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ABSTRACT

Various versions of the wild bootstrap are studied as applied to regression
models with heteroskedastic errors. It is shown that some versions can be
qualified as “tamed,” in the sense that the statistic bootstrapped is
asymptotically independent of the distribution of the wild bootstrap DGP. This
can, in one very specific case, lead to perfect bootstrap inference, and leads to
substantial reduction in the error in the rejection probability of a bootstrap test
much more generally. However, the version of the wild bootstrap with this
desirable property does not benefit from the skewness correction afforded by the
most popular version of the wild bootstrap in the literature. Edgeworth
expansions and simulation experiments are used to show why this defect does
not prevent the preferred version from having the smallest error in rejection
probability in small and medium-sized samples. It is concluded that this
preferred version should always be used in practice.
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1. Introduction

Inference on the parameters of the linear regression model
y = XB +u,

where y is an n-vector containing the values of the dependent variable, X ann xk
matrix of which each column is an explanatory variable, and B a k-vector of para-
meters, requires special precautions when the error terms u are heteroskedastic, a
problem that arises frequently in work on cross-section data. With heteroskedas-
tic errors, the usual OLS estimator of the covariance of the OLS estimates @ is in
general asymptotically biased, and so conventional ¢ and F' tests do not have their
namesake distributions, even asymptotically, under the null hypotheses that they
test. The problem was solved by Eicker (1963) and White (1980), who proposed a
heteroskedasticity consistent covariance matrix estimator, or HCCME, that per-
mits asymptotically correct inference on 3 in the presence of heteroskedasticity of
unknown form.

MacKinnon and White (1985) considered a number of possible forms of HCCME,
and showed that, in finite samples, they too, as also ¢t or F' statistics based on
them, can be seriously biased, especially in the presence of observations with high
leverage; see also Chesher and Jewitt (1987), who show that the extent of the bias
is related to the structure of the regressors. But since, unlike conventional ¢ and
F tests, HCCME-based tests are at least asymptotically correct, it makes sense to
consider whether bootstrap methods might be used to alleviate their small-sample
size distortion.

Bootstrap methods normally rely on simulation to approximate the finite-sample
distribution of test statistics under the null hypotheses they test. In order for
such methods to be reasonably accurate, it is desirable that the data-generating
process (DGP) used for drawing bootstrap samples should be as close as possible
to the true DGP that generated the observed data, assuming that that DGP
satisfies the null hypothesis. This presents a problem if the null hypothesis admits
heteroskedasticity of unknown form: If the form is unknown, it cannot be imitated
in the bootstrap DGP.

Freedman (1981) proposed a bootstrap technique which is asymptotically valid in
the presence of heteroskedasticity of unknown form. This technique, often called
the (y, X) bootstrap, involves resampling, for each observation in a bootstrap sam-
ple, both the dependent variable (y) and the regressors (X) of an observation in
the original sample. In this way, the heteroskedasticity associated with a partic-
ular set of values of the regressors is retained in the bootstrap samples. This is
achieved at the cost of generating bootstrap error terms that do not have mean
zero conditional on the bootstrap regressors for a given observation, but this does
not prevent its being applicable in certain circumstances. However, as we will
see later, simulation evidence reveals that the (y, X) bootstrap does not give as
satisfactory results as another procedure.

This better procedure is the so-called wild bootstrap. It was developed by Liu
(1988) following a suggestion of Wu (1986) and Beran (1986). Liu established
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the ability of the wild bootstrap to provide refinements for the linear regression
model with heteroskedastic errors, and further evidence was provided by Mam-
men (1993), who showed, under a variety of regularity conditions, that the wild
bootstrap, like the (y, X) bootstrap, is asymptotically justified, in the sense that
the asymptotic distribution of various statistics is the same as the asymptotic
distribution of their wild bootstrap counterparts. These authors also show that,
in some circumstances, asymptotic refinements are available, which lead to agree-
ment between the distributions of the raw and bootstrap statistics to higher than
leading order asymptotically.

In this paper, we consider a number of implementations both of the Eicker-White
HCCME and of the wild bootstrap applied to them. We show that, when the error
terms are symmetrically distributed about the origin, HCCME based statistics are
asymptotically independent of the random elements that determine some versions
of the wild bootstrap DGP. Davidson and MacKinnon (1999) have shown that
such asymptotic independence can lead to asymptotic refinements of bootstrap
inference, and this seems also to be the case with the wild bootstrap. We are able
to go further when the hypothesis under test is that all the regression parameters
are zero. In that event, we show that one version of the wild bootstrap gives
essentially perfect inference.

Much of the asymptotic theory of the bootstrap is based on Edgeworth expan-
sions; see Hall (1992). In its application to testing, this theory is most often used
to determine the order of the difference between actual and nominal rejection
probabilities of a bootstrap test as a negative power of the sample size n. At
a certain algebraic cost, approximate expressions for this difference can also be
obtained. However, these are rarely good approximations, especially in the tails
of distributions. In this paper, we obtain such an approximation, valid through
order n~!, for the wild bootstrap. It gives approximate confirmation of our other
results, and is useful for developing intuition. In particular, it shows that the order
of a term in an expansion as a negative power of n is not the only, or even the most
important, determinant of its quantitative importance in not very large samples.
We conclude that using Edgeworth expansions merely to determine powers of n
may yield misleading conclusions.

In general, the version of the wild bootstrap that gives perfect inference in very
restricted circumstances suffers from some size distortion, but, it would appear,
never more than any other version, as we demonstrate in a series of simulation
experiments. For these experiments, our policy is to concentrate on cases in which
the asymptotic tests based on the HCCME are very badly behaved, and to try to
identify bootstrap procedures that go furthest in correcting this bad behaviour.
Thus, except for the purposes of obtaining benchmarks, we look at small sam-
ples of size 10, with an observation of very high leverage, and a great deal of
heteroskedasticity closely correlated with the regressors.

It is of course important to study what happens when the error terms are not
symmetrically distributed. The asymptotic refinements found by Wu and Mam-
men for certain versions of the wild bootstrap are due to taking account of such
skewness. We show the extent of the degradation in performance with asymmetric
error terms, but show that our preferred version of the wild bootstrap continues
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to work at least as well as any other, including the popular version of Liu and
Mammen which takes explicit account of skewness.

In section 2, we review the properties of bootstrap P values, and the circum-
stances in which they may benefit from refinements of various sorts. In section 3,
we discuss a number of ways in which the wild bootstrap may be implemented,
and show that, with symmetrically distributed error terms, a property of asymp-
totic independence holds that gives rise to an asymptotic refinement of bootstrap
P values. In some special cases, the refinement can give rise to essentially ex-
act inference. In Section 4, we present results on the difference between actual
and nominal rejection probabilities based on Edgeworth expansions. Then, in sec-
tion 5, simulation experiments are described designed to measure the reliability
of various tests, bootstrap and asymptotic, in various conditions, including very
small samples, and to compare rejection probabilities estimated by simulation with
the predictions of Edgeworth expansions. These experiments give strong evidence
in favour of our preferred version of the wild bootstrap. A few conclusions are
drawn in section 6.

2. Bootstrap P Values

Beran (1988) showed that bootstrap inference is refined when the quantity boot-
strapped is asymptotically pivotal. It is convenient to formalise the idea of piv-
otalness by means of a few formal definitions. A data-generating process, or DGP,
is any rule sufficiently specific to allow artificial samples of arbitrary size to be
simulated on the computer. Thus all parameter values and all probability dis-
tributions must be provided in the specification of a DGP. A model is a set of
DGPs. Models are usually generated by allowing parameters and probability dis-
tributions to vary over admissible sets. A test statistic is a random variable that
is a deterministic function of the data generated by a DGP and, possibly, other
exogenous variables. A test statistic 7 is a pivot for a model M if, for each sample
size n, its distribution is independent of the DGP 1 € M which generates the data
from which 7 is calculated. The asymptotic distribution of a test statistic 7 for a
DGP p is the limit, if it exists, of the distribution of 7 under u as the sample size
tends to infinity. The statistic 7 is asymptotically pivotal for M if its asymptotic
distribution exists for all 4 € M and is independent of p.

In hypothesis testing, the null hypothesis under test is represented by a model, as
defined above. A test statistic is said to be pivotal or asymptotically pivotal under
the null hypothesis if it is a pivot or an asymptotic pivot for the model that repre-
sents the hypothesis. Most test statistics commonly used in econometric practice
are asymptotically pivotal under the null hypotheses they test, since asymptot-
ically they have distributions, like standard normal, or chi-squared, that do not
depend on unknown parameters. Conventional asymptotic inference is based on
these known asymptotic distributions.

If an asymptotic pivot 7 is not an exact pivot, its distribution depends on which
particular DGP 4 € M generates the data used to compute it. In this case,
bootstrap inference is no longer exact in general. The bootstrap samples used
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to estimate the finite-sample distribution of 7 are generated by a bootstrap DGP,
which, although it usually belongs to M, is in general different from the DGP that
generated the original data.

