic vs. stochastic
for  the procyclical region (b < 0). As in the previous figure, the critical leverage �∗

c

for the deterministic case is shown as a blue line. The dashed red line shows the
parameter value where the dynamics become unstable as measured by the leading
Lyapunov exponent; note the transition to chaos occurs at a much lower leverage.

Another important policy parameter is the horizon over which
banks estimate their perceived risk. The estimation horizon is given
by the characteristic time of the exponential moving average for

21 We have considered the case where the bank increases its leverage quicker than
it  decreases it. We  have done this introducing an asymmetry in the parameter � that
ARTICLEFS-422; No. of Pages 15
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table equilibrium is unaffected by whether the leverage control is
rocyclical or countercyclical. In the procyclical regime (b < 0), there

s a substantial region with leverage cycles. Note that this transi-
ion occurs suddenly, i.e. if  ̨ is increased by a small amount which
appens to cross the threshold, the system suddenly moves from

 fixed point to a large, finite amplitude oscillation. Thus, a small
egulatory change can result in a dramatic difference in outcomes.

For the countercyclical regime (b > 0), the system makes a direct
ransition from the stable fixed point equilibrium to global instabil-
ty throughout most of the parameter range. The instability is not
urprising: In the countercyclical regime, there is an unstable feed-
ack loop in which increasing leverage drives increasing prices and

ncreasing volatility, which further increases the leverage. Thus, for
igh leverage there are unstable regimes for both pro- and counter-
yclical behavior, but when it occurs, the instability is more severe
n the countercyclical regime.

.2. Stability when there is exogenous noise

When there is exogenous noise we can only measure the sta-
ility numerically. This is done by computing the largest Lyapunov
xponent of the dynamics. The Lyapunov exponents are a gener-
lization of eigenvalues for limit cycles and chaotic attractors. The
eading Lyapunov exponent measures the average rate at which the
eparation between two nearby points changes in time. When the
ynamics are locally stable, nearby points converge exponentially
nd the leading Lyapunov exponent is negative, and when they
re locally unstable, nearby points diverge exponentially and the
eading Lyapunov exponent is positive. The Lyapunov exponent is

 property of a trajectory, but for dissipative systems such as ours,
lmost all trajectories on a given attractor have the same Lyapunov
xponents, so it is a property of the attractor. If the attractor is a
xed point, the largest Lyapunov exponent is negative, and if it is

 chaotic attractor, the largest Lyapunov exponent is positive. As
xpected, in the deterministic case we observe that leverage cycles
ave a positive leading Lyapunov exponent, confirming that the
ynamics are chaotic.

It is also possible to compute Lyapunov exponents for stochastic
ynamics. To understand the basic idea of how this is done, imagine
wo realizations of the dynamics with the same sequence of ran-
om shocks, but starting at slightly different initial conditions (see
rutchfield et al. (1982)). Because the random noise is the same

n both cases, it is possible to follow two infinitesimally separated
oints and measure the rate at which they separate. If the leading
yapunov exponent is positive this means that the dynamics will
trongly amplify the noise.

We  compare the stability for the stochastic and deterministic
ases in Fig. 8. This is done for the procyclical case only, since
he direct transition from a fixed point to global instability in the
ountercyclical case complicates numerical work (and the counter-
yclical case is less relevant for our analysis).

In the stochastic case, the critical leverage is computed as the
ime average of the target leverage when the Lyapunov exponent
ecomes positive. Interestingly, the critical leverage in the stochas-
ic case first starts below the deterministic critical leverage and
hen approaches it as b is increased. This indicates that for strongly
rocyclical leverage control policies noise destabilizes the system.
he gray line in Fig. 8 shows the average target leverage used for
he evaluation of the optimal leverage control policy in Section 5.
n this exercise the average target leverage was intentionally held
x across different values of b.