In order to perform a bootstrap test, the simplest approach is to calculate the
marginal significance level, or P value, corresponding to the realised statistic.
Suppose that data are generated by a DGP pug belonging to M, and used to
compute a realisation 7 of the random variable 7. Then, for a test that rejects for
large values of the statistic, the P value we would ideally like to compute is

p(7) = Pry, (7> 7). (1)

In practice, (1) cannot be computed, or estimated by simulation, because the
DGP pp that generates observed data is unknown. If 7 is an exact pivot, this does
not matter, since (1) can be computed using any DGP in M. In this case, p(7)
is a drawing from the U(0, 1) distribution. If 7 is only an asymptotic pivot, the
bootstrap P value is defined by

p*(7, ) = Pra(r > 7), (2)

where [ is a (random) bootstrap DGP in M, determined in some suitable way
from the same data as those used to compute 7. We denote by p* the random
DGP of which i is a realisation.

Let the asymptotic CDF of the asymptotic pivot 7 be denoted by F. At nominal
level o, an asymptotic test rejects if the asymptotic P value 1 — F(7) < a. In order
to avoid having to deal with different asymptotic distributions, it is convenient to
replace the raw statistic 7 by the asymptotic P value 1 — F(7), of which the
asymptotic distribution is always U(0,1). For the remainder of this section, 7
denotes such an asymptotic P value.

For the sample size of the observed data, the “rejection probability function,” or
RPF, provides a measure of the true rejection probability of the asymptotic test.
This function, which gives the rejection probability under p of a test at nominal
level «, is defined as follows:

R(a,p) =Pr, (1 < ). (3)
It is clear that R(-, ) is the CDF of 7 under p. The information contained in the
function R is also provided by the “critical value function,” or CVF, @, defined
implicitly by the equation
Pr, (7 < Q(o, p)) = . (4)
Q(a, p) is just the o quantile of 7 under p. It follows from (3) and (4) that
R(Q(a,p), ) = a, and, conversely, Q(R(c, p),p) = o, (5)

from which it is clear that, for given u, R and @) are inverse functions.
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The bootstrap test rejects at nominal level « if 7 < Q(a, p*), that is, if 7 is
smaller than the the a-quantile of the bootstrap DGP. By acting on both sides
with R(-, #*), this condition can also be expressed as

R(1, ") < R(Q(a, p*), p*) = cv.

This makes it clear that the bootstrap P value is just R(7, u*). It follows that, if
R actually depends on p*, that is, if 7 is not an exact pivot, the bootstrap test is
not equivalent to the asymptotic test, because the former depends not only on 7,
but also on the random p*.

3. The Wild Bootstrap

Consider the linear regression model
Yt :xt1181+Xt2162+uta = 17"'7”’7 (6)

in which the explanatory variables are assumed to be strictly exogenous, in the
sense that, for all ¢, z;; and X,y are independent of all of the error terms ug,
s = 1,...,n. The row vector X; contains observations on k£ — 1 variables, of
which, if £ > 1, one is a constant. We wish to test the null hypothesis that the
coefficient 3, of the first regressor x;; is zero.

The error terms are assumed to be mutually independent and to have a com-
mon mean of zero, but they may be heteroskedastic, with E(u?) = o?. We write
us = oyvy, where E(v2) = 1. We consider only unconditional heteroskedasticity,
which means that the o2 may depend on the exogenous regressors, but not, for
instance, on lagged dependent variables. The model represented by (6), in the
sense of the previous section, is thus generated by the variation of the parameters
B1 and Bs, the variances o2, and the probability distributions of the v;. The re-
gressors are taken as fixed and the same for all DGPs contained in the model.
HCCME-based pseudo-t statistics for testing whether 8; = 0 are then asymptoti-
cally pivotal for the restricted model in which we set 87 = 0 if we also impose the
weak condition that the o? are bounded away from zero and infinity.

We write x; for the n-vector with typical element x4, and Xs for the n x (k—1)
matrix with typical row X;o. By X we mean the full n x k matrix [£; Xs]. Then
the basic HCCME for the OLS parameter estimates of (6) is

(X'X)'XT2X(XTX), (7)

where the n X n diagonal matrix {2 has typical diagonal element 42, where the i,
are the OLS residuals from the estimation either of the unconstrained model (6)
or the constrained model in which 8; = 0 is imposed. We refer to the version (7)
of the HCCME as HC). Bias is reduced by multiplying the 4, by the square root
of n/(n — k), thereby multiplying the elements of £2 by n/(n — k); this procedure,
analogous to the use in the homoskedastic case of the unbiased OLS estimator of
the error variance, gives rise to form HC; of the HCCME. In the homoskedastic
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case, the variance of 4; is proportional to 1 — hy, where h; = X (XTX)71 X,
the t*" diagonal element of the orthogonal projection matrix on to the span of
the columns of X. This suggests replacing the @; by /(1 — hy)'/? in order to
obtain £2. If this is done, we obtain form HC> of the HCCME. Finally, arguments
based on the jackknife lead MacKinnon and White to propose form HCj3, for which
the 4, are replaced by 4;/(1 — hy). MacKinnon and White (1985), and Chesher
and Jewitt (1987), show that, in terms of size distortion, HCy is outperformed
by HC', which is in turn outperformed by HC3 and HC3. The last two cannot
be ranked in general, although HCj3 has been shown in a number of Monte Carlo
experiments to be superior in typical cases.

As mentioned in the introduction, heteroskedasticity of unknown form cannot
be mimicked in the bootstrap distribution. The wild bootstrap gets round this
problem by using a bootstrap DGP of the form

where ,3 is a vector of parameter estimates, and the bootstrap error terms are

uy = fi(l)es, 9)

where fi(4;) is a transformation of the OLS residual 4, and the &; are mutually
independent drawings, completely independent of the original data, from some
auxiliary distribution such that

E(g;)=0 and E(e?)=1. (10)

Thus, for each bootstrap sample, the exogenous explanatory variables are reused
unchanged, as are the OLS residuals @; from the estimation using the original
observed data. The transformation f;(-) can be used to modify the residuals, for
instance by dividing by 1 — hy, just as in the different variants of the HCCME.

In the literature, the further condition that E(e}) = 1 is often added. Liu (1988)
considers model (6) with k¥ = 1, and shows that, with the extra condition, the first
three moments of the bootstrap distribution of an HCCME-based statistic are in
accord with those of the true distribution of the statistic up to order n~% Mammen
(1993) suggested what is probably the most popular choice for the distribution of
the ¢;, namely the following two-point distribution:

Fi: g= { - (V5-1)/2 with probability p = (v/5 + 1)/(2V/5)

11
(vV5+1)/2 with probability 1 — p. (11)

Liu also mentions the possibility of Rademacher variables, defined as

(12)

B e = 1 with probability 1/2
20 #T 1 -1 with probability 1/2,

which, for estimation of a mean, satisfies necessary conditions for refinements in the
case of unskewed error terms. Unfortunately, she does not follow up this possibility,
since (12), being a lattice distribution, does not lend itself to rigorous techniques
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based on Edgeworth expansion. In this paper, we show by other methods that (12)
is, for all the cases we consider, the best choice of distribution for the £;, and obtain
non-rigorous confirmation of this by use of formal Edgeworth expansions. Another
variant of the wild bootstrap that we consider later is obtained by replacing (9)
by

ui = fe(|t|)es, (13)

in which the absolute values of the residuals are used instead of the signed residuals.

Conditional on the random elements 3 and 4y, the wild bootstrap DGP (8) clearly
belongs to the null hypothesis if the first component of ,E:I, corresponding to the
regressor &, is zero, since the bootstrap error terms u;y have mean zero and are
heteroskedastic, for both formulations, (9) or (13), for any distribution for the &,
satisfying (10). Since (6) is linear, we may also set the remaining components of 3
to zero, since the distribution of any HCCME-based pseudo-t statistic does not de-
pend on the value of B5. Since the HCCME-based statistics we have discussed are
asymptotically pivotal, inference based on the wild bootstrap using such a statistic
applied to model (6) is asymptotically valid. In the case of a nonlinear regression,
the distribution of the test statistic does depend on the specific value of B2, and
so a consistent estimator of these parameters should be used in formulating the
bootstrap DGP.

The arguments in Beran (1988) show that bootstrap inference benefits from asymp-
totic refinements if the random elements in the bootstrap DGP are consistent esti-
mators of the corresponding elements in the unknown true DGP. These arguments
do not apply directly to (8), since the squared residuals are not consistent estima-
tors of the 2. In a somewhat different context from the present one, Davidson
and MacKinnon (1999) show that bootstrap inference can be refined, sometimes
beyond Beran’s refinement, if the statistic that is bootstrapped is asymptotically
independent of the bootstrap DGP. It is tempting to see if a similar refinement is
available for the wild bootstrap. In the theorems that follow, we show that such
asymptotic independence can certainly be attained if the wild bootstrap makes use

of the F5 distribution, and that, in a very specific case, it leads to exact inference.

As discussed by Davidson and MacKinnon, it is often useful for achieving this
asymptotic independence to base the bootstrap DGP u* exclusively on estimates
under the null hypothesis. If one does that, (8) becomes just

ye =g, up = fi(U)es, (14)

where the OLS residuals u; are obtained from the regression y; = X328 + u; that
incorporates the constraint of the null hypothesis. The transformation f may
involve taking the absolute value of the argument. It turns out that, when asymp-
totic independence can be achieved for the wild bootstrap, it does not matter
whether constrained or unconstrained residuals are used. However, for the case in
which exact inference is possible, constrained residuals are necessary, not only for
the bootstrap DGP, but also for the construction of the HCCME (7). Simulation
evidence shows that, when exact inference is no longer possible, size distortion
remains less when constrained residuals are used.
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We now show that, if the model (6) is restricted so that the error terms have distri-
butions that are symmetric about the mean of zero, all HCCME-based t statistics
for B, = 0 are asymptotically independent of some versions of the wild bootstrap
DGP (14). First, an easy Lemma.