The most interesting conclusion from comparing the stochas-
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

ic and deterministic cases is that when the dynamics are strongly
rocyclical (i.e. for −0.5 < b <−0.2) the noise significantly lowers the
tability threshold. In contrast, for larger values of b >−0.2 there
s little difference in the stability threshold in the two cases. This
The gray line show the average target leverage used for the evaluation of the optimal
leverage control policy in Section 5. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

indicates that the dynamics becomes more stable when the lever-
age control policy is close to constant leverage. This, together with
the fact that in the countercyclical regime the system goes straight
from stability to global instability, suggests that intermediate val-
ues of cyclicality (nearer to constant leverage) are likely to be most
stable, at least when all the parameters as chosen as in Table 1.

4.3. Slower adjustment leads to greater stability

The bank’s leverage adjustment speed � has a strong effect on
stability, with interesting regulatory implications. Intuitively, in the
macroprudential regime, decreasing the adjustment speed means
less aggressive selling during deleveraging, which should make the
system more stable.21

To test this we study how the critical leverage �∗
c and critical

relative size Rc(x*) depend on the adjustment speed �� (we vary
� and hold � constant). The relationship is shown in Fig. 9, where
the critical leverage is shown on the left vertical axis and the crit-
ical relative size on the right vertical axis. As expected, both the
critical leverage (left axis, continuous line) and critical relative size
of the bank (right axis, dashed line), decrease dramatically as ��
increases. This suggests that it is possible to dramatically improve
the stability of the financial system if financial institutions adjust
to their leverage targets slowly. Similarly, this illustrates the dan-
gers of mark-to-market accounting, which can cause balance-sheet
adjustments to be too rapid.

4.4. Longer risk estimation horizon increases stability
ing the Basel leverage cycle. J. Financial Stability (2016),

controls the speed of leverage adjustment, i.e. introducing a parameter �+ for the
speed of levering up and a parameter �− for the speed of deleveraging. By allowing
such asymmetric specification, we find that the dynamics becomes more stable as
�− is reduced. The qualitative behavior of the system, namely the existence of stable,
locally unstable and globally unstable regimes, is preserved.

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 9. Critical leverage �∗
c (solid blue line, left vertical axis) and the critical value of

the  relative size of the bank to the fund Rc(x*) (dashed red line, right vertical axis) as
a  function of the leverage adjustment speed ��.  Other parameters are as in Table 1.
The stability of the financial system can be dramatically improved by lowering the
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Fig. 10. Visual representation of realized shortfall. The solid black lines represents a
hypothetical return distribution. The red vertical dashed line is drawn in correspon-
dence of the q-quantile of the distribution. The realized shortfall is the average of

to expected shortfall as used in Basel III, except in this case it is
based on the profits and losses realized ex post in the simulation
of the model. It is a measure of the average loss induced by large
market crashes, as shown in Fig. 10. The choice of risk metric is not
djustment speed. (For interpretation of the references to color in this figure legend,
he  reader is referred to the web  version of this article.)

he risk estimation tı = 1/ı.  The larger tı the slower the bank will
pdate its perceived risk as it observes new price movements. At the
ame time the memory of past crisis will persist longer. Therefore,
ne could argue that a bank with a large risk estimation horizon tı

ollows a “long-term” risk management strategy while a bank with
 small tı follows a “short-term” risk management policy.

In order to test how the risk estimation horizon affects the stabil-
ty of the system we compute the critical leverage �∗

c for different
alues of tı in the stochastic case (i.e. via determining when the
eading stochastic Lyapunov exponent becomes positive). We  find
hat the critical leverage increases monotonically in the risk estima-
ion horizon tı. For small risk estimation horizons (tı ≈ 1 year), the
ritical leverage increases very quickly with a small change tı. As

ı increases the rate of increase of the critical leverage slows down
uch that for tı > 7 years the rate of increase in the critical lever-
ge becomes insignificant. This suggests that within our model,
iven sufficiently short initial risk estimation horizons, a policy
aker may  significantly improve the financial system’s stability

y mandating long term risk management policies.

. Leverage control policies

What is the optimal leverage control policy? The mere fact that
he endogenous oscillations of prices and volatility depend on the
yclicality parameter b, as shown in Fig. 7, suggests that some poli-
ies are better than others. In this section we introduce a procedure
or scoring policies and search for the best policy within the family
hat we have defined. We  find that the optimal policy depends on
arameters of the model, and in particular on the market impact of
anks in relation to the rest of the financial system. For the param-
ters used in Table 1, as the market impact of banks increases the
ptimal policy becomes increasingly less procyclical, and in the
imit where the banks play a large role in determining prices it
pproaches constant leverage.

.1. Criterion for optimality

We  define an optimal leverage control policy as one that max-
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

mizes leverage for a given level of risk. Maximizing leverage is
esirable because it means that, for a given level of capital, banks are
ble to lend more money. We  do not model the real economy here,
e simply take it as a given that the ability to obtain credit if needed
the  distribution in the red region to the left of the vertical line. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of  this article.)

is desirable for the real economy.22 From a practical point of view, it
is difficult to control risk while searching the parameter space. It is
much easier to control the average leverage, systematically sweep
parameters and measure the resulting risk.

To measure risk we have the luxury of having a simple model,
which we can iterate numerically to generate as much data as we
need for statistical estimation. We can then observe the resulting
time series of gains and losses for the bank and measure the level
of risk associated with this time series. Because this is an ex post
measurement of risk, we  call this the observed risk.

We now compute the trading gains and losses for the bank.
The change in the bank’s equity due to fluctuations in the
price of the risky asset at time t + 1 is �EB(t) = n(t)�p(t), where
�p(t) = p(t + 1) − p(t). We  then define the equity return as


(t) = log
(

EB(t) + �EB(t)
EB(t)

)
. (8)

Note that this captures both the leverage of the bank and the market
return of the risky asset since

�EB(t)
EB(t)

= n(t)p(t)
EB(t)

�p(t)
p(t)

= �(t)wBr(t),

where r(t) is the market return on the risky asset. As expected,
leverage amplifies the gains and losses. The total change in equity
includes readjustments toward the equity target, but in fact these
are small, and the trading losses above are well approximated by
the changes in the equity of the bank between time steps. For con-
sistency with standard risk estimation we use log-returns rather
than the simple return r(t).

This then leaves us with the question of how to measure risk. To
do this we  follow current thinking as reflected in Basel III and use
realized shortfall. The realized shortfall measures the average tail
loss of the bank equity beyond a given quantile q. This is the analog
ing the Basel leverage cycle. J. Financial Stability (2016),

22 There may  be circumstances where the real economy might overheat as a result
of  too much credit. Nonetheless, we assume that, at a given level of risk, all else equal,
the  option of being able to obtain more credit is desirable for both borrowers and
lenders. When this is not the case they can simply abstain from giving or receiving
credit, in which case risk will automatically be lower.

dx.doi.org/10.1016/j.jfs.2016.02.004
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Fig. 11. An illustration of how the proper balance between micro and macropruden-
tial  regulation depends on the stability of the financial system. We plot the observed
risk  as a function of the cyclicality parameter b, investigating three different scenar-
ios  corresponding to different levels of clustered volatility and different sizes of the
banking sector, with other parameters held constant. Realized shortfall has been
normalized by RSq(b =−0.5) for ease of comparison. Green diamonds correspond to
the case where microprudential risk dominates, i.e. the banking system is relatively
small and the exogenous volatility clustering is high. Not surprisingly, the best pol-
icy is b* =−0.5, i.e. Basel II and is strongly procyclical. Red squares correspond to a
mixture of microprudential and macroprudential risk; the size of the banking sector
is  increased to R̂ = 0.1, and the best policy now has b* ≈ −0.2, i.e. it is only mildly
procyclical. Blue circles correspond to the case where macroprudential risk domi-
nates; the size of the banking sector is increased still further to R̂ = 0.27, and the
optimal policy has b* ≈ 0, i.e. it is very close to constant leverage. See text for param-
ARTICLEFS-422; No. of Pages 15
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mportant for the results presented here – we would get similar
esults with any other reasonable measure of tail risk.