Lemma 1: A mean-zero random variable v which has zero probability
mass on the origin and the density of which is symmetric about the origin
is the product of two independent random variables: the absolute value
|u| and the sign sgn(u).

Proof:  Denote the density of u by f(u). Since f(—u) = f(u), the density of |u|
is g(Ju]) = 2f(Jul). The density of sgn(u) can be written in terms of indicator
functions as 0.5I(u < 0) + 0.5I(u > 0) = 0.5. Here we use the fact that there is
no positive probability mass on the origin itself. The product of the two densities
is 2f(|ul).0.5 = f(lu|) = f(u), the density of u itself. The factorisation of this
density shows that |u| and sgn(u) are independent. i

Theorem 1:  Consider the linear regression model

Yt = 1101 + X2 B2 + uy, (15)

where the regressors are strictly exogenous, and the error terms are mutu-
ally independent with mean zero and distributions symmetric about the
origin with no positive probability mass on the origin. All pseudo-¢ statis-
tics based on the HCCME for the hypothesis that $; = 0 can be written
as

T= $1TM2y/((U1TMQQM2$1)1/2. (16)

Here y is the n-vector with typical element y;, Risannxn diagonal
matrix with diagonal elements that depend on the version of the HCCME
and on whether residuals from the constrained or unconstrained regression
are used, and My = I — X,(Xy' X5) 71X, is the orthogonal projection
matrix on to the orthogonal complement of the span of the columns of Xj.

If the regressors obey the usual regularity condition that n=! X "X tends as
n — oo to a deterministic positive definite finite matrix, and if, in addition,
there exist positive bounds ¢? and &2 such that g2 < o2 < &2 for all ¢,
then the statistic 7 of (16) is asymptotically independent, under the null
hypothesis, of the absolute values || of the residuals, and consequently
also of the wild bootstrap DGP p* defined by (14) if the transformation f
depends only on the absolute value of its argument.

Proof: By the Frisch-Waugh-Lovell theorem (see, for instance, Davidson and
MacKinnon (1993), Chapter 1), the OLS estimate of 8; from (15) is the same as
the OLS estimate from the regression Myy = Mbsx13; + residuals, that is,

31 = (1?1-|_M25131)_1581_|—M2y- (17)

The HCCME of the variance of $3; is obtained by applying (7) to the regres-
sion (17). The estimated variance is thus

wlTM2QM2w1(w1TM2w1)_2, (18)
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Equation (16) follows from (17) and (18).

Because §2 is diagonal, we can express the matrix product «; Myf2M,x; as

n
> a(Mya)] i,

t=1

where i, is the ¢*® residual, constrained or unconstrained, and a; depends on
the choice of the functions f;: a; = 1 for HCy, n/(n — k) for HCy, 1/(1 — hy)
for HCy, and 1/(1—hy)? for HC3. But the squared residuals 42 are asymptotically
equal to the squared error terms u2, and under the conditions of the theorem,
a; =1+ O(n™1) for all t. Under the null, My = Msu, and so the statistic (16)
is asymptotically equal to

Z?:1(M2$1)t Ut
(7, (Moay)2u2)?

Let us write u; = |ug|ss, where s;, the sign of ug, is equal to either +1 or —1. In
addition, let us write z; = (Max1)¢|ue|. Then (19) is equal to

D ey 25t

n 1/2°
(=r, )Y

By Lemma 1, the z; and the s; are independent, and so, conditional on the 2z,
the s; are mutually independent and distributed according to the law F3 of (12).
Under the regularity conditions of the second part of the theorem, the central limit
theorem can be applied to show that the asymptotic distribution of (20) conditional
on the z; is standard normal. Since this asymptotic distribution is independent of
the z; and so of the |uy|, it follows that 7 is asymptotically independent of the |u|,
and so also of any p* defined exclusively in terms of the exogenous regressors and
the absolute values of the residuals, constrained or unconstrained. |

(19)

(20)

Remarks and Corollaries:  Note that the theorem applies to any wild boot-
strap defined by (13) and based on the absolute values of the residuals, provided
only that the distribution of the e; satisfies (10). If this distribution is itself
symmetric about the origin, like F5, then the theorem applies with any trans-
formation f that is either even or odd, because then the vector with typical ele-
ment f;(iis)e; has the same distribution as that with typical element f;(|ii¢|)e;. We
refer to any wild bootstrap DGP that can be expressed, implicitly or explicitly, in
terms of the |ii;| only as a tamed wild bootstrap DGP.

It is easy to adapt the above proof so that it applies to the case in which a joint
hypothesis is tested with more than one degree of freedom. The statistic takes on
a chi-squared form. If we replace the single column x; by a matrix X;, we may
define a matrix Z with typical row (MsXj):|ut|, and the n-vector s with typical
element s;. The statistic is asymptotically equivalent to

s'Z(Z'Z)"'Z"s = s'Pys, (21)
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where Pz is the orthogonal projection on to the columns of Z. Since s and Z
are independent, the asymptotic distribution of (21) conditional on the |u| is chi-
squared with as many degrees of freedom as X; has columns, and, since this does
not depend on the |u;|, the statistic is asymptotically independent of the |u;| and
so of any tamed bootstrap DGP p*.

In the case of nonlinear regression, the bootstrap DGP must be constructed using
a consistent estimate of B@5. The NLS estimate B2 obtained by estimating the
restricted model with 3, = 0 is asymptotically independent of the NLS residuals
from the same regression. A tamed bootstrap DGP can thus be defined exclusively
in terms of By and the |4;|. The statistic 7 is then asymptotically independent of
this tamed bootstrap DGP.

Although for the proof of the theorem it is easier to speak loosely of the asymp-
totic independence of 7 and the absolute values of the residuals, what is meant
more correctly is that 7 is asymptotically independent of the random CDF of the
bootstrap statistic generated by a wild bootstrap DGP based on these absolute
values. This point will be clearer in Section 4, when we make formal Edgeworth
expansions of this random distribution.

There is an important special case in which the wild bootstrap using Fj yields
almost perfect inference. This case arises when the entire parameter vector 3

vanishes under the null hypothesis and constrained residuals are used for both the
HCCME and the wild bootstrap DGP.

Theorem 2:  Consider the linear regression model
yr = XeB + uy (22)

where the n X k£ matrix X with typical row X; is independent of all the
symmetrically distributed error terms u;, which satisfy the same regular-
ity conditions as for Theorem 1. Under the null hypothesis that 8 = 0,
the x? statistic for a test of that null against the alternative represented
by (22), based on any of the four HCCMEs considered here constructed
with constrained residuals, has exactly the same distribution as the same
statistic bootstrapped, if the bootstrap DGP is the tamed wild boot-
strap (14), with f(u) = u or equivalently f(u) = |u|, for which the &;
are generated by the symmetric two-point distribution F» of (12).

For sample size n, the bootstrap P value p* follows a discrete distribution
supported by the set of points p; = /2™, ¢ = 0,...,2" — 1, with equal
probability mass 27" on each point.
Proof:  The OLS estimates from (22) are given by 8 = (X7X)"1X Ty, and
any of the HCCMEs we consider for 8 can be written in the form (7), with an
appropriate choice of 2. The x2 statistic thus takes the form

r=y X(X'2X) X Ty. (23)

Under the null, y = u, and each component u; of w can be written as |u|s;, where
|ug| and s; are independent. Define the 1 X k row vector Z; as |us| X}, and the
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n X 1 column vector s with typical element s;. It follows from Lemma 1 that the
entire n X k matrix Z with typical row Z; is independent of the vector s. If the
constrained residuals, which are just the elements of y, are used to form f), the
statistic (23) becomes

n -1
s'Z (Z ar Z{ Zt) Z's, (24)

t=1
where the a; are defined as in the proof of Theorem 1.

If we denote by 7* the statistic generated by the wild bootstrap with F5, then 7*
can be written as

-1
n
e'Z (Z ar Zy zt> Z'e, (25)

t=1

where € denotes the vector containing the ¢;. The matrix Z is exactly the same
as in (24), because the exogenous matrix X is reused unchanged by the wild
bootstrap, and the wild bootstrap error terms uj = +uy, since, under Fy, e, = £1.
Thus, for all ¢, |uj| = |u|. By construction, € and Z are independent under the
wild bootstrap DGP. But we saw in the proof of Theorem 1 that, under the null
hypothesis, s follows exactly the same distribution as €, and so it follows that
7 under the null and 7* under the wild bootstrap DGP with F5 have the same
distribution. This proves the first assertion of the theorem.

Conditional on the |u;|, this common distribution of 7 and 7* is of course a discrete
distribution, since € and s can take on only 2™ different, equally probable, values,
with a choice of +1 or —1 for each of the n components of the vector. The statistic 7
must take on one of the 2™ possible values, each with the same probability of 27™.
If we denote the 2™ values, arranged in increasing order, as 7;, ¢ = 1,...,2", with
T; > 7; for j > i, then, if 7 = 7;, the bootstrap P value, which is the probability
mass in the distribution to the right of 7;, is just 1 —¢/2™. As ¢ ranges from 1
to 2™, the P value varies over the set of points p;, 1 = 0,...,2" — 1, all with
probability 2=™. This distribution, conditional on the |u;|, does not depend on
the |u;|, and so is also the unconditional distribution of the bootstrap P value. [i

Remarks:  For small enough n, it may be quite feasible to enumerate all the
possible values of the bootstrap statistic 7*, and thus obtain the exact value of
the realisation p*(7, f1).

Although the discrete nature of the bootstrap distribution means that it is not
possible to perform exact inference for an arbitrary significance level «, the prob-
lem is no different from the problem of inference with any discrete-valued statistic.
For the case with n = 10, which will be extensively treated in the following sec-
tions, 2™ = 1024, and so the bootstrap P value cannot be in error by more than
1 part in a thousand.

It is possible to imagine a case in which the discreteness problem is aggravated by
the coincidence of some adjacent values of the 7; of the proof of the theorem. For
instance, if the only regressor in X is the constant, the value of (24) depends only
on the number of positive components of s and not on their ordering. For this
case, of course, it is not necessary to base inference on an HCCME. Coincidence of
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values of the 7; will otherwise occur if all the explanatory variables take on exactly
the same values for more than one observation. However, since this phenomenon
is observable, it need not be a cause for concern. A very small change in the values
of the components of the X; would be enough to break the ties in the 7;.

The exact result of the theorem is specific to the wild bootstrap with F5. The
proof works because the signs in the vector s also follow the distribution F5.

In terms of the analysis in section 2, the result of Theorem 2 can be means that
the bootstrap rejection probability is equal to a whenever « is one of the dyadic
numbers ¢/2™. Since 7 and 7* have the same distribution, the functions R(-, o)
and R(-, p*) are the same, as are Q(-, uo) and Q(-, u*).

Given the exact result of the theorem, it is of great interest to see the extent of
the size distortion of the Fy bootstrap with constrained residuals when the null
hypothesis involves only a subset of the regression parameters. This question will
be investigated by Edgeworth expansion in the next section, where we will see
that the distortion is of order lower than n~!, and by simulation in the following
section. At this stage, it is possible to see why the theorem does not apply more
generally. The expressions (24) and (25) for 7 and 7* continue to hold if Z; is
redefined as |ii;|(M2X1)t, where X is the matrix of regressors admitted under the
null. However, although € in 7* is by construction independent of Z, s in 7 is not.
This is because the covariance matrix of the residual vector # is not diagonal in
general, unlike that of the error terms u. In Figure 1, this point is illustrated for
the bivariate case. In panel a), two level curves are shown of the joint density of
two symmetrically distributed and independent variables u; and ug. In panel b),
the two variables are no longer independent. For the set of four points for which the
absolute values of u; and uy are the same, it can be seen that, with independence,
all four points lie on the same level curve of the joint density, but that this is
no longer true without independence. The wvector of absolute values is no longer
independent of the wector of signs, even though independence still holds for the
marginal distribution of each variable. Of course, by Theorem 1, the asymptotic
distributions of 7 and 7* still coincide.

4. Formal Edgeworth Expansions

In order to relate the results of the previous section to the conventional asymptotic
theory of the bootstrap as found, for instance, in Hall (1992), and, in particular,
to the theory presented in Liu (1988) and Mammen (1993), it may be helpful
to develop formal Edgeworth expansions of the distribution of an HCCME-based
pseudo-t statistic and its wild bootstrap counterpart. Since this is an algebraically
complicated undertaking, we present here the result from which we can draw
conclusions, and relegate the complicated proof to an Appendix. In order to
simplify some of the expressions, we assume for the purposes of this theorem that
the v; share the same distribution for all ¢.

Theorem 3: For the HCCME-based pseudo-t statistics 7 considered
in Theorem 1, and a wild bootstrap DGP with bootstrap error terms
u; = f(iit)es, where the i, are the constrained or unconstrained residuals,
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the transformation f corresponds to one of the HC;, i = 0,1,2,3, and
the €; are independent drawings from a distribution satisfying (10), the
error in the rejection probability of a one-tailed bootstrap test at nominal
level o with rejection in the left-hand tail of the distribution, under a DGP
of the form (6) with 8, = 0, has the following formal expansion through

order n~1:
1 —1/2/17  _* 2 -1({ 221 _ 1.3 1 5
¢(Za) 6” (1 63)630(]‘ + 2za) + n 630 (6’20 g ZC{ ].8 Za)
1 7 1 1 2 1
teze30% (c2a T 1g%a T g7a) T (€3)°e3C7 (1520 + 570 — 1g%a

b eaD (za(3(ef — 1) — 263) — 2((e] — 1) + 4¢3))

12
+e5 S EiFi(Lza + zg))>. (26)
[

Here, e3 = E(v}), e = E(v}), €5 = E(e3), and e = E(e}). In addition,
¢(-) is the standard normal density and z, is the a—quantile of that
distribution.

The other parameters in (26) depend on the X matrix. Without loss of
generality, we may choose the regressors in the matrix Xs to be such that
X5’ X, = nl. Define the vector &, with typical element z;, to be Mz,
normalised so that '@ = n. Then the quantities C, D, E;, F; in (26) are
defined by

S?=n"1 E rio?, C=83p7! E 3o, D=S"*n"! g rio},
t t t

E; =801y zXyo}, and F; = 5°n"' Y 2}Xy07.  (27)
t t

Here, if X = [z X3], Xy is the (¢,i)*" element of X. The sum over i
in (26) runs from 2 to k if constrained residuals are used, and from 1 to k&
if unconstrained residuals are used.

Proof: In the Appendix.

Remarks and Corollaries:  Note that, for the distribution Fy of (11), we have
es =1, e; =2, and for Fy in (12), 5 =0 and e = 1.

The approximate error in rejection probability (ERP) in (26) provides an approx-
imation to the distribution of the bootstrap P value p*. Thus the same formula
can be used to obtain approximations of ERPs for one-tailed tests in the other
direction and two-tailed tests.

The leading-order term in (26) is clearly of order n~'/2 in general, the same as the
leading-order term in the ERP of the asymptotic test. The calculations carried
out in the proof of the theorem can also provide an expression for the ERP of
the asymptotic test based on 7. This expression is given after the proof of the
theorem in the appendix. Interestingly enough, the contribution of order n=/2 to
this ERP is the same as that of the wild bootstrap test based on Fy. However,
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simulation results in the next section will show that, even when the leading-order
term in (26) does not vanish, the ERP of the bootstrap test is in many cases very
much smaller than that of the asymptotic test.

The regressor design and the pattern of heteroskedasticity influence (26) through
just three quantities, C, D, and ), E;F;.
With symmetric error terms, ez = 0, and (26) simplifies to n=1¢(2,) times
1 * * * * * 1
E€4D(Za(3(64 —1) —2¢e3) — 23 ((ef — 1) +4e3)) + € ZEiFi(EZO‘ +22). (28)
2
If in addition the Rademacher distribution F is used, it can be seen that (28) van-
ishes completely, so that the ERP is at most of order n~3/2. This is compatible
with the result of Theorem 2, and shows that we may expect good performance

with symmetric errors and the F5 bootstrap even if regressors are present under
the null.

With asymmetric error terms, the ERP also simplifies to n™'¢(z,) times (28) if
C = 0. This refinement is the analogue for heteroskedastic models of the result
in Hall (1992) according to which bootstrap tests on the coefficients of regres-
sion models benefit from refinements unless both the regressors and the errors are
skewed. Here, as the definition of C' in (27) makes clear, skewness of the regressors
must be interpreted in the metric of the error covariance matrix.

1/2

With asymmetric error terms and the F} bootstrap, the term of order n~"/° van-

ishes, and the terms of order n~! become n=1¢(z,) times

e%C%iza + %zg) + %e;LD(za —523) + e} Z EZ-FZ-(%ZQ +23). (29)
i

1/2

With asymmetric errors and the F5 bootstrap, the order n— term does not

vanish, but the order n~! terms simplify to n~'¢(z,) times
6302(%% — L L5y, (30)

The coefficients in (30), except for that of 23, are all smaller in absolute magnitude
than those of the corresponding term in (29), which also has two more terms. This
suggests, at least, that even with asymmetric errors, the F» bootstrap will have a
smaller order n~! contribution to the ERP than the F; bootstrap.

It follows from the Cauchy-Schwarz inequality that
_ 2 _ _
(n~! Z z}|o})” < (n7t meaf) (n~! foaf) =S°D (31)
t t t

Provided that there is a constant in the regression, ) , z; = 0, so that some of
the x; must be positive and some negative. Thus S®C? is strictly less than the
left-hand side of the inequality (31), and so C? < D. Similarly, e3 < e4. This
observation suggests that, for n not too large, the order n=/2 term in (26), being
proportional to e3C, may be less important numerically than the order n=! term,
if the latter contains a contribution proportional to e4D. This suggestion will be
borne out by our simulation results for sample sizes in the range of 10 — 100.