For each set of parameters we estimate the realized shortfall
sing a time average with T = 5000 time steps by empirically com-
uting the average loss over the worst qT time observations.23 Let

 be the indicator function with �(x) = 1 if x > 0 and zero otherwise,
nd let 
q be the threshold loss corresponding to quantile 0 < q < 1,

efined through the relation
∑T

t=1�(
q − 
(t)) = qT .  The realized
hortfall at a confidence level q over a time horizon T is defined as

Sq = − 1
qT

T∑
t=1


(t)�(
q − 
(t)). (9)

.2. Balancing microprudential and macroprudential regulation

To illustrate how the optimal tradeoff between microprudential
nd macroprudential regulation depends on the properties of the
nancial system, in this section we investigate three representative
cenarios. The two key properties characterizing the scenarios are
he strength of the exogenous clustered volatility and the market
mpact of the banking sector. The market impact of the banking
ector is determined by the product of the average relative size R̂ of
he banking sector, the average leverage �̂ and the bank’s portfolio
eight wB for the risky asset. For convenience, to vary the mar-

et impact of the banking sector we hold �̂ and wB constant and
ary R̂.

In each scenario we sweep the cyclicality parameter b in Eq. (2).
his determines the degree of procyclicality or countercyclicality of
he leverage control policy. As we do this we hold the average lever-
ge and the relative size of the banking sector constant at the stated
argets, adjusting  ̨ and E as needed in order to maintain these tar-
ets. We  hold all the other parameters of the system constant.24

e  then measure the observed risk as a function of b and look for
 minimum, corresponding to the optimal policy. The results are
hown in Fig. 11.

We  investigate three scenarios, with the results described
elow:

 Microprudential risk dominates (Green diamonds). This occurs
when there is strong exogenous clustered volatility and weak
bank market impact. To illustrate this we set the GARCH param-
eters for strong clustered volatility (a0 = 0.001, a1 = 0.04, b1 = 0.95)
and make the banking sector small (R̂ = 10−5). In this case there
is essentially no systemic risk. The dynamics are dominated by
the exogenous volatility, which the historical volatility estimator
does a good job of predicting. Not surprisingly, the best leverage
control policy is very close to b =−0.5, i.e. it corresponds to Basel
II.25

 Compromise between microprudential and macroprudential risk
(Red squares). This occurs when there is weaker exogenous
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

clustered volatility and intermediate bank market impact. To
illustrate this we set the GARCH parameters for weaker clus-
tered volatility (a0 = 0.001, a1 = 0.016, b1 = 0.874) and increase the

23 For convenience we choose q and T so that their product is an integer.
24 Because the instantaneous leverage �(t) and the relative size of the banking
ector R(t) are emergent properties that vary in time when there is a leverage cycle,
ontrolling them requires some care. For a given choice of cyclicality parameter

 we  vary  ̨ and E to match a target for the average size of the banking sector,
ˆ = (1/T)

∑T

t=0
R(t), and the average leverage �̂ = (1/T)

∑T

t=0
�(t). The leverage is

eld constant at �̂ = 5.8 for all scenarios but the size of the banking sector R̂ varies
s  stated. All other parameters are as in Table 1 unless otherwise noted.
25 Note that observations for this scenario only extend up to b ≈ 0.1 as for larger val-
es of b there exists no model solution with the required output targets for relative
ize  and leverage.
eters. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web  version of this article.)

relative size of the banking sector to R̂ = 0.1. The larger size of
the banking sector makes the financial system more prone to
endogenous oscillations and the risk is minimized for b* ≈ 0.2.
This corresponds to a leverage control policy that is still procycli-
cal but is nonetheless closer to constant leverage.

3 Macroprudential risk dominates (Blue circles). This occurs when
there is weaker exogenous clustered volatility and strong bank
market impact. To illustrate this we  set the GARCH parameters as
in the previous case but increase the relative size of the banking
sector still further to R̂ = 0.27. In this case the system becomes
very prone to endogenous oscillations and the risk is minimized
for b* ≈ 0, i.e. using a leverage control policy that is very close to
constant leverage.

These three scenarios show that the key determinant of the
degree to which micro vs. macroprudential regulation is required
is the market impact of the banking sector. As this increases the
system becomes more prone to oscillation and therefore more sus-
ceptible to systemic risk. The dynamics emerge because of the
tension between the stabilizing influence of the fundamentalist
and the destabilizing influence of the banking sector. As the lat-
ter increases in market impact a higher degree of macroprudential
regulation is required.