The expansion (26) does not go far enough for there to be any effect associated
with the choice of HCCME. Such effects will however be clear in our simulation
results.
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5. Experimental Design and Simulation Results

It was shown by Chesher and Jewitt (1987) that HCCMEs are most severely
biased when the regression design has observations with high leverage, and that
the extent of the bias depends on the amount of heteroskedasticity in the true DGP.
Since in addition one expects bootstrap tests to behave better in large samples
than in small, in order to stress-test the wild bootstrap, most of our experiments
are performed with a sample of size 10 containing one regressor, denoted xq,
all the elements but one of which are independent drawings from N(0,1), but
the second of which is 10, so as to create an observation with exceedingly high
leverage. All the tests we consider are of the null hypothesis that 5; = 0 in the
model (6), with k, the total number of regressors, varying across experiments. In
all regression designs, x; is always present; for the design we designate by £k =2 a

constant, denoted xo, is also present; and for k = 3, ..., 6, additional regressors x;,
1 =3,...,6 are successively appended to x; and . In Table 1, the components
of x, are given, along with those of the x;, « = 3,...,6. In Table 2 are given the

diagonal elements h; of the orthogonal projections on to spaces spanned by x1,
and x4, 1, T2, and x3, etc. The h; measure the leverage of the 10 observations
for the different regression designs.

The data in all the simulation experiments discussed here are generated under
the null hypothesis. Since (6) is a linear model, we set B2 = 0 without loss of
generality. Thus our data are generated by a DGP of the form

Yt = OV, t= 1,...,7’1,, (32)

where n is the sample size, 10 for most experiments. For homoskedastic data, we
set o, = 1 for all ¢, and for heteroskedastic data, we set oy = |41/, the absolute
value of the ¢* component of ;. Because of the high leverage observation, this
gives rise to very strong heteroskedasticity, which leads to serious bias of the OLS
covariance matrix; see White (1980). The v; are independent mean zero variables
of unit variance, and in the experiments will be either normal or else drawings
from the highly skewed x2(2) distribution, centred and standardised.

In Table 3, we give, for the regression designs considered and the above pattern
of heteroskedasticity, the values of the quantities C, D, and ) . E;F; on which
the approximate ERP (26) depends. The quantity denoted EFp is the sum over
1 = 2,...,k, appropriate if constrained residuals are used in the HCCME, EF;
adds in the term for £ = 1.

The main object of our experiments is to compare the size distortions of wild
bootstrap tests using the distributions F; and Fj. Although the latter gives ex-
act inference only in a very restricted case, we show that it always leads to less
distortion than the former in sample sizes up to 100. We also conduct a few ex-
periments comparing the wild bootstrap and the (y, X) bootstrap. In order to
conduct a fair comparison, we use an improved version of the (y, X) bootstrap
suggested by Mammen (1993), and subsequently modified by Flachaire (1999), in
which we resample, not the (y, X) pairs as such, but rather regressors (X) and
the constrained residuals, transformed according to HC3. For the wild bootstrap,

— 15 —



we are also interested in the impact on ERPs of the use of unconstrained versus
constrained residuals, and the use of the different sorts of HCCME.

We present our results as P value discrepancy plots, as described in Davidson and
MacKinnon (1998). These plots show ERPs as a function of the nominal level .
Since we are considering a one-degree-of-freedom test, it is possible to perform a
one-tailed test for which the rejection region is the set of values of the statistic
algebraically greater than the critical value. We choose to look at one-tailed tests
because Edgeworth expansions predict — see Hall (1992) — that the ERPs of one-
tailed bootstrap tests converge to zero with increasing sample size more slowly
than those of two-tailed tests. In any event, it is easy to compute the ERP of a
two-tailed test with the information in the P value discrepancy plot. All plots are
based on experiments using 100, 000 replications.

We now present our results as answers to a series of pertinent questions.

e In a representative case, with strong heteroskedasticity and high leverage, is
the wild bootstrap capable of reducing the ERP relative to asymptotic tests?

Figure 2 shows plots for the regression design with £ = 3, sample size n = 10, and
normal heteroskedastic errors. The ERPs are plotted for the conventional ¢ statis-
tic, based on the OLS covariance matrix estimate, the four versions of HCCME-
based statistics, HC;, © = 0,1, 2,3, all using constrained residuals. P values for
the asymptotic tests are obtained using Student’s t distribution with 7 degrees
of freedom. The ERP is also plotted for what will serve as a base case for the
wild bootstrap: Constrained residuals are used both for the HCCME and the wild
bootstrap DGP, the F, distribution is used for the ¢;, and the statistic that is
bootstrapped is the HC3 form. To avoid redundancy, the plots are drawn only
for the range 0 < o < 0.5, since, as is clear from (19), all these statistics are sym-
metrically distributed when the errors are symmetric. In addition, the bootstrap
statistics are symmetrically distributed conditional on the original data, and so
the distribution of the bootstrap P value is also symmetrical about a = 0.5. It
follows that the ERP for nominal level « is the negative of that for 1 — a. Not
surprisingly, the conventional ¢ statistic, which does not have even an asymptotic
justification, is the worst behaved of all, with far too much mass in the tails. But,
although the HC; statistics are less distorted, the bootstrap test is manifestly
much better behaved.

e The design with k£ = 1 satisfies the conditions of Theorem 2 when the errors
are symmetric and the HCCME and the bootstrap DGP are based on con-
strained residuals. If we maintain all these conditions but consider the cases
with £ > 1, bootstrap inference is no longer perfect, but, according to the
approximate theory of Section 4, should still be good. To what extent is this
so? Do the design-dependent quantities given in Table 3 have any predictive
power for the ERP?

P value discrepancy plots are shown in Figure 3 for the designs £ = 1,...,6
using the base-case wild bootstrap as described above. FErrors are normal and
heteroskedastic. As expected, the ERP for k£ = 1 is just experimental noise, and
for most other cases the ERPs are significant. By what is presumably a coincidence
induced by the specific form of the data, they are not at all large for £k = 5 or
k = 6. Such a result might perhaps be predicted on the basis of Table 3, given
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that the figures in the columns for ¥ = 5 and k = 6 are smaller than in the other
columns. In any case, we can conclude that the ERP does indeed depend on the
regression design, but is not quantitatively very severe, given the small sample
size.

e How do bootstrap tests based on the F; and F5 distributions compare? We
expect that Fy will lead to smaller ERPs if the errors are symmetric, but what

if they are asymmetric? How effective is the skewness correction provided
by F1? What about the (y, X) bootstrap?

In Figure 4 plots are shown for the £ = 3 design with heteroskedastic normal
errors and skewed x2(2) errors. The F; and F» bootstraps give rather similar
ERPs, whether or not the errors are skewed. But the F3 bootstrap is generally
better, and never worse. Very similar results, leading to same conclusion, were
also obtained with the £k = 4 design. For £k = 1 and £ = 2, on the other hand,
the Fy bootstrap suffers from larger ERPs than for k¥ > 2. Plots are also shown
for the same designs and the preferred form of the (y, X) bootstrap. It is clear
that the ERPs are quite different from those of the wild bootstrap, in either of its
forms, and substantially greater.

e What is the penalty for using the wild bootstrap when the errors are ho-
moskedastic and inference based on the conventional ¢ statistic is reliable, at
least with normal errors? Do we get different answers for Fy, F5, and the
(y, X) bootstrap?

Again we use the £ = 3 design. We see from Figure 5, which is like Figure 4 ex-
cept that the errors are homoskedastic, that, with normal errors, the ERP is very
slight with F5, but remains significant for F; and (y, X). Thus, with unskewed,
homoskedastic errors, the penalty attached to using the F3 bootstrap is very small.
With skewed errors, all three tests give substantially greater ERPs, but the Fy ver-
sion remains a good deal better than the F} version, which in turn is somewhat
better than the (y, X) bootstrap.

e Do the rankings of bootstrap procedures obtained so far for n = 10 continue
to apply for larger samples? Do the ERPs become smaller rapidly as n grows?

In order to deal with larger samples, the data in Table 1 were simply repeated
as needed in order to generate regressors for n = 20,30,.... In this way, the
design-dependent quantities like C and D do not depend on n. The plots shown
in Figures 4 and 5 are repeated in Figure 6 for n = 100. The rankings found for
n = 10 remain unchanged, but, as suggested by the results of Section 4, the ERP
for the F5 bootstrap with skewed, heteroskedastic, errors improves less than that
for the F} bootstrap with the increase in sample size. It is noteworthy that none
of the ERPs in this diagram is very large.

In Figure 7, we plot the ERP for a = 0.05 as a function of n, n = 10, 20, ..., with
the £ = 3 design and heteroskedastic errors, normal for F; and skewed for Fj,
chosen because these configurations lead to comparable ERPs for n around 100,
and because this is the worst setup for the Fy bootstrap. It is interesting to
observe that, at least for « = 0.05, the ERPs are not monotonic. What seems
clear is that, although the absolute magnitude of the ERPs is not disturbingly
great, the rate of convergence to zero does not seem to be at all rapid. As the
Edgeworth expansions suggest, it is slower for the F3 bootstrap. Since C, D, etc.,
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do not vary with n, these results do not support the idea that a power of n=/2 is
a good way to measure the rate of convergence.

e How do the ERPs as estimated by simulation compare with the approxima-
tions given by Edgeworth expansions?