The balance between micro and macroprudential risk can be
stated in simple terms as a competition between exogenous vs.
endogenously generated volatility. Increasing the size of the bank-
ing sector increases the endogenous volatility and means that the
system requires a higher level of macroprudential regulation. This
ing the Basel leverage cycle. J. Financial Stability (2016),

is obvious in the model, but of course in the real world it is hard
to tell who  is generating volatility and therefore difficult to dis-
tinguish the two. Nonetheless, the market impact of the banking
sector can potentially be estimated by regulators and provides an
important systemic risk indicator.

dx.doi.org/10.1016/j.jfs.2016.02.004
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that there is exactly one unit of the risky asset which is
infinitely divisible. The return on the price of the risky asset is
r(t) = log [p(t)/p(t − �)]. The fraction of the risky asset held by the
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. Conclusion

.1. Summary

In this paper we have investigated the effect of risk-based lever-
ge policies on financial stability, extending the dynamical model
f leverage cycles introduced by Aymanns and Farmer (2015), and
oughly calibrating it to match basic features of the S&P500 trajec-
ory prior and following the 2007/2008 crash.

We considered in particular the effect of different leverage con-
rol policies ranging between procyclical and countercyclical ones.
nder a procyclical policy the bank decreases its leverage when
erceived risk is high. In contrast, under a countercyclical policy
he bank is allowed to increase its leverage when perceived risk
s high. We  study the stability of the model for different values of
ank leverage and the cyclicality of the leverage policy. We find
hree different regimes: (1) For low leverage the system is stable
nd settles into a fixed point. (2) As leverage is increased lever-
ge cycles emerge. (3) As leverage is increased further the system
ecomes globally unstable. Our main contribution is the evalua-
ion of different leverage control policies, and our result that the
ptimal policy depends on the parameters of the financial system:
n the microprudential limit when the bank is small and exoge-
ous volatility is high, the optimal policy is simply given by Basel

I, i.e. Value-at-Risk (b =−0.5). As the banking sector becomes larger
either through increasing equity or leverage) the optimal pol-
cy becomes less procyclical. In the limit when the bank is very
arge or highly leveraged, the optimal policy is constant leverage,

 = 0.
Our paper clearly illustrates the interplay between exogenous

nd endogenous volatility: the microprudential response to exoge-
ous volatility can itself cause endogenous volatility which may
ominate over exogenous volatility. This insight is crucial for the
ffective design of macroprudential policies. Such policies must
ritically evaluate systemic risks, and make an appropriate tradeoff
etween micro and macroprudential risk.

The results of Section 4.3 give a clear prescription for improved
isk management. We  show there that lowering the adjustment
peed for leverage targets exerts a strong stabilizing force and can
ave a dramatic effect on the critical leverage.

.2. Are our assumptions of bounded rationality reasonable?

The most interesting aspect of our model is the spontaneous
mergence of a leverage cycle, resembling the Great Financial
oderation and the subsequent crisis, and persisting even in the

eterministic limit. This suggests that the use of Value-at-Risk, as
ecommended by Basel II, might have partially caused these events.
f course there are many other possible causes and the real situa-

ion is complicated. Nonetheless, our model indicates that the Basel
I rules, when combined with aggressive risk taking and the widely
se practice of estimating volatility using historically-based mov-

ng averages, were sufficient to have caused the Great Financial
oderation and subsequent crisis by themselves.
This model has been criticized for its assumption of bounded

ationality. Should not intelligent investors recognize the simple
attern of booms and busts and alter their behavior accordingly?

Perhaps the strongest rebuttal of this criticism is the contradic-
ion with historical facts. As already mentioned there were several
rescient warnings about the potential problems with Value-at-
isk, but these were largely ignored. Instead some of the greatest
inds in economics declared otherwise: In 2003 Robert Lucas
Please cite this article in press as: Aymanns, C., et al., Tam
http://dx.doi.org/10.1016/j.jfs.2016.02.004

aid that “the central problem of depression prevention has been
olved”, in 2004 Ben Bernanke said “improvements in monetary
olicy, though certainly not the only factor, have probably been
n important source of the Great Moderation”, and even in 2008
 PRESS
al Stability xxx (2016) xxx–xxx

Olivier Blanchard declared that “the state of macro is good”, not
realizing the possible dangers from financial markets. Our model
did not exist then, and the warnings from the models that did exist
prior to the crash were not quantitative. Thus it seems that in gen-
eral neither investors nor regulators were able to anticipate this
dynamics.