In some cases, of course, very badly indeed, as when the Edgeworth approximation
is zero, but the ERP is significant. Very badly again for the F} bootstrap, where,
because the term of order n~1/2 vanishes, the expression (26) is antisymmetric
with respect to z,, implying an ERP that is antisymmetric about o = 0.5. We see
from Figure 4 that, although the ERP does have this form for the F, bootstrap
with symmetric errors, for F} the ERP is very far indeed from antisymmetric with
skewed errors, being negative for almost all @. For another comparison with no
requirement of antisymmetry, we consider the k = 3 design with the Fy bootstrap
and x2(2) errors, for which it can easily be seen that e3 = 2 and ¢4 = 9. In
Figure 8a, we plot the order n~'/2 and order n~! contributions in (26) as func-
tions of a. For n = 10, the order n~! term is clearly quantitatively greater than
the order n=1/2 term. Then, in Figure 8b, we plot the differences between the
approximate ERP (26) and the true one, as estimated by simulation, for both the
F; and the F; bootstraps, for sample sizes n = 10 and n = 100, with x2(2) er-
rors throughout. For n = 10, there is no apparent relation at all between the
approximation and the true ERP. For n = 100, things are much better, although
the discrepancy for F; remains quite significant. For F3, on the other hand, the
approximation is nearly perfect.

We now move on to consider some lesser questions, the answers to which justify,
at least partially, the choices made in the design of our earlier experiments. We
restrict attention to the F5 bootstrap, since it is clearly the procedure of choice in
practice.

e Does it matter which of the four versions of the HCCME is used?

It is clear from Figure 2 that the choice of HC; has a substantial impact on the
ERP of the asymptotic test. Since the HCy and HC' statistics differ only by a
constant multiplicative factor, they yield identical bootstrap P values, as do all
versions for k = 1 and k£ = 2. For k = 1 this is obvious, since the raw statistics
are identical, and for k = 2, the only regressor other than x; is the constant, and
so h; does not depend on t. For k > 2, significant differences appear, as seen in
Figure 10 which treats the £ = 4 design. HC3 has the least distortion here, and
also for the other designs with & > 2. This accounts for our choice of HC5 in the
base case.

e What is the best transformation f;(-) to use in the definition of the bootstrap
DGP? Plausible answers are either the identity transformation, or the same
as that used for the HCCME.

No very clear answer to this question emerged from our numerous experiments on
this point. A slight tendency in favour of using the HC'5 transformation appears,
but this choice does not lead to universally smaller ERPs. However, the quanti-
tative impact of the choice is never very large, and so the HCj3 transformation is
used in our base case.

e How is performance affected if the leverage of observation 2 is reduced?
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Because the ERPs of the asymptotic tests are greater with a high leverage obser-
vation, we might expect the same to be true of bootstrap tests. In fact, although
this is true if the HC statistic is used, the use of widely varying h; with HC'3 pro-
vides a good enough correction that, with it, the presence or absence of leverage
has little impact. In Figure 10, this is demonstrated for £ = 3, and normal errors,
and the effect of leverage is compared with that of heteroskedasticity. The latter is
clearly a much more important determinant of the ERP than the former. Similar
results are obtained if the null hypothesis concerns a coefficient other than j;.
In that case, the h; differ more among themselves, since x; is now used in their
calculation, and HCy gives more variable results than HC'5, for which the ERPs
are similar in magnitude to those for the test of 5; = 0.

e How important is it to use constrained residuals?

For Theorem 2 to hold, it is essential, Theorem 1 is agnostic on the point, and
Theorem 3 shows that an extra term is introduced into the expansion of the
ERP if unconstrained residuals are used. This term can be obtained from the
numerical values in the last two rows of Table 3, where the difference between
EF; and EF} is the extra term for unconstrained residuals. Simulation results
show that, except for the k£ = 1 and k = 2 designs, it is not very important whether
one uses constrained or unconstrained residuals, although results with constrained
residuals tend to be better in most cases. The simulations do however show clearly
that it is a mistake to mix unconstrained residuals in the HCCME and constrained
residuals for the bootstrap DGP.

6. Conclusion

The wild bootstrap is commonly applied to models with heteroskedastic error
terms and an unknown pattern of heteroskedasticity, most commonly in the form
that uses the asymmetric F; distribution in order to take account of skewness
of the error terms. In this paper we have shown that the wild bootstrap im-
plemented with the symmetric F5 distribution and constrained residuals, which
can give perfect inference in one very restricted case, is never any worse behaved
than the Fj version, or either version with unconstrained residuals, and is usually
markedly better. We therefore recommend that this version of the wild bootstrap
should always be used in practice in preference to other versions. This recommen-
dation is supported by the results of simulation experiments designed to expose
potential weaknesses of both versions, and also to some extent by the approximate
expressions of the ERP, based on Edgeworth expansions, for both versions. The
approximations make clear that the leading negative power of the sample size is
by no means the only useful index of a test’s performance.

It is important to note that conventional confidence intervals cannot benefit from
our recommended version of the wild bootstrap, since they are implicitly based
on a Wald test using unconstrained residuals for the HCCME and, unless special
precautions are taken, also for the bootstrap DGP. This is not a problem for many
econometric applications, for which hypothesis tests may be sufficient. In those
cases in which reliable confidence intervals are essential, we recommend that they
be obtained by inverting a set of tests based on the preferred wild bootstrap.
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Although this can be a computationally intensive procedure, it is well within the
capacity of modern computers and seems to be the only way currently known to
extend refinements available for tests to confidence intervals.

A final caveat seems called for: Although our experiments cover a good number
of cases, some caution is still necessary on account of the fact that the extent
of the ERP of wild bootstrap tests appears to be very sensitive to details of the
regression design and the pattern of heteroskedasticity.

In this paper, we have tried to investigate worst case scenarios for wild bootstrap
tests. This should not lead readers to conclude that the wild bootstrap is an
unreliable method in practice. On the contrary, as Figure 7 makes clear, it suffers
from very little distortion for samples of moderate size unless there is extreme
heteroskedasticity. In most practical contexts, use of the Fy-based wild bootstrap
with constrained residuals should provide satisfactory inference.
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Appendix

Proof of Theorem 3:

The proof is divided into several steps. First, we develop a formal stochastic
expansion through order n~! for any of the HCCME-based pseudo-t statistics we
consider in the paper, and show how the same expansion applies as well to the
bootstrapped statistic by simply redefining certain quantities. Next, approximate
expressions are obtained for the low order cumulants of these statistics on the basis
of the stochastic expansion. These approximate cumulants are used to obtain
the (formal) Edgeworth expansion of the distributions of the statistics. In the
next step, the Edgeworth expansion for a bootstrap statistic is inverted to yield
the Cornish-Fisher expansion of its a—quantile. This quantile is needed in order
to express the condition 7 < Q(«, p*), the probability of which is the rejection
probability of the bootstrap test at nominal level a. Then, because Q(a, p*) is
random, the inequality is rearranged so as to put all random terms on the left-
hand side. This gives rise to another random variable, the distribution of which
is described by an Edgeworth expansion obtained in the next step by applying
some easily computed perturbations to that for the basic statistic 7. Finally, the
approximate bootstrap rejection probability, and hence also the ERP, is found by
evaluating the Edgeworth expansion at the desired nominal level a.

Step 1: stochastic expansion of the statistic.
In the proof of Theorem 1, it was seen that, under the null hypothesis, any of the
statistics we consider can be written as

n n

7= (Mozr)eu/ (3 au(Mamy)?ii)?, (33)

with appropriate choice of the a; and the residuals (constrained or uncon-
strained) ;. In the notation of the statement of the theorem, (Maxq); = 4.
If constrained residuals are used, the vector u with typical element u; is

Mou = u — X5(Xo' Xo) ' Xo'u = u — n ' Xo Xy u,

since we define X, such that X5’ X, = nI. In terms of the IID variables v;, we
find that

k n
Uy = opvp —nt Zth’ Z X,iosvs. (34)
1=2 s=1

(Recall that the Xy; are defined so that, for ¢ > 1, Xy; is the element of X, in the
t*h row and the (i —1)*" column.) If unconstrained residuals 4; are used, (34) is
modified so that the sum over ¢ runs from 1 to k, rather than from 2 to k. To avoid
having to distinguish the two cases, we write just ) . in subsequent expressions,
and maintain the ambiguous notation ; for the residuals.

Let us make the definition

w; En_l/zs_lthiO't’Ut, i=1,...,k; (35)

t=1
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recall the definition of S in (27). By the central limit theorem, the w; are asymp-
totically normal, mean zero, and O(1). The numerator of the statistic (33), divided
by n'/2, is just Swy. For the denominator, we need the stochastic expansion of
the residuals, which from (34) and (35) is

’dt = OtV — n_1/2S E th'wz

7

Make the following definitions, for 4,57 =1,...,k:

n n
_ . —1/2g-1 2 — o —1/2g-2 2 2/ 2
wei =n" Y28 E aiz; X1y, =N 128 E arzioy (vp — 1),
t=1 t=1
n

Aij = _IZatxtXth], and H = Z(at -1) :EtO't 12377:‘%
t=1 t=1

), while the

Clearly the wg; and ¢ are asymptotically normal, mean zero, and O(1
1).) Then the

A;j and H are deterministic and O(1). (Recall that a; —1 = O(n~
denominator of (33), also divided by n'/2, is S times

(1+ nY2q4+ntH —2n7t Zwiwai +n! Z ZAijwiwj)l/z'
i i g

With this, we can formulate the stochastic expansion of 7 through order n=!:

1 - 1 1 —
"= wo(l—gn 1/2q+n ! Zwiwai_gn 1H—5n ! ZZAijwin+ n 1q2)
A ? J

(36)

A wild bootstrap statistic is defined by the same formula (33) as 7 itself, but the

error terms u; are replaced by the wild bootstrap error terms uy. If we write
uy = St€¢, then

1/2 _
S¢ = at/ (O't’Ut —n 1/2SZXtiwi)a (37)

or possibly the absolute value of that expression. Since a realisation f of the
bootstrap DGP generates data conditional on the realised v;, the only random
elements in a drawing from [ are the ¢, just as the random elements in a drawing
from the true DGP are the realised v;. Thus the factorisation u; = s;e; plays
exactly the same role for the bootstrap DGP as the factorisation u; = o;v; does
for the true DGP. It follows that the stochastic expansion of the bootstrap DGP
(conditional on the v;) is given by (36), with all the variables redefined with s;
and ¢; in place of o; and v; respectively.