There are reasons why  this was difficult even for intelligent
investors. The timescale of the cycle is long – a decade or more
– and investors typically lack incentives to anticipate events that
in the far future. There are big incentives to participate in bubbles
and the timing of crashes is hard to predict. Evolutionary pressure
forces funds to take ever-increasing leverage in order to stay com-
petitive, as for example in the model of Thurner et al. (2010). It is
difficult for individual investors to fully understand systemic risks
based on the incomplete information that is available.

This is made even harder by the fact that these are recent inno-
vations. Value-at-Risk did not become widely used until the mid
1990’s and Basel II was  adopted in 2004. But perhaps there is
hope to do better in the future. Basel III contains countercyclical
buffers that are intended to damp leverage cycles. The reliability
of this could be tested by constructing a more realistic version
of our model. Among other things, this might include allowing
the bank’s portfolio weights to vary, allowing for phenomena like
flight to quality; allowing the possibly of default; modeling the
heterogeneity of the financial system; and implementing a more
realistic version of the Basel III rules, including risk weights, an asset
price-dependent capital buffer and counter cyclicality with respect
to macro-economic indicators. Such a model could be developed,
and we believe it could provide a useful tool for testing the effec-
tiveness of Basel III and evaluating possible alternatives. One can
hope that investors and regulators in the future will be suffi-
ciently rational that we do not have to make the same mistake
twice.
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Appendix A. Detailed description of the model

The model is set in discrete time indexed by t = {�, 2�, . . .,  T�},
where � is the length of a time-step.

A.1. Assets

Let p(t) be the price of the risky asset at time t. We  assume
ing the Basel leverage cycle. J. Financial Stability (2016),

bank is n(t) ∈ [0, 1]. Since only the bank and the fund can invest in
the risky asset, the fraction of the risky asset held by the fund is
simply 1 − n(t). The risk free asset is analogous to cash. The price of
the risk free asset is constant and equal to one.
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p(t + �) =
1 − wBn(t) − wF(t + �)(1 − n(t))

. (A.7)

Given the new price we can compute the fraction of the risky asset
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.2. Agents

There are two representative agents. The first is a bank, denoted
, and the second is a fund, denoted F.

.3. Bank

Balance sheet. Assume the bank divides its assets AB(t) in a fixed
atio wB between the risky asset and cash cB(t), so that the banks
wns n(t) shares of the risky asset with price p(t). The relevant
ccounting relations are:

Risky investment = n(t)p(t) = wBAB(t),
Risk free investment = cB(t) = (1 − wB)AB(t),
Total assets = AB(t) = cB(t) + n(t)p(t).

he bank’s liabilities LB have a maturity of one time step and are
reely rolled over or expanded. There is no limit to the reduction in
B; in principle the bank could pay back its entire liabilities in one
ime step.

The bank adjusts its equity toward a fixed target E. This guaran-
ees that neither the bank nor the fund asymptotically accumulates
ll the wealth and makes the long-term dynamics stationary, with
nly a small effect on the short term dynamics. The dividends paid
ut by the bank are invested in the fund and new capital invested in
he bank comes from the fund. If the bank deviates from its equity
arget E it either pays out dividends or attracts new capital from
utside investors at a rate 	 to adjust its equity closer to the target,
o that its equity changes by

B(t) = 	(E − EB(t)). (A.1)

aking both the changes in price and the active adjustments in
quity into account, the bank’s equity at time t + � is

B(t + �) = n(t)p(t + �) + cB(t) − LB(t) + �B(t), (A.2)

nd the bank’s leverage is

(t + �) = Total Assets
Equity

= n(t)p(t + �)/wB

EB(t + �)
.  (A.3)

e assume the bank enforces leverage control through a target
everage �(t), corresponding to a target portfolio value AB(t)(t) =
(t)EB(t).