Step 2: Formal Edgeworth expansion based on cumulants.

The Edgeworth expansion of the CDF F' of an asymptotically N(0,1) statistic 7
can be written as

F(z) = ®(z) — n~Y2¢(x) Z XNHe;_1(z). (38)
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Here ®(-) and ¢(-) are respectively the CDF and the density of the N (0, 1) distri-
bution, He;(-) is the Hermite polynomial of degree i (see for instance Abramowitz
and Stegun (1965), Chapter 22 for details of these polynomials). The expansion
as written in (38) is more properly referred to as the Gram-Charlier series, but,
unless truncated, the Edgeworth and Gram-Charlier series are equivalent. As we
truncate everything in this proof of order lower than n~!, we obtain true Edge-
worth series. The ); in (38) are coefficients that are at most of order unity, defined
by the relations
nl/2

)\j = ]' E(Hej(T)), (39)
so that, for the first few values of 7, Ay = n'/2u1, Ay = n'/2(pus — 1)/2, A3 =
n'/2(uz — 3p1)/6, A = n/2(ug — 6us + 3)/24, etc, where y; is the uncentred
moment of 7 of order i.

The leading-order term of the stochastic expansion 7y in (36) is wp, which is a
normalised sum of mean-zero variables that converges to the N(0,1) distribution
as n — oo by the central limit theorem. Under the regularity conditions of all the
theorems in this paper, the cumulant of wq of order j, for j > 2, is of order n(1=2)/2
— see Chapter 5 of McCullagh (1987) for many more details on cumulants as
applied to Edgeworth expansions. It also follows from the theory of that chapter
that E(He;(wop)) is equal to the “formal moment” of order j corresponding to
a sequence of “formal cumulants,” k;, say, where k; is the j th cumulant of wy,
except for 7 = 2, for which k4 is the second cumulant of wy minus 1.

The first-order cumulant of wyq is its expectation, which is zero. The second order
cumulant is the variance, which is unity, and so the formal cumulant of second
order is also zero. With zero mean and unit variance, the third and fourth cu-
mulants, which are also the formal cumulants, are respectively the third moment
and the fourth moment minus 3, that is, n=/2esC and n='(e4D — 3). It can be
seen to follow from this (see McCullagh (1987) again) that the formal moments
associated with these formal cumulants of order higher than 4 are all of order
lower than n~!, except the sixth, which is 10 times the square of the third formal
cumulant. Further discussion of these points can also be found in Kendall and
Stuart (1977), Chapter 6.

For ease of notation, write 7 = wq + n~'/2¢, where

£ = —2wog +n V2w (Y wiwe — 23N Agwaw; — tH+ 367, (a0)
i i g

For j = 1, we find from (39) that A; = n'/2E(wo + n~1/2¢) = E(¢). To compute
E(£), note that

E(woq) = e3(nS®)~ Zatmtat =e3C+0(n 1)

The expectations of all the terms in ¢ of order n~1/2 all involve a product of three

random variables, and hence implicitly a triple sum over the observations. They
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are thus of order n~'/2, because only the terms for which all three observation

indices coincide have a nonzero expectation, and the resulting sum over n terms
is multiplied by a factor of n=3/2. Thus A\; = ——630 +O0(n1).

In order to compute Ay, we note that

2= w% + 20~ 2y o0& +n g2

:wg—n 1/2 2q+n 'w0<q —|—22wzwaZ ZZAZJwaJ )

Now we have

E(wiq) =n""?D(es — 1), E(wiw;w;) = By; + 2E;E;,
E(w%qZ) = D(64 — 1) + 26%02, E(wgwiwai) = GZ + 2Ein'7

where we have implicitly defined the following deterministic, order 1, quantities

n n
_ o2, -1 X, .02 ~—_2_1E i Xpo7
Bij=S""n E Xy Xijo, and G;=5""n atr; Xi;0;
t=1 t=1

1

Hence, to order n™", we obtain

-1
)\2—2’11

-1 D" Ay(By + 2BE) - %H) +Oo(n Y.
i g

1/2E(7’12 - 1) = ’17,_1/2 (6%02 —+ Z(GZ + 2E,LFZ)

Similar calculations, of which we skip the details, show that A3 = —%(330 +0(n™1),
and

A = n_1/2 (—%64D + %6%02 + Z E,F; — %Z ZA’LJE’LEJ) + O(n_l).

Finally, g is n'/? /720 times the sixth formal moment, which was seen to be

10 times the square of the third formal cumulant. The third formal cumulant is

6n"12 3 = —2n"2e5C, and so A\ = 18 n1/2 202

For the wild bootstrap statistic, we define coefficients )\;f by the same formulas as
those for the A;, but with s; instead of o4 and €; instead of v; in the definitions. As
with the \;, we need work only through order n~'/2. Using a star systematically
to denote a quantity defined for the bootstrap distribution, we find, using the
definition (37) of s, that

E _IZ-’EtSt =N lzatxt atvt 2n~ 12 SJtUtZXtZwZ +O( _1)
=52 (1+n 2y +0(m™),
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since n=! Y~ w;n~ /2 >, 22 Xyiorvy = O(n™t). Then through order n~1/2
C* = (§*)73 _IZ:Utst = (§*)73 _1fo(atvt 3n~Y2Sq2] ZXtiwi).

Define the asymptotically normal, variable ¢ = n=%/28733"" 2303 (v} — e3), of
order 1 and mean 0. Then

C* = (5*)735%(esC + n~ Y2 — 3n~1/2 Zwle) +0(n™)

=e3C +n V2 (— qe30+c—32wz Y+ 0(n™h).

From this, we see that, through order n—1/2

* 1 « 1 — 3 1 3
Al =—5e30" = —5ezesC+n 1/2e§(zqe30 —5ct 5 ZwiFi), (41)
(2

Ay =2A1, and Ay =1on(e3)’e3C”

Since A} and A} are of order only n~1/2, we do not need the quantities on which
they depend past leading order. Thus, to order 1,

n
—4,-1 4, —1 4_4 4
= (S")" E rist = S™'n E xyop vy = egD,
=1

and one easily checks that to that order, and for 4,5 = 1,...,k, B}; = B,
E} = E;, F} = F;, and G} = G;. Since A;; and H, depend neither on the o; nor

(2

on the v, they are the same for the true and the bootstrap DGP. We thus see
that, to order n—1/2,

A;:n—m(() C2+ZG+2EF 2ZZAZJ By; + 2B, E;) — H)

A= n—l/z( LeteaD + 2(e3)°3C + Y EiF - 1Y ZAijEiEj).

Step 3: Determination of the quantile of the bootstrap distribution.

For the CDF (38), the a—quantile is defined implicitly by the equation F'(z,) = a.
An expansion of z, in powers of n=/2, usually called the Cornish-Fisher expan-
sion, can be obtained by inverting the definition (38) of F. The result is

T —Za+n 1/2ZA Hez 1 za _122)‘)\ hzg(za +O( _3/2)a (42)

where the polynomials h;;(z) can be defined in terms of the Hermite polynomials.
See Kendall and Stuart (1977), Chapter 6, for details of this sort of expansion.
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Let us denote by Q4({A;}) the quantile (42) for the sequence {\;} = {1, A2, ...}
Let I; = A} — \;. For a one-tailed bootstrap test at nominal level o, with rejection
in the left-hand tail of the distribution, the event that corresponds to rejection is

T < Qa({AF}) = Qa({Ni +1;}). If we write Qo ({Xi +1;}) = Qa({N:}) + n_l/QqZ,
then

o = ZliHei_l(za) + o2 ZZ(ZMJ + Ailj)hij(za) + O(n7Y),  (43)
7 7 Vi

Write Qo = Qa({Ai}), vi = E,,(l;), and let ¢4 = E, (q};). We have

Qo = Z ViHei_l(za) + %n_1/2 Z Z(UZ)\J + AZ'Vj)hZ'j (Za) + O(n_l). (44)

4 J

Comparison with (43) shows that, through order n~!, Q, + n~2q, is the
a—quantile of the distribution characterised by the sequence {\; + v;}. Finally,
let 74 = ¢ — ¢o- Rejection by the bootstrap test is the event 7 < Qq + n~2¢*,
or, equivalently, 7 — n= /2y, < Q. + n~/2¢q,, in which all random terms are on
the left-hand side of the inequality.