Estimation of perceived risk. The bank relies on historical data
o estimate the perceived variance of the risky asset �2(t). To do
o the bank computes an exponential moving average of squared
eturns of the risky asset. This approach is similar to the RiskMetrics
pproach, see Longerstaey (1996). In particular

2(t + �) = (1 − �ı)�2(t) + �ır2(t)

= (1 − �ı)�2(t) + �ı
(

log
[

p(t)
p(t − �)

]
tVaR

�

)2

, (A.4)

here the term tVar/� rescales the return over one time-step � to
he return over the horizon tVaR used in the computation of the
apital requirement. The parameter �ı ∈ (0, 1) implicitly defines
he length of the time window over which the historical esti-

ation is performed. We  define the typical time tı as the time
t which an observation made at t − tı has decayed to 1/e  of its
riginal contribution to the exponential moving average. Thus

ı =− �/log [1 − �ı]  ≈ 1/ı  for �ı � 1.

.4. Fund investor
Please cite this article in press as: Aymanns, C., et al., Tam
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The fund investor represents the rest of the financial system and
lays the role of a fundamentalist noise trader. Since the fund is
ot leveraged its assets AF(t) are equal to its equity, i.e. EF(t) = AF(t).
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l Stability xxx (2016) xxx–xxx 13

Just as for the bank, the fund invests wF(t) of its assets in the risky
asset and 1 − wF(t) in cash; a key difference is that the fund adjusts
its portfolio weight wF(t) whereas the bank’s weight is fixed. The
relevant accounting relations are

Risky investment = (1 − n(t))p(t) = wF(t)AF(t),
Risk free investment = cF(t) = (1 − wF(t))AF(t),
Total assets = AF(t) = cF(t) + (1 − n(t))p(t),

and the fund’s equity is

EF(t + �) = (1 − n(t))p(t + �) + cF(t) + �F(t). (A.5)

The fund’s cash flow �F := −�B mirrors the dividend payments or
capital injections of the bank.

We have already explained the motivation for the fund’s
demand function in the main text. Here, we simply note that we
rescale the deviation of the price of the risky asset to the fundamen-
tal by the current price of the risky asset in order to make portfolio
weight adjustments independent of the scale of the price of the
risky asset. Otherwise, the portfolio weight would likely exceed its
natural bounds, i.e. wF ∈ [0,  1]. In order to introduce heteroskedas-
ticity we  make s2 time varying according to a simple GARCH(1,1)
process of the form

s2(t) = a0 + a1�2(t − 1) + b1s2(t − 1),

�(t) = s(t)�(t).
(A.6)

When the parameters a1 and b1 are zero the returns r(t) of the
risky asset are normally distributed as n(t) → 0, the price process
is a mean reverting random walk with constant volatility (i.e. an
Ornstein–Uhlenbeck process).

A.5. Market mechanism

The price of the risky asset is determined by market clearing.
For this we construct the demand functions for the bank and fund
(DB and DF respectively) as follows:

DB(t + �) = 1
p(t + �)

wBAB(t + �)

= 1
p(t + �)

wB(n(t)p(t + �) + cB(t) + �B(t)),

DF(t + �) = 1
p(t + �)

wF(t + �)AB(t + �)

= 1
p(t + �)

wF(t + �)((1 − n(t))p(t + �) + cF(t)).

Recall that there is a supply of exactly one unit of the risky asset
that is infinitely divisible. We  can then compute the market clear-
ing price by equating demand and supply 1 = DB(t + �) + DF(t + �).
Solving for the market clearing price we obtain

wB(cB(t) + �B(t)) + wF(t + �)cF(t)
ing the Basel leverage cycle. J. Financial Stability (2016),

owned by the bank as follows:

n(t + �) = 1
p(t + �)

wB(n(t)p(t + �) + cB(t) + �B(t)). (A.8)

dx.doi.org/10.1016/j.jfs.2016.02.004
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.6. Finding the fixed point

We  begin by considering the conditions for a fixed point of the
(·) as defined in Eq. (5).26

 The price is at the noise trader’s fundamental value:

p∗ = � ⇒ wF(t + �) = wF(t).

 The bank’s perceived risk is 0:

�2∗ = 0 ∨ p(t) = p(t − �) = � ⇒ �2(t) = �2(t + �).