Suppose that the distribution of the random variable 7 — n='/24, is given by an
expansion of the form (38) with a sequence of coefficients {\; +7;}. Then it follows
that the rejection probability of the bootstrap test is given by the expansion

(I)(ro + n_1/2QO¢) - n_1/2¢(Qa + n_l/ZQ(x) Z()\z + ni)Hei—l(Qa + n_1/2QOc)-
Since Q,+n"1/2q, is the a—quantile of the distribution characterised by {\;+v;},
we have
B(Qo+n"12qy) —nV2¢(Qo +n " 2qy) Z()‘Z +v)Hei 1(Qa +n"2q,) =

and so, on subtraction, we find that the RPE of the bootstrap test is

n2¢(Qa + 17 24a) Y (i — mi)Heio1(Qa + 17 qa). (45)

(3

Step 4: Computation of the bootstrap RPE.

We begin with the computation of the v;. From (41), we see that, through or-
der n=1/2, .
V= E()\T - )\1) = —5(6;’ - 1)630,

since E(q) = E(c) = E(w;) = 0. Similarly, through order n~1/2,

V3 = —%(e§ — 1)esC, Ve = %71_1/2((6@2 —1)eiC?,
vy =n"12((e5)? — 1)e3C?, wa=n"V2(—(ef — DeaD + 2((e5)? — 1)e3C?).
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Since A%, A%, and A} are nonrandom through order n=/2, we see that Iy = vs,

ly = vy, and lg = vg. Thus, from (43) and (44), we have that

Yo =0 — o =11 —v1+ (I3 —v3)(22 — 1) (46)
+n 2 (1l = 11) Y Ajhaj(za) + 072 (I3 — vs) Y Ajhsj(za) + O(n7Y),
J J

Define the zero mean random variable

(= nl/zé(ll —v) = n1/2%(l3 —v3) = eg(iqegc’ - %c + é szFz)

We see from this that we need only the first two terms in the expression (46)
for 74, since the last two are O(n~1). To the desired order,

Ya = n_l/2§(3 +2(22-1)) = n~Y2¢(1 4 222).

For the 7;, we note first that A\; + 11 = nY/2E (1 — n=Y2y,) = nY/2E(1) = Ay, s0
that 7, = 0. For 7y, since v, = O(n~'/?), we have

Ao +mp = %nl/zE((T A 1) =X — E(tv4) + O(n=3/?).
Now, since 7 = wp + O(n~1/2),

2 = —E(77a) = —E(wova) + O(n™") = —n~V2(1 + 222) E(wo() + O(n ™)
_ x(1 1 1 -
= —n"Y2(1+222)e} (Ze?,,CZ — 5D+ ZE’F’) +0(n™h),

since, as we have already seen, E(wopq) = e3C, and, as can easily be checked,
E(woc) = e4D and E(wow;) = E;. For n3, we compute

Az + 13 = %nlmE((T — n_l/zfya)?’ —3(r - n_1/2'ya))
=3 — 30" Y2(1 4+ 222) E(w() + O(n ™).

But E(w3q), E(wéc), and E(wiw;) are all O(n~'/?), and so 3 = O(n~1). For 74,
we find that

A+ 1y = inlmE((T Y2y ) 6(r — Y 2y,)? £ 3)
=M — in_l/Z(l +222) (4E(wi¢) — 12E(wo)) + O(n™1)

Now it can be checked that E(w3¢) = 3E(wo(), since E(wdq) = 3e3C, with similar
results for E(w3c) and E(w3w;). Thus ny = O(n™1). Since in general \g is through
order n~! a function of A3, and since n3 = O(n~!), it follows that 9 = O(n=1).

We now return to the evaluation of (45). Since to relevant order Q, + n~1/2¢q, is

the a—quantile of the distribution characterised by {\; + v;}, we obtain from (42)
that
Qo +1n" Y2 = 2o +n71/2 Z()\Z +vi)Hei—1(24) + O(n71).
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Performing a Taylor expansion of (45) about z,, gives for the ERP of the bootstrap
test

n_1/2¢(za) Z(Vz - ni)Hei—l(za)

07 (za) Y (Aj v Hejo1(2a) Y (vi —mi)Hei(2a) +o(n™),  (47)

J i
since the derivative of ¢(z)He;(z) is —¢(z)He;11(z). Of the A\; 4+ v;, only those
for i =1 and ¢ = 3 are O(1). Further, to leading order, 2(A; +v1) = 3(A3 +v3) =
—ezesC. Thus, to leading order,

Z()\j +vj)Hej_1(2q) = —egegc’(% + %(zi — 1)) = —%6;630(1 +222).
J
With this, the ERP (47) is
2 (2,) Z(Vz —n;)(He;—1(za) + %n_1/2e§€30(1 +222)He;(24)).  (48)
If we first concentrate on the contribution of order n~/2 to this ERP, we see that
this contribution comes only from the terms with + = 1, 3, and it is

— 5728 (20) (€} — 1)esC(1 + 222),

in accord with (26). The contribution of order n~! from these same two terms is

367 P(a) ((e8)” = e5)e5C% (B + 42f, — 427). (49)

For i = 2, the leading-order contribution to (48) is n™1¢(z,) times

zo(((e5)? = 1)e3C” + (1 + 2zi)e§(%e§02 — %64D - % ZEze)) (50)

For i = 4, we get a contribution of n=1¢(z,) times
(2 = 32a) (—35 (€1 — DeaD + 2 ((e3) — 1)e3C?), (51)
and, for i = 6, n71¢(24) times
(5 — 1023 + 1524) 75 ((€3)* — 1)e3C. (52)

Adding up the contributions (49), (50), (51), and (52) yields the term of order n~!
in (26). 1

The rejection probability of the asymptotic test based on 7 (one-tailed with rejec-
tion in the left-hand tail) is the probability mass to the left of z, in the distribution
with expansion (38). Thus, with the values of the A; computed here, the ERP is
n~2¢(z,) times

1 — 1 1 1 1 1
6630(1 +222)+n 1/2(5Hza + 6302(5% - 52‘?”‘ - Ezg) + E&;D(zi — 324)

+(5 DD AGEE; =3 Eil) (23 — 2a) + (1 33 AuBy =Y Gi%)_

(3
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Table 1. Regressors

Obs

I

3

T4

s

Te

© 00~ O O ix W N =

—_
]

0.616572
10.000000
-0.600679
-0.613076
-1.972106

0.409741
-0.676614

0.400136

1.106144

0.671560

0.511730
5.179612
0.255896
0.705476
-0.673980
0.922026
0.515275
0.459530
2.509302
0.454057

0.210851
4.749082
-0.150372
0.447747
-1.513501
1.162060
-0.241203
0.166282
0.899661
-0.584329

-0.651571
6.441719
-0.530344
-1.599614
0.533987
-1.328799
-1.424305
0.040292
-0.188744
1.451838

0.509960
1.212823
0.318283
-0.601335
0.654767
1.607007
-0.360405
-0.018642
1.031873
0.665312

Table 2. Leverage measures

Obs

k=6

© 00 O O W N

—_
o

0.003537
0.930524
0.003357
0.003497
0.036190
0.001562
0.004260
0.001490
0.011385
0.004197

0.101022
0.932384
0.123858
0.124245
0.185542
0.102785
0.126277
0.102888
0.100300
0.100698

0.166729
0.938546
0.128490
0.167158
0.244940
0.105276
0.138399
0.154378
0.761333
0.194752

0.171154
0.938546
0.137478
0.287375
0.338273
0.494926
0.143264
0.162269
0.879942
0.446773

0.520204
0.964345
0.164178
0.302328
0.734293
0.506885
0.295007
0.163588
0.880331
0.468841

0.560430
0.975830
0.167921
0.642507
0.741480
0.880235
0.386285
0.218167
0.930175
0.496971

Notes: For k = 1, the only regressor is ®1, for £ = 2 there is also the constant, for
k = 3 there are the constant, &1, and x2, and so forth.

Table 3. Influence of the design on Edgeworth expansion

k=1 k=2 k=3 k=4 k=5 k=6

C 3.15 3.14 2.87 2.86 -1.81 -1.57
D 9.97 9.91 8.92 8.78 5.27 4.08
EFy 0.00 0.98 6.67 6.98 1.71 1.02
EF 9.29 9.27 8.31 8.17 3.94 2.90

Note: EFy is Zl E; F; for the case of constrained residuals; EF; is for unconstrained
residuals.
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Figure 1. Absolute values and signs of two random variables
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Figure 2. ERPs of asymptotic and bootstrap tests
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Figure 3. Base case with different designs
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Figure 4. Symmetric and skewed errors, Fi, F», and (y, X) bootstraps
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Fy, symmetric ---------- ) R s B —

FQ, Symmetric _ (y’ ){)7 Symmetric .............

Fl; skewed -eeeeeeeeeeenes (y7X)’ skewed

Figure 5. Homoskedastic errors

Fy, symmetric, heteroskedastic ----------
F5, symmetric, heteroskedastic

F1, skewed, heteroskedastic
0.05 F5, skewed, heteroskedastic - weeeeee:

Fy, symmetric, homoskedastic «----eeeeeee

—0.15 + F,, symmetric, homoskedastic ----------
F1, skewed, homoskedastic
—0.20 n= ]_007 k=3 F27 Skewed7 homoskedastic s
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Figure 6. ERPs for n = 100
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Figure 7. ERP for nominal level 0.05 as function of sample size
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Figure 8a. The contributions of order n~'/? and n~"! to the ERP
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~0.8 - k=3
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Figure 8b. Error in Edgeworth ERP, F;, F>, skewed errors
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Figure 9. HC3 compared with HC, and HC:
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Figure 10. Relative importance of leverage and heteroskedasticity
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