 The bank is at its target leverage consistent with �2* = 0:

�∗ = A∗
B

A∗
B − L∗

B
= �(t) = ˛(�2

0 )
b ⇒ �B(t) = 0.

 The bank is at its target equity:

E∗
B = A∗

B − L∗
B = E =⇒ �EB(t) = 0.

 The bank’s ownership of the risky asset is consistent with the
price, leverage target and equity target at the fixed point:

n∗ = �∗E∗
BwB/�.

he fixed point is therefore:

∗ = (�2∗, w∗
F, p∗, n∗, L∗

B, p′∗)

= (0,  wF(0), �,
1
�

˛�2b
0 EwB, (˛�2b

0 − 1)E, �), (A.9)

here we picked w∗
F = wF(t = 0), the initial value of the fund’s

nvestment weight, since at p* = � any wF will remain unchanged.
ince w∗

F is not specified by the fixed point condition, there is essen-
ially a set of fixed points for wF ∈ [0,  1]. As such it is useful to
nterpret w∗

F as a parameter of the model determined by an appro-
riate initial condition. We  choose wF(0) = 0.5 throughout.

In the case studies in Figs. 4 and 5 in Section 3 we  saw that the
roperties of the system dynamics depended heavily on the relative
roportions of the fund vs. the bank as this determines the impact
f the bank on the price of the risky asset. Therefore, before moving
n we define the relative size of the bank to the fund at the fixed
oint as:

R(x∗) = A∗
B

A∗
F

= �∗E∗
B

(1 − n∗)p∗/w∗
F

=
(

�

E

1

˛�2b
0 wF(0)

− wB

wF(0)

)−1

.

(A.10)

learly, as the equity of the bank goes up, its size relative to the
Please cite this article in press as: Aymanns, C., et al., Tam
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oise trader will increase. Similarly if the bank risk parameter  ̨ or
he risk off set �2

0 is increased, the bank’s leverage at the fixed point
ill increase whereby its size relative to the fund will increase.

26 For the deterministic system it is simple to derive a set of differential equations
or  the continuous-time limit. We  have checked that the qualitative behavior of the
ystem in continuous time is the same as that of the discrete system in this case.
or  simplicity, and for consistency with Section 5 where numerical simulations for
he discrete stochastic case are considered, we  present here results for the discrete
ynamical system.
Fig. A.12. Numerical evaluation of the destabilizing eigenvalues (specific results will
depend on parameter choice) for different values of ˛. The destabilizing eigenvalues
are the two largest eigenvalues that first cross the unit circle from within.

A.7. Existence of critical leverage and bank riskiness

In order to assess the stability of the fixed point we compute the
Jacobian matrix Jij = ∂gi/∂xj. We then evaluate the Jacobian at the
fixed point x* and compute the eigenvalues ei of the corresponding
matrix. In this particular case the eigenvalues cannot be found ana-
lytically. Instead, we compute the eigenvalues numerically using
the parameters specified in Table 1. With the help of the eigenval-
ues we can distinguish between local stability and instability of the
fixed point. If the absolute value of the largest eigenvalue |e+| > 1
the system exhibits chaotic oscillations, while it is locally stable if
|e+| < 1. We assess the global stability of the system via numerical
iteration of the map  in Eq. (5).

Now, suppose we  increase the bank risk parameter  ̨ and study
how the eigenvalues of the Jacobian change while keeping all other
model parameters constant. We  summarize the evolution of the
two largest eigenvalues of the Jacobian in the complex plane in
Fig. A.12. The eigenvalues start out at a point within the unit cir-
cle on the complex plane (i.e. |ei| < 1). Then as  ̨ is increased the
magnitude of the eigenvalues increases. The critical bank riskiness
˛c at which the eigenvalues cross the unit circle, corresponds to
the point at which leverage cycles emerge. Since we keep all other
parameters constant, this critical bank riskiness also corresponds
to a critical leverage and a critical relative size of the bank to the
fund. In particular

�∗
c = ˛c�2b

0 ,

Rc(x∗) = �∗
cE∗

B
(1 − n∗)p∗/w∗

F
.

(A.11)
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